rf_parityloggingdags.c revision 1.5
1/*	$NetBSD: rf_parityloggingdags.c,v 1.5 2001/09/01 23:50:44 thorpej Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29#include "rf_archs.h"
30
31#if RF_INCLUDE_PARITYLOGGING > 0
32
33/*
34  DAGs specific to parity logging are created here
35 */
36
37#include "rf_types.h"
38#include "rf_raid.h"
39#include "rf_dag.h"
40#include "rf_dagutils.h"
41#include "rf_dagfuncs.h"
42#include "rf_debugMem.h"
43#include "rf_paritylog.h"
44#include "rf_memchunk.h"
45#include "rf_general.h"
46
47#include "rf_parityloggingdags.h"
48
49/******************************************************************************
50 *
51 * creates a DAG to perform a large-write operation:
52 *
53 *         / Rod \     / Wnd \
54 * H -- NIL- Rod - NIL - Wnd ------ NIL - T
55 *         \ Rod /     \ Xor - Lpo /
56 *
57 * The writes are not done until the reads complete because if they were done in
58 * parallel, a failure on one of the reads could leave the parity in an inconsistent
59 * state, so that the retry with a new DAG would produce erroneous parity.
60 *
61 * Note:  this DAG has the nasty property that none of the buffers allocated for reading
62 *        old data can be freed until the XOR node fires.  Need to fix this.
63 *
64 * The last two arguments are the number of faults tolerated, and function for the
65 * redundancy calculation. The undo for the redundancy calc is assumed to be null
66 *
67 *****************************************************************************/
68
69void
70rf_CommonCreateParityLoggingLargeWriteDAG(
71    RF_Raid_t * raidPtr,
72    RF_AccessStripeMap_t * asmap,
73    RF_DagHeader_t * dag_h,
74    void *bp,
75    RF_RaidAccessFlags_t flags,
76    RF_AllocListElem_t * allocList,
77    int nfaults,
78    int (*redFunc) (RF_DagNode_t *))
79{
80	RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode,
81	       *lpoNode, *blockNode, *unblockNode, *termNode;
82	int     nWndNodes, nRodNodes, i;
83	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
84	RF_AccessStripeMapHeader_t *new_asm_h[2];
85	int     nodeNum, asmNum;
86	RF_ReconUnitNum_t which_ru;
87	char   *sosBuffer, *eosBuffer;
88	RF_PhysDiskAddr_t *pda;
89	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
90
91	if (rf_dagDebug)
92		printf("[Creating parity-logging large-write DAG]\n");
93	RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */
94	dag_h->creator = "ParityLoggingLargeWriteDAG";
95
96	/* alloc the Wnd nodes, the xor node, and the Lpo node */
97	nWndNodes = asmap->numStripeUnitsAccessed;
98	RF_CallocAndAdd(nodes, nWndNodes + 6, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
99	i = 0;
100	wndNodes = &nodes[i];
101	i += nWndNodes;
102	xorNode = &nodes[i];
103	i += 1;
104	lpoNode = &nodes[i];
105	i += 1;
106	blockNode = &nodes[i];
107	i += 1;
108	syncNode = &nodes[i];
109	i += 1;
110	unblockNode = &nodes[i];
111	i += 1;
112	termNode = &nodes[i];
113	i += 1;
114
115	dag_h->numCommitNodes = nWndNodes + 1;
116	dag_h->numCommits = 0;
117	dag_h->numSuccedents = 1;
118
119	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
120	if (nRodNodes > 0)
121		RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
122
123	/* begin node initialization */
124	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
125	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList);
126	rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList);
127	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
128
129	/* initialize the Rod nodes */
130	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
131		if (new_asm_h[asmNum]) {
132			pda = new_asm_h[asmNum]->stripeMap->physInfo;
133			while (pda) {
134				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
135				rodNodes[nodeNum].params[0].p = pda;
136				rodNodes[nodeNum].params[1].p = pda->bufPtr;
137				rodNodes[nodeNum].params[2].v = parityStripeID;
138				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
139				nodeNum++;
140				pda = pda->next;
141			}
142		}
143	}
144	RF_ASSERT(nodeNum == nRodNodes);
145
146	/* initialize the wnd nodes */
