1/*	$NetBSD: rf_parityloggingdags.c,v 1.23 2019/10/10 03:43:59 christos Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/*
30  DAGs specific to parity logging are created here
31 */
32
33#include <sys/cdefs.h>
34__KERNEL_RCSID(0, "$NetBSD: rf_parityloggingdags.c,v 1.23 2019/10/10 03:43:59 christos Exp $");
35
36#ifdef _KERNEL_OPT
37#include "opt_raid_diagnostic.h"
38#endif
39
40#include "rf_archs.h"
41
42#if RF_INCLUDE_PARITYLOGGING > 0
43
44#include <dev/raidframe/raidframevar.h>
45
46#include "rf_raid.h"
47#include "rf_dag.h"
48#include "rf_dagutils.h"
49#include "rf_dagfuncs.h"
50#include "rf_debugMem.h"
51#include "rf_paritylog.h"
52#include "rf_general.h"
53
54#include "rf_parityloggingdags.h"
55
56/******************************************************************************
57 *
58 * creates a DAG to perform a large-write operation:
59 *
60 *         / Rod \     / Wnd \
61 * H -- NIL- Rod - NIL - Wnd ------ NIL - T
62 *         \ Rod /     \ Xor - Lpo /
63 *
64 * The writes are not done until the reads complete because if they were done in
65 * parallel, a failure on one of the reads could leave the parity in an inconsistent
66 * state, so that the retry with a new DAG would produce erroneous parity.
67 *
68 * Note:  this DAG has the nasty property that none of the buffers allocated for reading
69 *        old data can be freed until the XOR node fires.  Need to fix this.
70 *
71 * The last two arguments are the number of faults tolerated, and function for the
72 * redundancy calculation. The undo for the redundancy calc is assumed to be null
73 *
74 *****************************************************************************/
75
76void
77rf_CommonCreateParityLoggingLargeWriteDAG(
78    RF_Raid_t * raidPtr,
79    RF_AccessStripeMap_t * asmap,
80    RF_DagHeader_t * dag_h,
81    void *bp,
82    RF_RaidAccessFlags_t flags,
83    RF_AllocListElem_t * allocList,
84    int nfaults,
85    void (*redFunc) (RF_DagNode_t *))
86{
87	RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode,
88	       *lpoNode, *blockNode, *unblockNode, *termNode;
89	int     nWndNodes, nRodNodes, i;
90	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
91	RF_AccessStripeMapHeader_t *new_asm_h[2];
92	int     nodeNum, asmNum;
93	RF_ReconUnitNum_t which_ru;
94	char   *sosBuffer, *eosBuffer;
95	RF_PhysDiskAddr_t *pda;
96	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
97
98	if (rf_dagDebug)
99		printf("[Creating parity-logging large-write DAG]\n");
100	RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */
101	dag_h->creator = "ParityLoggingLargeWriteDAG";
102
103	/* alloc the Wnd nodes, the xor node, and the Lpo node */
104	nWndNodes = asmap->numStripeUnitsAccessed;
105	nodes = RF_MallocAndAdd((nWndNodes + 6) * sizeof(*nodes), allocList);
106	i = 0;
107	wndNodes = &nodes[i];
108	i += nWndNodes;
109	xorNode = &nodes[i];
110	i += 1;
111	lpoNode = &nodes[i];
112	i += 1;
113	blockNode = &nodes[i];
114	i += 1;
115	syncNode = &nodes[i];
116	i += 1;
117	unblockNode = &nodes[i];
118	i += 1;
119	termNode = &nodes[i];
120	i += 1;
121
122	dag_h->numCommitNodes = nWndNodes + 1;
123	dag_h->numCommits = 0;
124	dag_h->numSuccedents = 1;
125
126	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
127	if (nRodNodes > 0)
128		rodNodes = RF_MallocAndAdd(nRodNodes * sizeof(*rodNodes),
129		      allocList);
130
131	/* begin node initialization */
132	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
133	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList);
134	rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList);
135	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
136
137	/* initialize the Rod nodes */
138	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
139		if (new_asm_h[asmNum]) {
140			pda = new_asm_h[asmNum]->stripeMap->physInfo;
141			while (pda) {
142				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
143				rodNodes[nodeNum].params[0].p = pda;
144				rodNodes[nodeNum].params[1].p = pda->bufPtr;
145				rodNodes[nodeNum].params[2].v = parityStripeID;
146				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
147				nodeNum++;
148				pda = pda->next;
149			}
150		}
151	}
152	RF_ASSERT(nodeNum == nRodNodes);
153
154	/* initialize the wnd nodes */
155	pda = asmap->physInfo;
156	for (i = 0; i < nWndNodes; i++) {
157		rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
158		RF_ASSERT(pda != NULL);
159		wndNodes[i].params[0].p = pda;
160		wndNodes[i].params[1].p = pda->bufPtr;
161		wndNodes[i].params[2].v = parityStripeID;
162		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
163		pda = pda->next;
164	}
165
166	/* initialize the redundancy node */
167	rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList);
168	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
169	for (i = 0; i < nWndNodes; i++) {
170		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
171		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
172	}
173	for (i = 0; i < nRodNodes; i++) {
174		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
