rf_reconstruct.c revision 1.20
1/*	$NetBSD: rf_reconstruct.c,v 1.20 2000/02/25 17:14:18 oster Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35#include "rf_types.h"
36#include <sys/time.h>
37#include <sys/buf.h>
38#include <sys/errno.h>
39
40#include <sys/types.h>
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/proc.h>
44#include <sys/ioctl.h>
45#include <sys/fcntl.h>
46#include <sys/vnode.h>
47
48
49#include "rf_raid.h"
50#include "rf_reconutil.h"
51#include "rf_revent.h"
52#include "rf_reconbuffer.h"
53#include "rf_acctrace.h"
54#include "rf_etimer.h"
55#include "rf_dag.h"
56#include "rf_desc.h"
57#include "rf_general.h"
58#include "rf_freelist.h"
59#include "rf_debugprint.h"
60#include "rf_driver.h"
61#include "rf_utils.h"
62#include "rf_shutdown.h"
63
64#include "rf_kintf.h"
65
66/* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68#define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
69#define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70#define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
71#define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
72#define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
73#define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
74#define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
75#define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
76
77#define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
78#define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
79
80static RF_FreeList_t *rf_recond_freelist;
81#define RF_MAX_FREE_RECOND  4
82#define RF_RECOND_INC       1
83
84static RF_RaidReconDesc_t *
85AllocRaidReconDesc(RF_Raid_t * raidPtr,
86    RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
87    int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
88static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
89static int
90ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
91    RF_ReconEvent_t * event);
92static int
93IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
94    RF_RowCol_t col);
95static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
96static int
97ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
98    RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
99    RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
100    RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
101static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
102static int ReconReadDoneProc(void *arg, int status);
103static int ReconWriteDoneProc(void *arg, int status);
104static void
105CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
106    RF_HeadSepLimit_t hsCtr);
107static int
108CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
109    RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
110    RF_ReconUnitNum_t which_ru);
111static int
112CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
113    RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
114    RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
115    RF_ReconUnitNum_t which_ru);
116static void ForceReconReadDoneProc(void *arg, int status);
117
118static void rf_ShutdownReconstruction(void *);
119
120struct RF_ReconDoneProc_s {
121	void    (*proc) (RF_Raid_t *, void *);
122	void   *arg;
123	RF_ReconDoneProc_t *next;
124};
125
126static RF_FreeList_t *rf_rdp_freelist;
127#define RF_MAX_FREE_RDP 4
128#define RF_RDP_INC      1
129
130static void
131SignalReconDone(RF_Raid_t * raidPtr)
132{
133	RF_ReconDoneProc_t *p;
134
135	RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
136	for (p = raidPtr->recon_done_procs; p; p = p->next) {
137		p->proc(raidPtr, p->arg);
138	}
139	RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
140}
141
142int
143rf_RegisterReconDoneProc(
144    RF_Raid_t * raidPtr,
145    void (*proc) (RF_Raid_t *, void *),
146    void *arg,
147    RF_ReconDoneProc_t ** handlep)
148{
149	RF_ReconDoneProc_t *p;
150
151	RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
152	if (p == NULL)
153		return (ENOMEM);
154	p->proc = proc;
155	p->arg = arg;
156	RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
157	p->next = raidPtr->recon_done_procs;
158	raidPtr->recon_done_procs = p;
159	RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
160	if (handlep)
161		*handlep = p;
162	return (0);
163}
164/**************************************************************************
165 *
166 * sets up the parameters that will be used by the reconstruction process
167 * currently there are none, except for those that the layout-specific
168 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
169 *
170 * in the kernel, we fire off the recon thread.
171 *
172 **************************************************************************/
173static void
174rf_ShutdownReconstruction(ignored)
175	void   *ignored;
176{
177	RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
178	RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
179}
180
181int
182rf_ConfigureReconstruction(listp)
183	RF_ShutdownList_t **listp;
184{
185	int     rc;
186
187	RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
188	    RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
189	if (rf_recond_freelist == NULL)
190		return (ENOMEM);
191	RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
192	    RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
193	if (rf_rdp_freelist == NULL) {
194		RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
195		return (ENOMEM);
196	}
197	rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
198	if (rc) {
199		RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
200		    __FILE__, __LINE__, rc);
201		rf_ShutdownReconstruction(NULL);
202		return (rc);
203	}
204	return (0);
205}
206
207static RF_RaidReconDesc_t *
208AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
209	RF_Raid_t *raidPtr;
210	RF_RowCol_t row;
211	RF_RowCol_t col;
212	RF_RaidDisk_t *spareDiskPtr;
213	int     numDisksDone;
214	RF_RowCol_t srow;
215	RF_RowCol_t scol;
216{
217
218	RF_RaidReconDesc_t *reconDesc;
219
220	RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
221
222	reconDesc->raidPtr = raidPtr;
223	reconDesc->row = row;
224	reconDesc->col = col;
225	reconDesc->spareDiskPtr = spareDiskPtr;
226	reconDesc->numDisksDone = numDisksDone;
227	reconDesc->srow = srow;
228	reconDesc->scol = scol;
229	reconDesc->state = 0;
230	reconDesc->next = NULL;
231
232	return (reconDesc);
233}
234
235static void
236FreeReconDesc(reconDesc)
237	RF_RaidReconDesc_t *reconDesc;
238{
239#if RF_RECON_STATS > 0
240	printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
241	    (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
242#endif				/* RF_RECON_STATS > 0 */
243	printf("RAIDframe: %lu max exec ticks\n",
244	    (long) reconDesc->maxReconExecTicks);
245#if (RF_RECON_STATS > 0) || defined(KERNEL)
246	printf("\n");
247#endif				/* (RF_RECON_STATS > 0) || KERNEL */
248	RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
249}
250
251
252/*****************************************************************************
253 *
254 * primary routine to reconstruct a failed disk.  This should be called from
255 * within its own thread.  It won't return until reconstruction completes,
256 * fails, or is aborted.
257 *****************************************************************************/
258int
259rf_ReconstructFailedDisk(raidPtr, row, col)
260	RF_Raid_t *raidPtr;
261	RF_RowCol_t row;
262	RF_RowCol_t col;
263{
264	RF_LayoutSW_t *lp;
265	int     rc;
266
267	lp = raidPtr->Layout.map;
268	if (lp->SubmitReconBuffer) {
269		/*
270	         * The current infrastructure only supports reconstructing one
271	         * disk at a time for each array.
