rf_paritymap.c revision 1.1
1/* $NetBSD: rf_paritymap.c,v 1.1 2009/11/17 18:54:26 jld Exp $ */
2
3/*-
4 * Copyright (c) 2009 Jed Davis.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__KERNEL_RCSID(0, "$NetBSD: rf_paritymap.c,v 1.1 2009/11/17 18:54:26 jld Exp $");
31
32#include <sys/callout.h>
33#include <sys/kmem.h>
34#include <sys/mutex.h>
35#include <sys/param.h>
36#include <sys/rwlock.h>
37#include <sys/systm.h>
38#include <sys/types.h>
39
40#include <dev/raidframe/rf_paritymap.h>
41#include <dev/raidframe/rf_stripelocks.h>
42#include <dev/raidframe/rf_layout.h>
43#include <dev/raidframe/rf_raid.h>
44#include <dev/raidframe/rf_parityscan.h>
45#include <dev/raidframe/rf_kintf.h>
46
47/* Important parameters: */
48#define REGION_MINSIZE (25ULL << 20)
49#define DFL_TICKMS      40000
50#define DFL_COOLDOWN    8     /* 7-8 intervals of 40s = 5min +/- 20s */
51
52/* Internal-use flag bits. */
53#define TICKING 1
54#define TICKED 2
55
56/* Prototypes! */
57static void rf_paritymap_write_locked(struct rf_paritymap *);
58static void rf_paritymap_tick(void *);
59static u_int rf_paritymap_nreg(RF_Raid_t *);
60
61/* Extract the current status of the parity map. */
62void
63rf_paritymap_status(struct rf_paritymap *pm, struct rf_pmstat *ps)
64{
65	memset(ps, 0, sizeof(*ps));
66	if (pm == NULL)
67		ps->enabled = 0;
68	else {
69		ps->enabled = 1;
70		ps->region_size = pm->region_size;
71		mutex_enter(&pm->lock);
72		memcpy(&ps->params, &pm->params, sizeof(ps->params));
73		memcpy(ps->dirty, pm->disk_now, sizeof(ps->dirty));
74		memcpy(&ps->ctrs, &pm->ctrs, sizeof(ps->ctrs));
75		mutex_exit(&pm->lock);
76	}
77}
78
79/*
80 * Test whether parity in a given sector is suspected of being inconsistent
81 * on disk (assuming that any pending I/O to it is allowed to complete).
82 * This may be of interest to future work on parity scrubbing.
83 */
84int
85rf_paritymap_test(struct rf_paritymap *pm, daddr_t sector)
86{
87	unsigned region = sector / pm->region_size;
88	int retval;
89
90	mutex_enter(&pm->lock);
91	retval = isset(pm->disk_boot->bits, region) ? 1 : 0;
92	mutex_exit(&pm->lock);
93	return retval;
94}
95
96/* To be called before a write to the RAID is submitted. */
97void
98rf_paritymap_begin(struct rf_paritymap *pm, daddr_t offset, daddr_t size)
99{
100	unsigned i, b, e;
101
102	b = offset / pm->region_size;
103	e = (offset + size - 1) / pm->region_size;
104
105	for (i = b; i <= e; i++)
106		rf_paritymap_begin_region(pm, i);
107}
108
109/* To be called after a write to the RAID completes. */
110void
111rf_paritymap_end(struct rf_paritymap *pm, daddr_t offset, daddr_t size)
112{
113	unsigned i, b, e;
114
115	b = offset / pm->region_size;
116	e = (offset + size - 1) / pm->region_size;
117
118	for (i = b; i <= e; i++)
119		rf_paritymap_end_region(pm, i);
120}
121
122void
123rf_paritymap_begin_region(struct rf_paritymap *pm, unsigned region)
124{
125	int needs_write;
126
127	KASSERT(region < RF_PARITYMAP_NREG);
128	pm->ctrs.nwrite++;
129
130	/* If it was being kept warm, deal with that. */
131	mutex_enter(&pm->lock);
132	if (pm->current->state[region] < 0)
133		pm->current->state[region] = 0;
134
135	/* This shouldn't happen unless RAIDOUTSTANDING is set too high. */
136	KASSERT(pm->current->state[region] < 127);
137	pm->current->state[region]++;
138
139	needs_write = isclr(pm->disk_now->bits, region);
140
141	if (needs_write) {
142		KASSERT(pm->current->state[region] == 1);
143		rf_paritymap_write_locked(pm);
144	}
145
146	mutex_exit(&pm->lock);
147}
148
149void
150rf_paritymap_end_region(struct rf_paritymap *pm, unsigned region)
151{
152	KASSERT(region < RF_PARITYMAP_NREG);
153
154	mutex_enter(&pm->lock);
155	KASSERT(pm->current->state[region] > 0);
156	--pm->current->state[region];
157
158	if (pm->current->state[region] <= 0) {
159		pm->current->state[region] = -pm->params.cooldown;
160		KASSERT(pm->current->state[region] <= 0);
161		mutex_enter(&pm->lk_flags);
162		if (!(pm->flags & TICKING)) {
163			pm->flags |= TICKING;
164			mutex_exit(&pm->lk_flags);
165			callout_schedule(&pm->ticker,
166			    mstohz(pm->params.tickms));
167		} else
168			mutex_exit(&pm->lk_flags);
169	}
170	mutex_exit(&pm->lock);
171}
172
173/*
174 * Updates the parity map to account for any changes in current activity
175 * and/or an ongoing parity scan, then writes it to disk with appropriate
176 * synchronization.