147	pda = asmap->physInfo;
148	for (i = 0; i < nWndNodes; i++) {
149		rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
150		RF_ASSERT(pda != NULL);
151		wndNodes[i].params[0].p = pda;
152		wndNodes[i].params[1].p = pda->bufPtr;
153		wndNodes[i].params[2].v = parityStripeID;
154		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
155		pda = pda->next;
156	}
157
158	/* initialize the redundancy node */
159	rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList);
160	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
161	for (i = 0; i < nWndNodes; i++) {
162		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
163		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
164	}
165	for (i = 0; i < nRodNodes; i++) {
166		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
167		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
168	}
169	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;	/* xor node needs to get
170									 * at RAID information */
171
172	/* look for an Rod node that reads a complete SU.  If none, alloc a
173	 * buffer to receive the parity info. Note that we can't use a new
174	 * data buffer because it will not have gotten written when the xor
175	 * occurs. */
176	for (i = 0; i < nRodNodes; i++)
177		if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
178			break;
179	if (i == nRodNodes) {
180		RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
181	} else {
182		xorNode->results[0] = rodNodes[i].params[1].p;
183	}
184
185	/* initialize the Lpo node */
186	rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList);
187
188	lpoNode->params[0].p = asmap->parityInfo;
189	lpoNode->params[1].p = xorNode->results[0];
190	RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
191							 * describe entire
192							 * parity unit */
193
194	/* connect nodes to form graph */
195
196	/* connect dag header to block node */
197	RF_ASSERT(dag_h->numSuccedents == 1);
198	RF_ASSERT(blockNode->numAntecedents == 0);
199	dag_h->succedents[0] = blockNode;
200
201	/* connect the block node to the Rod nodes */
202	RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1);
203	for (i = 0; i < nRodNodes; i++) {
204		RF_ASSERT(rodNodes[i].numAntecedents == 1);
205		blockNode->succedents[i] = &rodNodes[i];
206		rodNodes[i].antecedents[0] = blockNode;
207		rodNodes[i].antType[0] = rf_control;
208	}
209
210	/* connect the block node to the sync node */
211	/* necessary if nRodNodes == 0 */
212	RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1);
213	blockNode->succedents[nRodNodes] = syncNode;
214	syncNode->antecedents[0] = blockNode;
215	syncNode->antType[0] = rf_control;
216
217	/* connect the Rod nodes to the syncNode */
218	for (i = 0; i < nRodNodes; i++) {
219		rodNodes[i].succedents[0] = syncNode;
220		syncNode->antecedents[1 + i] = &rodNodes[i];
221		syncNode->antType[1 + i] = rf_control;
222	}
223
224	/* connect the sync node to the xor node */
225	RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1);
226	RF_ASSERT(xorNode->numAntecedents == 1);
227	syncNode->succedents[0] = xorNode;
228	xorNode->antecedents[0] = syncNode;
229	xorNode->antType[0] = rf_trueData;	/* carry forward from sync */
230
231	/* connect the sync node to the Wnd nodes */
232	for (i = 0; i < nWndNodes; i++) {
233		RF_ASSERT(wndNodes->numAntecedents == 1);
234		syncNode->succedents[1 + i] = &wndNodes[i];
235		wndNodes[i].antecedents[0] = syncNode;
236		wndNodes[i].antType[0] = rf_control;
237	}
238
239	/* connect the xor node to the Lpo node */
240	RF_ASSERT(xorNode->numSuccedents == 1);
241	RF_ASSERT(lpoNode->numAntecedents == 1);
242	xorNode->succedents[0] = lpoNode;
243	lpoNode->antecedents[0] = xorNode;
244	lpoNode->antType[0] = rf_trueData;
245
246	/* connect the Wnd nodes to the unblock node */
247	RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1);
248	for (i = 0; i < nWndNodes; i++) {
249		RF_ASSERT(wndNodes->numSuccedents == 1);
250		wndNodes[i].succedents[0] = unblockNode;
251		unblockNode->antecedents[i] = &wndNodes[i];
252		unblockNode->antType[i] = rf_control;
253	}
