rf_dagfuncs.c revision 1.22
1/*	$NetBSD: rf_dagfuncs.c,v 1.22 2005/02/12 03:44:41 oster Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/*
30 * dagfuncs.c -- DAG node execution routines
31 *
32 * Rules:
33 * 1. Every DAG execution function must eventually cause node->status to
34 *    get set to "good" or "bad", and "FinishNode" to be called. In the
35 *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
36 *    the node execution function can do these two things directly. In
37 *    the case of nodes that have to wait for some event (a disk read to
38 *    complete, a lock to be released, etc) to occur before they can
39 *    complete, this is typically achieved by having whatever module
40 *    is doing the operation call GenericWakeupFunc upon completion.
41 * 2. DAG execution functions should check the status in the DAG header
42 *    and NOP out their operations if the status is not "enable". However,
43 *    execution functions that release resources must be sure to release
44 *    them even when they NOP out the function that would use them.
45 *    Functions that acquire resources should go ahead and acquire them
46 *    even when they NOP, so that a downstream release node will not have
47 *    to check to find out whether or not the acquire was suppressed.
48 */
49
50#include <sys/cdefs.h>
51__KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.22 2005/02/12 03:44:41 oster Exp $");
52
53#include <sys/param.h>
54#include <sys/ioctl.h>
55
56#include "rf_archs.h"
57#include "rf_raid.h"
58#include "rf_dag.h"
59#include "rf_layout.h"
60#include "rf_etimer.h"
61#include "rf_acctrace.h"
62#include "rf_diskqueue.h"
63#include "rf_dagfuncs.h"
64#include "rf_general.h"
65#include "rf_engine.h"
66#include "rf_dagutils.h"
67
68#include "rf_kintf.h"
69
70#if RF_INCLUDE_PARITYLOGGING > 0
71#include "rf_paritylog.h"
72#endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
73
74int     (*rf_DiskReadFunc) (RF_DagNode_t *);
75int     (*rf_DiskWriteFunc) (RF_DagNode_t *);
76int     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
77int     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
78int     (*rf_DiskUnlockFunc) (RF_DagNode_t *);
79int     (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
80int     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
81int     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
82int     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
83
84/*****************************************************************************
85 * main (only) configuration routine for this module
86 ****************************************************************************/
87int
88rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp)
89{
90	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) ||
91		  ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
92	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
93	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
94	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
95	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
96	rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
97	rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
98	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
99	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
100	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
101	return (0);
102}
103
104
105
106/*****************************************************************************
107 * the execution function associated with a terminate node
108 ****************************************************************************/
109int
110rf_TerminateFunc(RF_DagNode_t *node)
111{
112	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
113	node->status = rf_good;
114	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
115}
116
117int
118rf_TerminateUndoFunc(RF_DagNode_t *node)
119{
120	return (0);
121}
122
123
124/*****************************************************************************
125 * execution functions associated with a mirror node
126 *
127 * parameters:
128 *
129 * 0 - physical disk addres of data
130 * 1 - buffer for holding read data
131 * 2 - parity stripe ID
132 * 3 - flags
133 * 4 - physical disk address of mirror (parity)
134 *
135 ****************************************************************************/
136
137int
138rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node)
139{
140	/* select the mirror copy with the shortest queue and fill in node
141	 * parameters with physical disk address */
142
143	rf_SelectMirrorDiskIdle(node);
144	return (rf_DiskReadFunc(node));
145}
146
147#if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
148int
149rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node)
150{
151	/* select the mirror copy with the shortest queue and fill in node
152	 * parameters with physical disk address */
153
154	rf_SelectMirrorDiskPartition(node);
155	return (rf_DiskReadFunc(node));
156}
157#endif
158
159int
160rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node)
161{
162	return (0);
163}
164
165
166
167#if RF_INCLUDE_PARITYLOGGING > 0
168/*****************************************************************************
169 * the execution function associated with a parity log update node
170 ****************************************************************************/
171int
172rf_ParityLogUpdateFunc(RF_DagNode_t *node)
173{
174	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
175	caddr_t buf = (caddr_t) node->params[1].p;
176	RF_ParityLogData_t *logData;
177#if RF_ACC_TRACE > 0
178	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
