rf_dagfuncs.c revision 1.26
1/*	$NetBSD: rf_dagfuncs.c,v 1.26 2006/01/09 01:33:27 oster Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/*
30 * dagfuncs.c -- DAG node execution routines
31 *
32 * Rules:
33 * 1. Every DAG execution function must eventually cause node->status to
34 *    get set to "good" or "bad", and "FinishNode" to be called. In the
35 *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
36 *    the node execution function can do these two things directly. In
37 *    the case of nodes that have to wait for some event (a disk read to
38 *    complete, a lock to be released, etc) to occur before they can
39 *    complete, this is typically achieved by having whatever module
40 *    is doing the operation call GenericWakeupFunc upon completion.
41 * 2. DAG execution functions should check the status in the DAG header
42 *    and NOP out their operations if the status is not "enable". However,
43 *    execution functions that release resources must be sure to release
44 *    them even when they NOP out the function that would use them.
45 *    Functions that acquire resources should go ahead and acquire them
46 *    even when they NOP, so that a downstream release node will not have
47 *    to check to find out whether or not the acquire was suppressed.
48 */
49
50#include <sys/cdefs.h>
51__KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.26 2006/01/09 01:33:27 oster Exp $");
52
53#include <sys/param.h>
54#include <sys/ioctl.h>
55
56#include "rf_archs.h"
57#include "rf_raid.h"
58#include "rf_dag.h"
59#include "rf_layout.h"
60#include "rf_etimer.h"
61#include "rf_acctrace.h"
62#include "rf_diskqueue.h"
63#include "rf_dagfuncs.h"
64#include "rf_general.h"
65#include "rf_engine.h"
66#include "rf_dagutils.h"
67
68#include "rf_kintf.h"
69
70#if RF_INCLUDE_PARITYLOGGING > 0
71#include "rf_paritylog.h"
72#endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
73
74int     (*rf_DiskReadFunc) (RF_DagNode_t *);
75int     (*rf_DiskWriteFunc) (RF_DagNode_t *);
76int     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
77int     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
78int     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
79int     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
80int     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
81
82/*****************************************************************************
83 * main (only) configuration routine for this module
84 ****************************************************************************/
85int
86rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp)
87{
88	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) ||
89		  ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
90	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
91	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
92	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
93	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
94	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
95	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
96	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
97	return (0);
98}
99
100
101
102/*****************************************************************************
103 * the execution function associated with a terminate node
104 ****************************************************************************/
105int
106rf_TerminateFunc(RF_DagNode_t *node)
107{
108	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
109	node->status = rf_good;
110	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
111}
112
113int
114rf_TerminateUndoFunc(RF_DagNode_t *node)
115{
116	return (0);
117}
118
119
120/*****************************************************************************
121 * execution functions associated with a mirror node
122 *
123 * parameters:
124 *
125 * 0 - physical disk addres of data
126 * 1 - buffer for holding read data
127 * 2 - parity stripe ID
128 * 3 - flags
129 * 4 - physical disk address of mirror (parity)
130 *
131 ****************************************************************************/
132
133int
134rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node)
135{
136	/* select the mirror copy with the shortest queue and fill in node
137	 * parameters with physical disk address */
138
139	rf_SelectMirrorDiskIdle(node);
140	return (rf_DiskReadFunc(node));
141}
142
143#if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
144int
145rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node)
146{
147	/* select the mirror copy with the shortest queue and fill in node
148	 * parameters with physical disk address */
149
150	rf_SelectMirrorDiskPartition(node);
151	return (rf_DiskReadFunc(node));
152}
153#endif
154
155int
156rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node)
157{
158	return (0);
159}
160
161
162
163#if RF_INCLUDE_PARITYLOGGING > 0
164/*****************************************************************************
165 * the execution function associated with a parity log update node
166 ****************************************************************************/
167int
168rf_ParityLogUpdateFunc(RF_DagNode_t *node)
169{
170	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
171	caddr_t bf = (caddr_t) node->params[1].p;
172	RF_ParityLogData_t *logData;
173#if RF_ACC_TRACE > 0
174	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
175	RF_Etimer_t timer;
176#endif
177
178	if (node->dagHdr->status == rf_enable) {