254
255	/* connect the Lpo node to the unblock node */
256	RF_ASSERT(lpoNode->numSuccedents == 1);
257	lpoNode->succedents[0] = unblockNode;
258	unblockNode->antecedents[nWndNodes] = lpoNode;
259	unblockNode->antType[nWndNodes] = rf_control;
260
261	/* connect unblock node to terminator */
262	RF_ASSERT(unblockNode->numSuccedents == 1);
263	RF_ASSERT(termNode->numAntecedents == 1);
264	RF_ASSERT(termNode->numSuccedents == 0);
265	unblockNode->succedents[0] = termNode;
266	termNode->antecedents[0] = unblockNode;
267	termNode->antType[0] = rf_control;
268}
269
270
271
272
273/******************************************************************************
274 *
275 * creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows:
276 *
277 *                                     Header
278 *                                       |
279 *                                     Block
280 *                                 / |  ... \   \
281 *                                /  |       \   \
282 *                             Rod  Rod      Rod  Rop
283 *                             | \ /| \    / |  \/ |
284 *                             |    |        |  /\ |
285 *                             Wnd  Wnd      Wnd   X
286 *                              |    \       /     |
287 *                              |     \     /      |
288 *                               \     \   /      Lpo
289 *                                \     \ /       /
290 *                                 +-> Unblock <-+
291 *                                       |
292 *                                       T
293 *
294 *
295 * R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity.
296 * When the access spans a stripe unit boundary and is less than one SU in size, there will
297 * be two Rop -- X -- Wnp branches.  I call this the "double-XOR" case.
298 * The second output from each Rod node goes to the X node.  In the double-XOR
299 * case, there are exactly 2 Rod nodes, and each sends one output to one X node.
300 * There is one Rod -- Wnd -- T branch for each stripe unit being updated.
301 *
302 * The block and unblock nodes are unused.  See comment above CreateFaultFreeReadDAG.
303 *
304 * Note:  this DAG ignores all the optimizations related to making the RMWs atomic.
305 *        it also has the nasty property that none of the buffers allocated for reading
306 *        old data & parity can be freed until the XOR node fires.  Need to fix this.
307 *
308 * A null qfuncs indicates single fault tolerant
309 *****************************************************************************/
310
311void
312rf_CommonCreateParityLoggingSmallWriteDAG(
313    RF_Raid_t * raidPtr,
314    RF_AccessStripeMap_t * asmap,
315    RF_DagHeader_t * dag_h,
316    void *bp,
317    RF_RaidAccessFlags_t flags,
318    RF_AllocListElem_t * allocList,
319    RF_RedFuncs_t * pfuncs,
320    RF_RedFuncs_t * qfuncs)
321{
322	RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes;
323	RF_DagNode_t *readDataNodes, *readParityNodes;
324	RF_DagNode_t *writeDataNodes, *lpuNodes;
325	RF_DagNode_t *unlockDataNodes = NULL, *termNode;
326	RF_PhysDiskAddr_t *pda = asmap->physInfo;
327	int     numDataNodes = asmap->numStripeUnitsAccessed;
328	int     numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
329	int     i, j, nNodes, totalNumNodes;
330	RF_ReconUnitNum_t which_ru;
331	int     (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node);
332	int     (*qfunc) (RF_DagNode_t * node);
333	char   *name, *qname;
334	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
335#ifdef RAID_DIAGNOSTIC
336	long    nfaults = qfuncs ? 2 : 1;
337#endif /* RAID_DIAGNOSTIC */
338	int     lu_flag = (rf_enableAtomicRMW) ? 1 : 0;	/* lock/unlock flag */
339
340	if (rf_dagDebug)
341		printf("[Creating parity-logging small-write DAG]\n");
342	RF_ASSERT(numDataNodes > 0);
343	RF_ASSERT(nfaults == 1);
344	dag_h->creator = "ParityLoggingSmallWriteDAG";
345
346	/* DAG creation occurs in three steps: 1. count the number of nodes in
347	 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
348	 * nodes */
