rf_dagdegwr.c revision 1.18
1/*	$NetBSD: rf_dagdegwr.c,v 1.18 2004/03/18 16:40:05 oster Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/*
30 * rf_dagdegwr.c
31 *
32 * code for creating degraded write DAGs
33 *
34 */
35
36#include <sys/cdefs.h>
37__KERNEL_RCSID(0, "$NetBSD: rf_dagdegwr.c,v 1.18 2004/03/18 16:40:05 oster Exp $");
38
39#include <dev/raidframe/raidframevar.h>
40
41#include "rf_raid.h"
42#include "rf_dag.h"
43#include "rf_dagutils.h"
44#include "rf_dagfuncs.h"
45#include "rf_debugMem.h"
46#include "rf_general.h"
47#include "rf_dagdegwr.h"
48
49
50/******************************************************************************
51 *
52 * General comments on DAG creation:
53 *
54 * All DAGs in this file use roll-away error recovery.  Each DAG has a single
55 * commit node, usually called "Cmt."  If an error occurs before the Cmt node
56 * is reached, the execution engine will halt forward execution and work
57 * backward through the graph, executing the undo functions.  Assuming that
58 * each node in the graph prior to the Cmt node are undoable and atomic - or -
59 * does not make changes to permanent state, the graph will fail atomically.
60 * If an error occurs after the Cmt node executes, the engine will roll-forward
61 * through the graph, blindly executing nodes until it reaches the end.
62 * If a graph reaches the end, it is assumed to have completed successfully.
63 *
64 * A graph has only 1 Cmt node.
65 *
66 */
67
68
69/******************************************************************************
70 *
71 * The following wrappers map the standard DAG creation interface to the
72 * DAG creation routines.  Additionally, these wrappers enable experimentation
73 * with new DAG structures by providing an extra level of indirection, allowing
74 * the DAG creation routines to be replaced at this single point.
75 */
76
77static
78RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
79{
80	rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
81	    flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
82}
83
84void
85rf_CreateDegradedWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
86			  RF_DagHeader_t *dag_h, void *bp,
87			  RF_RaidAccessFlags_t flags,
88			  RF_AllocListElem_t *allocList)
89{
90
91	RF_ASSERT(asmap->numDataFailed == 1);
92	dag_h->creator = "DegradedWriteDAG";
93
94	/*
95	 * if the access writes only a portion of the failed unit, and also
96	 * writes some portion of at least one surviving unit, we create two
97	 * DAGs, one for the failed component and one for the non-failed
98	 * component, and do them sequentially.  Note that the fact that we're
99	 * accessing only a portion of the failed unit indicates that the
100	 * access either starts or ends in the failed unit, and hence we need
101	 * create only two dags.  This is inefficient in that the same data or
102	 * parity can get read and written twice using this structure.  I need
103	 * to fix this to do the access all at once.
104	 */
105	RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 &&
106		    asmap->failedPDAs[0]->numSector !=
107			raidPtr->Layout.sectorsPerStripeUnit));
108	rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
109	    allocList);
110}
111
112
113
114/******************************************************************************
115 *
116 * DAG creation code begins here
117 */
118
119
120
121/******************************************************************************
122 *
123 * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
124 * write, which is as follows
125 *
126 *                                        / {Wnq} --\
127 * hdr -> blockNode ->  Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
128 *                  \  {Rod} /            \  Wnd ---/
129 *                                        \ {Wnd} -/
130 *
131 * commit nodes: Xor, Wnd
132 *
133 * IMPORTANT:
134 * This DAG generator does not work for double-degraded archs since it does not
135 * generate Q
136 *
137 * This dag is essentially identical to the large-write dag, except that the
138 * write to the failed data unit is suppressed.
139 *
140 * IMPORTANT:  this dag does not work in the case where the access writes only
141 * a portion of the failed unit, and also writes some portion of at least one
142 * surviving SU.  this case is handled in CreateDegradedWriteDAG above.