272	         */
273		RF_LOCK_MUTEX(raidPtr->mutex);
274		while (raidPtr->reconInProgress) {
275			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
276		}
277		raidPtr->reconInProgress++;
278		RF_UNLOCK_MUTEX(raidPtr->mutex);
279		rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
280		RF_LOCK_MUTEX(raidPtr->mutex);
281		raidPtr->reconInProgress--;
282		RF_UNLOCK_MUTEX(raidPtr->mutex);
283	} else {
284		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
285		    lp->parityConfig);
286		rc = EIO;
287	}
288	RF_SIGNAL_COND(raidPtr->waitForReconCond);
289	wakeup(&raidPtr->waitForReconCond);	/* XXX Methinks this will be
290						 * needed at some point... GO */
291	return (rc);
292}
293
294int
295rf_ReconstructFailedDiskBasic(raidPtr, row, col)
296	RF_Raid_t *raidPtr;
297	RF_RowCol_t row;
298	RF_RowCol_t col;
299{
300	RF_ComponentLabel_t c_label;
301	RF_RaidDisk_t *spareDiskPtr = NULL;
302	RF_RaidReconDesc_t *reconDesc;
303	RF_RowCol_t srow, scol;
304	int     numDisksDone = 0, rc;
305
306	/* first look for a spare drive onto which to reconstruct the data */
307	/* spare disk descriptors are stored in row 0.  This may have to
308	 * change eventually */
309
310	RF_LOCK_MUTEX(raidPtr->mutex);
311	RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
312
313	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
314		if (raidPtr->status[row] != rf_rs_degraded) {
315			RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
316			RF_UNLOCK_MUTEX(raidPtr->mutex);
317			return (EINVAL);
318		}
319		srow = row;
320		scol = (-1);
321	} else {
322		srow = 0;
323		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
324			if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
325				spareDiskPtr = &raidPtr->Disks[srow][scol];
326				spareDiskPtr->status = rf_ds_used_spare;
327				break;
328			}
329		}
330		if (!spareDiskPtr) {
331			RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
332			RF_UNLOCK_MUTEX(raidPtr->mutex);
333			return (ENOSPC);
334		}
335		printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
336	}
337	RF_UNLOCK_MUTEX(raidPtr->mutex);
338
339	reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
340	raidPtr->reconDesc = (void *) reconDesc;
341#if RF_RECON_STATS > 0
342	reconDesc->hsStallCount = 0;
343	reconDesc->numReconExecDelays = 0;
344	reconDesc->numReconEventWaits = 0;
345#endif				/* RF_RECON_STATS > 0 */
346	reconDesc->reconExecTimerRunning = 0;
347	reconDesc->reconExecTicks = 0;
348	reconDesc->maxReconExecTicks = 0;
349	rc = rf_ContinueReconstructFailedDisk(reconDesc);
350
351	if (!rc) {
352		/* fix up the component label */
353		/* Don't actually need the read here.. */
354		raidread_component_label(
355                        raidPtr->raid_cinfo[srow][scol].ci_dev,
356			raidPtr->raid_cinfo[srow][scol].ci_vp,
357			&c_label);
358
359		raid_init_component_label( raidPtr, &c_label);
360		c_label.row = row;
361		c_label.column = col;
362		c_label.clean = RF_RAID_DIRTY;
363		c_label.status = rf_ds_optimal;
364
365		/* XXXX MORE NEEDED HERE */
366
367		raidwrite_component_label(
368                        raidPtr->raid_cinfo[srow][scol].ci_dev,
369			raidPtr->raid_cinfo[srow][scol].ci_vp,
370			&c_label);
371
372	}
373	return (rc);
374}
375
376/*
377
378   Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
379   and you don't get a spare until the next Monday.  With this function
380   (and hot-swappable drives) you can now put your new disk containing
381   /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
382   rebuild the data "on the spot".
383
384*/
385
386int
387rf_ReconstructInPlace(raidPtr, row, col)
388	RF_Raid_t *raidPtr;
389	RF_RowCol_t row;
390	RF_RowCol_t col;
391{
392	RF_RaidDisk_t *spareDiskPtr = NULL;
393	RF_RaidReconDesc_t *reconDesc;
394	RF_LayoutSW_t *lp;
395	RF_RaidDisk_t *badDisk;
396	RF_ComponentLabel_t c_label;
397	int     numDisksDone = 0, rc;
398	struct partinfo dpart;
399	struct vnode *vp;
400	struct vattr va;
401	struct proc *proc;
402	int retcode;
403
404	lp = raidPtr->Layout.map;
405	if (lp->SubmitReconBuffer) {
406		/*
407	         * The current infrastructure only supports reconstructing one
408	         * disk at a time for each array.
409	         */
410		RF_LOCK_MUTEX(raidPtr->mutex);
411		if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
412		    (raidPtr->numFailures > 0)) {
413			/* XXX 0 above shouldn't be constant!!! */
414			/* some component other than this has failed.
415			   Let's not make things worse than they already
416			   are... */
417			printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
418			printf("      Row: %d Col: %d   Too many failures.\n",
419			       row, col);
420			RF_UNLOCK_MUTEX(raidPtr->mutex);
421			return (EINVAL);
422		}
423		if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
424			printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
425			printf("      Row: %d Col: %d   Reconstruction already occuring!\n", row, col);
426
427			RF_UNLOCK_MUTEX(raidPtr->mutex);
428			return (EINVAL);
429		}
430
431
432		if (raidPtr->Disks[row][col].status != rf_ds_failed) {
433			/* "It's gone..." */
434			raidPtr->numFailures++;
435			raidPtr->Disks[row][col].status = rf_ds_failed;
436			raidPtr->status[row] = rf_rs_degraded;
437			rf_update_component_labels(raidPtr);
438		}
439
440		while (raidPtr->reconInProgress) {
441			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
442		}
443
444		raidPtr->reconInProgress++;
445
446
447		/* first look for a spare drive onto which to reconstruct
448		   the data.  spare disk descriptors are stored in row 0.
449		   This may have to change eventually */
450
451		/* Actually, we don't care if it's failed or not...