179#if RF_ACC_TRACE > 0
180		RF_ETIMER_START(timer);
181#endif
182		logData = rf_CreateParityLogData(RF_UPDATE, pda, bf,
183		    (RF_Raid_t *) (node->dagHdr->raidPtr),
184		    node->wakeFunc, (void *) node,
185		    node->dagHdr->tracerec, timer);
186		if (logData)
187			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
188		else {
189#if RF_ACC_TRACE > 0
190			RF_ETIMER_STOP(timer);
191			RF_ETIMER_EVAL(timer);
192			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
193#endif
194			(node->wakeFunc) (node, ENOMEM);
195		}
196	}
197	return (0);
198}
199
200
201/*****************************************************************************
202 * the execution function associated with a parity log overwrite node
203 ****************************************************************************/
204int
205rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
206{
207	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
208	caddr_t bf = (caddr_t) node->params[1].p;
209	RF_ParityLogData_t *logData;
210#if RF_ACC_TRACE > 0
211	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
212	RF_Etimer_t timer;
213#endif
214
215	if (node->dagHdr->status == rf_enable) {
216#if RF_ACC_TRACE > 0
217		RF_ETIMER_START(timer);
218#endif
219		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, bf,
220(RF_Raid_t *) (node->dagHdr->raidPtr),
221		    node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
222		if (logData)
223			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
224		else {
225#if RF_ACC_TRACE > 0
226			RF_ETIMER_STOP(timer);
227			RF_ETIMER_EVAL(timer);
228			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
229#endif
230			(node->wakeFunc) (node, ENOMEM);
231		}
232	}
233	return (0);
234}
235
236int
237rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node)
238{
239	return (0);
240}
241
242int
243rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node)
244{
245	return (0);
246}
247#endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
248
249/*****************************************************************************
250 * the execution function associated with a NOP node
251 ****************************************************************************/
252int
253rf_NullNodeFunc(RF_DagNode_t *node)
254{
255	node->status = rf_good;
256	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
257}
258
259int
260rf_NullNodeUndoFunc(RF_DagNode_t *node)
261{
262	node->status = rf_undone;
263	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
264}
265
266
267/*****************************************************************************
268 * the execution function associated with a disk-read node
269 ****************************************************************************/
270int
271rf_DiskReadFuncForThreads(RF_DagNode_t *node)
272{
273	RF_DiskQueueData_t *req;
274	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
275	caddr_t bf = (caddr_t) node->params[1].p;
276	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
277	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
278	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
279	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
280	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
281	void   *b_proc = NULL;
282
283	if (node->dagHdr->bp)
284		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
285
286	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
287	    bf, parityStripeID, which_ru,
288	    (int (*) (void *, int)) node->wakeFunc,
289	    node,
290#if RF_ACC_TRACE > 0
291	     node->dagHdr->tracerec,
292#else
293             NULL,
294#endif
295	    (void *) (node->dagHdr->raidPtr), 0, b_proc, PR_NOWAIT);
296	if (!req) {
297		(node->wakeFunc) (node, ENOMEM);
298	} else {
299		node->dagFuncData = (void *) req;
300		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
301	}
302	return (0);
303}
304
305
306/*****************************************************************************
307 * the execution function associated with a disk-write node
308 ****************************************************************************/
309int
310rf_DiskWriteFuncForThreads(RF_DagNode_t *node)
311{
312	RF_DiskQueueData_t *req;
313	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
314	caddr_t bf = (caddr_t) node->params[1].p;
315	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
316	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
317	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
318	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
319	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
320	void   *b_proc = NULL;
321
322	if (node->dagHdr->bp)
323		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
324
325	/* normal processing (rollaway or forward recovery) begins here */
326	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
327	    bf, parityStripeID, which_ru,
328	    (int (*) (void *, int)) node->wakeFunc,
329	    (void *) node,
330#if RF_ACC_TRACE > 0
331	    node->dagHdr->tracerec,
332#else
333	    NULL,
334#endif
335	    (void *) (node->dagHdr->raidPtr),
336	    0, b_proc, PR_NOWAIT);
337
338	if (!req) {
339		(node->wakeFunc) (node, ENOMEM);
340	} else {
341		node->dagFuncData = (void *) req;
342		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
343	}
344
345	return (0);
346}
347/*****************************************************************************
348 * the undo function for disk nodes
349 * Note:  this is not a proper undo of a write node, only locks are released.