143 *
144 * The block & unblock nodes are leftovers from a previous version.  They
145 * do nothing, but I haven't deleted them because it would be a tremendous
146 * effort to put them back in.
147 *
148 * This dag is used whenever a one of the data units in a write has failed.
149 * If it is the parity unit that failed, the nonredundant write dag (below)
150 * is used.
151 *****************************************************************************/
152
153void
154rf_CommonCreateSimpleDegradedWriteDAG(RF_Raid_t *raidPtr,
155				      RF_AccessStripeMap_t *asmap,
156				      RF_DagHeader_t *dag_h, void *bp,
157				      RF_RaidAccessFlags_t flags,
158				      RF_AllocListElem_t *allocList,
159				      int nfaults,
160				      int (*redFunc) (RF_DagNode_t *),
161				      int allowBufferRecycle)
162{
163	int     nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
164	        rdnodesFaked;
165	RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
166	RF_DagNode_t *wndNodes, *rrdNodes, *xorNode, *commitNode;
167	RF_DagNode_t *tmpNode, *tmpwndNode, *tmprrdNode;
168	RF_SectorCount_t sectorsPerSU;
169	RF_ReconUnitNum_t which_ru;
170	char   *xorTargetBuf = NULL;	/* the target buffer for the XOR
171					 * operation */
172	char   *overlappingPDAs;/* a temporary array of flags */
173	RF_AccessStripeMapHeader_t *new_asm_h[2];
174	RF_PhysDiskAddr_t *pda, *parityPDA;
175	RF_StripeNum_t parityStripeID;
176	RF_PhysDiskAddr_t *failedPDA;
177	RF_RaidLayout_t *layoutPtr;
178
179	layoutPtr = &(raidPtr->Layout);
180	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
181	    &which_ru);
182	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
183	/* failedPDA points to the pda within the asm that targets the failed
184	 * disk */
185	failedPDA = asmap->failedPDAs[0];
186
187#if RF_DEBUG_DAG
188	if (rf_dagDebug)
189		printf("[Creating degraded-write DAG]\n");
190#endif
191
192	RF_ASSERT(asmap->numDataFailed == 1);
193	dag_h->creator = "SimpleDegradedWriteDAG";
194
195	/*
196         * Generate two ASMs identifying the surviving data
197         * we need in order to recover the lost data.
198         */
199	/* overlappingPDAs array must be zero'd */
200	RF_Malloc(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char), (char *));
201	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
202	    &nXorBufs, NULL, overlappingPDAs, allocList);
203
204	/* create all the nodes at once */
205	nWndNodes = asmap->numStripeUnitsAccessed - 1;	/* no access is
206							 * generated for the
207							 * failed pda */
208
209	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
210	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
211	/*
212         * XXX
213         *
214         * There's a bug with a complete stripe overwrite- that means 0 reads
215         * of old data, and the rest of the DAG generation code doesn't like
216         * that. A release is coming, and I don't wanna risk breaking a critical
217         * DAG generator, so here's what I'm gonna do- if there's no read nodes,
218         * I'm gonna fake there being a read node, and I'm gonna swap in a
219         * no-op node in its place (to make all the link-up code happy).
