rf_dagfuncs.c revision 1.19
1/*	$NetBSD: rf_dagfuncs.c,v 1.19 2004/03/01 23:30:58 oster Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/*
30 * dagfuncs.c -- DAG node execution routines
31 *
32 * Rules:
33 * 1. Every DAG execution function must eventually cause node->status to
34 *    get set to "good" or "bad", and "FinishNode" to be called. In the
35 *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
36 *    the node execution function can do these two things directly. In
37 *    the case of nodes that have to wait for some event (a disk read to
38 *    complete, a lock to be released, etc) to occur before they can
39 *    complete, this is typically achieved by having whatever module
40 *    is doing the operation call GenericWakeupFunc upon completion.
41 * 2. DAG execution functions should check the status in the DAG header
42 *    and NOP out their operations if the status is not "enable". However,
43 *    execution functions that release resources must be sure to release
44 *    them even when they NOP out the function that would use them.
45 *    Functions that acquire resources should go ahead and acquire them
46 *    even when they NOP, so that a downstream release node will not have
47 *    to check to find out whether or not the acquire was suppressed.
48 */
49
50#include <sys/cdefs.h>
51__KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.19 2004/03/01 23:30:58 oster Exp $");
52
53#include <sys/param.h>
54#include <sys/ioctl.h>
55
56#include "rf_archs.h"
57#include "rf_raid.h"
58#include "rf_dag.h"
59#include "rf_layout.h"
60#include "rf_etimer.h"
61#include "rf_acctrace.h"
62#include "rf_diskqueue.h"
63#include "rf_dagfuncs.h"
64#include "rf_general.h"
65#include "rf_engine.h"
66#include "rf_dagutils.h"
67
68#include "rf_kintf.h"
69
70#if RF_INCLUDE_PARITYLOGGING > 0
71#include "rf_paritylog.h"
72#endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
73
74int     (*rf_DiskReadFunc) (RF_DagNode_t *);
75int     (*rf_DiskWriteFunc) (RF_DagNode_t *);
76int     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
77int     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
78int     (*rf_DiskUnlockFunc) (RF_DagNode_t *);
79int     (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
80int     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
81int     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
82int     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
83
84/*****************************************************************************
85 * main (only) configuration routine for this module
86 ****************************************************************************/
87int
88rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp)
89{
90	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) ||
91		  ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
92	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
93	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
94	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
95	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
96	rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
97	rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
98	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
99	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
100	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
101	return (0);
102}
103
104
105
106/*****************************************************************************
107 * the execution function associated with a terminate node
108 ****************************************************************************/
109int
110rf_TerminateFunc(RF_DagNode_t *node)
111{
112	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
113	node->status = rf_good;
114	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
115}
116
117int
118rf_TerminateUndoFunc(RF_DagNode_t *node)
119{
120	return (0);
121}
122
123
124/*****************************************************************************
125 * execution functions associated with a mirror node
126 *
127 * parameters:
128 *
129 * 0 - physical disk addres of data
130 * 1 - buffer for holding read data
131 * 2 - parity stripe ID
132 * 3 - flags
133 * 4 - physical disk address of mirror (parity)
134 *
135 ****************************************************************************/
136
137int
138rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node)
139{
140	/* select the mirror copy with the shortest queue and fill in node
141	 * parameters with physical disk address */
142
143	rf_SelectMirrorDiskIdle(node);
144	return (rf_DiskReadFunc(node));
145}
146
147#if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
148int
149rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node)
150{
151	/* select the mirror copy with the shortest queue and fill in node
152	 * parameters with physical disk address */
153
154	rf_SelectMirrorDiskPartition(node);
155	return (rf_DiskReadFunc(node));
156}
157#endif
158
159int
160rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node)
161{
162	return (0);
163}
164
165
166
167#if RF_INCLUDE_PARITYLOGGING > 0
168/*****************************************************************************
169 * the execution function associated with a parity log update node
170 ****************************************************************************/
171int
172rf_ParityLogUpdateFunc(RF_DagNode_t *node)
173{
174	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
175	caddr_t buf = (caddr_t) node->params[1].p;
176	RF_ParityLogData_t *logData;
177#if RF_ACC_TRACE > 0
178	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
