rf_diskqueue.c revision 1.5
1/*	$NetBSD: rf_diskqueue.c,v 1.5 1999/01/26 02:33:56 oster Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/****************************************************************************************
30 *
31 * rf_diskqueue.c -- higher-level disk queue code
32 *
33 * the routines here are a generic wrapper around the actual queueing
34 * routines.  The code here implements thread scheduling, synchronization,
35 * and locking ops (see below) on top of the lower-level queueing code.
36 *
37 * to support atomic RMW, we implement "locking operations".  When a locking op
38 * is dispatched to the lower levels of the driver, the queue is locked, and no further
39 * I/Os are dispatched until the queue receives & completes a corresponding "unlocking
40 * operation".  This code relies on the higher layers to guarantee that a locking
41 * op will always be eventually followed by an unlocking op.  The model is that
42 * the higher layers are structured so locking and unlocking ops occur in pairs, i.e.
43 * an unlocking op cannot be generated until after a locking op reports completion.
44 * There is no good way to check to see that an unlocking op "corresponds" to the
45 * op that currently has the queue locked, so we make no such attempt.  Since by
46 * definition there can be only one locking op outstanding on a disk, this should
47 * not be a problem.
48 *
49 * In the kernel, we allow multiple I/Os to be concurrently dispatched to the disk
50 * driver.  In order to support locking ops in this environment, when we decide to
51 * do a locking op, we stop dispatching new I/Os and wait until all dispatched I/Os
52 * have completed before dispatching the locking op.
53 *
54 * Unfortunately, the code is different in the 3 different operating states
55 * (user level, kernel, simulator).  In the kernel, I/O is non-blocking, and
56 * we have no disk threads to dispatch for us.  Therefore, we have to dispatch
57 * new I/Os to the scsi driver at the time of enqueue, and also at the time
58 * of completion.  At user level, I/O is blocking, and so only the disk threads
59 * may dispatch I/Os.  Thus at user level, all we can do at enqueue time is
60 * enqueue and wake up the disk thread to do the dispatch.
61 *
62 ***************************************************************************************/
63
64#include "rf_types.h"
65#include "rf_threadstuff.h"
66#include "rf_threadid.h"
67#include "rf_raid.h"
68#include "rf_diskqueue.h"
69#include "rf_alloclist.h"
70#include "rf_acctrace.h"
71#include "rf_etimer.h"
72#include "rf_configure.h"
73#include "rf_general.h"
74#include "rf_freelist.h"
75#include "rf_debugprint.h"
76#include "rf_shutdown.h"
77#include "rf_cvscan.h"
78#include "rf_sstf.h"
79#include "rf_fifo.h"
80
81static int init_dqd(RF_DiskQueueData_t *);
82static void clean_dqd(RF_DiskQueueData_t *);
83static void rf_ShutdownDiskQueueSystem(void *);
84/* From rf_kintf.c */
85int rf_DispatchKernelIO(RF_DiskQueue_t *,RF_DiskQueueData_t *);
86
87
88#define Dprintf1(s,a)         if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
89#define Dprintf2(s,a,b)       if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
90#define Dprintf3(s,a,b,c)     if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
91#define Dprintf4(s,a,b,c,d)   if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