220         * This should be fixed at some point.  --jimz
221         */
222	if (nRrdNodes == 0) {
223		nRrdNodes = 1;
224		rdnodesFaked = 1;
225	} else {
226		rdnodesFaked = 0;
227	}
228	/* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
229	nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
230
231	blockNode = rf_AllocDAGNode();
232	blockNode->list_next = dag_h->nodes;
233	dag_h->nodes = blockNode;
234
235	commitNode = rf_AllocDAGNode();
236	commitNode->list_next = dag_h->nodes;
237	dag_h->nodes = commitNode;
238
239	unblockNode = rf_AllocDAGNode();
240	unblockNode->list_next = dag_h->nodes;
241	dag_h->nodes = unblockNode;
242
243	termNode = rf_AllocDAGNode();
244	termNode->list_next = dag_h->nodes;
245	dag_h->nodes = termNode;
246
247	xorNode = rf_AllocDAGNode();
248	xorNode->list_next = dag_h->nodes;
249	dag_h->nodes = xorNode;
250
251	wnpNode = rf_AllocDAGNode();
252	wnpNode->list_next = dag_h->nodes;
253	dag_h->nodes = wnpNode;
254
255	for (i = 0; i < nWndNodes; i++) {
256		tmpNode = rf_AllocDAGNode();
257		tmpNode->list_next = dag_h->nodes;
258		dag_h->nodes = tmpNode;
259	}
260	wndNodes = dag_h->nodes;
261
262	for (i = 0; i < nRrdNodes; i++) {
263		tmpNode = rf_AllocDAGNode();
264		tmpNode->list_next = dag_h->nodes;
265		dag_h->nodes = tmpNode;
266	}
267	rrdNodes = dag_h->nodes;
268
269#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
270	if (nfaults == 2) {
271		wnqNode = rf_AllocDAGNode();
272		wnqNode->list_next = dag_h->nodes;
273		dag_h->nodes = wnqNode;
274	} else {
275#endif
276		wnqNode = NULL;
277#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
278	}
279#endif
280	RF_ASSERT(i == nNodes);
281
282	/* this dag can not commit until all rrd and xor Nodes have completed */
283	dag_h->numCommitNodes = 1;
284	dag_h->numCommits = 0;
285	dag_h->numSuccedents = 1;
286
287	RF_ASSERT(nRrdNodes > 0);
288	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
289	    NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
290	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
291	    NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
292	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
293	    NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
294	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
295	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
296	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
297	    nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
298
299	/*
300         * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
301         * the failed buffer, save a pointer to it so we can use it as the target
302         * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
303         * a buffer is the same size as the failed buffer, it must also be at the
304         * same alignment within the SU.
305         */
306	i = 0;
307	tmprrdNode = rrdNodes;
308	if (new_asm_h[0]) {
309		for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
310		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
311		    i++, pda = pda->next) {
312			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
313			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
314			RF_ASSERT(pda);
315			tmprrdNode->params[0].p = pda;
316			tmprrdNode->params[1].p = pda->bufPtr;
317			tmprrdNode->params[2].v = parityStripeID;
318			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
319			tmprrdNode = tmprrdNode->list_next;
320		}
321	}
322	/* i now equals the number of stripe units accessed in new_asm_h[0] */
323	/* Note that for tmprrdNode, this means a continuation from above, so no need to
324	   assign it anything.. */
325	if (new_asm_h[1]) {
326		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
327		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
328		    j++, pda = pda->next) {
329			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
330			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
331			RF_ASSERT(pda);
332			tmprrdNode->params[0].p = pda;
333			tmprrdNode->params[1].p = pda->bufPtr;
334			tmprrdNode->params[2].v = parityStripeID;
335			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
336			if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
337				xorTargetBuf = pda->bufPtr;
338			tmprrdNode = tmprrdNode->list_next;
339		}
340	}
341	if (rdnodesFaked) {
342		/*
343	         * This is where we'll init that fake noop read node
344	         * (XXX should the wakeup func be different?)
345	         */
346		/* node that rrdNodes will just be a single node... */
347		rf_InitNode(rrdNodes, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
348		    NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
349	}
350	/*
351         * Make a PDA for the parity unit.  The parity PDA should start at
352         * the same offset into the SU as the failed PDA.
353         */
354	/* Danner comment: I don't think this copy is really necessary. We are
355	 * in one of two cases here. (1) The entire failed unit is written.
