rf_dagdegwr.c revision 1.28
1/*	$NetBSD: rf_dagdegwr.c,v 1.28 2006/04/26 17:08:48 oster Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/*
30 * rf_dagdegwr.c
31 *
32 * code for creating degraded write DAGs
33 *
34 */
35
36#include <sys/cdefs.h>
37__KERNEL_RCSID(0, "$NetBSD: rf_dagdegwr.c,v 1.28 2006/04/26 17:08:48 oster Exp $");
38
39#include <dev/raidframe/raidframevar.h>
40
41#include "rf_raid.h"
42#include "rf_dag.h"
43#include "rf_dagutils.h"
44#include "rf_dagfuncs.h"
45#include "rf_debugMem.h"
46#include "rf_general.h"
47#include "rf_dagdegwr.h"
48#include "rf_map.h"
49
50
51/******************************************************************************
52 *
53 * General comments on DAG creation:
54 *
55 * All DAGs in this file use roll-away error recovery.  Each DAG has a single
56 * commit node, usually called "Cmt."  If an error occurs before the Cmt node
57 * is reached, the execution engine will halt forward execution and work
58 * backward through the graph, executing the undo functions.  Assuming that
59 * each node in the graph prior to the Cmt node are undoable and atomic - or -
60 * does not make changes to permanent state, the graph will fail atomically.
61 * If an error occurs after the Cmt node executes, the engine will roll-forward
62 * through the graph, blindly executing nodes until it reaches the end.
63 * If a graph reaches the end, it is assumed to have completed successfully.
64 *
65 * A graph has only 1 Cmt node.
66 *
67 */
68
69
70/******************************************************************************
71 *
72 * The following wrappers map the standard DAG creation interface to the
73 * DAG creation routines.  Additionally, these wrappers enable experimentation
74 * with new DAG structures by providing an extra level of indirection, allowing
75 * the DAG creation routines to be replaced at this single point.
76 */
77
78static
79RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
80{
81	rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
82	    flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
83}
84
85void
86rf_CreateDegradedWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
87			  RF_DagHeader_t *dag_h, void *bp,
88			  RF_RaidAccessFlags_t flags,
89			  RF_AllocListElem_t *allocList)
90{
91
92	RF_ASSERT(asmap->numDataFailed == 1);
93	dag_h->creator = "DegradedWriteDAG";
94
95	/*
96	 * if the access writes only a portion of the failed unit, and also
97	 * writes some portion of at least one surviving unit, we create two
98	 * DAGs, one for the failed component and one for the non-failed
99	 * component, and do them sequentially.  Note that the fact that we're
100	 * accessing only a portion of the failed unit indicates that the
101	 * access either starts or ends in the failed unit, and hence we need
102	 * create only two dags.  This is inefficient in that the same data or
103	 * parity can get read and written twice using this structure.  I need
104	 * to fix this to do the access all at once.
105	 */
106	RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 &&
107		    asmap->failedPDAs[0]->numSector !=
108			raidPtr->Layout.sectorsPerStripeUnit));
109	rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
110	    allocList);
111}
112
113
114
115/******************************************************************************
116 *
117 * DAG creation code begins here
118 */
119
120
121
122/******************************************************************************
123 *
124 * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
125 * write, which is as follows
126 *
127 *                                        / {Wnq} --\
128 * hdr -> blockNode ->  Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
129 *                  \  {Rod} /            \  Wnd ---/
130 *                                        \ {Wnd} -/
131 *
132 * commit nodes: Xor, Wnd
133 *
134 * IMPORTANT:
135 * This DAG generator does not work for double-degraded archs since it does not
136 * generate Q
137 *
138 * This dag is essentially identical to the large-write dag, except that the
139 * write to the failed data unit is suppressed.
140 *
141 * IMPORTANT:  this dag does not work in the case where the access writes only
142 * a portion of the failed unit, and also writes some portion of at least one
143 * surviving SU.  this case is handled in CreateDegradedWriteDAG above.
