rf_dagfuncs.c revision 1.32
1/*	$NetBSD: rf_dagfuncs.c,v 1.32 2020/06/19 19:29:39 jdolecek Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/*
30 * dagfuncs.c -- DAG node execution routines
31 *
32 * Rules:
33 * 1. Every DAG execution function must eventually cause node->status to
34 *    get set to "good" or "bad", and "FinishNode" to be called. In the
35 *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
36 *    the node execution function can do these two things directly. In
37 *    the case of nodes that have to wait for some event (a disk read to
38 *    complete, a lock to be released, etc) to occur before they can
39 *    complete, this is typically achieved by having whatever module
40 *    is doing the operation call GenericWakeupFunc upon completion.
41 * 2. DAG execution functions should check the status in the DAG header
42 *    and NOP out their operations if the status is not "enable". However,
43 *    execution functions that release resources must be sure to release
44 *    them even when they NOP out the function that would use them.
45 *    Functions that acquire resources should go ahead and acquire them
46 *    even when they NOP, so that a downstream release node will not have
47 *    to check to find out whether or not the acquire was suppressed.
48 */
49
50#include <sys/cdefs.h>
51__KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.32 2020/06/19 19:29:39 jdolecek Exp $");
52
53#include <sys/param.h>
54#include <sys/ioctl.h>
55
56#include "rf_archs.h"
57#include "rf_raid.h"
58#include "rf_dag.h"
59#include "rf_layout.h"
60#include "rf_etimer.h"
61#include "rf_acctrace.h"
62#include "rf_diskqueue.h"
63#include "rf_dagfuncs.h"
64#include "rf_general.h"
65#include "rf_engine.h"
66#include "rf_dagutils.h"
67
68#include "rf_kintf.h"
69
70#if RF_INCLUDE_PARITYLOGGING > 0
71#include "rf_paritylog.h"
72#endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
73
74void     (*rf_DiskReadFunc) (RF_DagNode_t *);
75void     (*rf_DiskWriteFunc) (RF_DagNode_t *);
76void     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
77void     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
78void     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
79void     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
80void     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
81
82/*****************************************************************************
83 * main (only) configuration routine for this module
84 ****************************************************************************/
85int
86rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp)
87{
88	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) ||
89		  ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
90	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
91	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
92	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
93	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
94	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
95	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
96	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
97	return (0);
98}
99
100
101
102/*****************************************************************************
103 * the execution function associated with a terminate node
104 ****************************************************************************/
105void
106rf_TerminateFunc(RF_DagNode_t *node)
107{
108	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
109	node->status = rf_good;
110	rf_FinishNode(node, RF_THREAD_CONTEXT);
111}
112
113void
114rf_TerminateUndoFunc(RF_DagNode_t *node)
115{
116}
117
118
119/*****************************************************************************
120 * execution functions associated with a mirror node
121 *
122 * parameters:
123 *
124 * 0 - physical disk addres of data
125 * 1 - buffer for holding read data
126 * 2 - parity stripe ID
127 * 3 - flags
128 * 4 - physical disk address of mirror (parity)
129 *
130 ****************************************************************************/
131
132void
133rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node)
134{
135	/* select the mirror copy with the shortest queue and fill in node
136	 * parameters with physical disk address */
137
138	rf_SelectMirrorDiskIdle(node);
139	rf_DiskReadFunc(node);
140}
141
142#if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
143void
144rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node)
145{
146	/* select the mirror copy with the shortest queue and fill in node
147	 * parameters with physical disk address */
148
149	rf_SelectMirrorDiskPartition(node);
150	rf_DiskReadFunc(node);
151}
152#endif
153
154void
155rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node)
156{
157}
158
159
160
161#if RF_INCLUDE_PARITYLOGGING > 0
162/*****************************************************************************
163 * the execution function associated with a parity log update node
164 ****************************************************************************/
165void
166rf_ParityLogUpdateFunc(RF_DagNode_t *node)
167{
168	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
169	void *bf = (void *) node->params[1].p;
