rf_diskqueue.c revision 1.17
1/*	$NetBSD: rf_diskqueue.c,v 1.17 2002/08/02 04:01:51 oster Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/****************************************************************************
30 *
31 * rf_diskqueue.c -- higher-level disk queue code
32 *
33 * the routines here are a generic wrapper around the actual queueing
34 * routines.  The code here implements thread scheduling, synchronization,
35 * and locking ops (see below) on top of the lower-level queueing code.
36 *
37 * to support atomic RMW, we implement "locking operations".  When a
38 * locking op is dispatched to the lower levels of the driver, the
39 * queue is locked, and no further I/Os are dispatched until the queue
40 * receives & completes a corresponding "unlocking operation".  This
41 * code relies on the higher layers to guarantee that a locking op
42 * will always be eventually followed by an unlocking op.  The model
43 * is that the higher layers are structured so locking and unlocking
44 * ops occur in pairs, i.e.  an unlocking op cannot be generated until
45 * after a locking op reports completion.  There is no good way to
46 * check to see that an unlocking op "corresponds" to the op that
47 * currently has the queue locked, so we make no such attempt.  Since
48 * by definition there can be only one locking op outstanding on a
49 * disk, this should not be a problem.
50 *
51 * In the kernel, we allow multiple I/Os to be concurrently dispatched
52 * to the disk driver.  In order to support locking ops in this
53 * environment, when we decide to do a locking op, we stop dispatching
54 * new I/Os and wait until all dispatched I/Os have completed before
55 * dispatching the locking op.
56 *
57 * Unfortunately, the code is different in the 3 different operating
58 * states (user level, kernel, simulator).  In the kernel, I/O is
59 * non-blocking, and we have no disk threads to dispatch for us.
60 * Therefore, we have to dispatch new I/Os to the scsi driver at the
61 * time of enqueue, and also at the time of completion.  At user
62 * level, I/O is blocking, and so only the disk threads may dispatch
63 * I/Os.  Thus at user level, all we can do at enqueue time is enqueue
64 * and wake up the disk thread to do the dispatch.
65 *
66 ****************************************************************************/
67
68#include <sys/cdefs.h>
69__KERNEL_RCSID(0, "$NetBSD: rf_diskqueue.c,v 1.17 2002/08/02 04:01:51 oster Exp $");
70
71#include <dev/raidframe/raidframevar.h>
72
73#include "rf_threadstuff.h"
74#include "rf_raid.h"
75#include "rf_diskqueue.h"
76#include "rf_alloclist.h"
77#include "rf_acctrace.h"
78#include "rf_etimer.h"
79#include "rf_general.h"
80#include "rf_freelist.h"
81#include "rf_debugprint.h"
82#include "rf_shutdown.h"
83#include "rf_cvscan.h"
84#include "rf_sstf.h"
85#include "rf_fifo.h"
86#include "rf_kintf.h"
87
88static int init_dqd(RF_DiskQueueData_t *);
89static void clean_dqd(RF_DiskQueueData_t *);
90static void rf_ShutdownDiskQueueSystem(void *);
91
92#define Dprintf1(s,a)         if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
93#define Dprintf2(s,a,b)       if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
94#define Dprintf3(s,a,b,c)     if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
95
96/*****************************************************************************
97 *
98 * the disk queue switch defines all the functions used in the
99 * different queueing disciplines queue ID, init routine, enqueue