356	 * Then asmap->parityInfo will describe the entire parity. (2) We are
357	 * only writing a subset of the failed unit and nothing else. Then the
358	 * asmap->parityInfo describes the failed unit and the copy can also
359	 * be avoided. */
360
361	RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
362	parityPDA->col = asmap->parityInfo->col;
363	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
364	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
365	parityPDA->numSector = failedPDA->numSector;
366
367	if (!xorTargetBuf) {
368		RF_MallocAndAdd(xorTargetBuf,
369		    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
370	}
371	/* init the Wnp node */
372	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
373	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
374	wnpNode->params[0].p = parityPDA;
375	wnpNode->params[1].p = xorTargetBuf;
376	wnpNode->params[2].v = parityStripeID;
377	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
378
379#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
380	/* fill in the Wnq Node */
381	if (nfaults == 2) {
382		{
383			RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
384			    (RF_PhysDiskAddr_t *), allocList);
385			parityPDA->col = asmap->qInfo->col;
386			parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
387			    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
388			parityPDA->numSector = failedPDA->numSector;
389
390			rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
391			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
392			wnqNode->params[0].p = parityPDA;
393			RF_MallocAndAdd(xorNode->results[1],
394			    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
395			wnqNode->params[1].p = xorNode->results[1];
396			wnqNode->params[2].v = parityStripeID;
397			wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
398		}
399	}
400#endif
401	/* fill in the Wnd nodes */
402	tmpwndNode = wndNodes;
403	for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
404		if (pda == failedPDA) {
405			i--;
406			continue;
407		}
408		rf_InitNode(tmpwndNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
409		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
410		RF_ASSERT(pda);
411		tmpwndNode->params[0].p = pda;
412		tmpwndNode->params[1].p = pda->bufPtr;
413		tmpwndNode->params[2].v = parityStripeID;
414		tmpwndNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
415		tmpwndNode = tmpwndNode->list_next;
416	}
417
418	/* fill in the results of the xor node */
419	xorNode->results[0] = xorTargetBuf;
420
421	/* fill in the params of the xor node */
422
423	paramNum = 0;
424	if (rdnodesFaked == 0) {
425		tmprrdNode = rrdNodes;
426		for (i = 0; i < nRrdNodes; i++) {
427			/* all the Rrd nodes need to be xored together */
428			xorNode->params[paramNum++] = tmprrdNode->params[0];
429			xorNode->params[paramNum++] = tmprrdNode->params[1];
430			tmprrdNode = tmprrdNode->list_next;
431		}
432	}
433	tmpwndNode = wndNodes;
434	for (i = 0; i < nWndNodes; i++) {
435		/* any Wnd nodes that overlap the failed access need to be
436		 * xored in */
437		if (overlappingPDAs[i]) {
438			RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
439			memcpy((char *) pda, (char *) tmpwndNode->params[0].p, sizeof(RF_PhysDiskAddr_t));
440			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
441			xorNode->params[paramNum++].p = pda;
442			xorNode->params[paramNum++].p = pda->bufPtr;
443		}
444		tmpwndNode = tmpwndNode->list_next;
445	}
446	RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
447
448	/*
449         * Install the failed PDA into the xor param list so that the
450         * new data gets xor'd in.
451         */
452	xorNode->params[paramNum++].p = failedPDA;
453	xorNode->params[paramNum++].p = failedPDA->bufPtr;
454
455	/*
456         * The last 2 params to the recovery xor node are always the failed
457         * PDA and the raidPtr. install the failedPDA even though we have just
458         * done so above. This allows us to use the same XOR function for both
459         * degraded reads and degraded writes.
