rf_parityloggingdags.c revision 1.6
1/*	$NetBSD: rf_parityloggingdags.c,v 1.6 2001/10/04 15:58:55 oster Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29#include "rf_archs.h"
30
31#if RF_INCLUDE_PARITYLOGGING > 0
32
33/*
34  DAGs specific to parity logging are created here
35 */
36
37#include <dev/raidframe/raidframevar.h>
38
39#include "rf_raid.h"
40#include "rf_dag.h"
41#include "rf_dagutils.h"
42#include "rf_dagfuncs.h"
43#include "rf_debugMem.h"
44#include "rf_paritylog.h"
45#include "rf_memchunk.h"
46#include "rf_general.h"
47
48#include "rf_parityloggingdags.h"
49
50/******************************************************************************
51 *
52 * creates a DAG to perform a large-write operation:
53 *
54 *         / Rod \     / Wnd \
55 * H -- NIL- Rod - NIL - Wnd ------ NIL - T
56 *         \ Rod /     \ Xor - Lpo /
57 *
58 * The writes are not done until the reads complete because if they were done in
59 * parallel, a failure on one of the reads could leave the parity in an inconsistent
60 * state, so that the retry with a new DAG would produce erroneous parity.
61 *
62 * Note:  this DAG has the nasty property that none of the buffers allocated for reading
63 *        old data can be freed until the XOR node fires.  Need to fix this.
64 *
65 * The last two arguments are the number of faults tolerated, and function for the
66 * redundancy calculation. The undo for the redundancy calc is assumed to be null
67 *
68 *****************************************************************************/
69
70void
71rf_CommonCreateParityLoggingLargeWriteDAG(
72    RF_Raid_t * raidPtr,
73    RF_AccessStripeMap_t * asmap,
74    RF_DagHeader_t * dag_h,
75    void *bp,
76    RF_RaidAccessFlags_t flags,
77    RF_AllocListElem_t * allocList,
78    int nfaults,
79    int (*redFunc) (RF_DagNode_t *))
80{
81	RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode,
82	       *lpoNode, *blockNode, *unblockNode, *termNode;
83	int     nWndNodes, nRodNodes, i;
84	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
85	RF_AccessStripeMapHeader_t *new_asm_h[2];
86	int     nodeNum, asmNum;
87	RF_ReconUnitNum_t which_ru;
88	char   *sosBuffer, *eosBuffer;
89	RF_PhysDiskAddr_t *pda;
90	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
91
92	if (rf_dagDebug)
93		printf("[Creating parity-logging large-write DAG]\n");
94	RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */
95	dag_h->creator = "ParityLoggingLargeWriteDAG";
96
97	/* alloc the Wnd nodes, the xor node, and the Lpo node */
98	nWndNodes = asmap->numStripeUnitsAccessed;
99	RF_CallocAndAdd(nodes, nWndNodes + 6, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
100	i = 0;
101	wndNodes = &nodes[i];
102	i += nWndNodes;
103	xorNode = &nodes[i];
104	i += 1;
105	lpoNode = &nodes[i];
106	i += 1;
107	blockNode = &nodes[i];
108	i += 1;
109	syncNode = &nodes[i];
110	i += 1;
111	unblockNode = &nodes[i];
112	i += 1;
113	termNode = &nodes[i];
114	i += 1;
115
116	dag_h->numCommitNodes = nWndNodes + 1;
117	dag_h->numCommits = 0;
118	dag_h->numSuccedents = 1;
119
120	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
121	if (nRodNodes > 0)
122		RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
123
124	/* begin node initialization */
125	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
126	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList);
127	rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList);
128	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
129
130	/* initialize the Rod nodes */
131	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
132		if (new_asm_h[asmNum]) {
133			pda = new_asm_h[asmNum]->stripeMap->physInfo;
134			while (pda) {
135				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
136				rodNodes[nodeNum].params[0].p = pda;
137				rodNodes[nodeNum].params[1].p = pda->bufPtr;
138				rodNodes[nodeNum].params[2].v = parityStripeID;
139				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
140				nodeNum++;
141				pda = pda->next;
142			}
143		}
144	}
145	RF_ASSERT(nodeNum == nRodNodes);
146
