rf_diskqueue.c revision 1.52
1/*	$NetBSD: rf_diskqueue.c,v 1.52 2009/03/23 18:38:54 oster Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/****************************************************************************
30 *
31 * rf_diskqueue.c -- higher-level disk queue code
32 *
33 * the routines here are a generic wrapper around the actual queueing
34 * routines.  The code here implements thread scheduling, synchronization,
35 * and locking ops (see below) on top of the lower-level queueing code.
36 *
37 * to support atomic RMW, we implement "locking operations".  When a
38 * locking op is dispatched to the lower levels of the driver, the
39 * queue is locked, and no further I/Os are dispatched until the queue
40 * receives & completes a corresponding "unlocking operation".  This
41 * code relies on the higher layers to guarantee that a locking op
42 * will always be eventually followed by an unlocking op.  The model
43 * is that the higher layers are structured so locking and unlocking
44 * ops occur in pairs, i.e.  an unlocking op cannot be generated until
45 * after a locking op reports completion.  There is no good way to
46 * check to see that an unlocking op "corresponds" to the op that
47 * currently has the queue locked, so we make no such attempt.  Since
48 * by definition there can be only one locking op outstanding on a
49 * disk, this should not be a problem.
50 *
51 * In the kernel, we allow multiple I/Os to be concurrently dispatched
52 * to the disk driver.  In order to support locking ops in this
53 * environment, when we decide to do a locking op, we stop dispatching
54 * new I/Os and wait until all dispatched I/Os have completed before
55 * dispatching the locking op.
56 *
57 * Unfortunately, the code is different in the 3 different operating
58 * states (user level, kernel, simulator).  In the kernel, I/O is
59 * non-blocking, and we have no disk threads to dispatch for us.
60 * Therefore, we have to dispatch new I/Os to the scsi driver at the
61 * time of enqueue, and also at the time of completion.  At user
62 * level, I/O is blocking, and so only the disk threads may dispatch
63 * I/Os.  Thus at user level, all we can do at enqueue time is enqueue
64 * and wake up the disk thread to do the dispatch.
65 *
66 ****************************************************************************/
67
68#include <sys/cdefs.h>
69__KERNEL_RCSID(0, "$NetBSD: rf_diskqueue.c,v 1.52 2009/03/23 18:38:54 oster Exp $");
70
71#include <dev/raidframe/raidframevar.h>
72
73#include "rf_threadstuff.h"
74#include "rf_raid.h"
75#include "rf_diskqueue.h"
76#include "rf_alloclist.h"
77#include "rf_acctrace.h"
78#include "rf_etimer.h"
79#include "rf_general.h"
80#include "rf_debugprint.h"
81#include "rf_shutdown.h"
82#include "rf_cvscan.h"
83#include "rf_sstf.h"
84#include "rf_fifo.h"
85#include "rf_kintf.h"
86
87static void rf_ShutdownDiskQueueSystem(void *);
88
89#ifndef RF_DEBUG_DISKQUEUE
90#define RF_DEBUG_DISKQUEUE 0
91#endif
92
93#if RF_DEBUG_DISKQUEUE
94#define Dprintf1(s,a)         if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
95#define Dprintf2(s,a,b)       if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
96#define Dprintf3(s,a,b,c)     if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
97#else
98#define Dprintf1(s,a)
99#define Dprintf2(s,a,b)
100#define Dprintf3(s,a,b,c)
101#endif
102
103/*****************************************************************************
104 *
105 * the disk queue switch defines all the functions used in the
106 * different queueing disciplines queue ID, init routine, enqueue
107 * routine, dequeue routine
108 *
109 ****************************************************************************/
110
111static const RF_DiskQueueSW_t diskqueuesw[] = {
112	{"fifo",		/* FIFO */
113		rf_FifoCreate,
114		rf_FifoEnqueue,
115		rf_FifoDequeue,