170	RF_ParityLogData_t *logData;
171#if RF_ACC_TRACE > 0
172	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
173	RF_Etimer_t timer;
174#endif
175
176	if (node->dagHdr->status == rf_enable) {
177#if RF_ACC_TRACE > 0
178		RF_ETIMER_START(timer);
179#endif
180		logData = rf_CreateParityLogData(RF_UPDATE, pda, bf,
181		    (RF_Raid_t *) (node->dagHdr->raidPtr),
182		    node->wakeFunc, node,
183		    node->dagHdr->tracerec, timer);
184		if (logData)
185			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
186		else {
187#if RF_ACC_TRACE > 0
188			RF_ETIMER_STOP(timer);
189			RF_ETIMER_EVAL(timer);
190			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
191#endif
192			(node->wakeFunc) (node, ENOMEM);
193		}
194	}
195}
196
197
198/*****************************************************************************
199 * the execution function associated with a parity log overwrite node
200 ****************************************************************************/
201void
202rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
203{
204	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
205	void *bf = (void *) node->params[1].p;
206	RF_ParityLogData_t *logData;
207#if RF_ACC_TRACE > 0
208	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
209	RF_Etimer_t timer;
210#endif
211
212	if (node->dagHdr->status == rf_enable) {
213#if RF_ACC_TRACE > 0
214		RF_ETIMER_START(timer);
215#endif
216		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, bf,
217(RF_Raid_t *) (node->dagHdr->raidPtr),
218		    node->wakeFunc, node, node->dagHdr->tracerec, timer);
219		if (logData)
220			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
221		else {
222#if RF_ACC_TRACE > 0
223			RF_ETIMER_STOP(timer);
224			RF_ETIMER_EVAL(timer);
225			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
226#endif
227			(node->wakeFunc) (node, ENOMEM);
228		}
229	}
230}
231
232void
233rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node)
234{
235}
236
237void
238rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node)
239{
240}
241#endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
242
243/*****************************************************************************
244 * the execution function associated with a NOP node
245 ****************************************************************************/
246void
247rf_NullNodeFunc(RF_DagNode_t *node)
248{
249	node->status = rf_good;
250	rf_FinishNode(node, RF_THREAD_CONTEXT);
251}
252
253void
254rf_NullNodeUndoFunc(RF_DagNode_t *node)
255{
256	node->status = rf_undone;
257	rf_FinishNode(node, RF_THREAD_CONTEXT);
258}
259
260
261/*****************************************************************************
262 * the execution function associated with a disk-read node
263 ****************************************************************************/
264void
265rf_DiskReadFuncForThreads(RF_DagNode_t *node)
266{
267	RF_DiskQueueData_t *req;
268	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
269	void *bf = (void *) node->params[1].p;
270	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
271	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
272	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
273	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
274	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
275
276	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
277	    bf, parityStripeID, which_ru, node->wakeFunc, node,
278#if RF_ACC_TRACE > 0
279	     node->dagHdr->tracerec,
280#else
281             NULL,
282#endif
283	    (void *) (node->dagHdr->raidPtr), 0, node->dagHdr->bp, PR_NOWAIT);
284	if (!req) {
285		(node->wakeFunc) (node, ENOMEM);
286	} else {
287		node->dagFuncData = (void *) req;
288		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
289	}
290}
291
292
293/*****************************************************************************
294 * the execution function associated with a disk-write node
295 ****************************************************************************/
296void
297rf_DiskWriteFuncForThreads(RF_DagNode_t *node)
298{
299	RF_DiskQueueData_t *req;
300	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
301	void *bf = (void *) node->params[1].p;
302	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
303	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
304	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
305	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
306	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
307
308	/* normal processing (rollaway or forward recovery) begins here */
309	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
310	    bf, parityStripeID, which_ru, node->wakeFunc, node,
311#if RF_ACC_TRACE > 0
312	    node->dagHdr->tracerec,
313#else
314	    NULL,
315#endif
316	    (void *) (node->dagHdr->raidPtr),
317	    0, node->dagHdr->bp, PR_NOWAIT);
318
319	if (!req) {
320		(node->wakeFunc) (node, ENOMEM);
321	} else {
322		node->dagFuncData = (void *) req;
323		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
324	}
325}
326/*****************************************************************************
327 * the undo function for disk nodes
328 * Note:  this is not a proper undo of a write node, only locks are released.