144 *
145 * The block & unblock nodes are leftovers from a previous version.  They
146 * do nothing, but I haven't deleted them because it would be a tremendous
147 * effort to put them back in.
148 *
149 * This dag is used whenever a one of the data units in a write has failed.
150 * If it is the parity unit that failed, the nonredundant write dag (below)
151 * is used.
152 *****************************************************************************/
153
154void
155rf_CommonCreateSimpleDegradedWriteDAG(RF_Raid_t *raidPtr,
156				      RF_AccessStripeMap_t *asmap,
157				      RF_DagHeader_t *dag_h, void *bp,
158				      RF_RaidAccessFlags_t flags,
159				      RF_AllocListElem_t *allocList,
160				      int nfaults,
161				      int (*redFunc) (RF_DagNode_t *),
162				      int allowBufferRecycle)
163{
164	int     nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
165	        rdnodesFaked;
166	RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
167	RF_DagNode_t *wndNodes, *rrdNodes, *xorNode, *commitNode;
168	RF_DagNode_t *tmpNode, *tmpwndNode, *tmprrdNode;
169	RF_SectorCount_t sectorsPerSU;
170	RF_ReconUnitNum_t which_ru;
171	char   *xorTargetBuf = NULL;	/* the target buffer for the XOR
172					 * operation */
173	char   overlappingPDAs[RF_MAXCOL];/* a temporary array of flags */
174	RF_AccessStripeMapHeader_t *new_asm_h[2];
175	RF_PhysDiskAddr_t *pda, *parityPDA;
176	RF_StripeNum_t parityStripeID;
177	RF_PhysDiskAddr_t *failedPDA;
178	RF_RaidLayout_t *layoutPtr;
179
180	layoutPtr = &(raidPtr->Layout);
181	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
182	    &which_ru);
183	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
184	/* failedPDA points to the pda within the asm that targets the failed
185	 * disk */
186	failedPDA = asmap->failedPDAs[0];
187
188#if RF_DEBUG_DAG
189	if (rf_dagDebug)
190		printf("[Creating degraded-write DAG]\n");
191#endif
192
193	RF_ASSERT(asmap->numDataFailed == 1);
194	dag_h->creator = "SimpleDegradedWriteDAG";
195
196	/*
197         * Generate two ASMs identifying the surviving data
198         * we need in order to recover the lost data.
199         */
200	/* overlappingPDAs array must be zero'd */
201	memset(overlappingPDAs, 0, RF_MAXCOL);
202	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
203	    &nXorBufs, NULL, overlappingPDAs, allocList);
204
205	/* create all the nodes at once */
206	nWndNodes = asmap->numStripeUnitsAccessed - 1;	/* no access is
207							 * generated for the
208							 * failed pda */
209
210	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
211	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
212	/*
213         * XXX
214         *
215         * There's a bug with a complete stripe overwrite- that means 0 reads
216         * of old data, and the rest of the DAG generation code doesn't like
217         * that. A release is coming, and I don't wanna risk breaking a critical
218         * DAG generator, so here's what I'm gonna do- if there's no read nodes,
219         * I'm gonna fake there being a read node, and I'm gonna swap in a
220         * no-op node in its place (to make all the link-up code happy).