179	RF_Etimer_t timer;
180#endif
181
182	if (node->dagHdr->status == rf_enable) {
183#if RF_ACC_TRACE > 0
184		RF_ETIMER_START(timer);
185#endif
186		logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
187		    (RF_Raid_t *) (node->dagHdr->raidPtr),
188		    node->wakeFunc, (void *) node,
189		    node->dagHdr->tracerec, timer);
190		if (logData)
191			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
192		else {
193#if RF_ACC_TRACE > 0
194			RF_ETIMER_STOP(timer);
195			RF_ETIMER_EVAL(timer);
196			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
197#endif
198			(node->wakeFunc) (node, ENOMEM);
199		}
200	}
201	return (0);
202}
203
204
205/*****************************************************************************
206 * the execution function associated with a parity log overwrite node
207 ****************************************************************************/
208int
209rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
210{
211	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
212	caddr_t buf = (caddr_t) node->params[1].p;
213	RF_ParityLogData_t *logData;
214#if RF_ACC_TRACE > 0
215	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
216	RF_Etimer_t timer;
217#endif
218
219	if (node->dagHdr->status == rf_enable) {
220#if RF_ACC_TRACE > 0
221		RF_ETIMER_START(timer);
222#endif
223		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf,
224(RF_Raid_t *) (node->dagHdr->raidPtr),
225		    node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
226		if (logData)
227			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
228		else {
229#if RF_ACC_TRACE > 0
230			RF_ETIMER_STOP(timer);
231			RF_ETIMER_EVAL(timer);
232			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
233#endif
234			(node->wakeFunc) (node, ENOMEM);
235		}
236	}
237	return (0);
238}
239
240int
241rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node)
242{
243	return (0);
244}
245
246int
247rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node)
248{
249	return (0);
250}
251#endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
252
253/*****************************************************************************
254 * the execution function associated with a NOP node
255 ****************************************************************************/
256int
257rf_NullNodeFunc(RF_DagNode_t *node)
258{
259	node->status = rf_good;
260	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
261}
262
263int
264rf_NullNodeUndoFunc(RF_DagNode_t *node)
265{
266	node->status = rf_undone;
267	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
268}
269
270
271/*****************************************************************************
272 * the execution function associated with a disk-read node
273 ****************************************************************************/
274int
275rf_DiskReadFuncForThreads(RF_DagNode_t *node)
276{
277	RF_DiskQueueData_t *req;
278	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
279	caddr_t buf = (caddr_t) node->params[1].p;
280	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
281	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
282	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
283	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
284	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
285	void   *b_proc = NULL;
286
287	if (node->dagHdr->bp)
288		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
289
290	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
291	    buf, parityStripeID, which_ru,
292	    (int (*) (void *, int)) node->wakeFunc,
293	    node,
294#if RF_ACC_TRACE > 0
295	     node->dagHdr->tracerec,
296#else
297             NULL,
298#endif
299	    (void *) (node->dagHdr->raidPtr), 0, b_proc, PR_NOWAIT);
300	if (!req) {
301		(node->wakeFunc) (node, ENOMEM);
302	} else {
303		node->dagFuncData = (void *) req;
304		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
305	}
306	return (0);
307}
308
309
310/*****************************************************************************
311 * the execution function associated with a disk-write node
312 ****************************************************************************/
313int
314rf_DiskWriteFuncForThreads(RF_DagNode_t *node)
315{
316	RF_DiskQueueData_t *req;
317	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
318	caddr_t buf = (caddr_t) node->params[1].p;
319	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
320	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
321	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
322	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
323	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
324	void   *b_proc = NULL;
325
326	if (node->dagHdr->bp)
327		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
328
329	/* normal processing (rollaway or forward recovery) begins here */
330	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
331	    buf, parityStripeID, which_ru,
332	    (int (*) (void *, int)) node->wakeFunc,
333	    (void *) node,
334#if RF_ACC_TRACE > 0
335	    node->dagHdr->tracerec,
336#else
337	    NULL,
338#endif
339	    (void *) (node->dagHdr->raidPtr),
340	    0, b_proc, PR_NOWAIT);
341
342	if (!req) {
343		(node->wakeFunc) (node, ENOMEM);
344	} else {
345		node->dagFuncData = (void *) req;
346		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
347	}
348
349	return (0);
350}
351/*****************************************************************************
352 * the undo function for disk nodes
353 * Note:  this is not a proper undo of a write node, only locks are released.