147	/* initialize the wnd nodes */
148	pda = asmap->physInfo;
149	for (i = 0; i < nWndNodes; i++) {
150		rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
151		RF_ASSERT(pda != NULL);
152		wndNodes[i].params[0].p = pda;
153		wndNodes[i].params[1].p = pda->bufPtr;
154		wndNodes[i].params[2].v = parityStripeID;
155		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
156		pda = pda->next;
157	}
158
159	/* initialize the redundancy node */
160	rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList);
161	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
162	for (i = 0; i < nWndNodes; i++) {
163		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
164		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
165	}
166	for (i = 0; i < nRodNodes; i++) {
167		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
168		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
169	}
170	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;	/* xor node needs to get
171									 * at RAID information */
172
173	/* look for an Rod node that reads a complete SU.  If none, alloc a
174	 * buffer to receive the parity info. Note that we can't use a new
175	 * data buffer because it will not have gotten written when the xor
176	 * occurs. */
177	for (i = 0; i < nRodNodes; i++)
178		if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
179			break;
180	if (i == nRodNodes) {
181		RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
182	} else {
183		xorNode->results[0] = rodNodes[i].params[1].p;
184	}
185
186	/* initialize the Lpo node */
187	rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList);
188
189	lpoNode->params[0].p = asmap->parityInfo;
190	lpoNode->params[1].p = xorNode->results[0];
191	RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
192							 * describe entire
193							 * parity unit */
194
195	/* connect nodes to form graph */
196
197	/* connect dag header to block node */
198	RF_ASSERT(dag_h->numSuccedents == 1);
199	RF_ASSERT(blockNode->numAntecedents == 0);
200	dag_h->succedents[0] = blockNode;
201
202	/* connect the block node to the Rod nodes */
203	RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1);
204	for (i = 0; i < nRodNodes; i++) {
205		RF_ASSERT(rodNodes[i].numAntecedents == 1);
206		blockNode->succedents[i] = &rodNodes[i];
207		rodNodes[i].antecedents[0] = blockNode;
208		rodNodes[i].antType[0] = rf_control;
209	}
210
211	/* connect the block node to the sync node */
212	/* necessary if nRodNodes == 0 */
213	RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1);
214	blockNode->succedents[nRodNodes] = syncNode;
215	syncNode->antecedents[0] = blockNode;
216	syncNode->antType[0] = rf_control;
217
218	/* connect the Rod nodes to the syncNode */
219	for (i = 0; i < nRodNodes; i++) {
220		rodNodes[i].succedents[0] = syncNode;
221		syncNode->antecedents[1 + i] = &rodNodes[i];
222		syncNode->antType[1 + i] = rf_control;
223	}
224
225	/* connect the sync node to the xor node */
226	RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1);
227	RF_ASSERT(xorNode->numAntecedents == 1);
228	syncNode->succedents[0] = xorNode;
229	xorNode->antecedents[0] = syncNode;
230	xorNode->antType[0] = rf_trueData;	/* carry forward from sync */
231
232	/* connect the sync node to the Wnd nodes */
233	for (i = 0; i < nWndNodes; i++) {
234		RF_ASSERT(wndNodes->numAntecedents == 1);
235		syncNode->succedents[1 + i] = &wndNodes[i];
236		wndNodes[i].antecedents[0] = syncNode;
237		wndNodes[i].antType[0] = rf_control;
238	}
239
240	/* connect the xor node to the Lpo node */
241	RF_ASSERT(xorNode->numSuccedents == 1);
242	RF_ASSERT(lpoNode->numAntecedents == 1);
243	xorNode->succedents[0] = lpoNode;
244	lpoNode->antecedents[0] = xorNode;
245	lpoNode->antType[0] = rf_trueData;
246
247	/* connect the Wnd nodes to the unblock node */
248	RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1);
249	for (i = 0; i < nWndNodes; i++) {
250		RF_ASSERT(wndNodes->numSuccedents == 1);
251		wndNodes[i].succedents[0] = unblockNode;
252		unblockNode->antecedents[i] = &wndNodes[i];
253		unblockNode->antType[i] = rf_control;