221         * This should be fixed at some point.  --jimz
222         */
223	if (nRrdNodes == 0) {
224		nRrdNodes = 1;
225		rdnodesFaked = 1;
226	} else {
227		rdnodesFaked = 0;
228	}
229	/* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
230	nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
231
232	blockNode = rf_AllocDAGNode();
233	blockNode->list_next = dag_h->nodes;
234	dag_h->nodes = blockNode;
235
236	commitNode = rf_AllocDAGNode();
237	commitNode->list_next = dag_h->nodes;
238	dag_h->nodes = commitNode;
239
240	unblockNode = rf_AllocDAGNode();
241	unblockNode->list_next = dag_h->nodes;
242	dag_h->nodes = unblockNode;
243
244	termNode = rf_AllocDAGNode();
245	termNode->list_next = dag_h->nodes;
246	dag_h->nodes = termNode;
247
248	xorNode = rf_AllocDAGNode();
249	xorNode->list_next = dag_h->nodes;
250	dag_h->nodes = xorNode;
251
252	wnpNode = rf_AllocDAGNode();
253	wnpNode->list_next = dag_h->nodes;
254	dag_h->nodes = wnpNode;
255
256	for (i = 0; i < nWndNodes; i++) {
257		tmpNode = rf_AllocDAGNode();
258		tmpNode->list_next = dag_h->nodes;
259		dag_h->nodes = tmpNode;
260	}
261	wndNodes = dag_h->nodes;
262
263	for (i = 0; i < nRrdNodes; i++) {
264		tmpNode = rf_AllocDAGNode();
265		tmpNode->list_next = dag_h->nodes;
266		dag_h->nodes = tmpNode;
267	}
268	rrdNodes = dag_h->nodes;
269
270#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
271	if (nfaults == 2) {
272		wnqNode = rf_AllocDAGNode();
273		wnqNode->list_next = dag_h->nodes;
274		dag_h->nodes = wnqNode;
275	} else {
276#endif
277		wnqNode = NULL;
278#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
279	}
280#endif
281
282	/* this dag can not commit until all rrd and xor Nodes have completed */
283	dag_h->numCommitNodes = 1;
284	dag_h->numCommits = 0;
285	dag_h->numSuccedents = 1;
286
287	RF_ASSERT(nRrdNodes > 0);
288	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
289	    NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
290	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
291	    NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
292	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
293	    NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
294	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
295	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
296	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
297	    nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
298
299	/*
300         * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
301         * the failed buffer, save a pointer to it so we can use it as the target
302         * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
303         * a buffer is the same size as the failed buffer, it must also be at the
304         * same alignment within the SU.
305         */
306	i = 0;
307	tmprrdNode = rrdNodes;
308	if (new_asm_h[0]) {
309		for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
310		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
311		    i++, pda = pda->next) {
312			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
313			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
314			RF_ASSERT(pda);
315			tmprrdNode->params[0].p = pda;
316			tmprrdNode->params[1].p = pda->bufPtr;
317			tmprrdNode->params[2].v = parityStripeID;
318			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
319			tmprrdNode = tmprrdNode->list_next;
320		}
321	}
322	/* i now equals the number of stripe units accessed in new_asm_h[0] */
323	/* Note that for tmprrdNode, this means a continuation from above, so no need to
324	   assign it anything.. */
325	if (new_asm_h[1]) {
326		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
327		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
328		    j++, pda = pda->next) {
329			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
330			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
331			RF_ASSERT(pda);
332			tmprrdNode->params[0].p = pda;
333			tmprrdNode->params[1].p = pda->bufPtr;
334			tmprrdNode->params[2].v = parityStripeID;
335			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
336			if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
337				xorTargetBuf = pda->bufPtr;
338			tmprrdNode = tmprrdNode->list_next;
339		}
340	}
341	if (rdnodesFaked) {
342		/*
343	         * This is where we'll init that fake noop read node
344	         * (XXX should the wakeup func be different?)
345	         */
346		/* node that rrdNodes will just be a single node... */
347		rf_InitNode(rrdNodes, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
348		    NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
349	}
350	/*
351         * Make a PDA for the parity unit.  The parity PDA should start at
352         * the same offset into the SU as the failed PDA.
353         */
354	/* Danner comment: I don't think this copy is really necessary. We are
355	 * in one of two cases here. (1) The entire failed unit is written.