92#define Dprintf5(s,a,b,c,d,e) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
93
94
95#define SIGNAL_DISK_QUEUE(_q_,_wh_)
96#define WAIT_DISK_QUEUE(_q_,_wh_)
97
98/*****************************************************************************************
99 *
100 * the disk queue switch defines all the functions used in the different queueing
101 * disciplines
102 *    queue ID, init routine, enqueue routine, dequeue routine
103 *
104 ****************************************************************************************/
105
106static RF_DiskQueueSW_t diskqueuesw[] = {
107	{"fifo", /* FIFO */
108	rf_FifoCreate,
109	rf_FifoEnqueue,
110	rf_FifoDequeue,
111	rf_FifoPeek,
112	rf_FifoPromote},
113
114	{"cvscan", /* cvscan */
115	rf_CvscanCreate,
116	rf_CvscanEnqueue,
117	rf_CvscanDequeue,
118	rf_CvscanPeek,
119	rf_CvscanPromote },
120
121	{"sstf", /* shortest seek time first */
122	rf_SstfCreate,
123	rf_SstfEnqueue,
124	rf_SstfDequeue,
125	rf_SstfPeek,
126	rf_SstfPromote},
127
128	{"scan", /* SCAN (two-way elevator) */
129	rf_ScanCreate,
130	rf_SstfEnqueue,
131	rf_ScanDequeue,
132	rf_ScanPeek,
133	rf_SstfPromote},
134
135	{"cscan", /* CSCAN (one-way elevator) */
136	rf_CscanCreate,
137	rf_SstfEnqueue,
138	rf_CscanDequeue,
139	rf_CscanPeek,
140	rf_SstfPromote},
141
142#if !defined(_KERNEL) && RF_INCLUDE_QUEUE_RANDOM > 0
143	/* to make a point to Chris :-> */
144	{"random", /* random */
145	rf_FifoCreate,
146	rf_FifoEnqueue,
147	rf_RandomDequeue,
148	rf_RandomPeek,
149	rf_FifoPromote},
150#endif /* !KERNEL && RF_INCLUDE_QUEUE_RANDOM > 0 */
151};
152#define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
153
154static RF_FreeList_t *rf_dqd_freelist;
155
156#define RF_MAX_FREE_DQD 256
157#define RF_DQD_INC       16
158#define RF_DQD_INITIAL   64
159
160#include <sys/buf.h>
161
162static int init_dqd(dqd)
163  RF_DiskQueueData_t  *dqd;
164{
165	/* XXX not sure if the following malloc is appropriate... probably not quite... */
166	dqd->bp = (struct buf *) malloc( sizeof(struct buf), M_RAIDFRAME, M_NOWAIT);
167	if (dqd->bp == NULL) {
168		return(ENOMEM);
169	}
170	memset(dqd->bp,0,sizeof(struct buf)); /* if you don't do it, nobody else will.. */
171	return(0);
172}
173
174static void clean_dqd(dqd)
175  RF_DiskQueueData_t  *dqd;
176{
177	free( dqd->bp, M_RAIDFRAME );
178}
179
180/* configures a single disk queue */
181static int config_disk_queue(
182  RF_Raid_t            *raidPtr,
183  RF_DiskQueue_t       *diskqueue,
184  RF_RowCol_t           r, /* row & col -- debug only.  BZZT not any more... */
185  RF_RowCol_t           c,
186  RF_DiskQueueSW_t     *p,
187  RF_SectorCount_t      sectPerDisk,
188  dev_t                 dev,
189  int                   maxOutstanding,
190  RF_ShutdownList_t   **listp,
191  RF_AllocListElem_t   *clList)
192{
193  int rc;
194
195  diskqueue->row = r;
196  diskqueue->col = c;
197  diskqueue->qPtr = p;
198  diskqueue->qHdr = (p->Create)(sectPerDisk, clList, listp);
199  diskqueue->dev  = dev;
200  diskqueue->numOutstanding = 0;
201  diskqueue->queueLength = 0;
202  diskqueue->maxOutstanding = maxOutstanding;
203  diskqueue->curPriority    = RF_IO_NORMAL_PRIORITY;
204  diskqueue->nextLockingOp  = NULL;
205  diskqueue->unlockingOp    = NULL;
206  diskqueue->numWaiting=0;
207  diskqueue->flags = 0;