116		rf_FifoPeek,
117	rf_FifoPromote},
118
119	{"cvscan",		/* cvscan */
120		rf_CvscanCreate,
121		rf_CvscanEnqueue,
122		rf_CvscanDequeue,
123		rf_CvscanPeek,
124	rf_CvscanPromote},
125
126	{"sstf",		/* shortest seek time first */
127		rf_SstfCreate,
128		rf_SstfEnqueue,
129		rf_SstfDequeue,
130		rf_SstfPeek,
131	rf_SstfPromote},
132
133	{"scan",		/* SCAN (two-way elevator) */
134		rf_ScanCreate,
135		rf_SstfEnqueue,
136		rf_ScanDequeue,
137		rf_ScanPeek,
138	rf_SstfPromote},
139
140	{"cscan",		/* CSCAN (one-way elevator) */
141		rf_CscanCreate,
142		rf_SstfEnqueue,
143		rf_CscanDequeue,
144		rf_CscanPeek,
145	rf_SstfPromote},
146
147};
148#define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
149
150#define RF_MAX_FREE_DQD 256
151#define RF_MIN_FREE_DQD  64
152
153#include <sys/buf.h>
154
155/* configures a single disk queue */
156
157int
158rf_ConfigureDiskQueue(RF_Raid_t *raidPtr, RF_DiskQueue_t *diskqueue,
159		      RF_RowCol_t c, const RF_DiskQueueSW_t *p,
160		      RF_SectorCount_t sectPerDisk, dev_t dev,
161		      int maxOutstanding, RF_ShutdownList_t **listp,
162		      RF_AllocListElem_t *clList)
163{
164	diskqueue->col = c;
165	diskqueue->qPtr = p;
166	diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
167	diskqueue->dev = dev;
168	diskqueue->numOutstanding = 0;
169	diskqueue->queueLength = 0;
170	diskqueue->maxOutstanding = maxOutstanding;
171	diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
172	diskqueue->flags = 0;
173	diskqueue->raidPtr = raidPtr;
174	diskqueue->rf_cinfo = &raidPtr->raid_cinfo[c];
175	rf_mutex_init(&diskqueue->mutex);
176	diskqueue->cond = 0;
177	return (0);
178}
179
180static void
181rf_ShutdownDiskQueueSystem(void *ignored)
182{
183	pool_destroy(&rf_pools.dqd);
184}
185
186int
187rf_ConfigureDiskQueueSystem(RF_ShutdownList_t **listp)
188{
189
190	rf_pool_init(&rf_pools.dqd, sizeof(RF_DiskQueueData_t),
191		     "rf_dqd_pl", RF_MIN_FREE_DQD, RF_MAX_FREE_DQD);
192	rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
193
194	return (0);
195}
196
197int
198rf_ConfigureDiskQueues(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
199		       RF_Config_t *cfgPtr)
200{
201	RF_DiskQueue_t *diskQueues, *spareQueues;
202	const RF_DiskQueueSW_t *p;
203	RF_RowCol_t r,c;
204	int     rc, i;
205
206	raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
207
208	for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
209		if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
210			p = &diskqueuesw[i];
211			break;
212		}
213	}
214	if (p == NULL) {
215		RF_ERRORMSG2("Unknown queue type \"%s\".  Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
216		p = &diskqueuesw[0];
217	}
218	raidPtr->qType = p;
219
220	RF_MallocAndAdd(diskQueues,
221			(raidPtr->numCol + RF_MAXSPARE) *
222			sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
223			raidPtr->cleanupList);
224	if (diskQueues == NULL)
225		return (ENOMEM);
226	raidPtr->Queues = diskQueues;
227
228	for (c = 0; c < raidPtr->numCol; c++) {
229		rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[c],
230					   c, p,
231					   raidPtr->sectorsPerDisk,
232					   raidPtr->Disks[c].dev,
233					   cfgPtr->maxOutstandingDiskReqs,
234					   listp, raidPtr->cleanupList);
235		if (rc)
236			return (rc);
237	}
238
239	spareQueues = &raidPtr->Queues[raidPtr->numCol];
240	for (r = 0; r < raidPtr->numSpare; r++) {
241		rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
242					   raidPtr->numCol + r, p,
243					   raidPtr->sectorsPerDisk,
244					   raidPtr->Disks[raidPtr->numCol + r].dev,
245					   cfgPtr->maxOutstandingDiskReqs, listp,
246					   raidPtr->cleanupList);
247		if (rc)
248			return (rc);
249	}
250	return (0);
251}
252/* Enqueue a disk I/O
253 *
254 * In the kernel, I/O is non-blocking and so we'd like to have multiple
255 * I/Os outstanding on the physical disks when possible.