179	RF_Etimer_t timer;
180#endif
181
182	if (node->dagHdr->status == rf_enable) {
183#if RF_ACC_TRACE > 0
184		RF_ETIMER_START(timer);
185#endif
186		logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
187		    (RF_Raid_t *) (node->dagHdr->raidPtr),
188		    node->wakeFunc, (void *) node,
189		    node->dagHdr->tracerec, timer);
190		if (logData)
191			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
192		else {
193#if RF_ACC_TRACE > 0
194			RF_ETIMER_STOP(timer);
195			RF_ETIMER_EVAL(timer);
196			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
197#endif
198			(node->wakeFunc) (node, ENOMEM);
199		}
200	}
201	return (0);
202}
203
204
205/*****************************************************************************
206 * the execution function associated with a parity log overwrite node
207 ****************************************************************************/
208int
209rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
210{
211	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
212	caddr_t buf = (caddr_t) node->params[1].p;
213	RF_ParityLogData_t *logData;
214#if RF_ACC_TRACE > 0
215	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
216	RF_Etimer_t timer;
217#endif
218
219	if (node->dagHdr->status == rf_enable) {
220#if RF_ACC_TRACE > 0
221		RF_ETIMER_START(timer);
222#endif
223		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf,
224(RF_Raid_t *) (node->dagHdr->raidPtr),
225		    node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
226		if (logData)
227			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
228		else {
229#if RF_ACC_TRACE > 0
230			RF_ETIMER_STOP(timer);
231			RF_ETIMER_EVAL(timer);
232			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
233#endif
234			(node->wakeFunc) (node, ENOMEM);
235		}
236	}
237	return (0);
238}
239
240int
241rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node)
242{
243	return (0);
244}
245
246int
247rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node)
248{
249	return (0);
250}
251#endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
252
253/*****************************************************************************
254 * the execution function associated with a NOP node
255 ****************************************************************************/
256int
257rf_NullNodeFunc(RF_DagNode_t *node)
258{
259	node->status = rf_good;
260	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
261}
262
263int
264rf_NullNodeUndoFunc(RF_DagNode_t *node)
265{
266	node->status = rf_undone;
267	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
268}
269
270
271/*****************************************************************************
272 * the execution function associated with a disk-read node
273 ****************************************************************************/
274int
275rf_DiskReadFuncForThreads(RF_DagNode_t *node)
276{
277	RF_DiskQueueData_t *req;
278	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
279	caddr_t buf = (caddr_t) node->params[1].p;
280	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
281	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
282	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
283	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
284	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
285	void   *b_proc = NULL;
286
287	if (node->dagHdr->bp)
288		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
289
290	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
291	    buf, parityStripeID, which_ru,
292	    (int (*) (void *, int)) node->wakeFunc,
293	    node, NULL,
294#if RF_ACC_TRACE > 0
295	     node->dagHdr->tracerec,
296#else
297             NULL,
298#endif
299	    (void *) (node->dagHdr->raidPtr), 0, b_proc);
300	if (!req) {
301		(node->wakeFunc) (node, ENOMEM);
302	} else {
303		node->dagFuncData = (void *) req;
304		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
305	}
306	return (0);
307}
308
309
310/*****************************************************************************
311 * the execution function associated with a disk-write node
312 ****************************************************************************/
313int
314rf_DiskWriteFuncForThreads(RF_DagNode_t *node)
315{
316	RF_DiskQueueData_t *req;
317	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
318	caddr_t buf = (caddr_t) node->params[1].p;
319	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
320	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
321	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
322	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
323	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
324	void   *b_proc = NULL;
325
326	if (node->dagHdr->bp)
327		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
328
329	/* normal processing (rollaway or forward recovery) begins here */
330	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
331	    buf, parityStripeID, which_ru,
332	    (int (*) (void *, int)) node->wakeFunc,
333	    (void *) node, NULL,
334#if RF_ACC_TRACE > 0
335	    node->dagHdr->tracerec,
336#else
337	    NULL,
338#endif
339	    (void *) (node->dagHdr->raidPtr),
340	    0, b_proc);
341
342	if (!req) {
343		(node->wakeFunc) (node, ENOMEM);
344	} else {
345		node->dagFuncData = (void *) req;
346		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
347	}
348
349	return (0);
350}
351/*****************************************************************************
352 * the undo function for disk nodes
353 * Note:  this is not a proper undo of a write node, only locks are released.