460         */
461	xorNode->params[paramNum++].p = failedPDA;
462	xorNode->params[paramNum++].p = raidPtr;
463	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
464
465	/*
466         * Code to link nodes begins here
467         */
468
469	/* link header to block node */
470	RF_ASSERT(blockNode->numAntecedents == 0);
471	dag_h->succedents[0] = blockNode;
472
473	/* link block node to rd nodes */
474	RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
475	tmprrdNode = rrdNodes;
476	for (i = 0; i < nRrdNodes; i++) {
477		RF_ASSERT(tmprrdNode->numAntecedents == 1);
478		blockNode->succedents[i] = tmprrdNode;
479		tmprrdNode->antecedents[0] = blockNode;
480		tmprrdNode->antType[0] = rf_control;
481		tmprrdNode = tmprrdNode->list_next;
482	}
483
484	/* link read nodes to xor node */
485	RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
486	tmprrdNode = rrdNodes;
487	for (i = 0; i < nRrdNodes; i++) {
488		RF_ASSERT(tmprrdNode->numSuccedents == 1);
489		tmprrdNode->succedents[0] = xorNode;
490		xorNode->antecedents[i] = tmprrdNode;
491		xorNode->antType[i] = rf_trueData;
492		tmprrdNode = tmprrdNode->list_next;
493	}
494
495	/* link xor node to commit node */
496	RF_ASSERT(xorNode->numSuccedents == 1);
497	RF_ASSERT(commitNode->numAntecedents == 1);
498	xorNode->succedents[0] = commitNode;
499	commitNode->antecedents[0] = xorNode;
500	commitNode->antType[0] = rf_control;
501
502	/* link commit node to wnd nodes */
503	RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
504	tmpwndNode = wndNodes;
505	for (i = 0; i < nWndNodes; i++) {
506		RF_ASSERT(tmpwndNode->numAntecedents == 1);
507		commitNode->succedents[i] = tmpwndNode;
508		tmpwndNode->antecedents[0] = commitNode;
509		tmpwndNode->antType[0] = rf_control;
510	}
511
512	/* link the commit node to wnp, wnq nodes */
513	RF_ASSERT(wnpNode->numAntecedents == 1);
514	commitNode->succedents[nWndNodes] = wnpNode;
515	wnpNode->antecedents[0] = commitNode;
516	wnpNode->antType[0] = rf_control;
517#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
518	if (nfaults == 2) {
519		RF_ASSERT(wnqNode->numAntecedents == 1);
520		commitNode->succedents[nWndNodes + 1] = wnqNode;
521		wnqNode->antecedents[0] = commitNode;
522		wnqNode->antType[0] = rf_control;
523	}
524#endif
525	/* link write new data nodes to unblock node */
526	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
527	tmpwndNode = wndNodes;
528	for (i = 0; i < nWndNodes; i++) {
529		RF_ASSERT(tmpwndNode->numSuccedents == 1);
530		tmpwndNode->succedents[0] = unblockNode;
531		unblockNode->antecedents[i] = tmpwndNode;
532		unblockNode->antType[i] = rf_control;
533	}
534
535	/* link write new parity node to unblock node */
536	RF_ASSERT(wnpNode->numSuccedents == 1);
537	wnpNode->succedents[0] = unblockNode;
538	unblockNode->antecedents[nWndNodes] = wnpNode;
539	unblockNode->antType[nWndNodes] = rf_control;
540
541#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
542	/* link write new q node to unblock node */
543	if (nfaults == 2) {
544		RF_ASSERT(wnqNode->numSuccedents == 1);
545		wnqNode->succedents[0] = unblockNode;
546		unblockNode->antecedents[nWndNodes + 1] = wnqNode;
547		unblockNode->antType[nWndNodes + 1] = rf_control;
548	}
549#endif
550	/* link unblock node to term node */
551	RF_ASSERT(unblockNode->numSuccedents == 1);
552	RF_ASSERT(termNode->numAntecedents == 1);
553	RF_ASSERT(termNode->numSuccedents == 0);
554	unblockNode->succedents[0] = termNode;
555	termNode->antecedents[0] = unblockNode;
556	termNode->antType[0] = rf_control;
557}
558#define CONS_PDA(if,start,num) \
559  pda_p->col = asmap->if->col; \
560  pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
561  pda_p->numSector = num; \
562  pda_p->next = NULL; \