349
350	/* Step 1. compute number of nodes in the graph */
351
352	/* number of nodes: a read and write for each data unit a redundancy
353	 * computation node for each parity node a read and Lpu for each
354	 * parity unit a block and unblock node (2) a terminator node if
355	 * atomic RMW an unlock node for each data unit, redundancy unit */
356	totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3;
357	if (lu_flag)
358		totalNumNodes += numDataNodes;
359
360	nNodes = numDataNodes + numParityNodes;
361
362	dag_h->numCommitNodes = numDataNodes + numParityNodes;
363	dag_h->numCommits = 0;
364	dag_h->numSuccedents = 1;
365
366	/* Step 2. create the nodes */
367	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
368	i = 0;
369	blockNode = &nodes[i];
370	i += 1;
371	unblockNode = &nodes[i];
372	i += 1;
373	readDataNodes = &nodes[i];
374	i += numDataNodes;
375	readParityNodes = &nodes[i];
376	i += numParityNodes;
377	writeDataNodes = &nodes[i];
378	i += numDataNodes;
379	lpuNodes = &nodes[i];
380	i += numParityNodes;
381	xorNodes = &nodes[i];
382	i += numParityNodes;
383	termNode = &nodes[i];
384	i += 1;
385	if (lu_flag) {
386		unlockDataNodes = &nodes[i];
387		i += numDataNodes;
388	}
389	RF_ASSERT(i == totalNumNodes);
390
391	/* Step 3. initialize the nodes */
392	/* initialize block node (Nil) */
393	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
394
395	/* initialize unblock node (Nil) */
396	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList);
397
398	/* initialize terminatory node (Trm) */
399	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
400
401	/* initialize nodes which read old data (Rod) */
402	for (i = 0; i < numDataNodes; i++) {
403		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList);
404		RF_ASSERT(pda != NULL);
405		readDataNodes[i].params[0].p = pda;	/* physical disk addr
406							 * desc */
407		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
408												 * data */
409		readDataNodes[i].params[2].v = parityStripeID;
410		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
411		pda = pda->next;
412		readDataNodes[i].propList[0] = NULL;
413		readDataNodes[i].propList[1] = NULL;
414	}
415
416	/* initialize nodes which read old parity (Rop) */
417	pda = asmap->parityInfo;
418	i = 0;
419	for (i = 0; i < numParityNodes; i++) {
420		RF_ASSERT(pda != NULL);
421		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList);
422		readParityNodes[i].params[0].p = pda;
423		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
424													 * parity */
425		readParityNodes[i].params[2].v = parityStripeID;
426		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
427		readParityNodes[i].propList[0] = NULL;
428		pda = pda->next;
429	}
430
431	/* initialize nodes which write new data (Wnd) */
432	pda = asmap->physInfo;
433	for (i = 0; i < numDataNodes; i++) {
434		RF_ASSERT(pda != NULL);
435		rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList);
436		writeDataNodes[i].params[0].p = pda;	/* physical disk addr
437							 * desc */
438		writeDataNodes[i].params[1].p = pda->bufPtr;	/* buffer holding new
439								 * data to be written */
440		writeDataNodes[i].params[2].v = parityStripeID;
441		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
442
443		if (lu_flag) {
444			/* initialize node to unlock the disk queue */
445			rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList);
446			unlockDataNodes[i].params[0].p = pda;	/* physical disk addr
447								 * desc */
448			unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
449		}
450		pda = pda->next;
451	}
452
453
454	/* initialize nodes which compute new parity */
455	/* we use the simple XOR func in the double-XOR case, and when we're
456	 * accessing only a portion of one stripe unit. the distinction
457	 * between the two is that the regular XOR func assumes that the
458	 * targbuf is a full SU in size, and examines the pda associated with
459	 * the buffer to decide where within the buffer to XOR the data,
460	 * whereas the simple XOR func just XORs the data into the start of