356	 * Then asmap->parityInfo will describe the entire parity. (2) We are
357	 * only writing a subset of the failed unit and nothing else. Then the
358	 * asmap->parityInfo describes the failed unit and the copy can also
359	 * be avoided. */
360
361	parityPDA = rf_AllocPhysDiskAddr();
362	parityPDA->next = dag_h->pda_cleanup_list;
363	dag_h->pda_cleanup_list = parityPDA;
364	parityPDA->col = asmap->parityInfo->col;
365	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
366	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
367	parityPDA->numSector = failedPDA->numSector;
368
369	if (!xorTargetBuf) {
370		xorTargetBuf = rf_AllocBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
371	}
372	/* init the Wnp node */
373	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
374	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
375	wnpNode->params[0].p = parityPDA;
376	wnpNode->params[1].p = xorTargetBuf;
377	wnpNode->params[2].v = parityStripeID;
378	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
379
380#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
381	/* fill in the Wnq Node */
382	if (nfaults == 2) {
383		{
384			RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
385			    (RF_PhysDiskAddr_t *), allocList);
386			parityPDA->col = asmap->qInfo->col;
387			parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
388			    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
389			parityPDA->numSector = failedPDA->numSector;
390
391			rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
392			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
393			wnqNode->params[0].p = parityPDA;
394			RF_MallocAndAdd(xorNode->results[1],
395			    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
396			wnqNode->params[1].p = xorNode->results[1];
397			wnqNode->params[2].v = parityStripeID;
398			wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
399		}
400	}
401#endif
402	/* fill in the Wnd nodes */
403	tmpwndNode = wndNodes;
404	for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
405		if (pda == failedPDA) {
406			i--;
407			continue;
408		}
409		rf_InitNode(tmpwndNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
410		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
411		RF_ASSERT(pda);
412		tmpwndNode->params[0].p = pda;
413		tmpwndNode->params[1].p = pda->bufPtr;
414		tmpwndNode->params[2].v = parityStripeID;
415		tmpwndNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
416		tmpwndNode = tmpwndNode->list_next;
417	}
418
419	/* fill in the results of the xor node */
420	xorNode->results[0] = xorTargetBuf;
421
422	/* fill in the params of the xor node */
423
424	paramNum = 0;
425	if (rdnodesFaked == 0) {
426		tmprrdNode = rrdNodes;
427		for (i = 0; i < nRrdNodes; i++) {
428			/* all the Rrd nodes need to be xored together */
429			xorNode->params[paramNum++] = tmprrdNode->params[0];
430			xorNode->params[paramNum++] = tmprrdNode->params[1];
431			tmprrdNode = tmprrdNode->list_next;
432		}
433	}
434	tmpwndNode = wndNodes;
435	for (i = 0; i < nWndNodes; i++) {
436		/* any Wnd nodes that overlap the failed access need to be
437		 * xored in */
438		if (overlappingPDAs[i]) {
439			pda = rf_AllocPhysDiskAddr();
440			memcpy((char *) pda, (char *) tmpwndNode->params[0].p, sizeof(RF_PhysDiskAddr_t));
441			/* add it into the pda_cleanup_list *after* the copy, TYVM */
442			pda->next = dag_h->pda_cleanup_list;
443			dag_h->pda_cleanup_list = pda;
444			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
445			xorNode->params[paramNum++].p = pda;
446			xorNode->params[paramNum++].p = pda->bufPtr;
447		}
448		tmpwndNode = tmpwndNode->list_next;
449	}
450
451	/*
452         * Install the failed PDA into the xor param list so that the
453         * new data gets xor'd in.
454         */
455	xorNode->params[paramNum++].p = failedPDA;
456	xorNode->params[paramNum++].p = failedPDA->bufPtr;
457
458	/*
459         * The last 2 params to the recovery xor node are always the failed
460         * PDA and the raidPtr. install the failedPDA even though we have just
461         * done so above. This allows us to use the same XOR function for both
462         * degraded reads and degraded writes.