563  RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
564#if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
565void
566rf_WriteGenerateFailedAccessASMs(
567    RF_Raid_t * raidPtr,
568    RF_AccessStripeMap_t * asmap,
569    RF_PhysDiskAddr_t ** pdap,
570    int *nNodep,
571    RF_PhysDiskAddr_t ** pqpdap,
572    int *nPQNodep,
573    RF_AllocListElem_t * allocList)
574{
575	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
576	int     PDAPerDisk, i;
577	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
578	int     numDataCol = layoutPtr->numDataCol;
579	int     state;
580	unsigned napdas;
581	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
582	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
583	RF_PhysDiskAddr_t *pda_p;
584	RF_RaidAddr_t sosAddr;
585
586	/* determine how many pda's we will have to generate per unaccess
587	 * stripe. If there is only one failed data unit, it is one; if two,
588	 * possibly two, depending wether they overlap. */
589
590	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
591	fone_end = fone_start + fone->numSector;
592
593	if (asmap->numDataFailed == 1) {
594		PDAPerDisk = 1;
595		state = 1;
596		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
597		pda_p = *pqpdap;
598		/* build p */
599		CONS_PDA(parityInfo, fone_start, fone->numSector);
600		pda_p->type = RF_PDA_TYPE_PARITY;
601		pda_p++;
602		/* build q */
603		CONS_PDA(qInfo, fone_start, fone->numSector);
604		pda_p->type = RF_PDA_TYPE_Q;
605	} else {
606		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
607		ftwo_end = ftwo_start + ftwo->numSector;
608		if (fone->numSector + ftwo->numSector > secPerSU) {
609			PDAPerDisk = 1;
610			state = 2;
611			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
612			pda_p = *pqpdap;
613			CONS_PDA(parityInfo, 0, secPerSU);
614			pda_p->type = RF_PDA_TYPE_PARITY;
615			pda_p++;
616			CONS_PDA(qInfo, 0, secPerSU);
617			pda_p->type = RF_PDA_TYPE_Q;
618		} else {
619			PDAPerDisk = 2;
620			state = 3;
621			/* four of them, fone, then ftwo */
622			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
623			pda_p = *pqpdap;
624			CONS_PDA(parityInfo, fone_start, fone->numSector);
625			pda_p->type = RF_PDA_TYPE_PARITY;
626			pda_p++;
627			CONS_PDA(qInfo, fone_start, fone->numSector);
628			pda_p->type = RF_PDA_TYPE_Q;
629			pda_p++;
630			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
631			pda_p->type = RF_PDA_TYPE_PARITY;
632			pda_p++;
633			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
634			pda_p->type = RF_PDA_TYPE_Q;
635		}
636	}
637	/* figure out number of nonaccessed pda */
638	napdas = PDAPerDisk * (numDataCol - 2);
639	*nPQNodep = PDAPerDisk;
640
641	*nNodep = napdas;
642	if (napdas == 0)
643		return;		/* short circuit */
644
645	/* allocate up our list of pda's */
646
647	RF_MallocAndAdd(pda_p, napdas * sizeof(RF_PhysDiskAddr_t),
648			(RF_PhysDiskAddr_t *), allocList);
649	*pdap = pda_p;
650
651	/* linkem together */
652	for (i = 0; i < (napdas - 1); i++)
653		pda_p[i].next = pda_p + (i + 1);
654
655	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
656	for (i = 0; i < numDataCol; i++) {
657		if ((pda_p - (*pdap)) == napdas)
658			continue;
659		pda_p->type = RF_PDA_TYPE_DATA;
660		pda_p->raidAddress = sosAddr + (i * secPerSU);
661		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
662		/* skip over dead disks */
663		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
664			continue;
665		switch (state) {
666		case 1:	/* fone */
667			pda_p->numSector = fone->numSector;
668			pda_p->raidAddress += fone_start;
669			pda_p->startSector += fone_start;
670			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
671			break;