329 *        old data is not restored to disk!
330 ****************************************************************************/
331void
332rf_DiskUndoFunc(RF_DagNode_t *node)
333{
334	RF_DiskQueueData_t *req;
335	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
336	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
337
338	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
339	    0L, 0, NULL, 0L, 0, node->wakeFunc, node,
340#if RF_ACC_TRACE > 0
341	     node->dagHdr->tracerec,
342#else
343	     NULL,
344#endif
345	    (void *) (node->dagHdr->raidPtr),
346	    0, NULL, PR_NOWAIT);
347	if (!req)
348		(node->wakeFunc) (node, ENOMEM);
349	else {
350		node->dagFuncData = (void *) req;
351		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
352	}
353}
354
355/*****************************************************************************
356 * Callback routine for DiskRead and DiskWrite nodes.  When the disk
357 * op completes, the routine is called to set the node status and
358 * inform the execution engine that the node has fired.
359 ****************************************************************************/
360void
361rf_GenericWakeupFunc(void *v, int status)
362{
363	RF_DagNode_t *node = v;
364
365	switch (node->status) {
366	case rf_fired:
367		if (status)
368			node->status = rf_bad;
369		else
370			node->status = rf_good;
371		break;
372	case rf_recover:
373		/* probably should never reach this case */
374		if (status)
375			node->status = rf_panic;
376		else
377			node->status = rf_undone;
378		break;
379	default:
380		printf("rf_GenericWakeupFunc:");
381		printf("node->status is %d,", node->status);
382		printf("status is %d \n", status);
383		RF_PANIC();
384		break;
385	}
386	if (node->dagFuncData)
387		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
388	rf_FinishNode(node, RF_INTR_CONTEXT);
389}
390
391
392/*****************************************************************************
393 * there are three distinct types of xor nodes:
394
395 * A "regular xor" is used in the fault-free case where the access
396 * spans a complete stripe unit.  It assumes that the result buffer is
397 * one full stripe unit in size, and uses the stripe-unit-offset
398 * values that it computes from the PDAs to determine where within the
399 * stripe unit to XOR each argument buffer.
400 *
401 * A "simple xor" is used in the fault-free case where the access
402 * touches only a portion of one (or two, in some cases) stripe
403 * unit(s).  It assumes that all the argument buffers are of the same
404 * size and have the same stripe unit offset.
405 *
406 * A "recovery xor" is used in the degraded-mode case.  It's similar
407 * to the regular xor function except that it takes the failed PDA as
408 * an additional parameter, and uses it to determine what portions of
409 * the argument buffers need to be xor'd into the result buffer, and
410 * where in the result buffer they should go.
411 ****************************************************************************/
412
413/* xor the params together and store the result in the result field.