463         */
464	xorNode->params[paramNum++].p = failedPDA;
465	xorNode->params[paramNum++].p = raidPtr;
466	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
467
468	/*
469         * Code to link nodes begins here
470         */
471
472	/* link header to block node */
473	RF_ASSERT(blockNode->numAntecedents == 0);
474	dag_h->succedents[0] = blockNode;
475
476	/* link block node to rd nodes */
477	RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
478	tmprrdNode = rrdNodes;
479	for (i = 0; i < nRrdNodes; i++) {
480		RF_ASSERT(tmprrdNode->numAntecedents == 1);
481		blockNode->succedents[i] = tmprrdNode;
482		tmprrdNode->antecedents[0] = blockNode;
483		tmprrdNode->antType[0] = rf_control;
484		tmprrdNode = tmprrdNode->list_next;
485	}
486
487	/* link read nodes to xor node */
488	RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
489	tmprrdNode = rrdNodes;
490	for (i = 0; i < nRrdNodes; i++) {
491		RF_ASSERT(tmprrdNode->numSuccedents == 1);
492		tmprrdNode->succedents[0] = xorNode;
493		xorNode->antecedents[i] = tmprrdNode;
494		xorNode->antType[i] = rf_trueData;
495		tmprrdNode = tmprrdNode->list_next;
496	}
497
498	/* link xor node to commit node */
499	RF_ASSERT(xorNode->numSuccedents == 1);
500	RF_ASSERT(commitNode->numAntecedents == 1);
501	xorNode->succedents[0] = commitNode;
502	commitNode->antecedents[0] = xorNode;
503	commitNode->antType[0] = rf_control;
504
505	/* link commit node to wnd nodes */
506	RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
507	tmpwndNode = wndNodes;
508	for (i = 0; i < nWndNodes; i++) {
509		RF_ASSERT(tmpwndNode->numAntecedents == 1);
510		commitNode->succedents[i] = tmpwndNode;
511		tmpwndNode->antecedents[0] = commitNode;
512		tmpwndNode->antType[0] = rf_control;
513		tmpwndNode = tmpwndNode->list_next;
514	}
515
516	/* link the commit node to wnp, wnq nodes */
517	RF_ASSERT(wnpNode->numAntecedents == 1);
518	commitNode->succedents[nWndNodes] = wnpNode;
519	wnpNode->antecedents[0] = commitNode;
520	wnpNode->antType[0] = rf_control;
521#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
522	if (nfaults == 2) {
523		RF_ASSERT(wnqNode->numAntecedents == 1);
524		commitNode->succedents[nWndNodes + 1] = wnqNode;
525		wnqNode->antecedents[0] = commitNode;
526		wnqNode->antType[0] = rf_control;
527	}
528#endif
529	/* link write new data nodes to unblock node */
530	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
531	tmpwndNode = wndNodes;
532	for (i = 0; i < nWndNodes; i++) {
533		RF_ASSERT(tmpwndNode->numSuccedents == 1);
534		tmpwndNode->succedents[0] = unblockNode;
535		unblockNode->antecedents[i] = tmpwndNode;
536		unblockNode->antType[i] = rf_control;
537		tmpwndNode = tmpwndNode->list_next;
538	}
539
540	/* link write new parity node to unblock node */
541	RF_ASSERT(wnpNode->numSuccedents == 1);
542	wnpNode->succedents[0] = unblockNode;
543	unblockNode->antecedents[nWndNodes] = wnpNode;
544	unblockNode->antType[nWndNodes] = rf_control;
545
546#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
547	/* link write new q node to unblock node */
548	if (nfaults == 2) {
549		RF_ASSERT(wnqNode->numSuccedents == 1);
550		wnqNode->succedents[0] = unblockNode;
551		unblockNode->antecedents[nWndNodes + 1] = wnqNode;
552		unblockNode->antType[nWndNodes + 1] = rf_control;
553	}
554#endif
555	/* link unblock node to term node */
556	RF_ASSERT(unblockNode->numSuccedents == 1);
557	RF_ASSERT(termNode->numAntecedents == 1);
558	RF_ASSERT(termNode->numSuccedents == 0);
559	unblockNode->succedents[0] = termNode;
560	termNode->antecedents[0] = unblockNode;
561	termNode->antType[0] = rf_control;
562}
563#define CONS_PDA(if,start,num) \
564  pda_p->col = asmap->if->col; \
565  pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
