rf_dagdegwr.c revision 1.13
1/*	$NetBSD: rf_dagdegwr.c,v 1.13 2003/12/29 03:33:47 oster Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/*
30 * rf_dagdegwr.c
31 *
32 * code for creating degraded write DAGs
33 *
34 */
35
36#include <sys/cdefs.h>
37__KERNEL_RCSID(0, "$NetBSD: rf_dagdegwr.c,v 1.13 2003/12/29 03:33:47 oster Exp $");
38
39#include <dev/raidframe/raidframevar.h>
40
41#include "rf_raid.h"
42#include "rf_dag.h"
43#include "rf_dagutils.h"
44#include "rf_dagfuncs.h"
45#include "rf_debugMem.h"
46#include "rf_general.h"
47#include "rf_dagdegwr.h"
48
49
50/******************************************************************************
51 *
52 * General comments on DAG creation:
53 *
54 * All DAGs in this file use roll-away error recovery.  Each DAG has a single
55 * commit node, usually called "Cmt."  If an error occurs before the Cmt node
56 * is reached, the execution engine will halt forward execution and work
57 * backward through the graph, executing the undo functions.  Assuming that
58 * each node in the graph prior to the Cmt node are undoable and atomic - or -
59 * does not make changes to permanent state, the graph will fail atomically.
60 * If an error occurs after the Cmt node executes, the engine will roll-forward
61 * through the graph, blindly executing nodes until it reaches the end.
62 * If a graph reaches the end, it is assumed to have completed successfully.
63 *
64 * A graph has only 1 Cmt node.
65 *
66 */
67
68
69/******************************************************************************
70 *
71 * The following wrappers map the standard DAG creation interface to the
72 * DAG creation routines.  Additionally, these wrappers enable experimentation
73 * with new DAG structures by providing an extra level of indirection, allowing
74 * the DAG creation routines to be replaced at this single point.
75 */
76
77static
78RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
79{
80	rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
81	    flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
82}
83
84void
85rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList)
86	RF_Raid_t *raidPtr;
87	RF_AccessStripeMap_t *asmap;
88	RF_DagHeader_t *dag_h;
89	void   *bp;
90	RF_RaidAccessFlags_t flags;
91	RF_AllocListElem_t *allocList;
92{
93
94	RF_ASSERT(asmap->numDataFailed == 1);
95	dag_h->creator = "DegradedWriteDAG";
96
97	/*
98	 * if the access writes only a portion of the failed unit, and also
99	 * writes some portion of at least one surviving unit, we create two
100	 * DAGs, one for the failed component and one for the non-failed
101	 * component, and do them sequentially.  Note that the fact that we're
102	 * accessing only a portion of the failed unit indicates that the
103	 * access either starts or ends in the failed unit, and hence we need
104	 * create only two dags.  This is inefficient in that the same data or
105	 * parity can get read and written twice using this structure.  I need
106	 * to fix this to do the access all at once.
107	 */
108	RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 &&
109		    asmap->failedPDAs[0]->numSector !=
110			raidPtr->Layout.sectorsPerStripeUnit));
111	rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
112	    allocList);
113}
114
115
116
117/******************************************************************************
118 *
119 * DAG creation code begins here
120 */
121
122
123
124/******************************************************************************
125 *
126 * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
127 * write, which is as follows
128 *
129 *                                        / {Wnq} --\
130 * hdr -> blockNode ->  Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
131 *                  \  {Rod} /            \  Wnd ---/
132 *                                        \ {Wnd} -/
133 *
134 * commit nodes: Xor, Wnd
135 *
136 * IMPORTANT:
137 * This DAG generator does not work for double-degraded archs since it does not
138 * generate Q
139 *
140 * This dag is essentially identical to the large-write dag, except that the
141 * write to the failed data unit is suppressed.
142 *
143 * IMPORTANT:  this dag does not work in the case where the access writes only
144 * a portion of the failed unit, and also writes some portion of at least one
145 * surviving SU.  this case is handled in CreateDegradedWriteDAG above.
146 *
147 * The block & unblock nodes are leftovers from a previous version.  They
148 * do nothing, but I haven't deleted them because it would be a tremendous
149 * effort to put them back in.