354 *        old data is not restored to disk!
355 ****************************************************************************/
356int
357rf_DiskUndoFunc(RF_DagNode_t *node)
358{
359	RF_DiskQueueData_t *req;
360	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
361	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
362
363	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
364	    0L, 0, NULL, 0L, 0,
365	    (int (*) (void *, int)) node->wakeFunc,
366	    (void *) node,
367	    NULL,
368#if RF_ACC_TRACE > 0
369	     node->dagHdr->tracerec,
370#else
371	     NULL,
372#endif
373	    (void *) (node->dagHdr->raidPtr),
374	    RF_UNLOCK_DISK_QUEUE, NULL);
375	if (!req)
376		(node->wakeFunc) (node, ENOMEM);
377	else {
378		node->dagFuncData = (void *) req;
379		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
380	}
381
382	return (0);
383}
384/*****************************************************************************
385 * the execution function associated with an "unlock disk queue" node
386 ****************************************************************************/
387int
388rf_DiskUnlockFuncForThreads(RF_DagNode_t *node)
389{
390	RF_DiskQueueData_t *req;
391	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
392	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
393
394	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
395	    0L, 0, NULL, 0L, 0,
396	    (int (*) (void *, int)) node->wakeFunc,
397	    (void *) node,
398	    NULL,
399#if RF_ACC_TRACE > 0
400	    node->dagHdr->tracerec,
401#else
402	    NULL,
403#endif
404	    (void *) (node->dagHdr->raidPtr),
405	    RF_UNLOCK_DISK_QUEUE, NULL);
406	if (!req)
407		(node->wakeFunc) (node, ENOMEM);
408	else {
409		node->dagFuncData = (void *) req;
410		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
411	}
412
413	return (0);
414}
415/*****************************************************************************
416 * Callback routine for DiskRead and DiskWrite nodes.  When the disk
417 * op completes, the routine is called to set the node status and
418 * inform the execution engine that the node has fired.
419 ****************************************************************************/
420int
421rf_GenericWakeupFunc(RF_DagNode_t *node, int status)
422{
423
424	switch (node->status) {
425	case rf_bwd1:
426		node->status = rf_bwd2;
427		if (node->dagFuncData)
428			rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
429		return (rf_DiskWriteFuncForThreads(node));
430	case rf_fired:
431		if (status)
432			node->status = rf_bad;
433		else
434			node->status = rf_good;
435		break;
436	case rf_recover:
437		/* probably should never reach this case */
438		if (status)
439			node->status = rf_panic;
440		else
441			node->status = rf_undone;
442		break;
443	default:
444		printf("rf_GenericWakeupFunc:");
445		printf("node->status is %d,", node->status);
446		printf("status is %d \n", status);
447		RF_PANIC();
448		break;
449	}
450	if (node->dagFuncData)
451		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
452	return (rf_FinishNode(node, RF_INTR_CONTEXT));
453}
454
455
456/*****************************************************************************
457 * there are three distinct types of xor nodes:
458
459 * A "regular xor" is used in the fault-free case where the access
460 * spans a complete stripe unit.  It assumes that the result buffer is
461 * one full stripe unit in size, and uses the stripe-unit-offset
462 * values that it computes from the PDAs to determine where within the
463 * stripe unit to XOR each argument buffer.
464 *
465 * A "simple xor" is used in the fault-free case where the access
466 * touches only a portion of one (or two, in some cases) stripe
467 * unit(s).  It assumes that all the argument buffers are of the same
468 * size and have the same stripe unit offset.
469 *
470 * A "recovery xor" is used in the degraded-mode case.  It's similar
471 * to the regular xor function except that it takes the failed PDA as
472 * an additional parameter, and uses it to determine what portions of
473 * the argument buffers need to be xor'd into the result buffer, and
474 * where in the result buffer they should go.