414 * assume the result field points to a buffer that is the size of one
415 * SU, and use the pda params to determine where within the buffer to
416 * XOR the input buffers.  */
417void
418rf_RegularXorFunc(RF_DagNode_t *node)
419{
420	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
421#if RF_ACC_TRACE > 0
422	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
423	RF_Etimer_t timer;
424#endif
425	int     i, retcode;
426
427	retcode = 0;
428	if (node->dagHdr->status == rf_enable) {
429		/* don't do the XOR if the input is the same as the output */
430#if RF_ACC_TRACE > 0
431		RF_ETIMER_START(timer);
432#endif
433		for (i = 0; i < node->numParams - 1; i += 2)
434			if (node->params[i + 1].p != node->results[0]) {
435				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
436							   (char *) node->params[i + 1].p, (char *) node->results[0]);
437			}
438#if RF_ACC_TRACE > 0
439		RF_ETIMER_STOP(timer);
440		RF_ETIMER_EVAL(timer);
441		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
442#endif
443	}
444	rf_GenericWakeupFunc(node, retcode);	/* call wake func
445						 * explicitly since no
446						 * I/O in this node */
447}
448/* xor the inputs into the result buffer, ignoring placement issues */
449void
450rf_SimpleXorFunc(RF_DagNode_t *node)
451{
452	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
453	int     i, retcode = 0;
454#if RF_ACC_TRACE > 0
455	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
456	RF_Etimer_t timer;
457#endif
458
459	if (node->dagHdr->status == rf_enable) {
460#if RF_ACC_TRACE > 0
461		RF_ETIMER_START(timer);
462#endif
463		/* don't do the XOR if the input is the same as the output */
464		for (i = 0; i < node->numParams - 1; i += 2)
465			if (node->params[i + 1].p != node->results[0]) {
466				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
467				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector));
468			}
469#if RF_ACC_TRACE > 0
470		RF_ETIMER_STOP(timer);
471		RF_ETIMER_EVAL(timer);
472		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
473#endif
474	}
475	rf_GenericWakeupFunc(node, retcode);	/* call wake func
476						 * explicitly since no
477						 * I/O in this node */
478}
479/* this xor is used by the degraded-mode dag functions to recover lost
480 * data.  the second-to-last parameter is the PDA for the failed
481 * portion of the access.  the code here looks at this PDA and assumes
482 * that the xor target buffer is equal in size to the number of
483 * sectors in the failed PDA.  It then uses the other PDAs in the
484 * parameter list to determine where within the target buffer the
485 * corresponding data should be xored.  */
486void
487rf_RecoveryXorFunc(RF_DagNode_t *node)
488{
489	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
490	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
491	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
492	int     i, retcode = 0;
493	RF_PhysDiskAddr_t *pda;
494	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
495	char   *srcbuf, *destbuf;
496#if RF_ACC_TRACE > 0
497	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
498	RF_Etimer_t timer;
499#endif
500
501	if (node->dagHdr->status == rf_enable) {
502#if RF_ACC_TRACE > 0
503		RF_ETIMER_START(timer);
504#endif
505		for (i = 0; i < node->numParams - 2; i += 2)
506			if (node->params[i + 1].p != node->results[0]) {
507				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
508				srcbuf = (char *) node->params[i + 1].p;
509				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
510				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
511				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector));
512			}
513#if RF_ACC_TRACE > 0
514		RF_ETIMER_STOP(timer);
515		RF_ETIMER_EVAL(timer);
516		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
517#endif
518	}
519	rf_GenericWakeupFunc(node, retcode);
520}
521/*****************************************************************************
522 * The next three functions are utilities used by the above
523 * xor-execution functions.
524 ****************************************************************************/
525
526
527/*
528 * this is just a glorified buffer xor.  targbuf points to a buffer
529 * that is one full stripe unit in size.  srcbuf points to a buffer
530 * that may be less than 1 SU, but never more.  When the access
531 * described by pda is one SU in size (which by implication means it's
532 * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf).