672		case 2:	/* full stripe */
673			pda_p->numSector = secPerSU;
674			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
675			break;
676		case 3:	/* two slabs */
677			pda_p->numSector = fone->numSector;
678			pda_p->raidAddress += fone_start;
679			pda_p->startSector += fone_start;
680			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
681			pda_p++;
682			pda_p->type = RF_PDA_TYPE_DATA;
683			pda_p->raidAddress = sosAddr + (i * secPerSU);
684			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
685			pda_p->numSector = ftwo->numSector;
686			pda_p->raidAddress += ftwo_start;
687			pda_p->startSector += ftwo_start;
688			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
689			break;
690		default:
691			RF_PANIC();
692		}
693		pda_p++;
694	}
695
696	RF_ASSERT(pda_p - *pdap == napdas);
697	return;
698}
699#define DISK_NODE_PDA(node)  ((node)->params[0].p)
700
701#define DISK_NODE_PARAMS(_node_,_p_) \
702  (_node_).params[0].p = _p_ ; \
703  (_node_).params[1].p = (_p_)->bufPtr; \
704  (_node_).params[2].v = parityStripeID; \
705  (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru)
706
707void
708rf_DoubleDegSmallWrite(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
709		       RF_DagHeader_t *dag_h, void *bp,
710		       RF_RaidAccessFlags_t flags,
711		       RF_AllocListElem_t *allocList,
712		       char *redundantReadNodeName,
713		       char *redundantWriteNodeName,
714		       char *recoveryNodeName,
715		       int (*recovFunc) (RF_DagNode_t *))
716{
717	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
718	RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
719	       *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
720	RF_PhysDiskAddr_t *pda, *pqPDAs;
721	RF_PhysDiskAddr_t *npdas;
722	int     nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
723	RF_ReconUnitNum_t which_ru;
724	int     nPQNodes;
725	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
726
727	/* simple small write case - First part looks like a reconstruct-read
728	 * of the failed data units. Then a write of all data units not
729	 * failed. */
730
731
732	/* Hdr | ------Block- /  /         \   Rrd  Rrd ...  Rrd  Rp Rq \  \
733	 * /  -------PQ----- /   \   \ Wud   Wp  WQ	     \    |   /
734	 * --Unblock- | T
735	 *
736	 * Rrd = read recovery data  (potentially none) Wud = write user data
737	 * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
738	 * (could be two)
739	 *
740	 */
741
742	rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
743
744	RF_ASSERT(asmap->numDataFailed == 1);
745
746	nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
747	nReadNodes = nRrdNodes + 2 * nPQNodes;
748	nWriteNodes = nWudNodes + 2 * nPQNodes;
749	nNodes = 4 + nReadNodes + nWriteNodes;
750
751	RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
752	blockNode = nodes;
753	unblockNode = blockNode + 1;
754	termNode = unblockNode + 1;
755	recoveryNode = termNode + 1;
756	rrdNodes = recoveryNode + 1;
757	rpNodes = rrdNodes + nRrdNodes;
758	rqNodes = rpNodes + nPQNodes;
759	wudNodes = rqNodes + nPQNodes;
760	wpNodes = wudNodes + nWudNodes;
761	wqNodes = wpNodes + nPQNodes;
762
763	dag_h->creator = "PQ_DDSimpleSmallWrite";
764	dag_h->numSuccedents = 1;
765	dag_h->succedents[0] = blockNode;
766	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
767	termNode->antecedents[0] = unblockNode;
768	termNode->antType[0] = rf_control;
769
770	/* init the block and unblock nodes */
771	/* The block node has all the read nodes as successors */
772	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
773	for (i = 0; i < nReadNodes; i++)
774		blockNode->succedents[i] = rrdNodes + i;
775
776	/* The unblock node has all the writes as successors */