452		   On a RAID set with correct parity, this function
453		   should be callable on any component without ill affects. */
454		/* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
455		 */
456
457		if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
458			RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
459
460			raidPtr->reconInProgress--;
461			RF_UNLOCK_MUTEX(raidPtr->mutex);
462			return (EINVAL);
463		}
464
465		/* XXX need goop here to see if the disk is alive,
466		   and, if not, make it so...  */
467
468
469
470		badDisk = &raidPtr->Disks[row][col];
471
472		proc = raidPtr->engine_thread;
473
474		/* This device may have been opened successfully the
475		   first time. Close it before trying to open it again.. */
476
477		if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
478			printf("Closed the open device: %s\n",
479			       raidPtr->Disks[row][col].devname);
480			if (raidPtr->Disks[row][col].auto_configured == 1) {
481				VOP_CLOSE(raidPtr->raid_cinfo[row][col].ci_vp,
482					  FREAD, NOCRED, 0);
483				vput(raidPtr->raid_cinfo[row][col].ci_vp);
484
485			} else {
486				VOP_UNLOCK(raidPtr->raid_cinfo[row][col].ci_vp, 0);
487				(void) vn_close(raidPtr->raid_cinfo[row][col].ci_vp,
488					FREAD | FWRITE, proc->p_ucred, proc);
489			}
490			raidPtr->raid_cinfo[row][col].ci_vp = NULL;
491		}
492		/* note that this disk was *not* auto_configured (any longer)*/
493		raidPtr->Disks[row][col].auto_configured = 0;
494
495		printf("About to (re-)open the device for rebuilding: %s\n",
496		       raidPtr->Disks[row][col].devname);
497
498		retcode = raidlookup(raidPtr->Disks[row][col].devname,
499				     proc, &vp);
500
501		if (retcode) {
502			printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
503			       raidPtr->Disks[row][col].devname, retcode);
504
505			/* XXX the component isn't responding properly...
506			   must be still dead :-( */
507			raidPtr->reconInProgress--;
508			RF_UNLOCK_MUTEX(raidPtr->mutex);
509			return(retcode);
510
511		} else {
512
513			/* Ok, so we can at least do a lookup...
514			   How about actually getting a vp for it? */
515
516			if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
517						   proc)) != 0) {
518				raidPtr->reconInProgress--;
519				RF_UNLOCK_MUTEX(raidPtr->mutex);
520				return(retcode);
521			}
522			retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
523					    FREAD, proc->p_ucred, proc);
524			if (retcode) {
525				raidPtr->reconInProgress--;
526				RF_UNLOCK_MUTEX(raidPtr->mutex);
527				return(retcode);
528			}
529			raidPtr->Disks[row][col].blockSize =
530				dpart.disklab->d_secsize;
531
532			raidPtr->Disks[row][col].numBlocks =
533				dpart.part->p_size - rf_protectedSectors;
534
535			raidPtr->raid_cinfo[row][col].ci_vp = vp;
536			raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
537
538			raidPtr->Disks[row][col].dev = va.va_rdev;
539
540			/* we allow the user to specify that only a
541			   fraction of the disks should be used this is
542			   just for debug:  it speeds up
543			 * the parity scan */
544			raidPtr->Disks[row][col].numBlocks =
545				raidPtr->Disks[row][col].numBlocks *
546				rf_sizePercentage / 100;
547		}
548
549
550
551		spareDiskPtr = &raidPtr->Disks[row][col];
552		spareDiskPtr->status = rf_ds_used_spare;
553
554		printf("RECON: initiating in-place reconstruction on\n");
555		printf("       row %d col %d -> spare at row %d col %d\n",
556		       row, col, row, col);
557
558		RF_UNLOCK_MUTEX(raidPtr->mutex);
559
560		reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
561					       spareDiskPtr, numDisksDone,
562					       row, col);
563		raidPtr->reconDesc = (void *) reconDesc;
564#if RF_RECON_STATS > 0
565		reconDesc->hsStallCount = 0;
566		reconDesc->numReconExecDelays = 0;
567		reconDesc->numReconEventWaits = 0;
568#endif				/* RF_RECON_STATS > 0 */
569		reconDesc->reconExecTimerRunning = 0;
570		reconDesc->reconExecTicks = 0;
571		reconDesc->maxReconExecTicks = 0;
572		rc = rf_ContinueReconstructFailedDisk(reconDesc);
573
574		RF_LOCK_MUTEX(raidPtr->mutex);
575		raidPtr->reconInProgress--;
576		RF_UNLOCK_MUTEX(raidPtr->mutex);
577
578	} else {
579		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
580			     lp->parityConfig);
581		rc = EIO;
582	}
583	RF_LOCK_MUTEX(raidPtr->mutex);
584
585	if (!rc) {
586		/* Need to set these here, as at this point it'll be claiming
587		   that the disk is in rf_ds_spared!  But we know better :-) */
588
589		raidPtr->Disks[row][col].status = rf_ds_optimal;
590		raidPtr->status[row] = rf_rs_optimal;
591
592		/* fix up the component label */
593		/* Don't actually need the read here.. */
594		raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
595					 raidPtr->raid_cinfo[row][col].ci_vp,
596					 &c_label);
597
598		raid_init_component_label(raidPtr, &c_label);
599
600		c_label.row = row;
601		c_label.column = col;
602
603		raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
604					  raidPtr->raid_cinfo[row][col].ci_vp,
605					  &c_label);
606
607	}
608	RF_UNLOCK_MUTEX(raidPtr->mutex);
609	RF_SIGNAL_COND(raidPtr->waitForReconCond);
610	wakeup(&raidPtr->waitForReconCond);
611	return (rc);
612}
613
614
615int
616rf_ContinueReconstructFailedDisk(reconDesc)
617	RF_RaidReconDesc_t *reconDesc;
618{
619	RF_Raid_t *raidPtr = reconDesc->raidPtr;
620	RF_RowCol_t row = reconDesc->row;
621	RF_RowCol_t col = reconDesc->col;
622	RF_RowCol_t srow = reconDesc->srow;
623	RF_RowCol_t scol = reconDesc->scol;
624	RF_ReconMap_t *mapPtr;
625
626	RF_ReconEvent_t *event;
627	struct timeval etime, elpsd;
628	unsigned long xor_s, xor_resid_us;
629	int     retcode, i, ds;
630
631	switch (reconDesc->state) {
632
633
634	case 0:
635
636		raidPtr->accumXorTimeUs = 0;
637
638		/* create one trace record per physical disk */
639		RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
640
641		/* quiesce the array prior to starting recon.  this is needed
642		 * to assure no nasty interactions with pending user writes.