100 * routine, dequeue routine
101 *
102 ****************************************************************************/
103
104static RF_DiskQueueSW_t diskqueuesw[] = {
105	{"fifo",		/* FIFO */
106		rf_FifoCreate,
107		rf_FifoEnqueue,
108		rf_FifoDequeue,
109		rf_FifoPeek,
110	rf_FifoPromote},
111
112	{"cvscan",		/* cvscan */
113		rf_CvscanCreate,
114		rf_CvscanEnqueue,
115		rf_CvscanDequeue,
116		rf_CvscanPeek,
117	rf_CvscanPromote},
118
119	{"sstf",		/* shortest seek time first */
120		rf_SstfCreate,
121		rf_SstfEnqueue,
122		rf_SstfDequeue,
123		rf_SstfPeek,
124	rf_SstfPromote},
125
126	{"scan",		/* SCAN (two-way elevator) */
127		rf_ScanCreate,
128		rf_SstfEnqueue,
129		rf_ScanDequeue,
130		rf_ScanPeek,
131	rf_SstfPromote},
132
133	{"cscan",		/* CSCAN (one-way elevator) */
134		rf_CscanCreate,
135		rf_SstfEnqueue,
136		rf_CscanDequeue,
137		rf_CscanPeek,
138	rf_SstfPromote},
139
140};
141#define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
142
143static RF_FreeList_t *rf_dqd_freelist;
144
145#define RF_MAX_FREE_DQD 256
146#define RF_DQD_INC       16
147#define RF_DQD_INITIAL   64
148
149#include <sys/buf.h>
150
151static int
152init_dqd(dqd)
153	RF_DiskQueueData_t *dqd;
154{
155
156	dqd->bp = (struct buf *) malloc(sizeof(struct buf),
157					M_RAIDFRAME, M_NOWAIT);
158	if (dqd->bp == NULL) {
159		return (ENOMEM);
160	}
161	memset(dqd->bp, 0, sizeof(struct buf));	/* if you don't do it, nobody
162						 * else will.. */
163	return (0);
164}
165
166static void
167clean_dqd(dqd)
168	RF_DiskQueueData_t *dqd;
169{
170	free(dqd->bp, M_RAIDFRAME);
171}
172/* configures a single disk queue */
173
174int
175rf_ConfigureDiskQueue(
176      RF_Raid_t * raidPtr,
177      RF_DiskQueue_t * diskqueue,
178      RF_RowCol_t r,		/* row & col -- debug only.  BZZT not any
179				 * more... */
180      RF_RowCol_t c,
181      RF_DiskQueueSW_t * p,
182      RF_SectorCount_t sectPerDisk,
183      dev_t dev,
184      int maxOutstanding,
185      RF_ShutdownList_t ** listp,
186      RF_AllocListElem_t * clList)
187{
188	int     rc;
189
190	diskqueue->row = r;
191	diskqueue->col = c;
192	diskqueue->qPtr = p;
193	diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
194	diskqueue->dev = dev;
195	diskqueue->numOutstanding = 0;
196	diskqueue->queueLength = 0;
197	diskqueue->maxOutstanding = maxOutstanding;
198	diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
199	diskqueue->nextLockingOp = NULL;
200	diskqueue->unlockingOp = NULL;
201	diskqueue->numWaiting = 0;
202	diskqueue->flags = 0;
203	diskqueue->raidPtr = raidPtr;
204	diskqueue->rf_cinfo = &raidPtr->raid_cinfo[r][c];
205	rc = rf_create_managed_mutex(listp, &diskqueue->mutex);
206	if (rc) {
207		RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
208		    __LINE__, rc);
209		return (rc);
210	}
211	rc = rf_create_managed_cond(listp, &diskqueue->cond);
212	if (rc) {
213		RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
214		    __LINE__, rc);
215		return (rc);
216	}
217	return (0);
218}
219
220static void
221rf_ShutdownDiskQueueSystem(ignored)
222	void   *ignored;
223{
224	RF_FREELIST_DESTROY_CLEAN(rf_dqd_freelist, next, (RF_DiskQueueData_t *), clean_dqd);
225}
226
227int
228rf_ConfigureDiskQueueSystem(listp)
229	RF_ShutdownList_t **listp;
230{
231	int     rc;
232
233	RF_FREELIST_CREATE(rf_dqd_freelist, RF_MAX_FREE_DQD,
234	    RF_DQD_INC, sizeof(RF_DiskQueueData_t));
235	if (rf_dqd_freelist == NULL)
236		return (ENOMEM);
237	rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