354 *        old data is not restored to disk!
355 ****************************************************************************/
356int
357rf_DiskUndoFunc(RF_DagNode_t *node)
358{
359	RF_DiskQueueData_t *req;
360	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
361	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
362
363	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
364	    0L, 0, NULL, 0L, 0,
365	    (int (*) (void *, int)) node->wakeFunc,
366	    (void *) node,
367#if RF_ACC_TRACE > 0
368	     node->dagHdr->tracerec,
369#else
370	     NULL,
371#endif
372	    (void *) (node->dagHdr->raidPtr),
373	    RF_UNLOCK_DISK_QUEUE, NULL, PR_NOWAIT);
374	if (!req)
375		(node->wakeFunc) (node, ENOMEM);
376	else {
377		node->dagFuncData = (void *) req;
378		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
379	}
380
381	return (0);
382}
383/*****************************************************************************
384 * the execution function associated with an "unlock disk queue" node
385 ****************************************************************************/
386int
387rf_DiskUnlockFuncForThreads(RF_DagNode_t *node)
388{
389	RF_DiskQueueData_t *req;
390	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
391	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
392
393	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
394	    0L, 0, NULL, 0L, 0,
395	    (int (*) (void *, int)) node->wakeFunc,
396	    (void *) node,
397#if RF_ACC_TRACE > 0
398	    node->dagHdr->tracerec,
399#else
400	    NULL,
401#endif
402	    (void *) (node->dagHdr->raidPtr),
403	    RF_UNLOCK_DISK_QUEUE, NULL, PR_NOWAIT);
404	if (!req)
405		(node->wakeFunc) (node, ENOMEM);
406	else {
407		node->dagFuncData = (void *) req;
408		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
409	}
410
411	return (0);
412}
413/*****************************************************************************
414 * Callback routine for DiskRead and DiskWrite nodes.  When the disk
415 * op completes, the routine is called to set the node status and
416 * inform the execution engine that the node has fired.
417 ****************************************************************************/
418int
419rf_GenericWakeupFunc(RF_DagNode_t *node, int status)
420{
421
422	switch (node->status) {
423	case rf_fired:
424		if (status)
425			node->status = rf_bad;
426		else
427			node->status = rf_good;
428		break;
429	case rf_recover:
430		/* probably should never reach this case */
431		if (status)
432			node->status = rf_panic;
433		else
434			node->status = rf_undone;
435		break;
436	default:
437		printf("rf_GenericWakeupFunc:");
438		printf("node->status is %d,", node->status);
439		printf("status is %d \n", status);
440		RF_PANIC();
441		break;
442	}
443	if (node->dagFuncData)
444		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
445	return (rf_FinishNode(node, RF_INTR_CONTEXT));
446}
447
448
449/*****************************************************************************
450 * there are three distinct types of xor nodes:
451
452 * A "regular xor" is used in the fault-free case where the access
453 * spans a complete stripe unit.  It assumes that the result buffer is
454 * one full stripe unit in size, and uses the stripe-unit-offset
455 * values that it computes from the PDAs to determine where within the
456 * stripe unit to XOR each argument buffer.
457 *
458 * A "simple xor" is used in the fault-free case where the access
459 * touches only a portion of one (or two, in some cases) stripe
460 * unit(s).  It assumes that all the argument buffers are of the same
461 * size and have the same stripe unit offset.
462 *
463 * A "recovery xor" is used in the degraded-mode case.  It's similar
464 * to the regular xor function except that it takes the failed PDA as
465 * an additional parameter, and uses it to determine what portions of
466 * the argument buffers need to be xor'd into the result buffer, and
467 * where in the result buffer they should go.