350 *        old data is not restored to disk!
351 ****************************************************************************/
352int
353rf_DiskUndoFunc(RF_DagNode_t *node)
354{
355	RF_DiskQueueData_t *req;
356	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
357	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
358
359	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
360	    0L, 0, NULL, 0L, 0,
361	    (int (*) (void *, int)) node->wakeFunc,
362	    (void *) node,
363#if RF_ACC_TRACE > 0
364	     node->dagHdr->tracerec,
365#else
366	     NULL,
367#endif
368	    (void *) (node->dagHdr->raidPtr),
369	    RF_UNLOCK_DISK_QUEUE, NULL, PR_NOWAIT);
370	if (!req)
371		(node->wakeFunc) (node, ENOMEM);
372	else {
373		node->dagFuncData = (void *) req;
374		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
375	}
376
377	return (0);
378}
379
380/*****************************************************************************
381 * Callback routine for DiskRead and DiskWrite nodes.  When the disk
382 * op completes, the routine is called to set the node status and
383 * inform the execution engine that the node has fired.
384 ****************************************************************************/
385int
386rf_GenericWakeupFunc(RF_DagNode_t *node, int status)
387{
388
389	switch (node->status) {
390	case rf_fired:
391		if (status)
392			node->status = rf_bad;
393		else
394			node->status = rf_good;
395		break;
396	case rf_recover:
397		/* probably should never reach this case */
398		if (status)
399			node->status = rf_panic;
400		else
401			node->status = rf_undone;
402		break;
403	default:
404		printf("rf_GenericWakeupFunc:");
405		printf("node->status is %d,", node->status);
406		printf("status is %d \n", status);
407		RF_PANIC();
408		break;
409	}
410	if (node->dagFuncData)
411		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
412	return (rf_FinishNode(node, RF_INTR_CONTEXT));
413}
414
415
416/*****************************************************************************
417 * there are three distinct types of xor nodes:
418
419 * A "regular xor" is used in the fault-free case where the access
420 * spans a complete stripe unit.  It assumes that the result buffer is
421 * one full stripe unit in size, and uses the stripe-unit-offset
422 * values that it computes from the PDAs to determine where within the
423 * stripe unit to XOR each argument buffer.
424 *
425 * A "simple xor" is used in the fault-free case where the access
426 * touches only a portion of one (or two, in some cases) stripe
427 * unit(s).  It assumes that all the argument buffers are of the same
428 * size and have the same stripe unit offset.
429 *
430 * A "recovery xor" is used in the degraded-mode case.  It's similar
431 * to the regular xor function except that it takes the failed PDA as
432 * an additional parameter, and uses it to determine what portions of
433 * the argument buffers need to be xor'd into the result buffer, and
434 * where in the result buffer they should go.
435 ****************************************************************************/
436
437/* xor the params together and store the result in the result field.