256 *
257 * when any request arrives at a queue, we have two choices:
258 *    dispatch it to the lower levels
259 *    queue it up
260 *
261 * kernel rules for when to do what:
262 *    unlocking req  :  always dispatch it
263 *    normal req     :  queue empty => dispatch it & set priority
264 *                      queue not full & priority is ok => dispatch it
265 *                      else queue it
266 */
267void
268rf_DiskIOEnqueue(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int pri)
269{
270	RF_ETIMER_START(req->qtime);
271	RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
272	req->priority = pri;
273
274#if RF_DEBUG_DISKQUEUE
275	if (rf_queueDebug && (req->numSector == 0)) {
276		printf("Warning: Enqueueing zero-sector access\n");
277	}
278#endif
279	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
280	if (RF_OK_TO_DISPATCH(queue, req)) {
281		Dprintf2("Dispatching pri %d regular op to c %d (ok to dispatch)\n", pri, queue->col);
282		rf_DispatchKernelIO(queue, req);
283	} else {
284		queue->queueLength++;	/* increment count of number of requests waiting in this queue */
285		Dprintf2("Enqueueing pri %d regular op to c %d (not ok to dispatch)\n", pri, queue->col);
286		req->queue = (void *) queue;
287		(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
288	}
289	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
290}
291
292
293/* get the next set of I/Os started */
294void
295rf_DiskIOComplete(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int status)
296{
297	int     done = 0;
298
299	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
300	queue->numOutstanding--;
301	RF_ASSERT(queue->numOutstanding >= 0);
302
303	/* dispatch requests to the disk until we find one that we can't. */
304	/* no reason to continue once we've filled up the queue */
305	/* no reason to even start if the queue is locked */
306
307	while (!done && !RF_QUEUE_FULL(queue)) {
308		req = (queue->qPtr->Dequeue) (queue->qHdr);
309		if (req) {
310			Dprintf2("DiskIOComplete: extracting pri %d req from queue at c %d\n", req->priority, queue->col);
311			queue->queueLength--;	/* decrement count of number of requests waiting in this queue */
312			RF_ASSERT(queue->queueLength >= 0);
313			if (RF_OK_TO_DISPATCH(queue, req)) {
314				Dprintf2("DiskIOComplete: dispatching pri %d regular req to c %d (ok to dispatch)\n", req->priority, queue->col);
315				rf_DispatchKernelIO(queue, req);
316			} else {
317				/* we can't dispatch it, so just re-enqueue it.
318				   potential trouble here if disk queues batch reqs */
319				Dprintf2("DiskIOComplete: re-enqueueing pri %d regular req to c %d\n", req->priority, queue->col);
320				queue->queueLength++;
321				(queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
322				done = 1;
323			}
324		} else {
325			Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
326			done = 1;
327		}
328	}
329
330	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
331}
332/* promotes accesses tagged with the given parityStripeID from low priority
333 * to normal priority.  This promotion is optional, meaning that a queue
334 * need not implement it.  If there is no promotion routine associated with
335 * a queue, this routine does nothing and returns -1.
336 */
337int
338rf_DiskIOPromote(RF_DiskQueue_t *queue, RF_StripeNum_t parityStripeID,
339		 RF_ReconUnitNum_t which_ru)
340{
341	int     retval;
342
343	if (!queue->qPtr->Promote)
344		return (-1);
345	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
346	retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
347	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
348	return (retval);
349}
350
351RF_DiskQueueData_t *
352rf_CreateDiskQueueData(RF_IoType_t typ, RF_SectorNum_t ssect,
353		       RF_SectorCount_t nsect, void *bf,
354		       RF_StripeNum_t parityStripeID,
355		       RF_ReconUnitNum_t which_ru,
356		       int (*wakeF) (void *, int), void *arg,
357		       RF_AccTraceEntry_t *tracerec, RF_Raid_t *raidPtr,
358		       RF_DiskQueueDataFlags_t flags, void *kb_proc,
359		       int waitflag)
360{
361	RF_DiskQueueData_t *p;
362
363	p = pool_get(&rf_pools.dqd, waitflag);
364	if (p == NULL)
365		return (NULL);
366
367	memset(p, 0, sizeof(RF_DiskQueueData_t));
368	if (waitflag == PR_WAITOK) {
369		p->bp = getiobuf(NULL, true);
370	} else {
371		p->bp = getiobuf(NULL, false);
372	}
373	if (p->bp == NULL) {
374		pool_put(&rf_pools.dqd, p);
375		return (NULL);
376	}
377	SET(p->bp->b_cflags, BC_BUSY);	/* mark buffer busy */
378
379	p->sectorOffset = ssect + rf_protectedSectors;
380	p->numSector = nsect;
381	p->type = typ;
382	p->buf = bf;
383	p->parityStripeID = parityStripeID;
384	p->which_ru = which_ru;
385	p->CompleteFunc = wakeF;
386	p->argument = arg;
387	p->next = NULL;
388	p->tracerec = tracerec;
389	p->priority = RF_IO_NORMAL_PRIORITY;
390	p->raidPtr = raidPtr;
391	p->flags = flags;
392	p->b_proc = kb_proc;
393	return (p);
394}
395
396void
397rf_FreeDiskQueueData(RF_DiskQueueData_t *p)
398{
399	int s;
400	s = splbio();		/* XXX protect only pool_put, or neither? */
401	putiobuf(p->bp);
402	pool_put(&rf_pools.dqd, p);
403	splx(s);
404}
405