208  diskqueue->raidPtr = raidPtr;
209  diskqueue->rf_cinfo = &raidPtr->raid_cinfo[r][c];
210  rc = rf_create_managed_mutex(listp, &diskqueue->mutex);
211  if (rc) {
212    RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
213      __LINE__, rc);
214    return(rc);
215  }
216  rc = rf_create_managed_cond(listp, &diskqueue->cond);
217  if (rc) {
218    RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
219      __LINE__, rc);
220    return(rc);
221  }
222  return(0);
223}
224
225static void rf_ShutdownDiskQueueSystem(ignored)
226  void  *ignored;
227{
228  RF_FREELIST_DESTROY_CLEAN(rf_dqd_freelist,next,(RF_DiskQueueData_t *),clean_dqd);
229}
230
231int rf_ConfigureDiskQueueSystem(listp)
232  RF_ShutdownList_t  **listp;
233{
234  int rc;
235
236  RF_FREELIST_CREATE(rf_dqd_freelist, RF_MAX_FREE_DQD,
237    RF_DQD_INC, sizeof(RF_DiskQueueData_t));
238  if (rf_dqd_freelist == NULL)
239    return(ENOMEM);
240  rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
241  if (rc) {
242    RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
243      __FILE__, __LINE__, rc);
244    rf_ShutdownDiskQueueSystem(NULL);
245    return(rc);
246  }
247  RF_FREELIST_PRIME_INIT(rf_dqd_freelist, RF_DQD_INITIAL,next,
248    (RF_DiskQueueData_t *),init_dqd);
249  return(0);
250}
251
252int rf_ConfigureDiskQueues(
253  RF_ShutdownList_t  **listp,
254  RF_Raid_t           *raidPtr,
255  RF_Config_t         *cfgPtr)
256{
257  RF_DiskQueue_t **diskQueues, *spareQueues;
258  RF_DiskQueueSW_t *p;
259  RF_RowCol_t r, c;
260  int rc, i;
261
262  raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
263
264  for(p=NULL,i=0;i<NUM_DISK_QUEUE_TYPES;i++) {
265    if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
266      p = &diskqueuesw[i];
267      break;
268    }
269  }
270  if (p == NULL) {
271    RF_ERRORMSG2("Unknown queue type \"%s\".  Using %s\n",cfgPtr->diskQueueType, diskqueuesw[0].queueType);
272    p = &diskqueuesw[0];
273  }
274
275  RF_CallocAndAdd(diskQueues, raidPtr->numRow, sizeof(RF_DiskQueue_t *), (RF_DiskQueue_t **), raidPtr->cleanupList);
276  if (diskQueues == NULL) {
277    return(ENOMEM);
278  }
279  raidPtr->Queues = diskQueues;
280  for (r=0; r<raidPtr->numRow; r++) {
281    RF_CallocAndAdd(diskQueues[r], raidPtr->numCol + ((r==0) ? raidPtr->numSpare : 0), sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *), raidPtr->cleanupList);
282    if (diskQueues[r] == NULL)
283      return(ENOMEM);
284    for (c=0; c<raidPtr->numCol; c++) {
285      rc = config_disk_queue(raidPtr, &diskQueues[r][c], r, c, p,
286        raidPtr->sectorsPerDisk, raidPtr->Disks[r][c].dev,
287        cfgPtr->maxOutstandingDiskReqs, listp, raidPtr->cleanupList);
288      if (rc)
289        return(rc);
290    }
291  }
292
293  spareQueues = &raidPtr->Queues[0][raidPtr->numCol];
294  for (r=0; r<raidPtr->numSpare; r++) {
295	  rc = config_disk_queue(raidPtr, &spareQueues[r],
296				 0, raidPtr->numCol+r, p,
297				 raidPtr->sectorsPerDisk,
298				 raidPtr->Disks[0][raidPtr->numCol+r].dev,
299				 cfgPtr->maxOutstandingDiskReqs, listp,
300				 raidPtr->cleanupList);
301    if (rc)
302      return(rc);
303  }
304  return(0);
305}
306
307/* Enqueue a disk I/O
308 *
309 * Unfortunately, we have to do things differently in the different
310 * environments (simulator, user-level, kernel).