150 *
151 * This dag is used whenever a one of the data units in a write has failed.
152 * If it is the parity unit that failed, the nonredundant write dag (below)
153 * is used.
154 *****************************************************************************/
155
156void
157rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
158    allocList, nfaults, redFunc, allowBufferRecycle)
159	RF_Raid_t *raidPtr;
160	RF_AccessStripeMap_t *asmap;
161	RF_DagHeader_t *dag_h;
162	void   *bp;
163	RF_RaidAccessFlags_t flags;
164	RF_AllocListElem_t *allocList;
165	int     nfaults;
166	int     (*redFunc) (RF_DagNode_t *);
167	int     allowBufferRecycle;
168{
169	int     nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
170	        rdnodesFaked;
171	RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
172	RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode;
173	RF_SectorCount_t sectorsPerSU;
174	RF_ReconUnitNum_t which_ru;
175	char   *xorTargetBuf = NULL;	/* the target buffer for the XOR
176					 * operation */
177	char   *overlappingPDAs;/* a temporary array of flags */
178	RF_AccessStripeMapHeader_t *new_asm_h[2];
179	RF_PhysDiskAddr_t *pda, *parityPDA;
180	RF_StripeNum_t parityStripeID;
181	RF_PhysDiskAddr_t *failedPDA;
182	RF_RaidLayout_t *layoutPtr;
183
184	layoutPtr = &(raidPtr->Layout);
185	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
186	    &which_ru);
187	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
188	/* failedPDA points to the pda within the asm that targets the failed
189	 * disk */
190	failedPDA = asmap->failedPDAs[0];
191
192	if (rf_dagDebug)
193		printf("[Creating degraded-write DAG]\n");
194
195	RF_ASSERT(asmap->numDataFailed == 1);
196	dag_h->creator = "SimpleDegradedWriteDAG";
197
198	/*
199         * Generate two ASMs identifying the surviving data
200         * we need in order to recover the lost data.
201         */
202	/* overlappingPDAs array must be zero'd */
203	RF_Malloc(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char), (char *));
204	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
205	    &nXorBufs, NULL, overlappingPDAs, allocList);
206
207	/* create all the nodes at once */
208	nWndNodes = asmap->numStripeUnitsAccessed - 1;	/* no access is
209							 * generated for the
210							 * failed pda */
211
212	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
213	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
214	/*
215         * XXX
216         *
217         * There's a bug with a complete stripe overwrite- that means 0 reads
218         * of old data, and the rest of the DAG generation code doesn't like
219         * that. A release is coming, and I don't wanna risk breaking a critical
220         * DAG generator, so here's what I'm gonna do- if there's no read nodes,
221         * I'm gonna fake there being a read node, and I'm gonna swap in a
222         * no-op node in its place (to make all the link-up code happy).
223         * This should be fixed at some point.  --jimz
224         */
225	if (nRrdNodes == 0) {
226		nRrdNodes = 1;
227		rdnodesFaked = 1;
228	} else {
229		rdnodesFaked = 0;
230	}
231	/* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
232	nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
233	RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t),
234	    (RF_DagNode_t *), allocList);
235	i = 0;
236	blockNode = &nodes[i];
237	i += 1;
238	commitNode = &nodes[i];
239	i += 1;
240	unblockNode = &nodes[i];
241	i += 1;
242	termNode = &nodes[i];
243	i += 1;
244	xorNode = &nodes[i];
245	i += 1;
246	wnpNode = &nodes[i];
247	i += 1;
248	wndNodes = &nodes[i];
249	i += nWndNodes;
250	rrdNodes = &nodes[i];
251	i += nRrdNodes;
252	if (nfaults == 2) {
253		wnqNode = &nodes[i];
254		i += 1;
255	} else {
256		wnqNode = NULL;
257	}
258	RF_ASSERT(i == nNodes);
259
260	/* this dag can not commit until all rrd and xor Nodes have completed */
261	dag_h->numCommitNodes = 1;
262	dag_h->numCommits = 0;
263	dag_h->numSuccedents = 1;
264
265	RF_ASSERT(nRrdNodes > 0);
266	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
267	    NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
268	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
269	    NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
270	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
271	    NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
272	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
273	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
274	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
275	    nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
276
277	/*
278         * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
279         * the failed buffer, save a pointer to it so we can use it as the target
280         * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
281         * a buffer is the same size as the failed buffer, it must also be at the
282         * same alignment within the SU.