468 ****************************************************************************/
469
470/* xor the params together and store the result in the result field.
471 * assume the result field points to a buffer that is the size of one
472 * SU, and use the pda params to determine where within the buffer to
473 * XOR the input buffers.  */
474int
475rf_RegularXorFunc(RF_DagNode_t *node)
476{
477	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
478#if RF_ACC_TRACE > 0
479	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
480	RF_Etimer_t timer;
481#endif
482	int     i, retcode;
483
484	retcode = 0;
485	if (node->dagHdr->status == rf_enable) {
486		/* don't do the XOR if the input is the same as the output */
487#if RF_ACC_TRACE > 0
488		RF_ETIMER_START(timer);
489#endif
490		for (i = 0; i < node->numParams - 1; i += 2)
491			if (node->params[i + 1].p != node->results[0]) {
492				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
493							   (char *) node->params[i + 1].p, (char *) node->results[0]);
494			}
495#if RF_ACC_TRACE > 0
496		RF_ETIMER_STOP(timer);
497		RF_ETIMER_EVAL(timer);
498		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
499#endif
500	}
501	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
502							 * explicitly since no
503							 * I/O in this node */
504}
505/* xor the inputs into the result buffer, ignoring placement issues */
506int
507rf_SimpleXorFunc(RF_DagNode_t *node)
508{
509	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
510	int     i, retcode = 0;
511#if RF_ACC_TRACE > 0
512	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
513	RF_Etimer_t timer;
514#endif
515
516	if (node->dagHdr->status == rf_enable) {
517#if RF_ACC_TRACE > 0
518		RF_ETIMER_START(timer);
519#endif
520		/* don't do the XOR if the input is the same as the output */
521		for (i = 0; i < node->numParams - 1; i += 2)
522			if (node->params[i + 1].p != node->results[0]) {
523				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
524				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector));
525			}
526#if RF_ACC_TRACE > 0
527		RF_ETIMER_STOP(timer);
528		RF_ETIMER_EVAL(timer);
529		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
530#endif
531	}
532	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
533							 * explicitly since no
534							 * I/O in this node */
535}
536/* this xor is used by the degraded-mode dag functions to recover lost
537 * data.  the second-to-last parameter is the PDA for the failed
538 * portion of the access.  the code here looks at this PDA and assumes
539 * that the xor target buffer is equal in size to the number of
540 * sectors in the failed PDA.  It then uses the other PDAs in the
541 * parameter list to determine where within the target buffer the
542 * corresponding data should be xored.  */
543int
544rf_RecoveryXorFunc(RF_DagNode_t *node)
545{
546	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
547	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
548	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
549	int     i, retcode = 0;
550	RF_PhysDiskAddr_t *pda;
551	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
552	char   *srcbuf, *destbuf;
553#if RF_ACC_TRACE > 0
554	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
555	RF_Etimer_t timer;
556#endif
557
558	if (node->dagHdr->status == rf_enable) {
559#if RF_ACC_TRACE > 0
560		RF_ETIMER_START(timer);
561#endif
562		for (i = 0; i < node->numParams - 2; i += 2)
563			if (node->params[i + 1].p != node->results[0]) {
564				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
565				srcbuf = (char *) node->params[i + 1].p;
566				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
567				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
568				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector));
569			}
570#if RF_ACC_TRACE > 0
571		RF_ETIMER_STOP(timer);
572		RF_ETIMER_EVAL(timer);
573		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
574#endif
575	}
576	return (rf_GenericWakeupFunc(node, retcode));
577}
578/*****************************************************************************
579 * The next three functions are utilities used by the above
580 * xor-execution functions.
581 ****************************************************************************/
582
583
584/*
585 * this is just a glorified buffer xor.  targbuf points to a buffer
586 * that is one full stripe unit in size.  srcbuf points to a buffer
587 * that may be less than 1 SU, but never more.  When the access
588 * described by pda is one SU in size (which by implication means it's
589 * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf).