566  pda_p->numSector = num; \
567  pda_p->next = NULL; \
568  RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
569#if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
570void
571rf_WriteGenerateFailedAccessASMs(
572    RF_Raid_t * raidPtr,
573    RF_AccessStripeMap_t * asmap,
574    RF_PhysDiskAddr_t ** pdap,
575    int *nNodep,
576    RF_PhysDiskAddr_t ** pqpdap,
577    int *nPQNodep,
578    RF_AllocListElem_t * allocList)
579{
580	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
581	int     PDAPerDisk, i;
582	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
583	int     numDataCol = layoutPtr->numDataCol;
584	int     state;
585	unsigned napdas;
586	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
587	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
588	RF_PhysDiskAddr_t *pda_p;
589	RF_RaidAddr_t sosAddr;
590
591	/* determine how many pda's we will have to generate per unaccess
592	 * stripe. If there is only one failed data unit, it is one; if two,
593	 * possibly two, depending wether they overlap. */
594
595	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
596	fone_end = fone_start + fone->numSector;
597
598	if (asmap->numDataFailed == 1) {
599		PDAPerDisk = 1;
600		state = 1;
601		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
602		pda_p = *pqpdap;
603		/* build p */
604		CONS_PDA(parityInfo, fone_start, fone->numSector);
605		pda_p->type = RF_PDA_TYPE_PARITY;
606		pda_p++;
607		/* build q */
608		CONS_PDA(qInfo, fone_start, fone->numSector);
609		pda_p->type = RF_PDA_TYPE_Q;
610	} else {
611		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
612		ftwo_end = ftwo_start + ftwo->numSector;
613		if (fone->numSector + ftwo->numSector > secPerSU) {
614			PDAPerDisk = 1;
615			state = 2;
616			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
617			pda_p = *pqpdap;
618			CONS_PDA(parityInfo, 0, secPerSU);
619			pda_p->type = RF_PDA_TYPE_PARITY;
620			pda_p++;
621			CONS_PDA(qInfo, 0, secPerSU);
622			pda_p->type = RF_PDA_TYPE_Q;
623		} else {
624			PDAPerDisk = 2;
625			state = 3;
626			/* four of them, fone, then ftwo */
627			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
628			pda_p = *pqpdap;
629			CONS_PDA(parityInfo, fone_start, fone->numSector);
630			pda_p->type = RF_PDA_TYPE_PARITY;
631			pda_p++;
632			CONS_PDA(qInfo, fone_start, fone->numSector);
633			pda_p->type = RF_PDA_TYPE_Q;
634			pda_p++;
635			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
636			pda_p->type = RF_PDA_TYPE_PARITY;
637			pda_p++;
638			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
639			pda_p->type = RF_PDA_TYPE_Q;
640		}
641	}
642	/* figure out number of nonaccessed pda */
643	napdas = PDAPerDisk * (numDataCol - 2);
644	*nPQNodep = PDAPerDisk;
645
646	*nNodep = napdas;
647	if (napdas == 0)
648		return;		/* short circuit */
649
650	/* allocate up our list of pda's */
651
652	RF_MallocAndAdd(pda_p, napdas * sizeof(RF_PhysDiskAddr_t),
653			(RF_PhysDiskAddr_t *), allocList);
654	*pdap = pda_p;
655
656	/* linkem together */
657	for (i = 0; i < (napdas - 1); i++)
658		pda_p[i].next = pda_p + (i + 1);
659
660	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
661	for (i = 0; i < numDataCol; i++) {
662		if ((pda_p - (*pdap)) == napdas)
663			continue;
664		pda_p->type = RF_PDA_TYPE_DATA;
665		pda_p->raidAddress = sosAddr + (i * secPerSU);
666		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
667		/* skip over dead disks */
668		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
669			continue;
670		switch (state) {
671		case 1:	/* fone */
672			pda_p->numSector = fone->numSector;
673			pda_p->raidAddress += fone_start;
674			pda_p->startSector += fone_start;
675			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