311 * At user level, all I/O is blocking, so we have 1 or more threads/disk
312 * and the thread that enqueues is different from the thread that dequeues.
313 * In the kernel, I/O is non-blocking and so we'd like to have multiple
314 * I/Os outstanding on the physical disks when possible.
315 *
316 * when any request arrives at a queue, we have two choices:
317 *    dispatch it to the lower levels
318 *    queue it up
319 *
320 * kernel rules for when to do what:
321 *    locking request:  queue empty => dispatch and lock queue,
322 *                      else queue it
323 *    unlocking req  :  always dispatch it
324 *    normal req     :  queue empty => dispatch it & set priority
325 *                      queue not full & priority is ok => dispatch it
326 *                      else queue it
327 *
328 * user-level rules:
329 *    always enqueue.  In the special case of an unlocking op, enqueue
330 *    in a special way that will cause the unlocking op to be the next
331 *    thing dequeued.
332 *
333 * simulator rules:
334 *    Do the same as at user level, with the sleeps and wakeups suppressed.
335 */
336void rf_DiskIOEnqueue(queue, req, pri)
337  RF_DiskQueue_t      *queue;
338  RF_DiskQueueData_t  *req;
339  int                  pri;
340{
341  int tid;
342
343  RF_ETIMER_START(req->qtime);
344  rf_get_threadid(tid);
345  RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
346  req->priority = pri;
347
348  if (rf_queueDebug && (req->numSector == 0)) {
349    printf("Warning: Enqueueing zero-sector access\n");
350  }
351
352  /*
353   * kernel
354   */
355  RF_LOCK_QUEUE_MUTEX( queue, "DiskIOEnqueue" );
356  /* locking request */
357  if (RF_LOCKING_REQ(req)) {
358    if (RF_QUEUE_EMPTY(queue)) {
359      Dprintf3("Dispatching pri %d locking op to r %d c %d (queue empty)\n",pri,queue->row, queue->col);
360      RF_LOCK_QUEUE(queue);
361      rf_DispatchKernelIO(queue, req);
362    } else {
363      queue->queueLength++;  /* increment count of number of requests waiting in this queue */
364      Dprintf3("Enqueueing pri %d locking op to r %d c %d (queue not empty)\n",pri,queue->row, queue->col);
365      req->queue = (void *)queue;
366      (queue->qPtr->Enqueue)(queue->qHdr, req, pri);
367    }
368  }
369  /* unlocking request */
370  else if (RF_UNLOCKING_REQ(req)) {           /* we'll do the actual unlock when this I/O completes */
371    Dprintf3("Dispatching pri %d unlocking op to r %d c %d\n",pri,queue->row, queue->col);
372    RF_ASSERT(RF_QUEUE_LOCKED(queue));
373    rf_DispatchKernelIO(queue, req);
374  }
375  /* normal request */
376  else if (RF_OK_TO_DISPATCH(queue, req)) {
377    Dprintf3("Dispatching pri %d regular op to r %d c %d (ok to dispatch)\n",pri,queue->row, queue->col);
378    rf_DispatchKernelIO(queue, req);
379  } else {
380    queue->queueLength++;  /* increment count of number of requests waiting in this queue */
381    Dprintf3("Enqueueing pri %d regular op to r %d c %d (not ok to dispatch)\n",pri,queue->row, queue->col);
382    req->queue = (void *)queue;
383    (queue->qPtr->Enqueue)(queue->qHdr, req, pri);
384  }
385  RF_UNLOCK_QUEUE_MUTEX( queue, "DiskIOEnqueue" );
386}
387
388
389/* get the next set of I/Os started, kernel version only */
390void rf_DiskIOComplete(queue, req, status)
391  RF_DiskQueue_t      *queue;
392  RF_DiskQueueData_t  *req;
393  int                  status;
394{
395  int done=0;
396
397  RF_LOCK_QUEUE_MUTEX( queue, "DiskIOComplete" );
398
399  /* unlock the queue:
400     (1) after an unlocking req completes
401     (2) after a locking req fails
402  */
403  if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
404    Dprintf2("DiskIOComplete: unlocking queue at r %d c %d\n", queue->row, queue->col);
405    RF_ASSERT(RF_QUEUE_LOCKED(queue) && (queue->unlockingOp == NULL));
406    RF_UNLOCK_QUEUE(queue);
407  }
408
409  queue->numOutstanding--;
410  RF_ASSERT(queue->numOutstanding >= 0);
411
412  /* dispatch requests to the disk until we find one that we can't. */
413  /* no reason to continue once we've filled up the queue */
414  /* no reason to even start if the queue is locked */
415
416  while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
417    if (queue->nextLockingOp) {
418      req = queue->nextLockingOp; queue->nextLockingOp = NULL;
419      Dprintf3("DiskIOComplete: a pri %d locking req was pending at r %d c %d\n",req->priority,queue->row, queue->col);
420    } else {
421      req = (queue->qPtr->Dequeue)( queue->qHdr );
422      if (req != NULL) {
423	      Dprintf3("DiskIOComplete: extracting pri %d req from queue at r %d c %d\n",req->priority,queue->row, queue->col);
424      } else {
425	      Dprintf1("DiskIOComplete: no more requests to extract.\n","");
426      }
427    }
428    if (req) {
429	queue->queueLength--;  /* decrement count of number of requests waiting in this queue */
430	RF_ASSERT(queue->queueLength >= 0);
431    }
432    if (!req) done=1;
433    else if (RF_LOCKING_REQ(req)) {
434      if (RF_QUEUE_EMPTY(queue)) {                   					/* dispatch it */
435	Dprintf3("DiskIOComplete: dispatching pri %d locking req to r %d c %d (queue empty)\n",req->priority,queue->row, queue->col);
436	RF_LOCK_QUEUE(queue);
437	rf_DispatchKernelIO(queue, req);
438	done = 1;
439      } else {                         		           /* put it aside to wait for the queue to drain */
440	Dprintf3("DiskIOComplete: postponing pri %d locking req to r %d c %d\n",req->priority,queue->row, queue->col);
441	RF_ASSERT(queue->nextLockingOp == NULL);
442	queue->nextLockingOp = req;
443	done = 1;
444      }
445    } else if (RF_UNLOCKING_REQ(req)) {      	/* should not happen: unlocking ops should not get queued */
446      RF_ASSERT(RF_QUEUE_LOCKED(queue)); 			               /* support it anyway for the future */
447      Dprintf3("DiskIOComplete: dispatching pri %d unl req to r %d c %d (SHOULD NOT SEE THIS)\n",req->priority,queue->row, queue->col);
448      rf_DispatchKernelIO(queue, req);
449      done = 1;
450    } else if (RF_OK_TO_DISPATCH(queue, req)) {
451      Dprintf3("DiskIOComplete: dispatching pri %d regular req to r %d c %d (ok to dispatch)\n",req->priority,queue->row, queue->col);
452      rf_DispatchKernelIO(queue, req);
453    } else {                                   		  /* we can't dispatch it, so just re-enqueue it.  */
454      /* potential trouble here if disk queues batch reqs */
455      Dprintf3("DiskIOComplete: re-enqueueing pri %d regular req to r %d c %d\n",req->priority,queue->row, queue->col);
456      queue->queueLength++;
457      (queue->qPtr->Enqueue)(queue->qHdr, req, req->priority);
458      done = 1;
459    }
460  }
461
462  RF_UNLOCK_QUEUE_MUTEX( queue, "DiskIOComplete" );
463}
464
465/* promotes accesses tagged with the given parityStripeID from low priority
466 * to normal priority.  This promotion is optional, meaning that a queue
467 * need not implement it.  If there is no promotion routine associated with
468 * a queue, this routine does nothing and returns -1.