175		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
176	}
177	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;	/* xor node needs to get
178									 * at RAID information */
179
180	/* look for an Rod node that reads a complete SU.  If none, alloc a
181	 * buffer to receive the parity info. Note that we can't use a new
182	 * data buffer because it will not have gotten written when the xor
183	 * occurs. */
184	for (i = 0; i < nRodNodes; i++)
185		if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
186			break;
187	if (i == nRodNodes) {
188		xorNode->results[0] = RF_MallocAndAdd(rf_RaidAddressToByte(
189		    raidPtr, raidPtr->Layout.sectorsPerStripeUnit), allocList);
190	} else {
191		xorNode->results[0] = rodNodes[i].params[1].p;
192	}
193
194	/* initialize the Lpo node */
195	rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList);
196
197	lpoNode->params[0].p = asmap->parityInfo;
198	lpoNode->params[1].p = xorNode->results[0];
199	RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
200							 * describe entire
201							 * parity unit */
202
203	/* connect nodes to form graph */
204
205	/* connect dag header to block node */
206	RF_ASSERT(dag_h->numSuccedents == 1);
207	RF_ASSERT(blockNode->numAntecedents == 0);
208	dag_h->succedents[0] = blockNode;
209
210	/* connect the block node to the Rod nodes */
211	RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1);
212	for (i = 0; i < nRodNodes; i++) {
213		RF_ASSERT(rodNodes[i].numAntecedents == 1);
214		blockNode->succedents[i] = &rodNodes[i];
215		rodNodes[i].antecedents[0] = blockNode;
216		rodNodes[i].antType[0] = rf_control;
217	}
218
219	/* connect the block node to the sync node */
220	/* necessary if nRodNodes == 0 */
221	RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1);
222	blockNode->succedents[nRodNodes] = syncNode;
223	syncNode->antecedents[0] = blockNode;
224	syncNode->antType[0] = rf_control;
225
226	/* connect the Rod nodes to the syncNode */
227	for (i = 0; i < nRodNodes; i++) {
228		rodNodes[i].succedents[0] = syncNode;
229		syncNode->antecedents[1 + i] = &rodNodes[i];
230		syncNode->antType[1 + i] = rf_control;
231	}
232
233	/* connect the sync node to the xor node */
234	RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1);
235	RF_ASSERT(xorNode->numAntecedents == 1);
236	syncNode->succedents[0] = xorNode;
237	xorNode->antecedents[0] = syncNode;
238	xorNode->antType[0] = rf_trueData;	/* carry forward from sync */
239
240	/* connect the sync node to the Wnd nodes */
241	for (i = 0; i < nWndNodes; i++) {
242		RF_ASSERT(wndNodes->numAntecedents == 1);
243		syncNode->succedents[1 + i] = &wndNodes[i];
244		wndNodes[i].antecedents[0] = syncNode;
245		wndNodes[i].antType[0] = rf_control;
246	}
247
248	/* connect the xor node to the Lpo node */
249	RF_ASSERT(xorNode->numSuccedents == 1);
250	RF_ASSERT(lpoNode->numAntecedents == 1);
251	xorNode->succedents[0] = lpoNode;
252	lpoNode->antecedents[0] = xorNode;
253	lpoNode->antType[0] = rf_trueData;
254
255	/* connect the Wnd nodes to the unblock node */
256	RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1);
257	for (i = 0; i < nWndNodes; i++) {
258		RF_ASSERT(wndNodes->numSuccedents == 1);
259		wndNodes[i].succedents[0] = unblockNode;
260		unblockNode->antecedents[i] = &wndNodes[i];
261		unblockNode->antType[i] = rf_control;
262	}
263
264	/* connect the Lpo node to the unblock node */
265	RF_ASSERT(lpoNode->numSuccedents == 1);
266	lpoNode->succedents[0] = unblockNode;
267	unblockNode->antecedents[nWndNodes] = lpoNode;
268	unblockNode->antType[nWndNodes] = rf_control;
269
270	/* connect unblock node to terminator */
271	RF_ASSERT(unblockNode->numSuccedents == 1);
272	RF_ASSERT(termNode->numAntecedents == 1);
273	RF_ASSERT(termNode->numSuccedents == 0);
274	unblockNode->succedents[0] = termNode;
275	termNode->antecedents[0] = unblockNode;
276	termNode->antType[0] = rf_control;
277}
278
279
280
281
282/******************************************************************************
283 *
284 * creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows:
285 *
286 *                                     Header
287 *                                       |
288 *                                     Block
289 *                                 / |  ... \   \
290 *                                /  |       \   \
291 *                             Rod  Rod      Rod  Rop
292 *                             | \ /| \    / |  \/ |
293 *                             |    |        |  /\ |
294 *                             Wnd  Wnd      Wnd   X
295 *                              |    \       /     |
296 *                              |     \     /      |
297 *                               \     \   /      Lpo
298 *                                \     \ /       /
299 *                                 +-> Unblock <-+
300 *                                       |
301 *                                       T
302 *
303 *
304 * R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity.