283         */
284	i = 0;
285	if (new_asm_h[0]) {
286		for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
287		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
288		    i++, pda = pda->next) {
289			rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
290			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
291			RF_ASSERT(pda);
292			rrdNodes[i].params[0].p = pda;
293			rrdNodes[i].params[1].p = pda->bufPtr;
294			rrdNodes[i].params[2].v = parityStripeID;
295			rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
296		}
297	}
298	/* i now equals the number of stripe units accessed in new_asm_h[0] */
299	if (new_asm_h[1]) {
300		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
301		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
302		    j++, pda = pda->next) {
303			rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
304			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
305			RF_ASSERT(pda);
306			rrdNodes[i + j].params[0].p = pda;
307			rrdNodes[i + j].params[1].p = pda->bufPtr;
308			rrdNodes[i + j].params[2].v = parityStripeID;
309			rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
310			if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
311				xorTargetBuf = pda->bufPtr;
312		}
313	}
314	if (rdnodesFaked) {
315		/*
316	         * This is where we'll init that fake noop read node
317	         * (XXX should the wakeup func be different?)
318	         */
319		rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
320		    NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
321	}
322	/*
323         * Make a PDA for the parity unit.  The parity PDA should start at
324         * the same offset into the SU as the failed PDA.
325         */
326	/* Danner comment: I don't think this copy is really necessary. We are
327	 * in one of two cases here. (1) The entire failed unit is written.
328	 * Then asmap->parityInfo will describe the entire parity. (2) We are
329	 * only writing a subset of the failed unit and nothing else. Then the
330	 * asmap->parityInfo describes the failed unit and the copy can also
331	 * be avoided. */
332
333	RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
334	parityPDA->col = asmap->parityInfo->col;
335	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
336	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
337	parityPDA->numSector = failedPDA->numSector;
338
339	if (!xorTargetBuf) {
340		RF_MallocAndAdd(xorTargetBuf,
341		    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
342	}
343	/* init the Wnp node */
344	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
345	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
346	wnpNode->params[0].p = parityPDA;
347	wnpNode->params[1].p = xorTargetBuf;
348	wnpNode->params[2].v = parityStripeID;
349	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
350
351	/* fill in the Wnq Node */
352	if (nfaults == 2) {
353		{
354			RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
355			    (RF_PhysDiskAddr_t *), allocList);
356			parityPDA->col = asmap->qInfo->col;
357			parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
358			    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
359			parityPDA->numSector = failedPDA->numSector;
360
361			rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
362			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
363			wnqNode->params[0].p = parityPDA;
364			RF_MallocAndAdd(xorNode->results[1],
365			    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
366			wnqNode->params[1].p = xorNode->results[1];
367			wnqNode->params[2].v = parityStripeID;
368			wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
369		}
370	}
371	/* fill in the Wnd nodes */
372	for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
373		if (pda == failedPDA) {
374			i--;
375			continue;
376		}
377		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
378		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
379		RF_ASSERT(pda);
380		wndNodes[i].params[0].p = pda;
381		wndNodes[i].params[1].p = pda->bufPtr;
382		wndNodes[i].params[2].v = parityStripeID;
383		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
384	}
385
386	/* fill in the results of the xor node */
387	xorNode->results[0] = xorTargetBuf;
388
389	/* fill in the params of the xor node */
390
391	paramNum = 0;
392	if (rdnodesFaked == 0) {
393		for (i = 0; i < nRrdNodes; i++) {
394			/* all the Rrd nodes need to be xored together */
395			xorNode->params[paramNum++] = rrdNodes[i].params[0];
396			xorNode->params[paramNum++] = rrdNodes[i].params[1];
397		}
398	}
399	for (i = 0; i < nWndNodes; i++) {
400		/* any Wnd nodes that overlap the failed access need to be
401		 * xored in */
402		if (overlappingPDAs[i]) {
403			RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
404			memcpy((char *) pda, (char *) wndNodes[i].params[0].p, sizeof(RF_PhysDiskAddr_t));
405			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
406			xorNode->params[paramNum++].p = pda;
407			xorNode->params[paramNum++].p = pda->bufPtr;
408		}
409	}
410	RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
411
412	/*
413         * Install the failed PDA into the xor param list so that the
414         * new data gets xor'd in.