177 */
178void
179rf_paritymap_write(struct rf_paritymap *pm)
180{
181	mutex_enter(&pm->lock);
182	rf_paritymap_write_locked(pm);
183	mutex_exit(&pm->lock);
184}
185
186/* As above, but to be used when pm->lock is already held. */
187static void
188rf_paritymap_write_locked(struct rf_paritymap *pm)
189{
190	char w, w0;
191	int i, j, setting, clearing;
192
193	setting = clearing = 0;
194	for (i = 0; i < RF_PARITYMAP_NBYTE; i++) {
195		w0 = pm->disk_now->bits[i];
196		w = pm->disk_boot->bits[i];
197
198		for (j = 0; j < NBBY; j++)
199			if (pm->current->state[i * NBBY + j] != 0)
200				w |= 1 << j;
201
202		if (w & ~w0)
203			setting = 1;
204		if (w0 & ~w)
205			clearing = 1;
206
207		pm->disk_now->bits[i] = w;
208	}
209	pm->ctrs.ncachesync += setting + clearing;
210	pm->ctrs.nclearing += clearing;
211
212	/*
213	 * If bits are being set in the parity map, then a sync is
214	 * required afterwards, so that the regions are marked dirty
215	 * on disk before any writes to them take place.  If bits are
216	 * being cleared, then a sync is required before the write, so
217	 * that any writes to those regions are processed before the
218	 * region is marked clean.  (Synchronization is somewhat
219	 * overkill; a write ordering barrier would suffice, but we
220	 * currently have no way to express that directly.)
221	 */
222	if (clearing)
223		rf_sync_component_caches(pm->raid);
224	rf_paritymap_kern_write(pm->raid, pm->disk_now);
225	if (setting)
226		rf_sync_component_caches(pm->raid);
227}
228
229/* Mark all parity as being in need of rewrite. */
230void
231rf_paritymap_invalidate(struct rf_paritymap *pm)
232{
233	mutex_enter(&pm->lock);
234	memset(pm->disk_boot, ~(unsigned char)0,
235	    sizeof(struct rf_paritymap_ondisk));
236	mutex_exit(&pm->lock);
237}
238
239/* Mark all parity as being correct. */
240void
241rf_paritymap_forceclean(struct rf_paritymap *pm)
242{
243	mutex_enter(&pm->lock);
244	memset(pm->disk_boot, (unsigned char)0,
245	    sizeof(struct rf_paritymap_ondisk));
246	mutex_exit(&pm->lock);
247}
248
249/*
250 * The cooldown callout routine just defers its work to a thread; it can't do
251 * the parity map write itself as it would block, and although mutex-induced
252 * blocking is permitted it seems wise to avoid tying up the softint.
253 */
254static void
255rf_paritymap_tick(void *arg)
256{
257	struct rf_paritymap *pm = arg;
258
259	mutex_enter(&pm->lk_flags);
260	pm->flags |= TICKED;
261	mutex_exit(&pm->lk_flags);
262	wakeup(&(pm->raid->iodone)); /* XXX */
263}
264
265/*
266 * This is where the parity cooling work (and rearming the callout if needed)
267 * is done; the raidio thread calls it when woken up, as by the above.