533 * When the access is less than one SU in size the XOR occurs on only
534 * the portion of targbuf identified in the pda.  */
535
536int
537rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
538		 char *srcbuf, char *targbuf)
539{
540	char   *targptr;
541	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
542	int     SUOffset = pda->startSector % sectPerSU;
543	int     length, retcode = 0;
544
545	RF_ASSERT(pda->numSector <= sectPerSU);
546
547	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
548	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
549	retcode = rf_bxor(srcbuf, targptr, length);
550	return (retcode);
551}
552/* it really should be the case that the buffer pointers (returned by
553 * malloc) are aligned to the natural word size of the machine, so
554 * this is the only case we optimize for.  The length should always be
555 * a multiple of the sector size, so there should be no problem with
556 * leftover bytes at the end.  */
557int
558rf_bxor(char *src, char *dest, int len)
559{
560	unsigned mask = sizeof(long) - 1, retcode = 0;
561
562	if (!(((unsigned long) src) & mask) &&
563	    !(((unsigned long) dest) & mask) && !(len & mask)) {
564		retcode = rf_longword_bxor((unsigned long *) src,
565					   (unsigned long *) dest,
566					   len >> RF_LONGSHIFT);
567	} else {
568		RF_ASSERT(0);
569	}
570	return (retcode);
571}
572
573/* When XORing in kernel mode, we need to map each user page to kernel
574 * space before we can access it.  We don't want to assume anything
575 * about which input buffers are in kernel/user space, nor about their
576 * alignment, so in each loop we compute the maximum number of bytes
577 * that we can xor without crossing any page boundaries, and do only
578 * this many bytes before the next remap.
579 *
580 * len - is in longwords
581 */
582int
583rf_longword_bxor(unsigned long *src, unsigned long *dest, int len)
584{
585	unsigned long *end = src + len;
586	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
587	unsigned long *pg_src, *pg_dest;   /* per-page source/dest pointers */
588	int     longs_this_time;/* # longwords to xor in the current iteration */
589
590	pg_src = src;
591	pg_dest = dest;
592	if (!pg_src || !pg_dest)
593		return (EFAULT);
594
595	while (len >= 4) {
596		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
597		src += longs_this_time;
598		dest += longs_this_time;
599		len -= longs_this_time;
600		while (longs_this_time >= 4) {
601			d0 = pg_dest[0];
602			d1 = pg_dest[1];
603			d2 = pg_dest[2];
604			d3 = pg_dest[3];
605			s0 = pg_src[0];
606			s1 = pg_src[1];
607			s2 = pg_src[2];
608			s3 = pg_src[3];
609			pg_dest[0] = d0 ^ s0;
610			pg_dest[1] = d1 ^ s1;
611			pg_dest[2] = d2 ^ s2;
612			pg_dest[3] = d3 ^ s3;
613			pg_src += 4;
614			pg_dest += 4;
615			longs_this_time -= 4;
616		}
617		while (longs_this_time > 0) {	/* cannot cross any page
618						 * boundaries here */
619			*pg_dest++ ^= *pg_src++;
620			longs_this_time--;
621		}
622
623		/* either we're done, or we've reached a page boundary on one
624		 * (or possibly both) of the pointers */
625		if (len) {
626			if (RF_PAGE_ALIGNED(src))
627				pg_src = src;
628			if (RF_PAGE_ALIGNED(dest))
629				pg_dest = dest;
630			if (!pg_src || !pg_dest)
631				return (EFAULT);
632		}
633	}
634	while (src < end) {
635		*pg_dest++ ^= *pg_src++;
636		src++;
637		dest++;
638		len--;
639		if (RF_PAGE_ALIGNED(src))
640			pg_src = src;
641		if (RF_PAGE_ALIGNED(dest))
642			pg_dest = dest;
643	}
644	RF_ASSERT(len == 0);
645	return (0);
646}
647
648#if 0
649/*
650   dst = a ^ b ^ c;
651   a may equal dst