415         */
416	xorNode->params[paramNum++].p = failedPDA;
417	xorNode->params[paramNum++].p = failedPDA->bufPtr;
418
419	/*
420         * The last 2 params to the recovery xor node are always the failed
421         * PDA and the raidPtr. install the failedPDA even though we have just
422         * done so above. This allows us to use the same XOR function for both
423         * degraded reads and degraded writes.
424         */
425	xorNode->params[paramNum++].p = failedPDA;
426	xorNode->params[paramNum++].p = raidPtr;
427	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
428
429	/*
430         * Code to link nodes begins here
431         */
432
433	/* link header to block node */
434	RF_ASSERT(blockNode->numAntecedents == 0);
435	dag_h->succedents[0] = blockNode;
436
437	/* link block node to rd nodes */
438	RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
439	for (i = 0; i < nRrdNodes; i++) {
440		RF_ASSERT(rrdNodes[i].numAntecedents == 1);
441		blockNode->succedents[i] = &rrdNodes[i];
442		rrdNodes[i].antecedents[0] = blockNode;
443		rrdNodes[i].antType[0] = rf_control;
444	}
445
446	/* link read nodes to xor node */
447	RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
448	for (i = 0; i < nRrdNodes; i++) {
449		RF_ASSERT(rrdNodes[i].numSuccedents == 1);
450		rrdNodes[i].succedents[0] = xorNode;
451		xorNode->antecedents[i] = &rrdNodes[i];
452		xorNode->antType[i] = rf_trueData;
453	}
454
455	/* link xor node to commit node */
456	RF_ASSERT(xorNode->numSuccedents == 1);
457	RF_ASSERT(commitNode->numAntecedents == 1);
458	xorNode->succedents[0] = commitNode;
459	commitNode->antecedents[0] = xorNode;
460	commitNode->antType[0] = rf_control;
461
462	/* link commit node to wnd nodes */
463	RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
464	for (i = 0; i < nWndNodes; i++) {
465		RF_ASSERT(wndNodes[i].numAntecedents == 1);
466		commitNode->succedents[i] = &wndNodes[i];
467		wndNodes[i].antecedents[0] = commitNode;
468		wndNodes[i].antType[0] = rf_control;
469	}
470
471	/* link the commit node to wnp, wnq nodes */
472	RF_ASSERT(wnpNode->numAntecedents == 1);
473	commitNode->succedents[nWndNodes] = wnpNode;
474	wnpNode->antecedents[0] = commitNode;
475	wnpNode->antType[0] = rf_control;
476	if (nfaults == 2) {
477		RF_ASSERT(wnqNode->numAntecedents == 1);
478		commitNode->succedents[nWndNodes + 1] = wnqNode;
479		wnqNode->antecedents[0] = commitNode;
480		wnqNode->antType[0] = rf_control;
481	}
482	/* link write new data nodes to unblock node */
483	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
484	for (i = 0; i < nWndNodes; i++) {
485		RF_ASSERT(wndNodes[i].numSuccedents == 1);
486		wndNodes[i].succedents[0] = unblockNode;
487		unblockNode->antecedents[i] = &wndNodes[i];
488		unblockNode->antType[i] = rf_control;
489	}
490
491	/* link write new parity node to unblock node */
492	RF_ASSERT(wnpNode->numSuccedents == 1);
493	wnpNode->succedents[0] = unblockNode;
494	unblockNode->antecedents[nWndNodes] = wnpNode;
495	unblockNode->antType[nWndNodes] = rf_control;
496
497	/* link write new q node to unblock node */
498	if (nfaults == 2) {
499		RF_ASSERT(wnqNode->numSuccedents == 1);
500		wnqNode->succedents[0] = unblockNode;
501		unblockNode->antecedents[nWndNodes + 1] = wnqNode;
502		unblockNode->antType[nWndNodes + 1] = rf_control;
503	}
504	/* link unblock node to term node */
505	RF_ASSERT(unblockNode->numSuccedents == 1);
506	RF_ASSERT(termNode->numAntecedents == 1);
507	RF_ASSERT(termNode->numSuccedents == 0);
508	unblockNode->succedents[0] = termNode;
509	termNode->antecedents[0] = unblockNode;
510	termNode->antType[0] = rf_control;
511}
512#define CONS_PDA(if,start,num) \
513  pda_p->col = asmap->if->col; \