469 */
470int rf_DiskIOPromote(queue, parityStripeID, which_ru)
471  RF_DiskQueue_t     *queue;
472  RF_StripeNum_t      parityStripeID;
473  RF_ReconUnitNum_t   which_ru;
474{
475  int retval;
476
477  if (!queue->qPtr->Promote)
478    return(-1);
479  RF_LOCK_QUEUE_MUTEX( queue, "DiskIOPromote" );
480  retval = (queue->qPtr->Promote)( queue->qHdr, parityStripeID, which_ru );
481  RF_UNLOCK_QUEUE_MUTEX( queue, "DiskIOPromote" );
482  return(retval);
483}
484
485RF_DiskQueueData_t *rf_CreateDiskQueueData(
486  RF_IoType_t                typ,
487  RF_SectorNum_t             ssect,
488  RF_SectorCount_t           nsect,
489  caddr_t                    buf,
490  RF_StripeNum_t             parityStripeID,
491  RF_ReconUnitNum_t          which_ru,
492  int                      (*wakeF)(void *,int),
493  void                      *arg,
494  RF_DiskQueueData_t        *next,
495  RF_AccTraceEntry_t        *tracerec,
496  void                      *raidPtr,
497  RF_DiskQueueDataFlags_t    flags,
498  void                      *kb_proc)
499{
500  RF_DiskQueueData_t *p;
501
502  RF_FREELIST_GET_INIT(rf_dqd_freelist,p,next,(RF_DiskQueueData_t *),init_dqd);
503
504  p->sectorOffset  = ssect + rf_protectedSectors;
505  p->numSector     = nsect;
506  p->type          = typ;
507  p->buf           = buf;
508  p->parityStripeID= parityStripeID;
509  p->which_ru      = which_ru;
510  p->CompleteFunc  = wakeF;
511  p->argument      = arg;
512  p->next          = next;
513  p->tracerec      = tracerec;
514  p->priority      = RF_IO_NORMAL_PRIORITY;
515  p->AuxFunc       = NULL;
516  p->buf2          = NULL;
517  p->raidPtr       = raidPtr;
518  p->flags         = flags;
519  p->b_proc        = kb_proc;
520  return(p);
521}
522
523RF_DiskQueueData_t *rf_CreateDiskQueueDataFull(
524  RF_IoType_t                typ,
525  RF_SectorNum_t             ssect,
526  RF_SectorCount_t           nsect,
527  caddr_t                    buf,
528  RF_StripeNum_t             parityStripeID,
529  RF_ReconUnitNum_t          which_ru,
530  int                      (*wakeF)(void *,int),
531  void                      *arg,
532  RF_DiskQueueData_t        *next,
533  RF_AccTraceEntry_t        *tracerec,
534  int                        priority,
535  int                      (*AuxFunc)(void *,...),
536  caddr_t                    buf2,
537  void                      *raidPtr,
538  RF_DiskQueueDataFlags_t    flags,
539  void                      *kb_proc)
540{
541  RF_DiskQueueData_t *p;
542
543  RF_FREELIST_GET_INIT(rf_dqd_freelist,p,next,(RF_DiskQueueData_t *),init_dqd);
544
545  p->sectorOffset  = ssect + rf_protectedSectors;
546  p->numSector     = nsect;
547  p->type          = typ;
548  p->buf           = buf;
549  p->parityStripeID= parityStripeID;
550  p->which_ru      = which_ru;
551  p->CompleteFunc  = wakeF;
552  p->argument      = arg;
553  p->next          = next;
554  p->tracerec      = tracerec;
555  p->priority      = priority;
556  p->AuxFunc       = AuxFunc;
557  p->buf2          = buf2;
558  p->raidPtr       = raidPtr;
559  p->flags         = flags;
560  p->b_proc        = kb_proc;
561  return(p);
562}
563
564void rf_FreeDiskQueueData(p)
565  RF_DiskQueueData_t  *p;
566{
567	RF_FREELIST_FREE_CLEAN(rf_dqd_freelist,p,next,clean_dqd);
568}
569