305 * When the access spans a stripe unit boundary and is less than one SU in size, there will
306 * be two Rop -- X -- Wnp branches.  I call this the "double-XOR" case.
307 * The second output from each Rod node goes to the X node.  In the double-XOR
308 * case, there are exactly 2 Rod nodes, and each sends one output to one X node.
309 * There is one Rod -- Wnd -- T branch for each stripe unit being updated.
310 *
311 * The block and unblock nodes are unused.  See comment above CreateFaultFreeReadDAG.
312 *
313 * Note:  this DAG ignores all the optimizations related to making the RMWs atomic.
314 *        it also has the nasty property that none of the buffers allocated for reading
315 *        old data & parity can be freed until the XOR node fires.  Need to fix this.
316 *
317 * A null qfuncs indicates single fault tolerant
318 *****************************************************************************/
319
320void
321rf_CommonCreateParityLoggingSmallWriteDAG(
322    RF_Raid_t * raidPtr,
323    RF_AccessStripeMap_t * asmap,
324    RF_DagHeader_t * dag_h,
325    void *bp,
326    RF_RaidAccessFlags_t flags,
327    RF_AllocListElem_t * allocList,
328    const RF_RedFuncs_t * pfuncs,
329    const RF_RedFuncs_t * qfuncs)
330{
331	RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes;
332	RF_DagNode_t *readDataNodes, *readParityNodes;
333	RF_DagNode_t *writeDataNodes, *lpuNodes;
334	RF_DagNode_t *termNode;
335	RF_PhysDiskAddr_t *pda = asmap->physInfo;
336	int     numDataNodes = asmap->numStripeUnitsAccessed;
337	int     numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
338	int     i, j, nNodes, totalNumNodes;
339	RF_ReconUnitNum_t which_ru;
340	void    (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node);
341	const char   *name;
342	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
343	long    nfaults __unused = qfuncs ? 2 : 1;
344
345	if (rf_dagDebug)
346		printf("[Creating parity-logging small-write DAG]\n");
347	RF_ASSERT(numDataNodes > 0);
348	RF_ASSERT(nfaults == 1);
349	dag_h->creator = "ParityLoggingSmallWriteDAG";
350
351	/* DAG creation occurs in three steps: 1. count the number of nodes in
352	 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
353	 * nodes */
354
355	/* Step 1. compute number of nodes in the graph */
356
357	/* number of nodes: a read and write for each data unit a redundancy
358	 * computation node for each parity node a read and Lpu for each
359	 * parity unit a block and unblock node (2) a terminator node if
360	 * atomic RMW an unlock node for each data unit, redundancy unit */
361	totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3;
362
363	nNodes = numDataNodes + numParityNodes;
364
365	dag_h->numCommitNodes = numDataNodes + numParityNodes;
366	dag_h->numCommits = 0;
367	dag_h->numSuccedents = 1;
368
369	/* Step 2. create the nodes */
370	nodes = RF_MallocAndAdd(totalNumNodes * sizeof(*nodes), allocList);
371	i = 0;
372	blockNode = &nodes[i];
373	i += 1;
374	unblockNode = &nodes[i];
375	i += 1;
376	readDataNodes = &nodes[i];
377	i += numDataNodes;
378	readParityNodes = &nodes[i];
379	i += numParityNodes;
380	writeDataNodes = &nodes[i];
381	i += numDataNodes;
382	lpuNodes = &nodes[i];
383	i += numParityNodes;
384	xorNodes = &nodes[i];
385	i += numParityNodes;
386	termNode = &nodes[i];
387	i += 1;
388
389	RF_ASSERT(i == totalNumNodes);
390
391	/* Step 3. initialize the nodes */
392	/* initialize block node (Nil) */
393	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
394
395	/* initialize unblock node (Nil) */
396	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList);
397
398	/* initialize terminatory node (Trm) */
399	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
400
401	/* initialize nodes which read old data (Rod) */
402	for (i = 0; i < numDataNodes; i++) {
403		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList);
404		RF_ASSERT(pda != NULL);
405		readDataNodes[i].params[0].p = pda;	/* physical disk addr
406							 * desc */
407		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);	/* buffer to hold old data */
408		readDataNodes[i].params[2].v = parityStripeID;
409		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
410		pda = pda->next;
411		readDataNodes[i].propList[0] = NULL;
412		readDataNodes[i].propList[1] = NULL;
413	}
414
415	/* initialize nodes which read old parity (Rop) */
416	pda = asmap->parityInfo;