643		 * We need to do this before we change the disk or row status. */
644		reconDesc->state = 1;
645
646		Dprintf("RECON: begin request suspend\n");
647		retcode = rf_SuspendNewRequestsAndWait(raidPtr);
648		Dprintf("RECON: end request suspend\n");
649		rf_StartUserStats(raidPtr);	/* zero out the stats kept on
650						 * user accs */
651
652		/* fall through to state 1 */
653
654	case 1:
655
656		RF_LOCK_MUTEX(raidPtr->mutex);
657
658		/* create the reconstruction control pointer and install it in
659		 * the right slot */
660		raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
661		mapPtr = raidPtr->reconControl[row]->reconMap;
662		raidPtr->status[row] = rf_rs_reconstructing;
663		raidPtr->Disks[row][col].status = rf_ds_reconstructing;
664		raidPtr->Disks[row][col].spareRow = srow;
665		raidPtr->Disks[row][col].spareCol = scol;
666
667		RF_UNLOCK_MUTEX(raidPtr->mutex);
668
669		RF_GETTIME(raidPtr->reconControl[row]->starttime);
670
671		/* now start up the actual reconstruction: issue a read for
672		 * each surviving disk */
673
674		reconDesc->numDisksDone = 0;
675		for (i = 0; i < raidPtr->numCol; i++) {
676			if (i != col) {
677				/* find and issue the next I/O on the
678				 * indicated disk */
679				if (IssueNextReadRequest(raidPtr, row, i)) {
680					Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
681					reconDesc->numDisksDone++;
682				}
683			}
684		}
685
686	case 2:
687		Dprintf("RECON: resume requests\n");
688		rf_ResumeNewRequests(raidPtr);
689
690
691		reconDesc->state = 3;
692
693	case 3:
694
695		/* process reconstruction events until all disks report that
696		 * they've completed all work */
697		mapPtr = raidPtr->reconControl[row]->reconMap;
698
699
700
701		while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
702
703			event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
704			RF_ASSERT(event);
705
706			if (ProcessReconEvent(raidPtr, row, event))
707				reconDesc->numDisksDone++;
708			raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
709			if (rf_prReconSched) {
710				rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
711			}
712		}
713
714
715
716		reconDesc->state = 4;
717
718
719	case 4:
720		mapPtr = raidPtr->reconControl[row]->reconMap;
721		if (rf_reconDebug) {
722			printf("RECON: all reads completed\n");
723		}
724		/* at this point all the reads have completed.  We now wait
725		 * for any pending writes to complete, and then we're done */
726
727		while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
728
729			event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
730			RF_ASSERT(event);
731
732			(void) ProcessReconEvent(raidPtr, row, event);	/* ignore return code */
733			raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
734			if (rf_prReconSched) {
735				rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
736			}
737		}
738		reconDesc->state = 5;
739
740	case 5:
741		/* Success:  mark the dead disk as reconstructed.  We quiesce
742		 * the array here to assure no nasty interactions with pending
743		 * user accesses when we free up the psstatus structure as
744		 * part of FreeReconControl() */
745
746		reconDesc->state = 6;
747
748		retcode = rf_SuspendNewRequestsAndWait(raidPtr);
749		rf_StopUserStats(raidPtr);
750		rf_PrintUserStats(raidPtr);	/* print out the stats on user
751						 * accs accumulated during
752						 * recon */
753
754		/* fall through to state 6 */
755	case 6:
756
757
758
759		RF_LOCK_MUTEX(raidPtr->mutex);
760		raidPtr->numFailures--;
761		ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
762		raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
763		raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
764		RF_UNLOCK_MUTEX(raidPtr->mutex);
765		RF_GETTIME(etime);
766		RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
767
768		/* XXX -- why is state 7 different from state 6 if there is no
769		 * return() here? -- XXX Note that I set elpsd above & use it
770		 * below, so if you put a return here you'll have to fix this.
771		 * (also, FreeReconControl is called below) */
772
773	case 7:
774
775		rf_ResumeNewRequests(raidPtr);
776
777		printf("Reconstruction of disk at row %d col %d completed\n",
778		       row, col);
779		xor_s = raidPtr->accumXorTimeUs / 1000000;
780		xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
781		printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
782		    (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
783		printf("  (start time %d sec %d usec, end time %d sec %d usec)\n",
784		    (int) raidPtr->reconControl[row]->starttime.tv_sec,
785		    (int) raidPtr->reconControl[row]->starttime.tv_usec,
786		    (int) etime.tv_sec, (int) etime.tv_usec);
787
788#if RF_RECON_STATS > 0
789		printf("Total head-sep stall count was %d\n",
790		    (int) reconDesc->hsStallCount);
791#endif				/* RF_RECON_STATS > 0 */
792		rf_FreeReconControl(raidPtr, row);
793		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
794		FreeReconDesc(reconDesc);
795
796	}
797
798	SignalReconDone(raidPtr);
799	return (0);
800}
801/*****************************************************************************
802 * do the right thing upon each reconstruction event.
803 * returns nonzero if and only if there is nothing left unread on the
804 * indicated disk
805 *****************************************************************************/
806static int
807ProcessReconEvent(raidPtr, frow, event)
808	RF_Raid_t *raidPtr;
809	RF_RowCol_t frow;
810	RF_ReconEvent_t *event;
811{
812	int     retcode = 0, submitblocked;
813	RF_ReconBuffer_t *rbuf;
814	RF_SectorCount_t sectorsPerRU;
815
816	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
817	switch (event->type) {
818
819		/* a read I/O has completed */
820	case RF_REVENT_READDONE:
821		rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
822		Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
823		    frow, event->col, rbuf->parityStripeID);
824		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
825		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
826		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
827		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
828		submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
829		Dprintf1("RECON: submitblocked=%d\n", submitblocked);
830		if (!submitblocked)
831			retcode = IssueNextReadRequest(raidPtr, frow, event->col);
832		break;
833
834		/* a write I/O has completed */
835	case RF_REVENT_WRITEDONE:
836		if (rf_floatingRbufDebug) {
837			rf_CheckFloatingRbufCount(raidPtr, 1);
838		}
839		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
840		rbuf = (RF_ReconBuffer_t *) event->arg;
841		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
842		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
843		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
844		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
845		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
846		rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
847
848		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
849			RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
850			raidPtr->numFullReconBuffers--;
851			rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
852			RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
853		} else
854			if (rbuf->type == RF_RBUF_TYPE_FORCED)
855				rf_FreeReconBuffer(rbuf);
856			else
857				RF_ASSERT(0);
858		break;
859
860	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
861					 * cleared */
862		Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
863		submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
864		RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
865						 * BUFCLEAR event if we
866						 * couldn't submit */
867		retcode = IssueNextReadRequest(raidPtr, frow, event->col);
868		break;
869
870	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
871					 * blockage has been cleared */
872		DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
873		retcode = TryToRead(raidPtr, frow, event->col);
874		break;
875
876	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
877					 * reconstruction blockage has been
878					 * cleared */
879		Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
880		retcode = TryToRead(raidPtr, frow, event->col);
881		break;
882
883		/* a buffer has become ready to write */
884	case RF_REVENT_BUFREADY:
885		Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
886		retcode = IssueNextWriteRequest(raidPtr, frow);
887		if (rf_floatingRbufDebug) {
888			rf_CheckFloatingRbufCount(raidPtr, 1);
889		}
890		break;
891
892		/* we need to skip the current RU entirely because it got
893		 * recon'd while we were waiting for something else to happen */
894	case RF_REVENT_SKIP:
895		DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
896		retcode = IssueNextReadRequest(raidPtr, frow, event->col);
897		break;
898
899		/* a forced-reconstruction read access has completed.  Just
900		 * submit the buffer */
901	case RF_REVENT_FORCEDREADDONE:
902		rbuf = (RF_ReconBuffer_t *) event->arg;
903		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
904		DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
905		submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
906		RF_ASSERT(!submitblocked);
907		break;
908
909	default:
910		RF_PANIC();
911	}
912	rf_FreeReconEventDesc(event);
913	return (retcode);
914}
915/*****************************************************************************
916 *
917 * find the next thing that's needed on the indicated disk, and issue
918 * a read request for it.  We assume that the reconstruction buffer
919 * associated with this process is free to receive the data.  If
920 * reconstruction is blocked on the indicated RU, we issue a
921 * blockage-release request instead of a physical disk read request.