514  pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
515  pda_p->numSector = num; \
516  pda_p->next = NULL; \
517  RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
518#if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
519void
520rf_WriteGenerateFailedAccessASMs(
521    RF_Raid_t * raidPtr,
522    RF_AccessStripeMap_t * asmap,
523    RF_PhysDiskAddr_t ** pdap,
524    int *nNodep,
525    RF_PhysDiskAddr_t ** pqpdap,
526    int *nPQNodep,
527    RF_AllocListElem_t * allocList)
528{
529	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
530	int     PDAPerDisk, i;
531	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
532	int     numDataCol = layoutPtr->numDataCol;
533	int     state;
534	unsigned napdas;
535	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
536	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
537	RF_PhysDiskAddr_t *pda_p;
538	RF_RaidAddr_t sosAddr;
539
540	/* determine how many pda's we will have to generate per unaccess
541	 * stripe. If there is only one failed data unit, it is one; if two,
542	 * possibly two, depending wether they overlap. */
543
544	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
545	fone_end = fone_start + fone->numSector;
546
547	if (asmap->numDataFailed == 1) {
548		PDAPerDisk = 1;
549		state = 1;
550		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
551		pda_p = *pqpdap;
552		/* build p */
553		CONS_PDA(parityInfo, fone_start, fone->numSector);
554		pda_p->type = RF_PDA_TYPE_PARITY;
555		pda_p++;
556		/* build q */
557		CONS_PDA(qInfo, fone_start, fone->numSector);
558		pda_p->type = RF_PDA_TYPE_Q;
559	} else {
560		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
561		ftwo_end = ftwo_start + ftwo->numSector;
562		if (fone->numSector + ftwo->numSector > secPerSU) {
563			PDAPerDisk = 1;
564			state = 2;
565			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
566			pda_p = *pqpdap;
567			CONS_PDA(parityInfo, 0, secPerSU);
568			pda_p->type = RF_PDA_TYPE_PARITY;
569			pda_p++;
570			CONS_PDA(qInfo, 0, secPerSU);
571			pda_p->type = RF_PDA_TYPE_Q;
572		} else {
573			PDAPerDisk = 2;
574			state = 3;
575			/* four of them, fone, then ftwo */
576			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
577			pda_p = *pqpdap;
578			CONS_PDA(parityInfo, fone_start, fone->numSector);
579			pda_p->type = RF_PDA_TYPE_PARITY;
580			pda_p++;
581			CONS_PDA(qInfo, fone_start, fone->numSector);
582			pda_p->type = RF_PDA_TYPE_Q;
583			pda_p++;
584			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
585			pda_p->type = RF_PDA_TYPE_PARITY;
586			pda_p++;
587			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
588			pda_p->type = RF_PDA_TYPE_Q;
589		}
590	}
591	/* figure out number of nonaccessed pda */
592	napdas = PDAPerDisk * (numDataCol - 2);
593	*nPQNodep = PDAPerDisk;
594
595	*nNodep = napdas;
596	if (napdas == 0)
597		return;		/* short circuit */
598
599	/* allocate up our list of pda's */
600
601	RF_MallocAndAdd(pda_p, napdas * sizeof(RF_PhysDiskAddr_t),
602			(RF_PhysDiskAddr_t *), allocList);
603	*pdap = pda_p;
604
605	/* linkem together */
606	for (i = 0; i < (napdas - 1); i++)
607		pda_p[i].next = pda_p + (i + 1);
608
609	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
610	for (i = 0; i < numDataCol; i++) {
611		if ((pda_p - (*pdap)) == napdas)
612			continue;
613		pda_p->type = RF_PDA_TYPE_DATA;
614		pda_p->raidAddress = sosAddr + (i * secPerSU);
615		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
616		/* skip over dead disks */
617		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
618			continue;
619		switch (state) {
620		case 1:	/* fone */
621			pda_p->numSector = fone->numSector;
622			pda_p->raidAddress += fone_start;
623			pda_p->startSector += fone_start;