238	if (rc) {
239		RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
240		    __FILE__, __LINE__, rc);
241		rf_ShutdownDiskQueueSystem(NULL);
242		return (rc);
243	}
244	RF_FREELIST_PRIME_INIT(rf_dqd_freelist, RF_DQD_INITIAL, next,
245	    (RF_DiskQueueData_t *), init_dqd);
246	return (0);
247}
248
249int
250rf_ConfigureDiskQueues(
251    RF_ShutdownList_t ** listp,
252    RF_Raid_t * raidPtr,
253    RF_Config_t * cfgPtr)
254{
255	RF_DiskQueue_t **diskQueues, *spareQueues;
256	RF_DiskQueueSW_t *p;
257	RF_RowCol_t r, c;
258	int     rc, i;
259
260	raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
261
262	for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
263		if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
264			p = &diskqueuesw[i];
265			break;
266		}
267	}
268	if (p == NULL) {
269		RF_ERRORMSG2("Unknown queue type \"%s\".  Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
270		p = &diskqueuesw[0];
271	}
272	raidPtr->qType = p;
273	RF_CallocAndAdd(diskQueues, raidPtr->numRow, sizeof(RF_DiskQueue_t *), (RF_DiskQueue_t **), raidPtr->cleanupList);
274	if (diskQueues == NULL) {
275		return (ENOMEM);
276	}
277	raidPtr->Queues = diskQueues;
278	for (r = 0; r < raidPtr->numRow; r++) {
279		RF_CallocAndAdd(diskQueues[r], raidPtr->numCol +
280				 ((r == 0) ? RF_MAXSPARE : 0),
281				sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
282				raidPtr->cleanupList);
283		if (diskQueues[r] == NULL)
284			return (ENOMEM);
285		for (c = 0; c < raidPtr->numCol; c++) {
286			rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[r][c],
287						   r, c, p,
288						   raidPtr->sectorsPerDisk,
289						   raidPtr->Disks[r][c].dev,
290						   cfgPtr->maxOutstandingDiskReqs,
291						   listp, raidPtr->cleanupList);
292			if (rc)
293				return (rc);
294		}
295	}
296
297	spareQueues = &raidPtr->Queues[0][raidPtr->numCol];
298	for (r = 0; r < raidPtr->numSpare; r++) {
299		rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
300		    0, raidPtr->numCol + r, p,
301		    raidPtr->sectorsPerDisk,
302		    raidPtr->Disks[0][raidPtr->numCol + r].dev,
303		    cfgPtr->maxOutstandingDiskReqs, listp,
304		    raidPtr->cleanupList);
305		if (rc)
306			return (rc);
307	}
308	return (0);
309}
310/* Enqueue a disk I/O
311 *
312 * Unfortunately, we have to do things differently in the different
313 * environments (simulator, user-level, kernel).
314 * At user level, all I/O is blocking, so we have 1 or more threads/disk
315 * and the thread that enqueues is different from the thread that dequeues.
316 * In the kernel, I/O is non-blocking and so we'd like to have multiple
317 * I/Os outstanding on the physical disks when possible.
318 *
319 * when any request arrives at a queue, we have two choices:
320 *    dispatch it to the lower levels
321 *    queue it up
322 *
323 * kernel rules for when to do what:
324 *    locking request:  queue empty => dispatch and lock queue,
325 *                      else queue it
326 *    unlocking req  :  always dispatch it
327 *    normal req     :  queue empty => dispatch it & set priority
328 *                      queue not full & priority is ok => dispatch it
329 *                      else queue it
330 *
331 * user-level rules:
332 *    always enqueue.  In the special case of an unlocking op, enqueue
333 *    in a special way that will cause the unlocking op to be the next
334 *    thing dequeued.
335 *
336 * simulator rules:
337 *    Do the same as at user level, with the sleeps and wakeups suppressed.