254	}
255
256	/* connect the Lpo node to the unblock node */
257	RF_ASSERT(lpoNode->numSuccedents == 1);
258	lpoNode->succedents[0] = unblockNode;
259	unblockNode->antecedents[nWndNodes] = lpoNode;
260	unblockNode->antType[nWndNodes] = rf_control;
261
262	/* connect unblock node to terminator */
263	RF_ASSERT(unblockNode->numSuccedents == 1);
264	RF_ASSERT(termNode->numAntecedents == 1);
265	RF_ASSERT(termNode->numSuccedents == 0);
266	unblockNode->succedents[0] = termNode;
267	termNode->antecedents[0] = unblockNode;
268	termNode->antType[0] = rf_control;
269}
270
271
272
273
274/******************************************************************************
275 *
276 * creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows:
277 *
278 *                                     Header
279 *                                       |
280 *                                     Block
281 *                                 / |  ... \   \
282 *                                /  |       \   \
283 *                             Rod  Rod      Rod  Rop
284 *                             | \ /| \    / |  \/ |
285 *                             |    |        |  /\ |
286 *                             Wnd  Wnd      Wnd   X
287 *                              |    \       /     |
288 *                              |     \     /      |
289 *                               \     \   /      Lpo
290 *                                \     \ /       /
291 *                                 +-> Unblock <-+
292 *                                       |
293 *                                       T
294 *
295 *
296 * R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity.
297 * When the access spans a stripe unit boundary and is less than one SU in size, there will
298 * be two Rop -- X -- Wnp branches.  I call this the "double-XOR" case.
299 * The second output from each Rod node goes to the X node.  In the double-XOR
300 * case, there are exactly 2 Rod nodes, and each sends one output to one X node.
301 * There is one Rod -- Wnd -- T branch for each stripe unit being updated.
302 *
303 * The block and unblock nodes are unused.  See comment above CreateFaultFreeReadDAG.
304 *
305 * Note:  this DAG ignores all the optimizations related to making the RMWs atomic.
306 *        it also has the nasty property that none of the buffers allocated for reading
307 *        old data & parity can be freed until the XOR node fires.  Need to fix this.
308 *
309 * A null qfuncs indicates single fault tolerant
310 *****************************************************************************/
311
312void
313rf_CommonCreateParityLoggingSmallWriteDAG(
314    RF_Raid_t * raidPtr,
315    RF_AccessStripeMap_t * asmap,
316    RF_DagHeader_t * dag_h,
317    void *bp,
318    RF_RaidAccessFlags_t flags,
319    RF_AllocListElem_t * allocList,
320    RF_RedFuncs_t * pfuncs,
321    RF_RedFuncs_t * qfuncs)
322{
323	RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes;
324	RF_DagNode_t *readDataNodes, *readParityNodes;
325	RF_DagNode_t *writeDataNodes, *lpuNodes;
326	RF_DagNode_t *unlockDataNodes = NULL, *termNode;
327	RF_PhysDiskAddr_t *pda = asmap->physInfo;
328	int     numDataNodes = asmap->numStripeUnitsAccessed;
329	int     numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
330	int     i, j, nNodes, totalNumNodes;
331	RF_ReconUnitNum_t which_ru;
332	int     (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node);
333	int     (*qfunc) (RF_DagNode_t * node);
334	char   *name, *qname;
335	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
336#ifdef RAID_DIAGNOSTIC
337	long    nfaults = qfuncs ? 2 : 1;
338#endif /* RAID_DIAGNOSTIC */
339	int     lu_flag = (rf_enableAtomicRMW) ? 1 : 0;	/* lock/unlock flag */
340
341	if (rf_dagDebug)
342		printf("[Creating parity-logging small-write DAG]\n");
343	RF_ASSERT(numDataNodes > 0);
344	RF_ASSERT(nfaults == 1);
345	dag_h->creator = "ParityLoggingSmallWriteDAG";
346
347	/* DAG creation occurs in three steps: 1. count the number of nodes in
348	 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