676			break;
677		case 2:	/* full stripe */
678			pda_p->numSector = secPerSU;
679			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
680			break;
681		case 3:	/* two slabs */
682			pda_p->numSector = fone->numSector;
683			pda_p->raidAddress += fone_start;
684			pda_p->startSector += fone_start;
685			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
686			pda_p++;
687			pda_p->type = RF_PDA_TYPE_DATA;
688			pda_p->raidAddress = sosAddr + (i * secPerSU);
689			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
690			pda_p->numSector = ftwo->numSector;
691			pda_p->raidAddress += ftwo_start;
692			pda_p->startSector += ftwo_start;
693			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
694			break;
695		default:
696			RF_PANIC();
697		}
698		pda_p++;
699	}
700
701	RF_ASSERT(pda_p - *pdap == napdas);
702	return;
703}
704#define DISK_NODE_PDA(node)  ((node)->params[0].p)
705
706#define DISK_NODE_PARAMS(_node_,_p_) \
707  (_node_).params[0].p = _p_ ; \
708  (_node_).params[1].p = (_p_)->bufPtr; \
709  (_node_).params[2].v = parityStripeID; \
710  (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru)
711
712void
713rf_DoubleDegSmallWrite(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
714		       RF_DagHeader_t *dag_h, void *bp,
715		       RF_RaidAccessFlags_t flags,
716		       RF_AllocListElem_t *allocList,
717		       const char *redundantReadNodeName,
718		       const char *redundantWriteNodeName,
719		       const char *recoveryNodeName,
720		       int (*recovFunc) (RF_DagNode_t *))
721{
722	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
723	RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
724	       *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
725	RF_PhysDiskAddr_t *pda, *pqPDAs;
726	RF_PhysDiskAddr_t *npdas;
727	int     nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
728	RF_ReconUnitNum_t which_ru;
729	int     nPQNodes;
730	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
731
732	/* simple small write case - First part looks like a reconstruct-read
733	 * of the failed data units. Then a write of all data units not
734	 * failed. */
735
736
737	/* Hdr | ------Block- /  /         \   Rrd  Rrd ...  Rrd  Rp Rq \  \
738	 * /  -------PQ----- /   \   \ Wud   Wp  WQ	     \    |   /
739	 * --Unblock- | T
740	 *
741	 * Rrd = read recovery data  (potentially none) Wud = write user data
742	 * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
743	 * (could be two)
744	 *
745	 */
746
747	rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
748
749	RF_ASSERT(asmap->numDataFailed == 1);
750
751	nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
752	nReadNodes = nRrdNodes + 2 * nPQNodes;
753	nWriteNodes = nWudNodes + 2 * nPQNodes;
754	nNodes = 4 + nReadNodes + nWriteNodes;
755
756	RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
757	blockNode = nodes;
758	unblockNode = blockNode + 1;
759	termNode = unblockNode + 1;
760	recoveryNode = termNode + 1;
761	rrdNodes = recoveryNode + 1;
762	rpNodes = rrdNodes + nRrdNodes;
763	rqNodes = rpNodes + nPQNodes;
764	wudNodes = rqNodes + nPQNodes;
765	wpNodes = wudNodes + nWudNodes;
766	wqNodes = wpNodes + nPQNodes;
767
768	dag_h->creator = "PQ_DDSimpleSmallWrite";
769	dag_h->numSuccedents = 1;
770	dag_h->succedents[0] = blockNode;
771	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
772	termNode->antecedents[0] = unblockNode;
773	termNode->antType[0] = rf_control;
774
775	/* init the block and unblock nodes */
776	/* The block node has all the read nodes as successors */
777	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
778	for (i = 0; i < nReadNodes; i++)
779		blockNode->succedents[i] = rrdNodes + i;
780
781	/* The unblock node has all the writes as successors */