624			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
625			break;
626		case 2:	/* full stripe */
627			pda_p->numSector = secPerSU;
628			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
629			break;
630		case 3:	/* two slabs */
631			pda_p->numSector = fone->numSector;
632			pda_p->raidAddress += fone_start;
633			pda_p->startSector += fone_start;
634			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
635			pda_p++;
636			pda_p->type = RF_PDA_TYPE_DATA;
637			pda_p->raidAddress = sosAddr + (i * secPerSU);
638			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
639			pda_p->numSector = ftwo->numSector;
640			pda_p->raidAddress += ftwo_start;
641			pda_p->startSector += ftwo_start;
642			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
643			break;
644		default:
645			RF_PANIC();
646		}
647		pda_p++;
648	}
649
650	RF_ASSERT(pda_p - *pdap == napdas);
651	return;
652}
653#define DISK_NODE_PDA(node)  ((node)->params[0].p)
654
655#define DISK_NODE_PARAMS(_node_,_p_) \
656  (_node_).params[0].p = _p_ ; \
657  (_node_).params[1].p = (_p_)->bufPtr; \
658  (_node_).params[2].v = parityStripeID; \
659  (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
660
661void
662rf_DoubleDegSmallWrite(
663    RF_Raid_t * raidPtr,
664    RF_AccessStripeMap_t * asmap,
665    RF_DagHeader_t * dag_h,
666    void *bp,
667    RF_RaidAccessFlags_t flags,
668    RF_AllocListElem_t * allocList,
669    char *redundantReadNodeName,
670    char *redundantWriteNodeName,
671    char *recoveryNodeName,
672    int (*recovFunc) (RF_DagNode_t *))
673{
674	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
675	RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
676	       *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
677	RF_PhysDiskAddr_t *pda, *pqPDAs;
678	RF_PhysDiskAddr_t *npdas;
679	int     nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
680	RF_ReconUnitNum_t which_ru;
681	int     nPQNodes;
682	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
683
684	/* simple small write case - First part looks like a reconstruct-read
685	 * of the failed data units. Then a write of all data units not
686	 * failed. */
687
688
689	/* Hdr | ------Block- /  /         \   Rrd  Rrd ...  Rrd  Rp Rq \  \
690	 * /  -------PQ----- /   \   \ Wud   Wp  WQ	     \    |   /
691	 * --Unblock- | T
692	 *
693	 * Rrd = read recovery data  (potentially none) Wud = write user data
694	 * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
695	 * (could be two)
696	 *
697	 */
698
699	rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
700
701	RF_ASSERT(asmap->numDataFailed == 1);
702
703	nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
704	nReadNodes = nRrdNodes + 2 * nPQNodes;
705	nWriteNodes = nWudNodes + 2 * nPQNodes;
706	nNodes = 4 + nReadNodes + nWriteNodes;
707
708	RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
709	blockNode = nodes;
710	unblockNode = blockNode + 1;
711	termNode = unblockNode + 1;
712	recoveryNode = termNode + 1;
713	rrdNodes = recoveryNode + 1;
714	rpNodes = rrdNodes + nRrdNodes;
715	rqNodes = rpNodes + nPQNodes;
716	wudNodes = rqNodes + nPQNodes;
717	wpNodes = wudNodes + nWudNodes;
718	wqNodes = wpNodes + nPQNodes;
719
720	dag_h->creator = "PQ_DDSimpleSmallWrite";
721	dag_h->numSuccedents = 1;
722	dag_h->succedents[0] = blockNode;
723	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
724	termNode->antecedents[0] = unblockNode;
725	termNode->antType[0] = rf_control;
726
727	/* init the block and unblock nodes */
728	/* The block node has all the read nodes as successors */
729	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
730	for (i = 0; i < nReadNodes; i++)
731		blockNode->succedents[i] = rrdNodes + i;
732
733	/* The unblock node has all the writes as successors */