475 ****************************************************************************/
476
477/* xor the params together and store the result in the result field.
478 * assume the result field points to a buffer that is the size of one
479 * SU, and use the pda params to determine where within the buffer to
480 * XOR the input buffers.  */
481int
482rf_RegularXorFunc(RF_DagNode_t *node)
483{
484	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
485#if RF_ACC_TRACE > 0
486	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
487	RF_Etimer_t timer;
488#endif
489	int     i, retcode;
490
491	retcode = 0;
492	if (node->dagHdr->status == rf_enable) {
493		/* don't do the XOR if the input is the same as the output */
494#if RF_ACC_TRACE > 0
495		RF_ETIMER_START(timer);
496#endif
497		for (i = 0; i < node->numParams - 1; i += 2)
498			if (node->params[i + 1].p != node->results[0]) {
499				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
500							   (char *) node->params[i + 1].p, (char *) node->results[0]);
501			}
502#if RF_ACC_TRACE > 0
503		RF_ETIMER_STOP(timer);
504		RF_ETIMER_EVAL(timer);
505		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
506#endif
507	}
508	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
509							 * explicitly since no
510							 * I/O in this node */
511}
512/* xor the inputs into the result buffer, ignoring placement issues */
513int
514rf_SimpleXorFunc(RF_DagNode_t *node)
515{
516	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
517	int     i, retcode = 0;
518#if RF_ACC_TRACE > 0
519	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
520	RF_Etimer_t timer;
521#endif
522
523	if (node->dagHdr->status == rf_enable) {
524#if RF_ACC_TRACE > 0
525		RF_ETIMER_START(timer);
526#endif
527		/* don't do the XOR if the input is the same as the output */
528		for (i = 0; i < node->numParams - 1; i += 2)
529			if (node->params[i + 1].p != node->results[0]) {
530				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
531				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector));
532			}
533#if RF_ACC_TRACE > 0
534		RF_ETIMER_STOP(timer);
535		RF_ETIMER_EVAL(timer);
536		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
537#endif
538	}
539	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
540							 * explicitly since no
541							 * I/O in this node */
542}
543/* this xor is used by the degraded-mode dag functions to recover lost
544 * data.  the second-to-last parameter is the PDA for the failed
545 * portion of the access.  the code here looks at this PDA and assumes
546 * that the xor target buffer is equal in size to the number of
547 * sectors in the failed PDA.  It then uses the other PDAs in the
548 * parameter list to determine where within the target buffer the
549 * corresponding data should be xored.  */
550int
551rf_RecoveryXorFunc(RF_DagNode_t *node)
552{
553	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
554	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
555	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
556	int     i, retcode = 0;
557	RF_PhysDiskAddr_t *pda;
558	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
559	char   *srcbuf, *destbuf;
560#if RF_ACC_TRACE > 0
561	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
562	RF_Etimer_t timer;
563#endif
564
565	if (node->dagHdr->status == rf_enable) {
566#if RF_ACC_TRACE > 0
567		RF_ETIMER_START(timer);
568#endif
569		for (i = 0; i < node->numParams - 2; i += 2)
570			if (node->params[i + 1].p != node->results[0]) {
571				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
572				srcbuf = (char *) node->params[i + 1].p;
573				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
574				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
575				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector));
576			}
577#if RF_ACC_TRACE > 0
578		RF_ETIMER_STOP(timer);
579		RF_ETIMER_EVAL(timer);
580		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
581#endif
582	}
583	return (rf_GenericWakeupFunc(node, retcode));
584}
585/*****************************************************************************
586 * The next three functions are utilities used by the above
587 * xor-execution functions.
588 ****************************************************************************/
589
590
591/*
592 * this is just a glorified buffer xor.  targbuf points to a buffer
593 * that is one full stripe unit in size.  srcbuf points to a buffer
594 * that may be less than 1 SU, but never more.  When the access
595 * described by pda is one SU in size (which by implication means it's
596 * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf).