782	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
783	for (i = 0; i < nWriteNodes; i++) {
784		unblockNode->antecedents[i] = wudNodes + i;
785		unblockNode->antType[i] = rf_control;
786	}
787	unblockNode->succedents[0] = termNode;
788
789#define INIT_READ_NODE(node,name) \
790  rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
791  (node)->succedents[0] = recoveryNode; \
792  (node)->antecedents[0] = blockNode; \
793  (node)->antType[0] = rf_control;
794
795	/* build the read nodes */
796	pda = npdas;
797	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
798		INIT_READ_NODE(rrdNodes + i, "rrd");
799		DISK_NODE_PARAMS(rrdNodes[i], pda);
800	}
801
802	/* read redundancy pdas */
803	pda = pqPDAs;
804	INIT_READ_NODE(rpNodes, "Rp");
805	RF_ASSERT(pda);
806	DISK_NODE_PARAMS(rpNodes[0], pda);
807	pda++;
808	INIT_READ_NODE(rqNodes, redundantReadNodeName);
809	RF_ASSERT(pda);
810	DISK_NODE_PARAMS(rqNodes[0], pda);
811	if (nPQNodes == 2) {
812		pda++;
813		INIT_READ_NODE(rpNodes + 1, "Rp");
814		RF_ASSERT(pda);
815		DISK_NODE_PARAMS(rpNodes[1], pda);
816		pda++;
817		INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
818		RF_ASSERT(pda);
819		DISK_NODE_PARAMS(rqNodes[1], pda);
820	}
821	/* the recovery node has all reads as precedessors and all writes as
822	 * successors. It generates a result for every write P or write Q
823	 * node. As parameters, it takes a pda per read and a pda per stripe
824	 * of user data written. It also takes as the last params the raidPtr
825	 * and asm. For results, it takes PDA for P & Q. */
826
827
828	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
829	    nWriteNodes,	/* succesors */
830	    nReadNodes,		/* preds */
831	    nReadNodes + nWudNodes + 3,	/* params */
832	    2 * nPQNodes,	/* results */
833	    dag_h, recoveryNodeName, allocList);
834
835
836
837	for (i = 0; i < nReadNodes; i++) {
838		recoveryNode->antecedents[i] = rrdNodes + i;
839		recoveryNode->antType[i] = rf_control;
840		recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
841	}
842	for (i = 0; i < nWudNodes; i++) {
843		recoveryNode->succedents[i] = wudNodes + i;
844	}
845	recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
846	recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
847	recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
848
849	for (; i < nWriteNodes; i++)
850		recoveryNode->succedents[i] = wudNodes + i;
851
852	pda = pqPDAs;
853	recoveryNode->results[0] = pda;
854	pda++;
855	recoveryNode->results[1] = pda;
856	if (nPQNodes == 2) {
857		pda++;
858		recoveryNode->results[2] = pda;
859		pda++;
860		recoveryNode->results[3] = pda;
861	}
862	/* fill writes */
863#define INIT_WRITE_NODE(node,name) \
864  rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
865    (node)->succedents[0] = unblockNode; \
866    (node)->antecedents[0] = recoveryNode; \
867    (node)->antType[0] = rf_control;
868
869	pda = asmap->physInfo;
870	for (i = 0; i < nWudNodes; i++) {
871		INIT_WRITE_NODE(wudNodes + i, "Wd");
872		DISK_NODE_PARAMS(wudNodes[i], pda);
873		recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
874		pda = pda->next;
875	}
876	/* write redundancy pdas */
877	pda = pqPDAs;
878	INIT_WRITE_NODE(wpNodes, "Wp");
879	RF_ASSERT(pda);
880	DISK_NODE_PARAMS(wpNodes[0], pda);
881	pda++;
882	INIT_WRITE_NODE(wqNodes, "Wq");
883	RF_ASSERT(pda);
884	DISK_NODE_PARAMS(wqNodes[0], pda);
885	if (nPQNodes == 2) {
886		pda++;
887		INIT_WRITE_NODE(wpNodes + 1, "Wp");
888		RF_ASSERT(pda);
889		DISK_NODE_PARAMS(wpNodes[1], pda);
890		pda++;
891		INIT_WRITE_NODE(wqNodes + 1, "Wq");
892		RF_ASSERT(pda);
893		DISK_NODE_PARAMS(wqNodes[1], pda);
894	}
895}
896#endif   /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
897