777	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
778	for (i = 0; i < nWriteNodes; i++) {
779		unblockNode->antecedents[i] = wudNodes + i;
780		unblockNode->antType[i] = rf_control;
781	}
782	unblockNode->succedents[0] = termNode;
783
784#define INIT_READ_NODE(node,name) \
785  rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
786  (node)->succedents[0] = recoveryNode; \
787  (node)->antecedents[0] = blockNode; \
788  (node)->antType[0] = rf_control;
789
790	/* build the read nodes */
791	pda = npdas;
792	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
793		INIT_READ_NODE(rrdNodes + i, "rrd");
794		DISK_NODE_PARAMS(rrdNodes[i], pda);
795	}
796
797	/* read redundancy pdas */
798	pda = pqPDAs;
799	INIT_READ_NODE(rpNodes, "Rp");
800	RF_ASSERT(pda);
801	DISK_NODE_PARAMS(rpNodes[0], pda);
802	pda++;
803	INIT_READ_NODE(rqNodes, redundantReadNodeName);
804	RF_ASSERT(pda);
805	DISK_NODE_PARAMS(rqNodes[0], pda);
806	if (nPQNodes == 2) {
807		pda++;
808		INIT_READ_NODE(rpNodes + 1, "Rp");
809		RF_ASSERT(pda);
810		DISK_NODE_PARAMS(rpNodes[1], pda);
811		pda++;
812		INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
813		RF_ASSERT(pda);
814		DISK_NODE_PARAMS(rqNodes[1], pda);
815	}
816	/* the recovery node has all reads as precedessors and all writes as
817	 * successors. It generates a result for every write P or write Q
818	 * node. As parameters, it takes a pda per read and a pda per stripe
819	 * of user data written. It also takes as the last params the raidPtr
820	 * and asm. For results, it takes PDA for P & Q. */
821
822
823	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
824	    nWriteNodes,	/* succesors */
825	    nReadNodes,		/* preds */
826	    nReadNodes + nWudNodes + 3,	/* params */
827	    2 * nPQNodes,	/* results */
828	    dag_h, recoveryNodeName, allocList);
829
830
831
832	for (i = 0; i < nReadNodes; i++) {
833		recoveryNode->antecedents[i] = rrdNodes + i;
834		recoveryNode->antType[i] = rf_control;
835		recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
836	}
837	for (i = 0; i < nWudNodes; i++) {
838		recoveryNode->succedents[i] = wudNodes + i;
839	}
840	recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
841	recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
842	recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
843
844	for (; i < nWriteNodes; i++)
845		recoveryNode->succedents[i] = wudNodes + i;
846
847	pda = pqPDAs;
848	recoveryNode->results[0] = pda;
849	pda++;
850	recoveryNode->results[1] = pda;
851	if (nPQNodes == 2) {
852		pda++;
853		recoveryNode->results[2] = pda;
854		pda++;
855		recoveryNode->results[3] = pda;
856	}
857	/* fill writes */
858#define INIT_WRITE_NODE(node,name) \
859  rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
860    (node)->succedents[0] = unblockNode; \
861    (node)->antecedents[0] = recoveryNode; \
862    (node)->antType[0] = rf_control;
863
864	pda = asmap->physInfo;
865	for (i = 0; i < nWudNodes; i++) {
866		INIT_WRITE_NODE(wudNodes + i, "Wd");
867		DISK_NODE_PARAMS(wudNodes[i], pda);
868		recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
869		pda = pda->next;
870	}
871	/* write redundancy pdas */
872	pda = pqPDAs;
873	INIT_WRITE_NODE(wpNodes, "Wp");
874	RF_ASSERT(pda);
875	DISK_NODE_PARAMS(wpNodes[0], pda);
876	pda++;
877	INIT_WRITE_NODE(wqNodes, "Wq");
878	RF_ASSERT(pda);
879	DISK_NODE_PARAMS(wqNodes[0], pda);
880	if (nPQNodes == 2) {
881		pda++;
882		INIT_WRITE_NODE(wpNodes + 1, "Wp");
883		RF_ASSERT(pda);
884		DISK_NODE_PARAMS(wpNodes[1], pda);
885		pda++;
886		INIT_WRITE_NODE(wqNodes + 1, "Wq");
887		RF_ASSERT(pda);
888		DISK_NODE_PARAMS(wqNodes[1], pda);
889	}
890}
891#endif   /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
892