349	 * nodes */
350
351	/* Step 1. compute number of nodes in the graph */
352
353	/* number of nodes: a read and write for each data unit a redundancy
354	 * computation node for each parity node a read and Lpu for each
355	 * parity unit a block and unblock node (2) a terminator node if
356	 * atomic RMW an unlock node for each data unit, redundancy unit */
357	totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3;
358	if (lu_flag)
359		totalNumNodes += numDataNodes;
360
361	nNodes = numDataNodes + numParityNodes;
362
363	dag_h->numCommitNodes = numDataNodes + numParityNodes;
364	dag_h->numCommits = 0;
365	dag_h->numSuccedents = 1;
366
367	/* Step 2. create the nodes */
368	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
369	i = 0;
370	blockNode = &nodes[i];
371	i += 1;
372	unblockNode = &nodes[i];
373	i += 1;
374	readDataNodes = &nodes[i];
375	i += numDataNodes;
376	readParityNodes = &nodes[i];
377	i += numParityNodes;
378	writeDataNodes = &nodes[i];
379	i += numDataNodes;
380	lpuNodes = &nodes[i];
381	i += numParityNodes;
382	xorNodes = &nodes[i];
383	i += numParityNodes;
384	termNode = &nodes[i];
385	i += 1;
386	if (lu_flag) {
387		unlockDataNodes = &nodes[i];
388		i += numDataNodes;
389	}
390	RF_ASSERT(i == totalNumNodes);
391
392	/* Step 3. initialize the nodes */
393	/* initialize block node (Nil) */
394	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
395
396	/* initialize unblock node (Nil) */
397	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList);
398
399	/* initialize terminatory node (Trm) */
400	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
401
402	/* initialize nodes which read old data (Rod) */
403	for (i = 0; i < numDataNodes; i++) {
404		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList);
405		RF_ASSERT(pda != NULL);
406		readDataNodes[i].params[0].p = pda;	/* physical disk addr
407							 * desc */
408		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
409												 * data */
410		readDataNodes[i].params[2].v = parityStripeID;
411		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
412		pda = pda->next;
413		readDataNodes[i].propList[0] = NULL;
414		readDataNodes[i].propList[1] = NULL;
415	}
416
417	/* initialize nodes which read old parity (Rop) */
418	pda = asmap->parityInfo;
419	i = 0;
420	for (i = 0; i < numParityNodes; i++) {
421		RF_ASSERT(pda != NULL);
422		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList);
423		readParityNodes[i].params[0].p = pda;
424		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
425													 * parity */
426		readParityNodes[i].params[2].v = parityStripeID;
427		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
428		readParityNodes[i].propList[0] = NULL;
429		pda = pda->next;
430	}
431
432	/* initialize nodes which write new data (Wnd) */
433	pda = asmap->physInfo;
434	for (i = 0; i < numDataNodes; i++) {
435		RF_ASSERT(pda != NULL);
436		rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList);
437		writeDataNodes[i].params[0].p = pda;	/* physical disk addr
438							 * desc */
439		writeDataNodes[i].params[1].p = pda->bufPtr;	/* buffer holding new
440								 * data to be written */
441		writeDataNodes[i].params[2].v = parityStripeID;
442		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
443
444		if (lu_flag) {
445			/* initialize node to unlock the disk queue */
446			rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList);
447			unlockDataNodes[i].params[0].p = pda;	/* physical disk addr
448								 * desc */
449			unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
450		}
451		pda = pda->next;
452	}
453
454
455	/* initialize nodes which compute new parity */
456	/* we use the simple XOR func in the double-XOR case, and when we're
457	 * accessing only a portion of one stripe unit. the distinction
458	 * between the two is that the regular XOR func assumes that the
459	 * targbuf is a full SU in size, and examines the pda associated with
460	 * the buffer to decide where within the buffer to XOR the data,
461	 * whereas the simple XOR func just XORs the data into the start of