461	 * the buffer. */
462	if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
463		func = pfuncs->simple;
464		undoFunc = rf_NullNodeUndoFunc;
465		name = pfuncs->SimpleName;
466		if (qfuncs) {
467			qfunc = qfuncs->simple;
468			qname = qfuncs->SimpleName;
469		}
470	} else {
471		func = pfuncs->regular;
472		undoFunc = rf_NullNodeUndoFunc;
473		name = pfuncs->RegularName;
474		if (qfuncs) {
475			qfunc = qfuncs->regular;
476			qname = qfuncs->RegularName;
477		}
478	}
479	/* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
480	 * nodes, and raidPtr  */
481	if (numParityNodes == 2) {	/* double-xor case */
482		for (i = 0; i < numParityNodes; i++) {
483			rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList);	/* no wakeup func for
484																	 * xor */
485			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
486			xorNodes[i].params[0] = readDataNodes[i].params[0];
487			xorNodes[i].params[1] = readDataNodes[i].params[1];
488			xorNodes[i].params[2] = readParityNodes[i].params[0];
489			xorNodes[i].params[3] = readParityNodes[i].params[1];
490			xorNodes[i].params[4] = writeDataNodes[i].params[0];
491			xorNodes[i].params[5] = writeDataNodes[i].params[1];
492			xorNodes[i].params[6].p = raidPtr;
493			xorNodes[i].results[0] = readParityNodes[i].params[1].p;	/* use old parity buf as
494											 * target buf */
495		}
496	} else {
497		/* there is only one xor node in this case */
498		rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
499		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
500		for (i = 0; i < numDataNodes + 1; i++) {
501			/* set up params related to Rod and Rop nodes */
502			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
503			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
504		}
505		for (i = 0; i < numDataNodes; i++) {
506			/* set up params related to Wnd and Wnp nodes */
507			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
508			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
509		}
510		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
511											 * at RAID information */
512		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
513	}
514
515	/* initialize the log node(s) */
516	pda = asmap->parityInfo;
517	for (i = 0; i < numParityNodes; i++) {
518		RF_ASSERT(pda);
519		rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList);
520		lpuNodes[i].params[0].p = pda;	/* PhysDiskAddr of parity */
521		lpuNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer to
522									 * parity */
523		pda = pda->next;
524	}
525
526
527	/* Step 4. connect the nodes */
528
529	/* connect header to block node */
530	RF_ASSERT(dag_h->numSuccedents == 1);
531	RF_ASSERT(blockNode->numAntecedents == 0);
532	dag_h->succedents[0] = blockNode;
533
534	/* connect block node to read old data nodes */
535	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes));
536	for (i = 0; i < numDataNodes; i++) {
537		blockNode->succedents[i] = &readDataNodes[i];
538		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
539		readDataNodes[i].antecedents[0] = blockNode;
540		readDataNodes[i].antType[0] = rf_control;
541	}
542
543	/* connect block node to read old parity nodes */
544	for (i = 0; i < numParityNodes; i++) {
545		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
546		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
547		readParityNodes[i].antecedents[0] = blockNode;
548		readParityNodes[i].antType[0] = rf_control;
549	}
550
551	/* connect read old data nodes to write new data nodes */
552	for (i = 0; i < numDataNodes; i++) {
553		RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes);
554		for (j = 0; j < numDataNodes; j++) {
555			RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes);
556			readDataNodes[i].succedents[j] = &writeDataNodes[j];
557			writeDataNodes[j].antecedents[i] = &readDataNodes[i];
558			if (i == j)
559				writeDataNodes[j].antType[i] = rf_antiData;
560			else
561				writeDataNodes[j].antType[i] = rf_control;
562		}
563	}
564
565	/* connect read old data nodes to xor nodes */