438 * assume the result field points to a buffer that is the size of one
439 * SU, and use the pda params to determine where within the buffer to
440 * XOR the input buffers.  */
441int
442rf_RegularXorFunc(RF_DagNode_t *node)
443{
444	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
445#if RF_ACC_TRACE > 0
446	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
447	RF_Etimer_t timer;
448#endif
449	int     i, retcode;
450
451	retcode = 0;
452	if (node->dagHdr->status == rf_enable) {
453		/* don't do the XOR if the input is the same as the output */
454#if RF_ACC_TRACE > 0
455		RF_ETIMER_START(timer);
456#endif
457		for (i = 0; i < node->numParams - 1; i += 2)
458			if (node->params[i + 1].p != node->results[0]) {
459				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
460							   (char *) node->params[i + 1].p, (char *) node->results[0]);
461			}
462#if RF_ACC_TRACE > 0
463		RF_ETIMER_STOP(timer);
464		RF_ETIMER_EVAL(timer);
465		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
466#endif
467	}
468	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
469							 * explicitly since no
470							 * I/O in this node */
471}
472/* xor the inputs into the result buffer, ignoring placement issues */
473int
474rf_SimpleXorFunc(RF_DagNode_t *node)
475{
476	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
477	int     i, retcode = 0;
478#if RF_ACC_TRACE > 0
479	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
480	RF_Etimer_t timer;
481#endif
482
483	if (node->dagHdr->status == rf_enable) {
484#if RF_ACC_TRACE > 0
485		RF_ETIMER_START(timer);
486#endif
487		/* don't do the XOR if the input is the same as the output */
488		for (i = 0; i < node->numParams - 1; i += 2)
489			if (node->params[i + 1].p != node->results[0]) {
490				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
491				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector));
492			}
493#if RF_ACC_TRACE > 0
494		RF_ETIMER_STOP(timer);
495		RF_ETIMER_EVAL(timer);
496		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
497#endif
498	}
499	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
500							 * explicitly since no
501							 * I/O in this node */
502}
503/* this xor is used by the degraded-mode dag functions to recover lost
504 * data.  the second-to-last parameter is the PDA for the failed
505 * portion of the access.  the code here looks at this PDA and assumes
506 * that the xor target buffer is equal in size to the number of
507 * sectors in the failed PDA.  It then uses the other PDAs in the
508 * parameter list to determine where within the target buffer the
509 * corresponding data should be xored.  */
510int
511rf_RecoveryXorFunc(RF_DagNode_t *node)
512{
513	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
514	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
515	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
516	int     i, retcode = 0;
517	RF_PhysDiskAddr_t *pda;
518	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
519	char   *srcbuf, *destbuf;
520#if RF_ACC_TRACE > 0
521	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
522	RF_Etimer_t timer;
523#endif
524
525	if (node->dagHdr->status == rf_enable) {
526#if RF_ACC_TRACE > 0
527		RF_ETIMER_START(timer);
528#endif
529		for (i = 0; i < node->numParams - 2; i += 2)
530			if (node->params[i + 1].p != node->results[0]) {
531				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
532				srcbuf = (char *) node->params[i + 1].p;
533				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
534				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
535				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector));
536			}
537#if RF_ACC_TRACE > 0
538		RF_ETIMER_STOP(timer);
539		RF_ETIMER_EVAL(timer);
540		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
541#endif
542	}
543	return (rf_GenericWakeupFunc(node, retcode));
544}
545/*****************************************************************************
546 * The next three functions are utilities used by the above
547 * xor-execution functions.
548 ****************************************************************************/
549
550
551/*
552 * this is just a glorified buffer xor.  targbuf points to a buffer
553 * that is one full stripe unit in size.  srcbuf points to a buffer
554 * that may be less than 1 SU, but never more.  When the access
555 * described by pda is one SU in size (which by implication means it's
556 * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf).