268 */
269void
270rf_paritymap_checkwork(struct rf_paritymap *pm)
271{
272	int i, zerop, progressp;
273
274	mutex_enter(&pm->lk_flags);
275	if (pm->flags & TICKED) {
276		zerop = progressp = 0;
277
278		pm->flags &= ~TICKED;
279		mutex_exit(&pm->lk_flags);
280
281		mutex_enter(&pm->lock);
282		for (i = 0; i < RF_PARITYMAP_NREG; i++) {
283			if (pm->current->state[i] < 0) {
284				progressp = 1;
285				pm->current->state[i]++;
286				if (pm->current->state[i] == 0)
287					zerop = 1;
288			}
289		}
290
291		if (progressp)
292			callout_schedule(&pm->ticker,
293			    mstohz(pm->params.tickms));
294		else {
295			mutex_enter(&pm->lk_flags);
296			pm->flags &= ~TICKING;
297			mutex_exit(&pm->lk_flags);
298		}
299
300		if (zerop)
301			rf_paritymap_write_locked(pm);
302		mutex_exit(&pm->lock);
303	} else
304		mutex_exit(&pm->lk_flags);
305}
306
307/*
308 * Set parity map parameters; used both to alter parameters on the fly and to
309 * establish their initial values.  Note that setting a parameter to 0 means
310 * to leave the previous setting unchanged, and that if this is done for the
311 * initial setting of "regions", then a default value will be computed based
312 * on the RAID component size.
313 */
314int
315rf_paritymap_set_params(struct rf_paritymap *pm,
316    const struct rf_pmparams *params, int todisk)
317{
318	int cooldown, tickms;
319	u_int regions;
320	RF_RowCol_t col;
321	RF_ComponentLabel_t *clabel;
322	RF_Raid_t *raidPtr;
323
324	cooldown = params->cooldown != 0
325	    ? params->cooldown : pm->params.cooldown;
326	tickms = params->tickms != 0
327	    ? params->tickms : pm->params.tickms;
328	regions = params->regions != 0
329	    ? params->regions : pm->params.regions;
330
331	if (cooldown < 1 || cooldown > 128) {
332		printf("raid%d: cooldown %d out of range\n", pm->raid->raidid,
333		    cooldown);
334		return (-1);
335	}
336	if (tickms < 10) {
337		printf("raid%d: tick time %dms out of range\n",
338		    pm->raid->raidid, tickms);
339		return (-1);
340	}
341	if (regions == 0) {
342		regions = rf_paritymap_nreg(pm->raid);
343	} else if (regions > RF_PARITYMAP_NREG) {
344		printf("raid%d: region count %u too large (more than %u)\n",
345		    pm->raid->raidid, regions, RF_PARITYMAP_NREG);
346		return (-1);
347	}
348
349	/* XXX any currently warm parity will be used with the new tickms! */
350	pm->params.cooldown = cooldown;
351	pm->params.tickms = tickms;
352	/* Apply the initial region count, but do not change it after that. */
353	if (pm->params.regions == 0)
354		pm->params.regions = regions;
355
356	/* So that the newly set parameters can be tested: */
357	pm->ctrs.nwrite = pm->ctrs.ncachesync = pm->ctrs.nclearing = 0;
358
359	if (todisk) {
360		raidPtr = pm->raid;
361		for (col = 0; col < raidPtr->numCol; col++) {
362			clabel = raidget_component_label(raidPtr, col);
363			clabel->parity_map_ntick = cooldown;
364			clabel->parity_map_tickms = tickms;
365			clabel->parity_map_regions = regions;
366			raidflush_component_label(raidPtr, col);
367		}
368	}
369	return 0;
370}
371
372/*
373 * The number of regions may not be as many as can fit into the map, because
374 * when regions are too small, the overhead of setting parity map bits
375 * becomes significant in comparison to the actual I/O, while the
376 * corresponding gains in parity verification time become negligible.  Thus,
377 * a minimum region size (defined above) is imposed.
378 *
379 * Note that, if the number of regions is less than the maximum, then some of
380 * the regions will be "fictional", corresponding to no actual disk; some
381 * parts of the code may process them as normal, but they can not ever be
382 * written to.