922 * If the current disk gets too far ahead of the others, we issue a
923 * head-separation wait request and return.
924 *
925 * ctrl->{ru_count, curPSID, diskOffset} and
926 * rbuf->failedDiskSectorOffset are maintained to point the the unit
927 * we're currently accessing.  Note that this deviates from the
928 * standard C idiom of having counters point to the next thing to be
929 * accessed.  This allows us to easily retry when we're blocked by
930 * head separation or reconstruction-blockage events.
931 *
932 * returns nonzero if and only if there is nothing left unread on the
933 * indicated disk
934 *
935 *****************************************************************************/
936static int
937IssueNextReadRequest(raidPtr, row, col)
938	RF_Raid_t *raidPtr;
939	RF_RowCol_t row;
940	RF_RowCol_t col;
941{
942	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
943	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
944	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
945	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
946	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
947	int     do_new_check = 0, retcode = 0, status;
948
949	/* if we are currently the slowest disk, mark that we have to do a new
950	 * check */
951	if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
952		do_new_check = 1;
953
954	while (1) {
955
956		ctrl->ru_count++;
957		if (ctrl->ru_count < RUsPerPU) {
958			ctrl->diskOffset += sectorsPerRU;
959			rbuf->failedDiskSectorOffset += sectorsPerRU;
960		} else {
961			ctrl->curPSID++;
962			ctrl->ru_count = 0;
963			/* code left over from when head-sep was based on
964			 * parity stripe id */
965			if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
966				CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
967				return (1);	/* finito! */
968			}
969			/* find the disk offsets of the start of the parity
970			 * stripe on both the current disk and the failed
971			 * disk. skip this entire parity stripe if either disk
972			 * does not appear in the indicated PS */
973			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
974			    &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
975			if (status) {
976				ctrl->ru_count = RUsPerPU - 1;
977				continue;
978			}
979		}
980		rbuf->which_ru = ctrl->ru_count;
981
982		/* skip this RU if it's already been reconstructed */
983		if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
984			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
985			continue;
986		}
987		break;
988	}
989	ctrl->headSepCounter++;
990	if (do_new_check)
991		CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter);	/* update min if needed */
992
993
994	/* at this point, we have definitely decided what to do, and we have
995	 * only to see if we can actually do it now */
996	rbuf->parityStripeID = ctrl->curPSID;
997	rbuf->which_ru = ctrl->ru_count;
998	bzero((char *) &raidPtr->recon_tracerecs[col], sizeof(raidPtr->recon_tracerecs[col]));
999	raidPtr->recon_tracerecs[col].reconacc = 1;
1000	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1001	retcode = TryToRead(raidPtr, row, col);
1002	return (retcode);
1003}
1004
1005/*
1006 * tries to issue the next read on the indicated disk.  We may be
1007 * blocked by (a) the heads being too far apart, or (b) recon on the
1008 * indicated RU being blocked due to a write by a user thread.  In
1009 * this case, we issue a head-sep or blockage wait request, which will
1010 * cause this same routine to be invoked again later when the blockage
1011 * has cleared.
1012 */
1013
1014static int
1015TryToRead(raidPtr, row, col)
1016	RF_Raid_t *raidPtr;
1017	RF_RowCol_t row;
1018	RF_RowCol_t col;
1019{
1020	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1021	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1022	RF_StripeNum_t psid = ctrl->curPSID;
1023	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1024	RF_DiskQueueData_t *req;
1025	int     status, created = 0;
1026	RF_ReconParityStripeStatus_t *pssPtr;
1027
1028	/* if the current disk is too far ahead of the others, issue a
1029	 * head-separation wait and return */
1030	if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1031		return (0);
1032	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1033	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1034
1035	/* if recon is blocked on the indicated parity stripe, issue a
1036	 * block-wait request and return. this also must mark the indicated RU
1037	 * in the stripe as under reconstruction if not blocked. */
1038	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1039	if (status == RF_PSS_RECON_BLOCKED) {
1040		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1041		goto out;
1042	} else
1043		if (status == RF_PSS_FORCED_ON_WRITE) {
1044			rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1045			goto out;
1046		}
1047	/* make one last check to be sure that the indicated RU didn't get
1048	 * reconstructed while we were waiting for something else to happen.
1049	 * This is unfortunate in that it causes us to make this check twice
1050	 * in the normal case.  Might want to make some attempt to re-work
1051	 * this so that we only do this check if we've definitely blocked on
1052	 * one of the above checks.  When this condition is detected, we may
1053	 * have just created a bogus status entry, which we need to delete. */
1054	if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1055		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1056		if (created)
1057			rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1058		rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1059		goto out;
1060	}
1061	/* found something to read.  issue the I/O */
1062	Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1063	    psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1064	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1065	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1066	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1067	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1068	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1069
1070	/* should be ok to use a NULL proc pointer here, all the bufs we use
1071	 * should be in kernel space */
1072	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1073	    ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1074
1075	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1076
1077	ctrl->rbuf->arg = (void *) req;
1078	rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1079	pssPtr->issued[col] = 1;
1080
1081out:
1082	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1083	return (0);
1084}
1085
1086
1087/*
1088 * given a parity stripe ID, we want to find out whether both the
1089 * current disk and the failed disk exist in that parity stripe.  If
1090 * not, we want to skip this whole PS.  If so, we want to find the
1091 * disk offset of the start of the PS on both the current disk and the
1092 * failed disk.