462	 * the buffer. */
463	if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
464		func = pfuncs->simple;
465		undoFunc = rf_NullNodeUndoFunc;
466		name = pfuncs->SimpleName;
467		if (qfuncs) {
468			qfunc = qfuncs->simple;
469			qname = qfuncs->SimpleName;
470		}
471	} else {
472		func = pfuncs->regular;
473		undoFunc = rf_NullNodeUndoFunc;
474		name = pfuncs->RegularName;
475		if (qfuncs) {
476			qfunc = qfuncs->regular;
477			qname = qfuncs->RegularName;
478		}
479	}
480	/* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
481	 * nodes, and raidPtr  */
482	if (numParityNodes == 2) {	/* double-xor case */
483		for (i = 0; i < numParityNodes; i++) {
484			rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList);	/* no wakeup func for
485																	 * xor */
486			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
487			xorNodes[i].params[0] = readDataNodes[i].params[0];
488			xorNodes[i].params[1] = readDataNodes[i].params[1];
489			xorNodes[i].params[2] = readParityNodes[i].params[0];
490			xorNodes[i].params[3] = readParityNodes[i].params[1];
491			xorNodes[i].params[4] = writeDataNodes[i].params[0];
492			xorNodes[i].params[5] = writeDataNodes[i].params[1];
493			xorNodes[i].params[6].p = raidPtr;
494			xorNodes[i].results[0] = readParityNodes[i].params[1].p;	/* use old parity buf as
495											 * target buf */
496		}
497	} else {
498		/* there is only one xor node in this case */
499		rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
500		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
501		for (i = 0; i < numDataNodes + 1; i++) {
502			/* set up params related to Rod and Rop nodes */
503			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
504			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
505		}
506		for (i = 0; i < numDataNodes; i++) {
507			/* set up params related to Wnd and Wnp nodes */
508			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
509			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
510		}
511		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
512											 * at RAID information */
513		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
514	}
515
516	/* initialize the log node(s) */
517	pda = asmap->parityInfo;
518	for (i = 0; i < numParityNodes; i++) {
519		RF_ASSERT(pda);
520		rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList);
521		lpuNodes[i].params[0].p = pda;	/* PhysDiskAddr of parity */
522		lpuNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer to
523									 * parity */
524		pda = pda->next;
525	}
526
527
528	/* Step 4. connect the nodes */
529
530	/* connect header to block node */
531	RF_ASSERT(dag_h->numSuccedents == 1);
532	RF_ASSERT(blockNode->numAntecedents == 0);
533	dag_h->succedents[0] = blockNode;
534
535	/* connect block node to read old data nodes */
536	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes));
537	for (i = 0; i < numDataNodes; i++) {
538		blockNode->succedents[i] = &readDataNodes[i];
539		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
540		readDataNodes[i].antecedents[0] = blockNode;
541		readDataNodes[i].antType[0] = rf_control;
542	}
543
544	/* connect block node to read old parity nodes */
545	for (i = 0; i < numParityNodes; i++) {
546		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
547		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
548		readParityNodes[i].antecedents[0] = blockNode;
549		readParityNodes[i].antType[0] = rf_control;
550	}
551
552	/* connect read old data nodes to write new data nodes */
553	for (i = 0; i < numDataNodes; i++) {
554		RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes);
555		for (j = 0; j < numDataNodes; j++) {
556			RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes);
557			readDataNodes[i].succedents[j] = &writeDataNodes[j];
558			writeDataNodes[j].antecedents[i] = &readDataNodes[i];
559			if (i == j)
560				writeDataNodes[j].antType[i] = rf_antiData;
561			else
562				writeDataNodes[j].antType[i] = rf_control;
563		}
564	}
565
566	/* connect read old data nodes to xor nodes */