383 */
384static u_int
385rf_paritymap_nreg(RF_Raid_t *raid)
386{
387	daddr_t bytes_per_disk, nreg;
388
389	bytes_per_disk = raid->sectorsPerDisk << raid->logBytesPerSector;
390	nreg = bytes_per_disk / REGION_MINSIZE;
391	if (nreg > RF_PARITYMAP_NREG)
392		nreg = RF_PARITYMAP_NREG;
393
394	return (u_int)nreg;
395}
396
397/*
398 * Initialize a parity map given specific parameters.  This neither reads nor
399 * writes the parity map config in the component labels; for that, see below.
400 */
401int
402rf_paritymap_init(struct rf_paritymap *pm, RF_Raid_t *raid,
403    const struct rf_pmparams *params)
404{
405	daddr_t rstripes;
406	struct rf_pmparams safe;
407
408	pm->raid = raid;
409	pm->params.regions = 0;
410	if (0 != rf_paritymap_set_params(pm, params, 0)) {
411		/*
412		 * If the parameters are out-of-range, then bring the
413		 * parity map up with something reasonable, so that
414		 * the admin can at least go and fix it (or ignore it
415		 * entirely).
416		 */
417		safe.cooldown = DFL_COOLDOWN;
418		safe.tickms = DFL_TICKMS;
419		safe.regions = 0;
420
421		if (0 != rf_paritymap_set_params(pm, &safe, 0))
422			return (-1);
423	}
424
425	rstripes = howmany(raid->Layout.numStripe, pm->params.regions);
426	pm->region_size = rstripes * raid->Layout.dataSectorsPerStripe;
427
428	callout_init(&pm->ticker, CALLOUT_MPSAFE);
429	callout_setfunc(&pm->ticker, rf_paritymap_tick, pm);
430	pm->flags = 0;
431
432	pm->disk_boot = kmem_alloc(sizeof(struct rf_paritymap_ondisk),
433	    KM_SLEEP);
434	pm->disk_now = kmem_alloc(sizeof(struct rf_paritymap_ondisk),
435	    KM_SLEEP);
436	pm->current = kmem_zalloc(sizeof(struct rf_paritymap_current),
437	    KM_SLEEP);
438
439	rf_paritymap_kern_read(pm->raid, pm->disk_boot);
440	memcpy(pm->disk_now, pm->disk_boot, sizeof(*pm->disk_now));
441
442	mutex_init(&pm->lock, MUTEX_DEFAULT, IPL_NONE);
443	mutex_init(&pm->lk_flags, MUTEX_DEFAULT, IPL_SOFTCLOCK);
444
445	return 0;
446}
447
448/*
449 * Destroys a parity map; unless "force" is set, also cleans parity for any
450 * regions which were still in cooldown (but are not dirty on disk).
451 */
452void
453rf_paritymap_destroy(struct rf_paritymap *pm, int force)
454{
455	int i;
456
457	callout_halt(&pm->ticker, NULL); /* XXX stop? halt? */
458	callout_destroy(&pm->ticker);
459
460	if (!force) {
461		for (i = 0; i < RF_PARITYMAP_NREG; i++) {
462			/* XXX check for > 0 ? */
463			if (pm->current->state[i] < 0)
464				pm->current->state[i] = 0;
465		}
466
467		rf_paritymap_write_locked(pm);
468	}
469
470	mutex_destroy(&pm->lock);
471	mutex_destroy(&pm->lk_flags);
472
473	kmem_free(pm->disk_boot, sizeof(struct rf_paritymap_ondisk));
474	kmem_free(pm->disk_now, sizeof(struct rf_paritymap_ondisk));
475	kmem_free(pm->current, sizeof(struct rf_paritymap_current));
476}
477
478/*
479 * Rewrite parity, taking parity map into account; this is the equivalent of
480 * the old rf_RewriteParity, and is likewise to be called from a suitable
481 * thread and shouldn't have multiple copies running in parallel and so on.
482 *
483 * Note that the fictional regions are "cleaned" in one shot, so that very
484 * small RAIDs (useful for testing) will not experience potentially severe
485 * regressions in rewrite time.