338 */
339void
340rf_DiskIOEnqueue(queue, req, pri)
341	RF_DiskQueue_t *queue;
342	RF_DiskQueueData_t *req;
343	int     pri;
344{
345	RF_ETIMER_START(req->qtime);
346	RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
347	req->priority = pri;
348
349	if (rf_queueDebug && (req->numSector == 0)) {
350		printf("Warning: Enqueueing zero-sector access\n");
351	}
352	/*
353         * kernel
354         */
355	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
356	/* locking request */
357	if (RF_LOCKING_REQ(req)) {
358		if (RF_QUEUE_EMPTY(queue)) {
359			Dprintf3("Dispatching pri %d locking op to r %d c %d (queue empty)\n", pri, queue->row, queue->col);
360			RF_LOCK_QUEUE(queue);
361			rf_DispatchKernelIO(queue, req);
362		} else {
363			queue->queueLength++;	/* increment count of number
364						 * of requests waiting in this
365						 * queue */
366			Dprintf3("Enqueueing pri %d locking op to r %d c %d (queue not empty)\n", pri, queue->row, queue->col);
367			req->queue = (void *) queue;
368			(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
369		}
370	}
371	/* unlocking request */
372	else
373		if (RF_UNLOCKING_REQ(req)) {	/* we'll do the actual unlock
374						 * when this I/O completes */
375			Dprintf3("Dispatching pri %d unlocking op to r %d c %d\n", pri, queue->row, queue->col);
376			RF_ASSERT(RF_QUEUE_LOCKED(queue));
377			rf_DispatchKernelIO(queue, req);
378		}
379	/* normal request */
380		else
381			if (RF_OK_TO_DISPATCH(queue, req)) {
382				Dprintf3("Dispatching pri %d regular op to r %d c %d (ok to dispatch)\n", pri, queue->row, queue->col);
383				rf_DispatchKernelIO(queue, req);
384			} else {
385				queue->queueLength++;	/* increment count of
386							 * number of requests
387							 * waiting in this queue */
388				Dprintf3("Enqueueing pri %d regular op to r %d c %d (not ok to dispatch)\n", pri, queue->row, queue->col);
389				req->queue = (void *) queue;
390				(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
391			}
392	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
393}
394
395
396/* get the next set of I/Os started, kernel version only */
397void
398rf_DiskIOComplete(queue, req, status)
399	RF_DiskQueue_t *queue;
400	RF_DiskQueueData_t *req;
401	int     status;
402{
403	int     done = 0;
404
405	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
406
407	/* unlock the queue: (1) after an unlocking req completes (2) after a
408	 * locking req fails */
409	if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
410		Dprintf2("DiskIOComplete: unlocking queue at r %d c %d\n", queue->row, queue->col);
411		RF_ASSERT(RF_QUEUE_LOCKED(queue) && (queue->unlockingOp == NULL));
412		RF_UNLOCK_QUEUE(queue);
413	}
414	queue->numOutstanding--;
415	RF_ASSERT(queue->numOutstanding >= 0);
416
417	/* dispatch requests to the disk until we find one that we can't. */
418	/* no reason to continue once we've filled up the queue */
419	/* no reason to even start if the queue is locked */
420
421	while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
422		if (queue->nextLockingOp) {
423			req = queue->nextLockingOp;
424			queue->nextLockingOp = NULL;
425			Dprintf3("DiskIOComplete: a pri %d locking req was pending at r %d c %d\n", req->priority, queue->row, queue->col);
426		} else {
427			req = (queue->qPtr->Dequeue) (queue->qHdr);
428			if (req != NULL) {
429				Dprintf3("DiskIOComplete: extracting pri %d req from queue at r %d c %d\n", req->priority, queue->row, queue->col);
430			} else {
431				Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
432			}
433		}
434		if (req) {
435			queue->queueLength--;	/* decrement count of number
436						 * of requests waiting in this
437						 * queue */
438			RF_ASSERT(queue->queueLength >= 0);