557 * When the access is less than one SU in size the XOR occurs on only
558 * the portion of targbuf identified in the pda.  */
559
560int
561rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
562		 char *srcbuf, char *targbuf)
563{
564	char   *targptr;
565	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
566	int     SUOffset = pda->startSector % sectPerSU;
567	int     length, retcode = 0;
568
569	RF_ASSERT(pda->numSector <= sectPerSU);
570
571	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
572	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
573	retcode = rf_bxor(srcbuf, targptr, length);
574	return (retcode);
575}
576/* it really should be the case that the buffer pointers (returned by
577 * malloc) are aligned to the natural word size of the machine, so
578 * this is the only case we optimize for.  The length should always be
579 * a multiple of the sector size, so there should be no problem with
580 * leftover bytes at the end.  */
581int
582rf_bxor(char *src, char *dest, int len)
583{
584	unsigned mask = sizeof(long) - 1, retcode = 0;
585
586	if (!(((unsigned long) src) & mask) &&
587	    !(((unsigned long) dest) & mask) && !(len & mask)) {
588		retcode = rf_longword_bxor((unsigned long *) src,
589					   (unsigned long *) dest,
590					   len >> RF_LONGSHIFT);
591	} else {
592		RF_ASSERT(0);
593	}
594	return (retcode);
595}
596
597/* When XORing in kernel mode, we need to map each user page to kernel
598 * space before we can access it.  We don't want to assume anything
599 * about which input buffers are in kernel/user space, nor about their
600 * alignment, so in each loop we compute the maximum number of bytes
601 * that we can xor without crossing any page boundaries, and do only
602 * this many bytes before the next remap.
603 *
604 * len - is in longwords
605 */
606int
607rf_longword_bxor(unsigned long *src, unsigned long *dest, int len)
608{
609	unsigned long *end = src + len;
610	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
611	unsigned long *pg_src, *pg_dest;   /* per-page source/dest pointers */
612	int     longs_this_time;/* # longwords to xor in the current iteration */
613
614	pg_src = src;
615	pg_dest = dest;
616	if (!pg_src || !pg_dest)
617		return (EFAULT);
618
619	while (len >= 4) {
620		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
621		src += longs_this_time;
622		dest += longs_this_time;
623		len -= longs_this_time;
624		while (longs_this_time >= 4) {
625			d0 = pg_dest[0];
626			d1 = pg_dest[1];
627			d2 = pg_dest[2];
628			d3 = pg_dest[3];
629			s0 = pg_src[0];
630			s1 = pg_src[1];
631			s2 = pg_src[2];
632			s3 = pg_src[3];
633			pg_dest[0] = d0 ^ s0;
634			pg_dest[1] = d1 ^ s1;
635			pg_dest[2] = d2 ^ s2;
636			pg_dest[3] = d3 ^ s3;
637			pg_src += 4;
638			pg_dest += 4;
639			longs_this_time -= 4;
640		}
641		while (longs_this_time > 0) {	/* cannot cross any page
642						 * boundaries here */
643			*pg_dest++ ^= *pg_src++;
644			longs_this_time--;
645		}
646
647		/* either we're done, or we've reached a page boundary on one
648		 * (or possibly both) of the pointers */
649		if (len) {
650			if (RF_PAGE_ALIGNED(src))
651				pg_src = src;
652			if (RF_PAGE_ALIGNED(dest))
653				pg_dest = dest;
654			if (!pg_src || !pg_dest)
655				return (EFAULT);
656		}
657	}
658	while (src < end) {
659		*pg_dest++ ^= *pg_src++;
660		src++;
661		dest++;
662		len--;
663		if (RF_PAGE_ALIGNED(src))
664			pg_src = src;
665		if (RF_PAGE_ALIGNED(dest))
666			pg_dest = dest;
667	}
668	RF_ASSERT(len == 0);
669	return (0);
670}
671
672#if 0
673/*
674   dst = a ^ b ^ c;
675   a may equal dst