486 */
487int
488rf_paritymap_rewrite(struct rf_paritymap *pm)
489{
490	int i, ret_val = 0;
491	daddr_t reg_b, reg_e;
492
493	/* Process only the actual regions. */
494	for (i = 0; i < pm->params.regions; i++) {
495		mutex_enter(&pm->lock);
496		if (isset(pm->disk_boot->bits, i)) {
497			mutex_exit(&pm->lock);
498
499			reg_b = i * pm->region_size;
500			reg_e = reg_b + pm->region_size;
501			if (reg_e > pm->raid->totalSectors)
502				reg_e = pm->raid->totalSectors;
503
504			if (rf_RewriteParityRange(pm->raid, reg_b,
505			    reg_e - reg_b)) {
506				ret_val = 1;
507				if (pm->raid->waitShutdown)
508					return ret_val;
509			} else {
510				mutex_enter(&pm->lock);
511				clrbit(pm->disk_boot->bits, i);
512				rf_paritymap_write_locked(pm);
513				mutex_exit(&pm->lock);
514			}
515		} else {
516			mutex_exit(&pm->lock);
517		}
518	}
519
520	/* Now, clear the fictional regions, if any. */
521	rf_paritymap_forceclean(pm);
522	rf_paritymap_write(pm);
523
524	return ret_val;
525}
526
527/*
528 * How to merge the on-disk parity maps when reading them in from the
529 * various components; returns whether they differ.  In the case that
530 * they do differ, sets *dst to the union of *dst and *src.
531 *
532 * In theory, it should be safe to take the intersection (or just pick
533 * a single component arbitrarily), but the paranoid approach costs
534 * little.
535 *
536 * Appropriate locking, if any, is the responsibility of the caller.
537 */
538int
539rf_paritymap_merge(struct rf_paritymap_ondisk *dst,
540    struct rf_paritymap_ondisk *src)
541{
542	int i, discrep = 0;
543
544	for (i = 0; i < RF_PARITYMAP_NBYTE; i++) {
545		if (dst->bits[i] != src->bits[i])
546			discrep = 1;
547		dst->bits[i] |= src->bits[i];
548	}
549
550	return discrep;
551}
552
553/*
554 * Detach a parity map from its RAID.  This is not meant to be applied except
555 * when unconfiguring the RAID after all I/O has been resolved, as otherwise
556 * an out-of-date parity map could be treated as current.
557 */
558void
559rf_paritymap_detach(RF_Raid_t *raidPtr)
560{
561	if (raidPtr->parity_map == NULL)
562		return;
563
564	simple_lock(&(raidPtr->iodone_lock));
565	struct rf_paritymap *pm = raidPtr->parity_map;
566	raidPtr->parity_map = NULL;
567	simple_unlock(&(raidPtr->iodone_lock));
568	/* XXXjld is that enough locking?  Or too much? */
569	rf_paritymap_destroy(pm, 0);
570	kmem_free(pm, sizeof(*pm));
571}
572
573/*
574 * Attach a parity map to a RAID set if appropriate.  Includes
575 * configure-time processing of parity-map fields of component label.
576 */
577void
578rf_paritymap_attach(RF_Raid_t *raidPtr, int force)
579{
580	RF_RowCol_t col;
581	int pm_use, pm_zap;
582	int g_tickms, g_ntick, g_regions;
583	int good;
584	RF_ComponentLabel_t *clabel;
585	u_int flags, regions;
586	struct rf_pmparams params;
587
588	if (raidPtr->Layout.map->faultsTolerated == 0) {
589		/* There isn't any parity. */
590		return;
591	}
592
593	pm_use = 1;
594	pm_zap = 0;
595	g_tickms = DFL_TICKMS;
596	g_ntick = DFL_COOLDOWN;
597	g_regions = 0;
598
599	/*
600	 * Collect opinions on the set config.  If this is the initial
601	 * config (raidctl -C), treat all labels as invalid, since
602	 * there may be random data present.