439		}
440		if (!req)
441			done = 1;
442		else
443			if (RF_LOCKING_REQ(req)) {
444				if (RF_QUEUE_EMPTY(queue)) {	/* dispatch it */
445					Dprintf3("DiskIOComplete: dispatching pri %d locking req to r %d c %d (queue empty)\n", req->priority, queue->row, queue->col);
446					RF_LOCK_QUEUE(queue);
447					rf_DispatchKernelIO(queue, req);
448					done = 1;
449				} else {	/* put it aside to wait for
450						 * the queue to drain */
451					Dprintf3("DiskIOComplete: postponing pri %d locking req to r %d c %d\n", req->priority, queue->row, queue->col);
452					RF_ASSERT(queue->nextLockingOp == NULL);
453					queue->nextLockingOp = req;
454					done = 1;
455				}
456			} else
457				if (RF_UNLOCKING_REQ(req)) {	/* should not happen:
458								 * unlocking ops should
459								 * not get queued */
460					RF_ASSERT(RF_QUEUE_LOCKED(queue));	/* support it anyway for
461										 * the future */
462					Dprintf3("DiskIOComplete: dispatching pri %d unl req to r %d c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->row, queue->col);
463					rf_DispatchKernelIO(queue, req);
464					done = 1;
465				} else
466					if (RF_OK_TO_DISPATCH(queue, req)) {
467						Dprintf3("DiskIOComplete: dispatching pri %d regular req to r %d c %d (ok to dispatch)\n", req->priority, queue->row, queue->col);
468						rf_DispatchKernelIO(queue, req);
469					} else {	/* we can't dispatch it,
470							 * so just re-enqueue
471							 * it.  */
472						/* potential trouble here if
473						 * disk queues batch reqs */
474						Dprintf3("DiskIOComplete: re-enqueueing pri %d regular req to r %d c %d\n", req->priority, queue->row, queue->col);
475						queue->queueLength++;
476						(queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
477						done = 1;
478					}
479	}
480
481	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
482}
483/* promotes accesses tagged with the given parityStripeID from low priority
484 * to normal priority.  This promotion is optional, meaning that a queue
485 * need not implement it.  If there is no promotion routine associated with
486 * a queue, this routine does nothing and returns -1.
487 */
488int
489rf_DiskIOPromote(queue, parityStripeID, which_ru)
490	RF_DiskQueue_t *queue;
491	RF_StripeNum_t parityStripeID;
492	RF_ReconUnitNum_t which_ru;
493{
494	int     retval;
495
496	if (!queue->qPtr->Promote)
497		return (-1);
498	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
499	retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
500	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
501	return (retval);
502}
503
504RF_DiskQueueData_t *
505rf_CreateDiskQueueData(
506    RF_IoType_t typ,
507    RF_SectorNum_t ssect,
508    RF_SectorCount_t nsect,
509    caddr_t buf,
510    RF_StripeNum_t parityStripeID,
511    RF_ReconUnitNum_t which_ru,
512    int (*wakeF) (void *, int),
513    void *arg,
514    RF_DiskQueueData_t * next,
515    RF_AccTraceEntry_t * tracerec,
516    void *raidPtr,
517    RF_DiskQueueDataFlags_t flags,
518    void *kb_proc)
519{
520	RF_DiskQueueData_t *p;
521
522	RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
523
524	p->sectorOffset = ssect + rf_protectedSectors;
525	p->numSector = nsect;
526	p->type = typ;
527	p->buf = buf;
528	p->parityStripeID = parityStripeID;
529	p->which_ru = which_ru;
530	p->CompleteFunc = wakeF;
531	p->argument = arg;
532	p->next = next;
533	p->tracerec = tracerec;
534	p->priority = RF_IO_NORMAL_PRIORITY;
535	p->buf2 = NULL;
536	p->raidPtr = raidPtr;
537	p->flags = flags;
538	p->b_proc = kb_proc;
539	return (p);
540}
541
542void
543rf_FreeDiskQueueData(p)
544	RF_DiskQueueData_t *p;
545{
546	RF_FREELIST_FREE_CLEAN(rf_dqd_freelist, p, next, clean_dqd);
547}
548