590 * When the access is less than one SU in size the XOR occurs on only
591 * the portion of targbuf identified in the pda.  */
592
593int
594rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
595		 char *srcbuf, char *targbuf)
596{
597	char   *targptr;
598	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
599	int     SUOffset = pda->startSector % sectPerSU;
600	int     length, retcode = 0;
601
602	RF_ASSERT(pda->numSector <= sectPerSU);
603
604	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
605	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
606	retcode = rf_bxor(srcbuf, targptr, length);
607	return (retcode);
608}
609/* it really should be the case that the buffer pointers (returned by
610 * malloc) are aligned to the natural word size of the machine, so
611 * this is the only case we optimize for.  The length should always be
612 * a multiple of the sector size, so there should be no problem with
613 * leftover bytes at the end.  */
614int
615rf_bxor(char *src, char *dest, int len)
616{
617	unsigned mask = sizeof(long) - 1, retcode = 0;
618
619	if (!(((unsigned long) src) & mask) &&
620	    !(((unsigned long) dest) & mask) && !(len & mask)) {
621		retcode = rf_longword_bxor((unsigned long *) src,
622					   (unsigned long *) dest,
623					   len >> RF_LONGSHIFT);
624	} else {
625		RF_ASSERT(0);
626	}
627	return (retcode);
628}
629
630/* When XORing in kernel mode, we need to map each user page to kernel
631 * space before we can access it.  We don't want to assume anything
632 * about which input buffers are in kernel/user space, nor about their
633 * alignment, so in each loop we compute the maximum number of bytes
634 * that we can xor without crossing any page boundaries, and do only
635 * this many bytes before the next remap.
636 *
637 * len - is in longwords
638 */
639int
640rf_longword_bxor(unsigned long *src, unsigned long *dest, int len)
641{
642	unsigned long *end = src + len;
643	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
644	unsigned long *pg_src, *pg_dest;   /* per-page source/dest pointers */
645	int     longs_this_time;/* # longwords to xor in the current iteration */
646
647	pg_src = src;
648	pg_dest = dest;
649	if (!pg_src || !pg_dest)
650		return (EFAULT);
651
652	while (len >= 4) {
653		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
654		src += longs_this_time;
655		dest += longs_this_time;
656		len -= longs_this_time;
657		while (longs_this_time >= 4) {
658			d0 = pg_dest[0];
659			d1 = pg_dest[1];
660			d2 = pg_dest[2];
661			d3 = pg_dest[3];
662			s0 = pg_src[0];
663			s1 = pg_src[1];
664			s2 = pg_src[2];
665			s3 = pg_src[3];
666			pg_dest[0] = d0 ^ s0;
667			pg_dest[1] = d1 ^ s1;
668			pg_dest[2] = d2 ^ s2;
669			pg_dest[3] = d3 ^ s3;
670			pg_src += 4;
671			pg_dest += 4;
672			longs_this_time -= 4;
673		}
674		while (longs_this_time > 0) {	/* cannot cross any page
675						 * boundaries here */
676			*pg_dest++ ^= *pg_src++;
677			longs_this_time--;
678		}
679
680		/* either we're done, or we've reached a page boundary on one
681		 * (or possibly both) of the pointers */
682		if (len) {
683			if (RF_PAGE_ALIGNED(src))
684				pg_src = src;
685			if (RF_PAGE_ALIGNED(dest))
686				pg_dest = dest;
687			if (!pg_src || !pg_dest)
688				return (EFAULT);
689		}
690	}
691	while (src < end) {
692		*pg_dest++ ^= *pg_src++;
693		src++;
694		dest++;
695		len--;
696		if (RF_PAGE_ALIGNED(src))
697			pg_src = src;
698		if (RF_PAGE_ALIGNED(dest))
699			pg_dest = dest;
700	}
701	RF_ASSERT(len == 0);
702	return (0);
703}
704
705#if 0
706/*
707   dst = a ^ b ^ c;
708   a may equal dst