603	 */
604	if (!force) {
605		for (col = 0; col < raidPtr->numCol; col++) {
606			clabel = raidget_component_label(raidPtr, col);
607			flags = clabel->parity_map_flags;
608			/* Check for use by non-parity-map kernel. */
609			if (clabel->parity_map_modcount
610			    != clabel->mod_counter) {
611				flags &= ~RF_PMLABEL_WASUSED;
612			}
613
614			if (flags & RF_PMLABEL_VALID) {
615				g_tickms = clabel->parity_map_tickms;
616				g_ntick = clabel->parity_map_ntick;
617				regions = clabel->parity_map_regions;
618				if (g_regions == 0)
619					g_regions = regions;
620				else if (g_regions != regions) {
621					pm_zap = 1; /* important! */
622				}
623
624				if (flags & RF_PMLABEL_DISABLE) {
625					pm_use = 0;
626				}
627				if (!(flags & RF_PMLABEL_WASUSED)) {
628					pm_zap = 1;
629				}
630			} else {
631				pm_zap = 1;
632			}
633		}
634	} else {
635		pm_zap = 1;
636	}
637
638	/* Finally, create and attach the parity map. */
639	if (pm_use) {
640		params.cooldown = g_ntick;
641		params.tickms = g_tickms;
642		params.regions = g_regions;
643
644		raidPtr->parity_map = kmem_alloc(sizeof(struct rf_paritymap),
645		    KM_SLEEP);
646		if (0 != rf_paritymap_init(raidPtr->parity_map, raidPtr,
647			&params)) {
648			/* It failed; do without. */
649			kmem_free(raidPtr->parity_map,
650			    sizeof(struct rf_paritymap));
651			raidPtr->parity_map = NULL;
652			return;
653		}
654
655		if (g_regions == 0)
656			/* Pick up the autoconfigured region count. */
657			g_regions = raidPtr->parity_map->params.regions;
658
659		if (pm_zap) {
660			good = raidPtr->parity_good && !force;
661
662			if (good)
663				rf_paritymap_forceclean(raidPtr->parity_map);
664			else
665				rf_paritymap_invalidate(raidPtr->parity_map);
666			/* This needs to be on disk before WASUSED is set. */
667			rf_paritymap_write(raidPtr->parity_map);
668		}
669	}
670
671	/* Alter labels in-core to reflect the current view of things. */
672	for (col = 0; col < raidPtr->numCol; col++) {
673		clabel = raidget_component_label(raidPtr, col);
674
675		if (pm_use)
676			flags = RF_PMLABEL_VALID | RF_PMLABEL_WASUSED;
677		else
678			flags = RF_PMLABEL_VALID | RF_PMLABEL_DISABLE;
679
680		clabel->parity_map_flags = flags;
681		clabel->parity_map_tickms = g_tickms;
682		clabel->parity_map_ntick = g_ntick;
683		clabel->parity_map_regions = g_regions;
684		raidflush_component_label(raidPtr, col);
685	}
686}
687
688/*
689 * For initializing the parity-map fields of a component label, both on
690 * initial creation and on reconstruct/copyback/etc.
691 */
692void
693rf_paritymap_init_label(struct rf_paritymap *pm, RF_ComponentLabel_t *clabel)
694{
695	if (pm != NULL) {
696		clabel->parity_map_flags =
697		    RF_PMLABEL_VALID | RF_PMLABEL_WASUSED;
698		clabel->parity_map_tickms = pm->params.tickms;
699		clabel->parity_map_ntick = pm->params.cooldown;
700		/*
701		 * XXXjld: If the number of regions is changed on disk, and
702		 * then a new component is labeled before the next configure,
703		 * then it will get the old value and they will conflict on
704		 * the next boot (and the default will be used instead).
705		 */
706		clabel->parity_map_regions = pm->params.regions;
707	} else {
708		/*
709		 * XXXjld: if the map is disabled, and all the components are
710		 * replaced without an intervening unconfigure/reconfigure,
711		 * then it will become enabled on the next unconfig/reconfig.
712		 */
713	}
714}
715
716
717/* Will the parity map be disabled next time? */
718int
719rf_paritymap_get_disable(RF_Raid_t *raidPtr)
720{
721	RF_ComponentLabel_t *clabel;
722	RF_RowCol_t col;
723	int dis;
724
725	dis = 0;
726	for (col = 0; col < raidPtr->numCol; col++) {
727		clabel = raidget_component_label(raidPtr, col);
728		if (clabel->parity_map_flags & RF_PMLABEL_DISABLE)
729			dis = 1;
730	}
731
732	return dis;
733}
734
735/* Set whether the parity map will be disabled next time. */
736void
737rf_paritymap_set_disable(RF_Raid_t *raidPtr, int dis)
738{
739	RF_ComponentLabel_t *clabel;
740	RF_RowCol_t col;
741
742	for (col = 0; col < raidPtr->numCol; col++) {
743		clabel = raidget_component_label(raidPtr, col);
744		if (dis)
745			clabel->parity_map_flags |= RF_PMLABEL_DISABLE;
746		else
747			clabel->parity_map_flags &= ~RF_PMLABEL_DISABLE;
748		raidflush_component_label(raidPtr, col);
749	}
750}
751