734	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
735	for (i = 0; i < nWriteNodes; i++) {
736		unblockNode->antecedents[i] = wudNodes + i;
737		unblockNode->antType[i] = rf_control;
738	}
739	unblockNode->succedents[0] = termNode;
740
741#define INIT_READ_NODE(node,name) \
742  rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
743  (node)->succedents[0] = recoveryNode; \
744  (node)->antecedents[0] = blockNode; \
745  (node)->antType[0] = rf_control;
746
747	/* build the read nodes */
748	pda = npdas;
749	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
750		INIT_READ_NODE(rrdNodes + i, "rrd");
751		DISK_NODE_PARAMS(rrdNodes[i], pda);
752	}
753
754	/* read redundancy pdas */
755	pda = pqPDAs;
756	INIT_READ_NODE(rpNodes, "Rp");
757	RF_ASSERT(pda);
758	DISK_NODE_PARAMS(rpNodes[0], pda);
759	pda++;
760	INIT_READ_NODE(rqNodes, redundantReadNodeName);
761	RF_ASSERT(pda);
762	DISK_NODE_PARAMS(rqNodes[0], pda);
763	if (nPQNodes == 2) {
764		pda++;
765		INIT_READ_NODE(rpNodes + 1, "Rp");
766		RF_ASSERT(pda);
767		DISK_NODE_PARAMS(rpNodes[1], pda);
768		pda++;
769		INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
770		RF_ASSERT(pda);
771		DISK_NODE_PARAMS(rqNodes[1], pda);
772	}
773	/* the recovery node has all reads as precedessors and all writes as
774	 * successors. It generates a result for every write P or write Q
775	 * node. As parameters, it takes a pda per read and a pda per stripe
776	 * of user data written. It also takes as the last params the raidPtr
777	 * and asm. For results, it takes PDA for P & Q. */
778
779
780	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
781	    nWriteNodes,	/* succesors */
782	    nReadNodes,		/* preds */
783	    nReadNodes + nWudNodes + 3,	/* params */
784	    2 * nPQNodes,	/* results */
785	    dag_h, recoveryNodeName, allocList);
786
787
788
789	for (i = 0; i < nReadNodes; i++) {
790		recoveryNode->antecedents[i] = rrdNodes + i;
791		recoveryNode->antType[i] = rf_control;
792		recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
793	}
794	for (i = 0; i < nWudNodes; i++) {
795		recoveryNode->succedents[i] = wudNodes + i;
796	}
797	recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
798	recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
799	recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
800
801	for (; i < nWriteNodes; i++)
802		recoveryNode->succedents[i] = wudNodes + i;
803
804	pda = pqPDAs;
805	recoveryNode->results[0] = pda;
806	pda++;
807	recoveryNode->results[1] = pda;
808	if (nPQNodes == 2) {
809		pda++;
810		recoveryNode->results[2] = pda;
811		pda++;
812		recoveryNode->results[3] = pda;
813	}
814	/* fill writes */
815#define INIT_WRITE_NODE(node,name) \
816  rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
817    (node)->succedents[0] = unblockNode; \
818    (node)->antecedents[0] = recoveryNode; \
819    (node)->antType[0] = rf_control;
820
821	pda = asmap->physInfo;
822	for (i = 0; i < nWudNodes; i++) {
823		INIT_WRITE_NODE(wudNodes + i, "Wd");
824		DISK_NODE_PARAMS(wudNodes[i], pda);
825		recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
826		pda = pda->next;
827	}
828	/* write redundancy pdas */
829	pda = pqPDAs;
830	INIT_WRITE_NODE(wpNodes, "Wp");
831	RF_ASSERT(pda);
832	DISK_NODE_PARAMS(wpNodes[0], pda);
833	pda++;
834	INIT_WRITE_NODE(wqNodes, "Wq");
835	RF_ASSERT(pda);
836	DISK_NODE_PARAMS(wqNodes[0], pda);
837	if (nPQNodes == 2) {
838		pda++;
839		INIT_WRITE_NODE(wpNodes + 1, "Wp");
840		RF_ASSERT(pda);
841		DISK_NODE_PARAMS(wpNodes[1], pda);
842		pda++;
843		INIT_WRITE_NODE(wqNodes + 1, "Wq");
844		RF_ASSERT(pda);
845		DISK_NODE_PARAMS(wqNodes[1], pda);
846	}
847}
848#endif   /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
849