1093 *
1094 * this works by getting a list of disks comprising the indicated
1095 * parity stripe, and searching the list for the current and failed
1096 * disks.  Once we've decided they both exist in the parity stripe, we
1097 * need to decide whether each is data or parity, so that we'll know
1098 * which mapping function to call to get the corresponding disk
1099 * offsets.
1100 *
1101 * this is kind of unpleasant, but doing it this way allows the
1102 * reconstruction code to use parity stripe IDs rather than physical
1103 * disks address to march through the failed disk, which greatly
1104 * simplifies a lot of code, as well as eliminating the need for a
1105 * reverse-mapping function.  I also think it will execute faster,
1106 * since the calls to the mapping module are kept to a minimum.
1107 *
1108 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1109 * THE STRIPE IN THE CORRECT ORDER */
1110
1111
1112static int
1113ComputePSDiskOffsets(
1114    RF_Raid_t * raidPtr,	/* raid descriptor */
1115    RF_StripeNum_t psid,	/* parity stripe identifier */
1116    RF_RowCol_t row,		/* row and column of disk to find the offsets
1117				 * for */
1118    RF_RowCol_t col,
1119    RF_SectorNum_t * outDiskOffset,
1120    RF_SectorNum_t * outFailedDiskSectorOffset,
1121    RF_RowCol_t * spRow,	/* OUT: row,col of spare unit for failed unit */
1122    RF_RowCol_t * spCol,
1123    RF_SectorNum_t * spOffset)
1124{				/* OUT: offset into disk containing spare unit */
1125	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1126	RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1127	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
1128	RF_RowCol_t *diskids;
1129	u_int   i, j, k, i_offset, j_offset;
1130	RF_RowCol_t prow, pcol;
1131	int     testcol, testrow;
1132	RF_RowCol_t stripe;
1133	RF_SectorNum_t poffset;
1134	char    i_is_parity = 0, j_is_parity = 0;
1135	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1136
1137	/* get a listing of the disks comprising that stripe */
1138	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1139	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1140	RF_ASSERT(diskids);
1141
1142	/* reject this entire parity stripe if it does not contain the
1143	 * indicated disk or it does not contain the failed disk */
1144	if (row != stripe)
1145		goto skipit;
1146	for (i = 0; i < stripeWidth; i++) {
1147		if (col == diskids[i])
1148			break;
1149	}
1150	if (i == stripeWidth)
1151		goto skipit;
1152	for (j = 0; j < stripeWidth; j++) {
1153		if (fcol == diskids[j])
1154			break;
1155	}
1156	if (j == stripeWidth) {
1157		goto skipit;
1158	}
1159	/* find out which disk the parity is on */
1160	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1161
1162	/* find out if either the current RU or the failed RU is parity */
1163	/* also, if the parity occurs in this stripe prior to the data and/or
1164	 * failed col, we need to decrement i and/or j */
1165	for (k = 0; k < stripeWidth; k++)
1166		if (diskids[k] == pcol)
1167			break;
1168	RF_ASSERT(k < stripeWidth);
1169	i_offset = i;
1170	j_offset = j;
1171	if (k < i)
1172		i_offset--;
1173	else
1174		if (k == i) {
1175			i_is_parity = 1;
1176			i_offset = 0;
1177		}		/* set offsets to zero to disable multiply
1178				 * below */
1179	if (k < j)
1180		j_offset--;
1181	else
1182		if (k == j) {
1183			j_is_parity = 1;
1184			j_offset = 0;
1185		}
1186	/* at this point, [ij]_is_parity tells us whether the [current,failed]
1187	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1188	 * tells us how far into the stripe the [current,failed] disk is. */
1189
1190	/* call the mapping routine to get the offset into the current disk,
1191	 * repeat for failed disk. */
1192	if (i_is_parity)
1193		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1194	else
1195		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1196
1197	RF_ASSERT(row == testrow && col == testcol);
1198
1199	if (j_is_parity)
1200		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1201	else
1202		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1203	RF_ASSERT(row == testrow && fcol == testcol);
1204
1205	/* now locate the spare unit for the failed unit */
1206	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1207		if (j_is_parity)
1208			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1209		else
1210			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1211	} else {
1212		*spRow = raidPtr->reconControl[row]->spareRow;
1213		*spCol = raidPtr->reconControl[row]->spareCol;
1214		*spOffset = *outFailedDiskSectorOffset;
1215	}
1216
1217	return (0);
1218
1219skipit:
1220	Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1221	    psid, row, col);
1222	return (1);
1223}
1224/* this is called when a buffer has become ready to write to the replacement disk */
1225static int
1226IssueNextWriteRequest(raidPtr, row)
1227	RF_Raid_t *raidPtr;
1228	RF_RowCol_t row;
1229{
1230	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1231	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1232	RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1233	RF_ReconBuffer_t *rbuf;
1234	RF_DiskQueueData_t *req;
1235
1236	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1237	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
1238				 * have gotten the event that sent us here */
1239	RF_ASSERT(rbuf->pssPtr);
1240
1241	rbuf->pssPtr->writeRbuf = rbuf;
1242	rbuf->pssPtr = NULL;
1243
1244	Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1245	    rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1246	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1247	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
1248	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1249	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1250
1251	/* should be ok to use a NULL b_proc here b/c all addrs should be in
1252	 * kernel space */
1253	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1254	    sectorsPerRU, rbuf->buffer,
1255	    rbuf->parityStripeID, rbuf->which_ru,
1256	    ReconWriteDoneProc, (void *) rbuf, NULL,
1257	    &raidPtr->recon_tracerecs[fcol],
1258	    (void *) raidPtr, 0, NULL);
1259
1260	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1261
1262	rbuf->arg = (void *) req;
1263	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1264
1265	return (0);
1266}
1267
1268/*
1269 * this gets called upon the completion of a reconstruction read
1270 * operation the arg is a pointer to the per-disk reconstruction
1271 * control structure for the process that just finished a read.
1272 *
1273 * called at interrupt context in the kernel, so don't do anything
1274 * illegal here.