417	i = 0;
418	for (i = 0; i < numParityNodes; i++) {
419		RF_ASSERT(pda != NULL);
420		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList);
421		readParityNodes[i].params[0].p = pda;
422		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);	/* buffer to hold old parity */
423		readParityNodes[i].params[2].v = parityStripeID;
424		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
425		readParityNodes[i].propList[0] = NULL;
426		pda = pda->next;
427	}
428
429	/* initialize nodes which write new data (Wnd) */
430	pda = asmap->physInfo;
431	for (i = 0; i < numDataNodes; i++) {
432		RF_ASSERT(pda != NULL);
433		rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList);
434		writeDataNodes[i].params[0].p = pda;	/* physical disk addr
435							 * desc */
436		writeDataNodes[i].params[1].p = pda->bufPtr;	/* buffer holding new
437								 * data to be written */
438		writeDataNodes[i].params[2].v = parityStripeID;
439		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
440
441		pda = pda->next;
442	}
443
444
445	/* initialize nodes which compute new parity */
446	/* we use the simple XOR func in the double-XOR case, and when we're
447	 * accessing only a portion of one stripe unit. the distinction
448	 * between the two is that the regular XOR func assumes that the
449	 * targbuf is a full SU in size, and examines the pda associated with
450	 * the buffer to decide where within the buffer to XOR the data,
451	 * whereas the simple XOR func just XORs the data into the start of
452	 * the buffer. */
453	if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
454		func = pfuncs->simple;
455		undoFunc = rf_NullNodeUndoFunc;
456		name = pfuncs->SimpleName;
457	} else {
458		func = pfuncs->regular;
459		undoFunc = rf_NullNodeUndoFunc;
460		name = pfuncs->RegularName;
461	}
462	/* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
463	 * nodes, and raidPtr  */
464	if (numParityNodes == 2) {	/* double-xor case */
465		for (i = 0; i < numParityNodes; i++) {
466			rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList);	/* no wakeup func for
467																	 * xor */
468			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
469			xorNodes[i].params[0] = readDataNodes[i].params[0];
470			xorNodes[i].params[1] = readDataNodes[i].params[1];
471			xorNodes[i].params[2] = readParityNodes[i].params[0];
472			xorNodes[i].params[3] = readParityNodes[i].params[1];
473			xorNodes[i].params[4] = writeDataNodes[i].params[0];
474			xorNodes[i].params[5] = writeDataNodes[i].params[1];
475			xorNodes[i].params[6].p = raidPtr;
476			xorNodes[i].results[0] = readParityNodes[i].params[1].p;	/* use old parity buf as
477											 * target buf */
478		}
479	} else {
480		/* there is only one xor node in this case */
481		rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
482		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
483		for (i = 0; i < numDataNodes + 1; i++) {
484			/* set up params related to Rod and Rop nodes */
485			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
486			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
487		}
488		for (i = 0; i < numDataNodes; i++) {
489			/* set up params related to Wnd and Wnp nodes */
490			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
491			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
492		}
493		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
494											 * at RAID information */
495		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
496	}
497
498	/* initialize the log node(s) */
499	pda = asmap->parityInfo;
500	for (i = 0; i < numParityNodes; i++) {
501		RF_ASSERT(pda);
502		rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList);
503		lpuNodes[i].params[0].p = pda;	/* PhysDiskAddr of parity */
504		lpuNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer to
505									 * parity */
506		pda = pda->next;
507	}
508
509
510	/* Step 4. connect the nodes */
511
512	/* connect header to block node */
513	RF_ASSERT(dag_h->numSuccedents == 1);
514	RF_ASSERT(blockNode->numAntecedents == 0);
515	dag_h->succedents[0] = blockNode;
516
517	/* connect block node to read old data nodes */
518	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes));
519	for (i = 0; i < numDataNodes; i++) {
520		blockNode->succedents[i] = &readDataNodes[i];
521		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