566	for (i = 0; i < numDataNodes; i++)
567		for (j = 0; j < numParityNodes; j++) {
568			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
569			readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
570			xorNodes[j].antecedents[i] = &readDataNodes[i];
571			xorNodes[j].antType[i] = rf_trueData;
572		}
573
574	/* connect read old parity nodes to write new data nodes */
575	for (i = 0; i < numParityNodes; i++) {
576		RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes);
577		for (j = 0; j < numDataNodes; j++) {
578			readParityNodes[i].succedents[j] = &writeDataNodes[j];
579			writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
580			writeDataNodes[j].antType[numDataNodes + i] = rf_control;
581		}
582	}
583
584	/* connect read old parity nodes to xor nodes */
585	for (i = 0; i < numParityNodes; i++)
586		for (j = 0; j < numParityNodes; j++) {
587			readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
588			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
589			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
590		}
591
592	/* connect xor nodes to write new parity nodes */
593	for (i = 0; i < numParityNodes; i++) {
594		RF_ASSERT(xorNodes[i].numSuccedents == 1);
595		RF_ASSERT(lpuNodes[i].numAntecedents == 1);
596		xorNodes[i].succedents[0] = &lpuNodes[i];
597		lpuNodes[i].antecedents[0] = &xorNodes[i];
598		lpuNodes[i].antType[0] = rf_trueData;
599	}
600
601	for (i = 0; i < numDataNodes; i++) {
602		if (lu_flag) {
603			/* connect write new data nodes to unlock nodes */
604			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
605			RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
606			writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
607			unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
608			unlockDataNodes[i].antType[0] = rf_control;
609
610			/* connect unlock nodes to unblock node */
611			RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
612			RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
613			unlockDataNodes[i].succedents[0] = unblockNode;
614			unblockNode->antecedents[i] = &unlockDataNodes[i];
615			unblockNode->antType[i] = rf_control;
616		} else {
617			/* connect write new data nodes to unblock node */
618			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
619			RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
620			writeDataNodes[i].succedents[0] = unblockNode;
621			unblockNode->antecedents[i] = &writeDataNodes[i];
622			unblockNode->antType[i] = rf_control;
623		}
624	}
625
626	/* connect write new parity nodes to unblock node */
627	for (i = 0; i < numParityNodes; i++) {
628		RF_ASSERT(lpuNodes[i].numSuccedents == 1);
629		lpuNodes[i].succedents[0] = unblockNode;
630		unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i];
631		unblockNode->antType[numDataNodes + i] = rf_control;
632	}
633
634	/* connect unblock node to terminator */
635	RF_ASSERT(unblockNode->numSuccedents == 1);
636	RF_ASSERT(termNode->numAntecedents == 1);
637	RF_ASSERT(termNode->numSuccedents == 0);
638	unblockNode->succedents[0] = termNode;
639	termNode->antecedents[0] = unblockNode;
640	termNode->antType[0] = rf_control;
641}
642
643
644void
645rf_CreateParityLoggingSmallWriteDAG(
646    RF_Raid_t * raidPtr,
647    RF_AccessStripeMap_t * asmap,
648    RF_DagHeader_t * dag_h,
649    void *bp,
650    RF_RaidAccessFlags_t flags,
651    RF_AllocListElem_t * allocList,
652    RF_RedFuncs_t * pfuncs,
653    RF_RedFuncs_t * qfuncs)
654{
655	dag_h->creator = "ParityLoggingSmallWriteDAG";
656	rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL);
657}
658
659
660void
661rf_CreateParityLoggingLargeWriteDAG(
662    RF_Raid_t * raidPtr,
663    RF_AccessStripeMap_t * asmap,
664    RF_DagHeader_t * dag_h,
665    void *bp,
666    RF_RaidAccessFlags_t flags,
667    RF_AllocListElem_t * allocList,
668    int nfaults,
669    int (*redFunc) (RF_DagNode_t *))
670{
671	dag_h->creator = "ParityLoggingSmallWriteDAG";
672	rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc);
673}
674#endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
675