709   see comment above longword_bxor
710   len is length in longwords
711*/
712int
713rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b,
714		  unsigned long *c, int len, void *bp)
715{
716	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
717	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
718								 * pointers */
719	int     longs_this_time;/* # longs to xor in the current iteration */
720	char    dst_is_a = 0;
721
722	pg_a = a;
723	pg_b = b;
724	pg_c = c;
725	if (a == dst) {
726		pg_dst = pg_a;
727		dst_is_a = 1;
728	} else {
729		pg_dst = dst;
730	}
731
732	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
733	while ((((unsigned long) pg_dst) & 0x1f)) {
734		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
735		dst++;
736		a++;
737		b++;
738		c++;
739		if (RF_PAGE_ALIGNED(a)) {
740			pg_a = a;
741			if (!pg_a)
742				return (EFAULT);
743		}
744		if (RF_PAGE_ALIGNED(b)) {
745			pg_b = a;
746			if (!pg_b)
747				return (EFAULT);
748		}
749		if (RF_PAGE_ALIGNED(c)) {
750			pg_c = a;
751			if (!pg_c)
752				return (EFAULT);
753		}
754		len--;
755	}
756
757	while (len > 4) {
758		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
759		a += longs_this_time;
760		b += longs_this_time;
761		c += longs_this_time;
762		dst += longs_this_time;
763		len -= longs_this_time;
764		while (longs_this_time >= 4) {
765			a0 = pg_a[0];
766			longs_this_time -= 4;
767
768			a1 = pg_a[1];
769			a2 = pg_a[2];
770
771			a3 = pg_a[3];
772			pg_a += 4;
773
774			b0 = pg_b[0];
775			b1 = pg_b[1];
776
777			b2 = pg_b[2];
778			b3 = pg_b[3];
779			/* start dual issue */
780			a0 ^= b0;
781			b0 = pg_c[0];
782
783			pg_b += 4;
784			a1 ^= b1;
785
786			a2 ^= b2;
787			a3 ^= b3;
788
789			b1 = pg_c[1];
790			a0 ^= b0;
791
792			b2 = pg_c[2];
793			a1 ^= b1;
794
795			b3 = pg_c[3];
796			a2 ^= b2;
797
798			pg_dst[0] = a0;
799			a3 ^= b3;
800			pg_dst[1] = a1;
801			pg_c += 4;
802			pg_dst[2] = a2;
803			pg_dst[3] = a3;
804			pg_dst += 4;
805		}
806		while (longs_this_time > 0) {	/* cannot cross any page
807						 * boundaries here */
808			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
809			longs_this_time--;
810		}
811
812		if (len) {
813			if (RF_PAGE_ALIGNED(a)) {
814				pg_a = a;
815				if (!pg_a)
816					return (EFAULT);
817				if (dst_is_a)
818					pg_dst = pg_a;
819			}
820			if (RF_PAGE_ALIGNED(b)) {
821				pg_b = b;
822				if (!pg_b)
823					return (EFAULT);
824			}
825			if (RF_PAGE_ALIGNED(c)) {
826				pg_c = c;
827				if (!pg_c)
828					return (EFAULT);
829			}
830			if (!dst_is_a)
831				if (RF_PAGE_ALIGNED(dst)) {
832					pg_dst = dst;
833					if (!pg_dst)
834						return (EFAULT);
835				}
836		}
837	}
838	while (len) {
839		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
840		dst++;
841		a++;
842		b++;
843		c++;
844		if (RF_PAGE_ALIGNED(a)) {
845			pg_a = a;
846			if (!pg_a)
847				return (EFAULT);
848			if (dst_is_a)
849				pg_dst = pg_a;
850		}
851		if (RF_PAGE_ALIGNED(b)) {
852			pg_b = b;
853			if (!pg_b)
854				return (EFAULT);
855		}
856		if (RF_PAGE_ALIGNED(c)) {
857			pg_c = c;
858			if (!pg_c)
859				return (EFAULT);
860		}
861		if (!dst_is_a)
862			if (RF_PAGE_ALIGNED(dst)) {
863				pg_dst = dst;
864				if (!pg_dst)
865					return (EFAULT);
866			}
867		len--;
868	}
869	return (0);
870}
871
872int
873rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
874	 unsigned char *c, unsigned long len, void *bp)
875{
876	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
877
878	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
879		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
880}
881#endif
882