597 * When the access is less than one SU in size the XOR occurs on only
598 * the portion of targbuf identified in the pda.  */
599
600int
601rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
602		 char *srcbuf, char *targbuf)
603{
604	char   *targptr;
605	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
606	int     SUOffset = pda->startSector % sectPerSU;
607	int     length, retcode = 0;
608
609	RF_ASSERT(pda->numSector <= sectPerSU);
610
611	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
612	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
613	retcode = rf_bxor(srcbuf, targptr, length);
614	return (retcode);
615}
616/* it really should be the case that the buffer pointers (returned by
617 * malloc) are aligned to the natural word size of the machine, so
618 * this is the only case we optimize for.  The length should always be
619 * a multiple of the sector size, so there should be no problem with
620 * leftover bytes at the end.  */
621int
622rf_bxor(char *src, char *dest, int len)
623{
624	unsigned mask = sizeof(long) - 1, retcode = 0;
625
626	if (!(((unsigned long) src) & mask) &&
627	    !(((unsigned long) dest) & mask) && !(len & mask)) {
628		retcode = rf_longword_bxor((unsigned long *) src,
629					   (unsigned long *) dest,
630					   len >> RF_LONGSHIFT);
631	} else {
632		RF_ASSERT(0);
633	}
634	return (retcode);
635}
636
637/* When XORing in kernel mode, we need to map each user page to kernel
638 * space before we can access it.  We don't want to assume anything
639 * about which input buffers are in kernel/user space, nor about their
640 * alignment, so in each loop we compute the maximum number of bytes
641 * that we can xor without crossing any page boundaries, and do only
642 * this many bytes before the next remap.
643 *
644 * len - is in longwords
645 */
646int
647rf_longword_bxor(unsigned long *src, unsigned long *dest, int len)
648{
649	unsigned long *end = src + len;
650	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
651	unsigned long *pg_src, *pg_dest;   /* per-page source/dest pointers */
652	int     longs_this_time;/* # longwords to xor in the current iteration */
653
654	pg_src = src;
655	pg_dest = dest;
656	if (!pg_src || !pg_dest)
657		return (EFAULT);
658
659	while (len >= 4) {
660		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
661		src += longs_this_time;
662		dest += longs_this_time;
663		len -= longs_this_time;
664		while (longs_this_time >= 4) {
665			d0 = pg_dest[0];
666			d1 = pg_dest[1];
667			d2 = pg_dest[2];
668			d3 = pg_dest[3];
669			s0 = pg_src[0];
670			s1 = pg_src[1];
671			s2 = pg_src[2];
672			s3 = pg_src[3];
673			pg_dest[0] = d0 ^ s0;
674			pg_dest[1] = d1 ^ s1;
675			pg_dest[2] = d2 ^ s2;
676			pg_dest[3] = d3 ^ s3;
677			pg_src += 4;
678			pg_dest += 4;
679			longs_this_time -= 4;
680		}
681		while (longs_this_time > 0) {	/* cannot cross any page
682						 * boundaries here */
683			*pg_dest++ ^= *pg_src++;
684			longs_this_time--;
685		}
686
687		/* either we're done, or we've reached a page boundary on one
688		 * (or possibly both) of the pointers */
689		if (len) {
690			if (RF_PAGE_ALIGNED(src))
691				pg_src = src;
692			if (RF_PAGE_ALIGNED(dest))
693				pg_dest = dest;
694			if (!pg_src || !pg_dest)
695				return (EFAULT);
696		}
697	}
698	while (src < end) {
699		*pg_dest++ ^= *pg_src++;
700		src++;
701		dest++;
702		len--;
703		if (RF_PAGE_ALIGNED(src))
704			pg_src = src;
705		if (RF_PAGE_ALIGNED(dest))
706			pg_dest = dest;
707	}
708	RF_ASSERT(len == 0);
709	return (0);
710}
711
712#if 0
713/*
714   dst = a ^ b ^ c;
715   a may equal dst