676   see comment above longword_bxor
677   len is length in longwords
678*/
679int
680rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b,
681		  unsigned long *c, int len, void *bp)
682{
683	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
684	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
685								 * pointers */
686	int     longs_this_time;/* # longs to xor in the current iteration */
687	char    dst_is_a = 0;
688
689	pg_a = a;
690	pg_b = b;
691	pg_c = c;
692	if (a == dst) {
693		pg_dst = pg_a;
694		dst_is_a = 1;
695	} else {
696		pg_dst = dst;
697	}
698
699	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
700	while ((((unsigned long) pg_dst) & 0x1f)) {
701		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
702		dst++;
703		a++;
704		b++;
705		c++;
706		if (RF_PAGE_ALIGNED(a)) {
707			pg_a = a;
708			if (!pg_a)
709				return (EFAULT);
710		}
711		if (RF_PAGE_ALIGNED(b)) {
712			pg_b = a;
713			if (!pg_b)
714				return (EFAULT);
715		}
716		if (RF_PAGE_ALIGNED(c)) {
717			pg_c = a;
718			if (!pg_c)
719				return (EFAULT);
720		}
721		len--;
722	}
723
724	while (len > 4) {
725		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
726		a += longs_this_time;
727		b += longs_this_time;
728		c += longs_this_time;
729		dst += longs_this_time;
730		len -= longs_this_time;
731		while (longs_this_time >= 4) {
732			a0 = pg_a[0];
733			longs_this_time -= 4;
734
735			a1 = pg_a[1];
736			a2 = pg_a[2];
737
738			a3 = pg_a[3];
739			pg_a += 4;
740
741			b0 = pg_b[0];
742			b1 = pg_b[1];
743
744			b2 = pg_b[2];
745			b3 = pg_b[3];
746			/* start dual issue */
747			a0 ^= b0;
748			b0 = pg_c[0];
749
750			pg_b += 4;
751			a1 ^= b1;
752
753			a2 ^= b2;
754			a3 ^= b3;
755
756			b1 = pg_c[1];
757			a0 ^= b0;
758
759			b2 = pg_c[2];
760			a1 ^= b1;
761
762			b3 = pg_c[3];
763			a2 ^= b2;
764
765			pg_dst[0] = a0;
766			a3 ^= b3;
767			pg_dst[1] = a1;
768			pg_c += 4;
769			pg_dst[2] = a2;
770			pg_dst[3] = a3;
771			pg_dst += 4;
772		}
773		while (longs_this_time > 0) {	/* cannot cross any page
774						 * boundaries here */
775			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
776			longs_this_time--;
777		}
778
779		if (len) {
780			if (RF_PAGE_ALIGNED(a)) {
781				pg_a = a;
782				if (!pg_a)
783					return (EFAULT);
784				if (dst_is_a)
785					pg_dst = pg_a;
786			}
787			if (RF_PAGE_ALIGNED(b)) {
788				pg_b = b;
789				if (!pg_b)
790					return (EFAULT);
791			}
792			if (RF_PAGE_ALIGNED(c)) {
793				pg_c = c;
794				if (!pg_c)
795					return (EFAULT);
796			}
797			if (!dst_is_a)
798				if (RF_PAGE_ALIGNED(dst)) {
799					pg_dst = dst;
800					if (!pg_dst)
801						return (EFAULT);
802				}
803		}
804	}
805	while (len) {
806		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
807		dst++;
808		a++;
809		b++;
810		c++;
811		if (RF_PAGE_ALIGNED(a)) {
812			pg_a = a;
813			if (!pg_a)
814				return (EFAULT);
815			if (dst_is_a)
816				pg_dst = pg_a;
817		}
818		if (RF_PAGE_ALIGNED(b)) {
819			pg_b = b;
820			if (!pg_b)
821				return (EFAULT);
822		}
823		if (RF_PAGE_ALIGNED(c)) {
824			pg_c = c;
825			if (!pg_c)
826				return (EFAULT);
827		}
828		if (!dst_is_a)
829			if (RF_PAGE_ALIGNED(dst)) {
830				pg_dst = dst;
831				if (!pg_dst)
832					return (EFAULT);
833			}
834		len--;
835	}
836	return (0);
837}
838
839int
840rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
841	 unsigned char *c, unsigned long len, void *bp)
842{
843	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
844
845	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
846		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
847}
848#endif
849