1275 */
1276static int
1277ReconReadDoneProc(arg, status)
1278	void   *arg;
1279	int     status;
1280{
1281	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1282	RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1283
1284	if (status) {
1285		/*
1286	         * XXX
1287	         */
1288		printf("Recon read failed!\n");
1289		RF_PANIC();
1290	}
1291	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1292	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1293	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1294	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1295	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1296
1297	rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1298	return (0);
1299}
1300/* this gets called upon the completion of a reconstruction write operation.
1301 * the arg is a pointer to the rbuf that was just written
1302 *
1303 * called at interrupt context in the kernel, so don't do anything illegal here.
1304 */
1305static int
1306ReconWriteDoneProc(arg, status)
1307	void   *arg;
1308	int     status;
1309{
1310	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1311
1312	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1313	if (status) {
1314		printf("Recon write failed!\n");	/* fprintf(stderr,"Recon
1315							 * write failed!\n"); */
1316		RF_PANIC();
1317	}
1318	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1319	return (0);
1320}
1321
1322
1323/*
1324 * computes a new minimum head sep, and wakes up anyone who needs to
1325 * be woken as a result
1326 */
1327static void
1328CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1329	RF_Raid_t *raidPtr;
1330	RF_RowCol_t row;
1331	RF_HeadSepLimit_t hsCtr;
1332{
1333	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1334	RF_HeadSepLimit_t new_min;
1335	RF_RowCol_t i;
1336	RF_CallbackDesc_t *p;
1337	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
1338								 * of a minimum */
1339
1340
1341	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1342
1343	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
1344	for (i = 0; i < raidPtr->numCol; i++)
1345		if (i != reconCtrlPtr->fcol) {
1346			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1347				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1348		}
1349	/* set the new minimum and wake up anyone who can now run again */
1350	if (new_min != reconCtrlPtr->minHeadSepCounter) {
1351		reconCtrlPtr->minHeadSepCounter = new_min;
1352		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
1353		while (reconCtrlPtr->headSepCBList) {
1354			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1355				break;
1356			p = reconCtrlPtr->headSepCBList;
1357			reconCtrlPtr->headSepCBList = p->next;
1358			p->next = NULL;
1359			rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1360			rf_FreeCallbackDesc(p);
1361		}
1362
1363	}
1364	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1365}
1366
1367/*
1368 * checks to see that the maximum head separation will not be violated
1369 * if we initiate a reconstruction I/O on the indicated disk.
1370 * Limiting the maximum head separation between two disks eliminates
1371 * the nasty buffer-stall conditions that occur when one disk races
1372 * ahead of the others and consumes all of the floating recon buffers.
1373 * This code is complex and unpleasant but it's necessary to avoid
1374 * some very nasty, albeit fairly rare, reconstruction behavior.
1375 *
1376 * returns non-zero if and only if we have to stop working on the
1377 * indicated disk due to a head-separation delay.
1378 */
1379static int
1380CheckHeadSeparation(
1381    RF_Raid_t * raidPtr,
1382    RF_PerDiskReconCtrl_t * ctrl,
1383    RF_RowCol_t row,
1384    RF_RowCol_t col,
1385    RF_HeadSepLimit_t hsCtr,
1386    RF_ReconUnitNum_t which_ru)
1387{
1388	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1389	RF_CallbackDesc_t *cb, *p, *pt;
1390	int     retval = 0;
1391
1392	/* if we're too far ahead of the slowest disk, stop working on this
1393	 * disk until the slower ones catch up.  We do this by scheduling a
1394	 * wakeup callback for the time when the slowest disk has caught up.
1395	 * We define "caught up" with 20% hysteresis, i.e. the head separation
1396	 * must have fallen to at most 80% of the max allowable head
1397	 * separation before we'll wake up.
1398	 *
1399	 */
1400	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1401	if ((raidPtr->headSepLimit >= 0) &&
1402	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1403		Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1404			 raidPtr->raidid, row, col, ctrl->headSepCounter,
1405			 reconCtrlPtr->minHeadSepCounter,
1406			 raidPtr->headSepLimit);
1407		cb = rf_AllocCallbackDesc();
1408		/* the minHeadSepCounter value we have to get to before we'll
1409		 * wake up.  build in 20% hysteresis. */
1410		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1411		cb->row = row;
1412		cb->col = col;
1413		cb->next = NULL;
1414
1415		/* insert this callback descriptor into the sorted list of
1416		 * pending head-sep callbacks */
1417		p = reconCtrlPtr->headSepCBList;
1418		if (!p)
1419			reconCtrlPtr->headSepCBList = cb;
1420		else
1421			if (cb->callbackArg.v < p->callbackArg.v) {
1422				cb->next = reconCtrlPtr->headSepCBList;
1423				reconCtrlPtr->headSepCBList = cb;
1424			} else {
1425				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1426				cb->next = p;
1427				pt->next = cb;
1428			}
1429		retval = 1;
1430#if RF_RECON_STATS > 0
1431		ctrl->reconCtrl->reconDesc->hsStallCount++;
1432#endif				/* RF_RECON_STATS > 0 */
1433	}
1434	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1435
1436	return (retval);
1437}
1438/*
1439 * checks to see if reconstruction has been either forced or blocked
1440 * by a user operation.  if forced, we skip this RU entirely.  else if
1441 * blocked, put ourselves on the wait list.  else return 0.
1442 *
1443 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1444 */
1445static int
1446CheckForcedOrBlockedReconstruction(
1447    RF_Raid_t * raidPtr,
1448    RF_ReconParityStripeStatus_t * pssPtr,
1449    RF_PerDiskReconCtrl_t * ctrl,
1450    RF_RowCol_t row,
1451    RF_RowCol_t col,
1452    RF_StripeNum_t psid,
1453    RF_ReconUnitNum_t which_ru)
1454{
1455	RF_CallbackDesc_t *cb;
1456	int     retcode = 0;
1457
1458	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1459		retcode = RF_PSS_FORCED_ON_WRITE;
1460	else
1461		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1462			Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1463			cb = rf_AllocCallbackDesc();	/* append ourselves to
1464							 * the blockage-wait
1465							 * list */
1466			cb->row = row;
1467			cb->col = col;
1468			cb->next = pssPtr->blockWaitList;
1469			pssPtr->blockWaitList = cb;
1470			retcode = RF_PSS_RECON_BLOCKED;
1471		}
1472	if (!retcode)
1473		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
1474							 * reconstruction */
1475
1476	return (retcode);
1477}
1478/*
1479 * if reconstruction is currently ongoing for the indicated stripeID,
1480 * reconstruction is forced to completion and we return non-zero to
1481 * indicate that the caller must wait.  If not, then reconstruction is
1482 * blocked on the indicated stripe and the routine returns zero.  If
1483 * and only if we return non-zero, we'll cause the cbFunc to get
1484 * invoked with the cbArg when the reconstruction has completed.