522		readDataNodes[i].antecedents[0] = blockNode;
523		readDataNodes[i].antType[0] = rf_control;
524	}
525
526	/* connect block node to read old parity nodes */
527	for (i = 0; i < numParityNodes; i++) {
528		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
529		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
530		readParityNodes[i].antecedents[0] = blockNode;
531		readParityNodes[i].antType[0] = rf_control;
532	}
533
534	/* connect read old data nodes to write new data nodes */
535	for (i = 0; i < numDataNodes; i++) {
536		RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes);
537		for (j = 0; j < numDataNodes; j++) {
538			RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes);
539			readDataNodes[i].succedents[j] = &writeDataNodes[j];
540			writeDataNodes[j].antecedents[i] = &readDataNodes[i];
541			if (i == j)
542				writeDataNodes[j].antType[i] = rf_antiData;
543			else
544				writeDataNodes[j].antType[i] = rf_control;
545		}
546	}
547
548	/* connect read old data nodes to xor nodes */
549	for (i = 0; i < numDataNodes; i++)
550		for (j = 0; j < numParityNodes; j++) {
551			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
552			readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
553			xorNodes[j].antecedents[i] = &readDataNodes[i];
554			xorNodes[j].antType[i] = rf_trueData;
555		}
556
557	/* connect read old parity nodes to write new data nodes */
558	for (i = 0; i < numParityNodes; i++) {
559		RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes);
560		for (j = 0; j < numDataNodes; j++) {
561			readParityNodes[i].succedents[j] = &writeDataNodes[j];
562			writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
563			writeDataNodes[j].antType[numDataNodes + i] = rf_control;
564		}
565	}
566
567	/* connect read old parity nodes to xor nodes */
568	for (i = 0; i < numParityNodes; i++)
569		for (j = 0; j < numParityNodes; j++) {
570			readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
571			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
572			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
573		}
574
575	/* connect xor nodes to write new parity nodes */
576	for (i = 0; i < numParityNodes; i++) {
577		RF_ASSERT(xorNodes[i].numSuccedents == 1);
578		RF_ASSERT(lpuNodes[i].numAntecedents == 1);
579		xorNodes[i].succedents[0] = &lpuNodes[i];
580		lpuNodes[i].antecedents[0] = &xorNodes[i];
581		lpuNodes[i].antType[0] = rf_trueData;
582	}
583
584	for (i = 0; i < numDataNodes; i++) {
585		/* connect write new data nodes to unblock node */
586		RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
587		RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
588		writeDataNodes[i].succedents[0] = unblockNode;
589		unblockNode->antecedents[i] = &writeDataNodes[i];
590		unblockNode->antType[i] = rf_control;
591	}
592
593	/* connect write new parity nodes to unblock node */
594	for (i = 0; i < numParityNodes; i++) {
595		RF_ASSERT(lpuNodes[i].numSuccedents == 1);
596		lpuNodes[i].succedents[0] = unblockNode;
597		unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i];
598		unblockNode->antType[numDataNodes + i] = rf_control;
599	}
600
601	/* connect unblock node to terminator */
602	RF_ASSERT(unblockNode->numSuccedents == 1);
603	RF_ASSERT(termNode->numAntecedents == 1);
604	RF_ASSERT(termNode->numSuccedents == 0);
605	unblockNode->succedents[0] = termNode;
606	termNode->antecedents[0] = unblockNode;
607	termNode->antType[0] = rf_control;
608}
609
610
611void
612rf_CreateParityLoggingSmallWriteDAG(
613    RF_Raid_t * raidPtr,
614    RF_AccessStripeMap_t * asmap,
615    RF_DagHeader_t * dag_h,
616    void *bp,
617    RF_RaidAccessFlags_t flags,
618    RF_AllocListElem_t * allocList,
619    const RF_RedFuncs_t * pfuncs,
620    const RF_RedFuncs_t * qfuncs)
621{
622	dag_h->creator = "ParityLoggingSmallWriteDAG";
623	rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL);
624}
625
626
627void
628rf_CreateParityLoggingLargeWriteDAG(
629    RF_Raid_t * raidPtr,
630    RF_AccessStripeMap_t * asmap,
631    RF_DagHeader_t * dag_h,
632    void *bp,
633    RF_RaidAccessFlags_t flags,
634    RF_AllocListElem_t * allocList,
635    int nfaults,
636    void (*redFunc) (RF_DagNode_t *))
637{
638	dag_h->creator = "ParityLoggingSmallWriteDAG";
639	rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc);
640}
641#endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
642