716   see comment above longword_bxor
717   len is length in longwords
718*/
719int
720rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b,
721		  unsigned long *c, int len, void *bp)
722{
723	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
724	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
725								 * pointers */
726	int     longs_this_time;/* # longs to xor in the current iteration */
727	char    dst_is_a = 0;
728
729	pg_a = a;
730	pg_b = b;
731	pg_c = c;
732	if (a == dst) {
733		pg_dst = pg_a;
734		dst_is_a = 1;
735	} else {
736		pg_dst = dst;
737	}
738
739	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
740	while ((((unsigned long) pg_dst) & 0x1f)) {
741		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
742		dst++;
743		a++;
744		b++;
745		c++;
746		if (RF_PAGE_ALIGNED(a)) {
747			pg_a = a;
748			if (!pg_a)
749				return (EFAULT);
750		}
751		if (RF_PAGE_ALIGNED(b)) {
752			pg_b = a;
753			if (!pg_b)
754				return (EFAULT);
755		}
756		if (RF_PAGE_ALIGNED(c)) {
757			pg_c = a;
758			if (!pg_c)
759				return (EFAULT);
760		}
761		len--;
762	}
763
764	while (len > 4) {
765		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
766		a += longs_this_time;
767		b += longs_this_time;
768		c += longs_this_time;
769		dst += longs_this_time;
770		len -= longs_this_time;
771		while (longs_this_time >= 4) {
772			a0 = pg_a[0];
773			longs_this_time -= 4;
774
775			a1 = pg_a[1];
776			a2 = pg_a[2];
777
778			a3 = pg_a[3];
779			pg_a += 4;
780
781			b0 = pg_b[0];
782			b1 = pg_b[1];
783
784			b2 = pg_b[2];
785			b3 = pg_b[3];
786			/* start dual issue */
787			a0 ^= b0;
788			b0 = pg_c[0];
789
790			pg_b += 4;
791			a1 ^= b1;
792
793			a2 ^= b2;
794			a3 ^= b3;
795
796			b1 = pg_c[1];
797			a0 ^= b0;
798
799			b2 = pg_c[2];
800			a1 ^= b1;
801
802			b3 = pg_c[3];
803			a2 ^= b2;
804
805			pg_dst[0] = a0;
806			a3 ^= b3;
807			pg_dst[1] = a1;
808			pg_c += 4;
809			pg_dst[2] = a2;
810			pg_dst[3] = a3;
811			pg_dst += 4;
812		}
813		while (longs_this_time > 0) {	/* cannot cross any page
814						 * boundaries here */
815			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
816			longs_this_time--;
817		}
818
819		if (len) {
820			if (RF_PAGE_ALIGNED(a)) {
821				pg_a = a;
822				if (!pg_a)
823					return (EFAULT);
824				if (dst_is_a)
825					pg_dst = pg_a;
826			}
827			if (RF_PAGE_ALIGNED(b)) {
828				pg_b = b;
829				if (!pg_b)
830					return (EFAULT);
831			}
832			if (RF_PAGE_ALIGNED(c)) {
833				pg_c = c;
834				if (!pg_c)
835					return (EFAULT);
836			}
837			if (!dst_is_a)
838				if (RF_PAGE_ALIGNED(dst)) {
839					pg_dst = dst;
840					if (!pg_dst)
841						return (EFAULT);
842				}
843		}
844	}
845	while (len) {
846		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
847		dst++;
848		a++;
849		b++;
850		c++;
851		if (RF_PAGE_ALIGNED(a)) {
852			pg_a = a;
853			if (!pg_a)
854				return (EFAULT);
855			if (dst_is_a)
856				pg_dst = pg_a;
857		}
858		if (RF_PAGE_ALIGNED(b)) {
859			pg_b = b;
860			if (!pg_b)
861				return (EFAULT);
862		}
863		if (RF_PAGE_ALIGNED(c)) {
864			pg_c = c;
865			if (!pg_c)
866				return (EFAULT);
867		}
868		if (!dst_is_a)
869			if (RF_PAGE_ALIGNED(dst)) {
870				pg_dst = dst;
871				if (!pg_dst)
872					return (EFAULT);
873			}
874		len--;
875	}
876	return (0);
877}
878
879int
880rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
881	 unsigned char *c, unsigned long len, void *bp)
882{
883	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
884
885	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
886		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
887}
888#endif
889