567	for (i = 0; i < numDataNodes; i++)
568		for (j = 0; j < numParityNodes; j++) {
569			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
570			readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
571			xorNodes[j].antecedents[i] = &readDataNodes[i];
572			xorNodes[j].antType[i] = rf_trueData;
573		}
574
575	/* connect read old parity nodes to write new data nodes */
576	for (i = 0; i < numParityNodes; i++) {
577		RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes);
578		for (j = 0; j < numDataNodes; j++) {
579			readParityNodes[i].succedents[j] = &writeDataNodes[j];
580			writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
581			writeDataNodes[j].antType[numDataNodes + i] = rf_control;
582		}
583	}
584
585	/* connect read old parity nodes to xor nodes */
586	for (i = 0; i < numParityNodes; i++)
587		for (j = 0; j < numParityNodes; j++) {
588			readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
589			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
590			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
591		}
592
593	/* connect xor nodes to write new parity nodes */
594	for (i = 0; i < numParityNodes; i++) {
595		RF_ASSERT(xorNodes[i].numSuccedents == 1);
596		RF_ASSERT(lpuNodes[i].numAntecedents == 1);
597		xorNodes[i].succedents[0] = &lpuNodes[i];
598		lpuNodes[i].antecedents[0] = &xorNodes[i];
599		lpuNodes[i].antType[0] = rf_trueData;
600	}
601
602	for (i = 0; i < numDataNodes; i++) {
603		if (lu_flag) {
604			/* connect write new data nodes to unlock nodes */
605			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
606			RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
607			writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
608			unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
609			unlockDataNodes[i].antType[0] = rf_control;
610
611			/* connect unlock nodes to unblock node */
612			RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
613			RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
614			unlockDataNodes[i].succedents[0] = unblockNode;
615			unblockNode->antecedents[i] = &unlockDataNodes[i];
616			unblockNode->antType[i] = rf_control;
617		} else {
618			/* connect write new data nodes to unblock node */
619			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
620			RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
621			writeDataNodes[i].succedents[0] = unblockNode;
622			unblockNode->antecedents[i] = &writeDataNodes[i];
623			unblockNode->antType[i] = rf_control;
624		}
625	}
626
627	/* connect write new parity nodes to unblock node */
628	for (i = 0; i < numParityNodes; i++) {
629		RF_ASSERT(lpuNodes[i].numSuccedents == 1);
630		lpuNodes[i].succedents[0] = unblockNode;
631		unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i];
632		unblockNode->antType[numDataNodes + i] = rf_control;
633	}
634
635	/* connect unblock node to terminator */
636	RF_ASSERT(unblockNode->numSuccedents == 1);
637	RF_ASSERT(termNode->numAntecedents == 1);
638	RF_ASSERT(termNode->numSuccedents == 0);
639	unblockNode->succedents[0] = termNode;
640	termNode->antecedents[0] = unblockNode;
641	termNode->antType[0] = rf_control;
642}
643
644
645void
646rf_CreateParityLoggingSmallWriteDAG(
647    RF_Raid_t * raidPtr,
648    RF_AccessStripeMap_t * asmap,
649    RF_DagHeader_t * dag_h,
650    void *bp,
651    RF_RaidAccessFlags_t flags,
652    RF_AllocListElem_t * allocList,
653    RF_RedFuncs_t * pfuncs,
654    RF_RedFuncs_t * qfuncs)
655{
656	dag_h->creator = "ParityLoggingSmallWriteDAG";
657	rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL);
658}
659
660
661void
662rf_CreateParityLoggingLargeWriteDAG(
663    RF_Raid_t * raidPtr,
664    RF_AccessStripeMap_t * asmap,
665    RF_DagHeader_t * dag_h,
666    void *bp,
667    RF_RaidAccessFlags_t flags,
668    RF_AllocListElem_t * allocList,
669    int nfaults,
670    int (*redFunc) (RF_DagNode_t *))
671{
672	dag_h->creator = "ParityLoggingSmallWriteDAG";
673	rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc);
674}
675#endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
676