1485 */
1486int
1487rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1488	RF_Raid_t *raidPtr;
1489	RF_AccessStripeMap_t *asmap;
1490	void    (*cbFunc) (RF_Raid_t *, void *);
1491	void   *cbArg;
1492{
1493	RF_RowCol_t row = asmap->physInfo->row;	/* which row of the array
1494						 * we're working on */
1495	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
1496							 * forcing recon on */
1497	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
1498	RF_ReconParityStripeStatus_t *pssPtr;	/* a pointer to the parity
1499						 * stripe status structure */
1500	RF_StripeNum_t psid;	/* parity stripe id */
1501	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
1502						 * offset */
1503	RF_RowCol_t *diskids;
1504	RF_RowCol_t stripe;
1505	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
1506	RF_RowCol_t fcol, diskno, i;
1507	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
1508	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1509	RF_CallbackDesc_t *cb;
1510	int     created = 0, nPromoted;
1511
1512	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1513
1514	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1515
1516	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1517
1518	/* if recon is not ongoing on this PS, just return */
1519	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1520		RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1521		return (0);
1522	}
1523	/* otherwise, we have to wait for reconstruction to complete on this
1524	 * RU. */
1525	/* In order to avoid waiting for a potentially large number of
1526	 * low-priority accesses to complete, we force a normal-priority (i.e.
1527	 * not low-priority) reconstruction on this RU. */
1528	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1529		DDprintf1("Forcing recon on psid %ld\n", psid);
1530		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
1531								 * forced recon */
1532		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
1533							 * that we just set */
1534		fcol = raidPtr->reconControl[row]->fcol;
1535
1536		/* get a listing of the disks comprising the indicated stripe */
1537		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1538		RF_ASSERT(row == stripe);
1539
1540		/* For previously issued reads, elevate them to normal
1541		 * priority.  If the I/O has already completed, it won't be
1542		 * found in the queue, and hence this will be a no-op. For
1543		 * unissued reads, allocate buffers and issue new reads.  The
1544		 * fact that we've set the FORCED bit means that the regular
1545		 * recon procs will not re-issue these reqs */
1546		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1547			if ((diskno = diskids[i]) != fcol) {
1548				if (pssPtr->issued[diskno]) {
1549					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1550					if (rf_reconDebug && nPromoted)
1551						printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1552				} else {
1553					new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
1554					ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1555					    &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
1556													 * location */
1557					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
1558					new_rbuf->which_ru = which_ru;
1559					new_rbuf->failedDiskSectorOffset = fd_offset;
1560					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1561
1562					/* use NULL b_proc b/c all addrs
1563					 * should be in kernel space */
1564					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1565					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1566					    NULL, (void *) raidPtr, 0, NULL);
1567
1568					RF_ASSERT(req);	/* XXX -- fix this --
1569							 * XXX */
1570
1571					new_rbuf->arg = req;
1572					rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
1573					Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1574				}
1575			}
1576		/* if the write is sitting in the disk queue, elevate its
1577		 * priority */
1578		if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1579			printf("raid%d: promoted write to row %d col %d\n",
1580			       raidPtr->raidid, row, fcol);
1581	}
1582	/* install a callback descriptor to be invoked when recon completes on
1583	 * this parity stripe. */
1584	cb = rf_AllocCallbackDesc();
1585	/* XXX the following is bogus.. These functions don't really match!!
1586	 * GO */
1587	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1588	cb->callbackArg.p = (void *) cbArg;
1589	cb->next = pssPtr->procWaitList;
1590	pssPtr->procWaitList = cb;
1591	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1592		  raidPtr->raidid, psid);
1593
1594	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1595	return (1);
1596}
1597/* called upon the completion of a forced reconstruction read.
1598 * all we do is schedule the FORCEDREADONE event.
1599 * called at interrupt context in the kernel, so don't do anything illegal here.
1600 */
1601static void
1602ForceReconReadDoneProc(arg, status)
1603	void   *arg;
1604	int     status;
1605{
1606	RF_ReconBuffer_t *rbuf = arg;
1607
1608	if (status) {
1609		printf("Forced recon read failed!\n");	/* fprintf(stderr,"Forced
1610							 *  recon read
1611							 * failed!\n"); */
1612		RF_PANIC();
1613	}
1614	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1615}
1616/* releases a block on the reconstruction of the indicated stripe */
1617int
1618rf_UnblockRecon(raidPtr, asmap)
1619	RF_Raid_t *raidPtr;
1620	RF_AccessStripeMap_t *asmap;
1621{
1622	RF_RowCol_t row = asmap->origRow;
1623	RF_StripeNum_t stripeID = asmap->stripeID;
1624	RF_ReconParityStripeStatus_t *pssPtr;
1625	RF_ReconUnitNum_t which_ru;
1626	RF_StripeNum_t psid;
1627	int     created = 0;
1628	RF_CallbackDesc_t *cb;
1629
1630	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1631	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1632	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1633
1634	/* When recon is forced, the pss desc can get deleted before we get
1635	 * back to unblock recon. But, this can _only_ happen when recon is
1636	 * forced. It would be good to put some kind of sanity check here, but
1637	 * how to decide if recon was just forced or not? */
1638	if (!pssPtr) {
1639		/* printf("Warning: no pss descriptor upon unblock on psid %ld
1640		 * RU %d\n",psid,which_ru); */
1641		if (rf_reconDebug || rf_pssDebug)
1642			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1643		goto out;
1644	}
1645	pssPtr->blockCount--;
1646	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1647		 raidPtr->raidid, psid, pssPtr->blockCount);
1648	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
1649
1650		/* unblock recon before calling CauseReconEvent in case
1651		 * CauseReconEvent causes us to try to issue a new read before
1652		 * returning here. */
1653		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1654
1655
1656		while (pssPtr->blockWaitList) {
1657			/* spin through the block-wait list and
1658			   release all the waiters */
1659			cb = pssPtr->blockWaitList;
1660			pssPtr->blockWaitList = cb->next;
1661			cb->next = NULL;
1662			rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1663			rf_FreeCallbackDesc(cb);
1664		}
1665		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1666			/* if no recon was requested while recon was blocked */
1667			rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1668		}
1669	}
1670out:
1671	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1672	return (0);
1673}
1674