652   see comment above longword_bxor
653   len is length in longwords
654*/
655int
656rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b,
657		  unsigned long *c, int len, void *bp)
658{
659	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
660	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
661								 * pointers */
662	int     longs_this_time;/* # longs to xor in the current iteration */
663	char    dst_is_a = 0;
664
665	pg_a = a;
666	pg_b = b;
667	pg_c = c;
668	if (a == dst) {
669		pg_dst = pg_a;
670		dst_is_a = 1;
671	} else {
672		pg_dst = dst;
673	}
674
675	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
676	while ((((unsigned long) pg_dst) & 0x1f)) {
677		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
678		dst++;
679		a++;
680		b++;
681		c++;
682		if (RF_PAGE_ALIGNED(a)) {
683			pg_a = a;
684			if (!pg_a)
685				return (EFAULT);
686		}
687		if (RF_PAGE_ALIGNED(b)) {
688			pg_b = a;
689			if (!pg_b)
690				return (EFAULT);
691		}
692		if (RF_PAGE_ALIGNED(c)) {
693			pg_c = a;
694			if (!pg_c)
695				return (EFAULT);
696		}
697		len--;
698	}
699
700	while (len > 4) {
701		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
702		a += longs_this_time;
703		b += longs_this_time;
704		c += longs_this_time;
705		dst += longs_this_time;
706		len -= longs_this_time;
707		while (longs_this_time >= 4) {
708			a0 = pg_a[0];
709			longs_this_time -= 4;
710
711			a1 = pg_a[1];
712			a2 = pg_a[2];
713
714			a3 = pg_a[3];
715			pg_a += 4;
716
717			b0 = pg_b[0];
718			b1 = pg_b[1];
719
720			b2 = pg_b[2];
721			b3 = pg_b[3];
722			/* start dual issue */
723			a0 ^= b0;
724			b0 = pg_c[0];
725
726			pg_b += 4;
727			a1 ^= b1;
728
729			a2 ^= b2;
730			a3 ^= b3;
731
732			b1 = pg_c[1];
733			a0 ^= b0;
734
735			b2 = pg_c[2];
736			a1 ^= b1;
737
738			b3 = pg_c[3];
739			a2 ^= b2;
740
741			pg_dst[0] = a0;
742			a3 ^= b3;
743			pg_dst[1] = a1;
744			pg_c += 4;
745			pg_dst[2] = a2;
746			pg_dst[3] = a3;
747			pg_dst += 4;
748		}
749		while (longs_this_time > 0) {	/* cannot cross any page
750						 * boundaries here */
751			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
752			longs_this_time--;
753		}
754
755		if (len) {
756			if (RF_PAGE_ALIGNED(a)) {
757				pg_a = a;
758				if (!pg_a)
759					return (EFAULT);
760				if (dst_is_a)
761					pg_dst = pg_a;
762			}
763			if (RF_PAGE_ALIGNED(b)) {
764				pg_b = b;
765				if (!pg_b)
766					return (EFAULT);
767			}
768			if (RF_PAGE_ALIGNED(c)) {
769				pg_c = c;
770				if (!pg_c)
771					return (EFAULT);
772			}
773			if (!dst_is_a)
774				if (RF_PAGE_ALIGNED(dst)) {
775					pg_dst = dst;
776					if (!pg_dst)
777						return (EFAULT);
778				}
779		}
780	}
781	while (len) {
782		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
783		dst++;
784		a++;
785		b++;
786		c++;
787		if (RF_PAGE_ALIGNED(a)) {
788			pg_a = a;
789			if (!pg_a)
790				return (EFAULT);
791			if (dst_is_a)
792				pg_dst = pg_a;
793		}
794		if (RF_PAGE_ALIGNED(b)) {
795			pg_b = b;
796			if (!pg_b)
797				return (EFAULT);
798		}
799		if (RF_PAGE_ALIGNED(c)) {
800			pg_c = c;
801			if (!pg_c)
802				return (EFAULT);
803		}
804		if (!dst_is_a)
805			if (RF_PAGE_ALIGNED(dst)) {
806				pg_dst = dst;
807				if (!pg_dst)
808					return (EFAULT);
809			}
810		len--;
811	}
812	return (0);
813}
814
815int
816rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
817	 unsigned char *c, unsigned long len, void *bp)
818{
819	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
820
821	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
822		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
823}
824#endif
825