rf_dagdegwr.c revision 1.10
1/*	$NetBSD: rf_dagdegwr.c,v 1.10 2002/05/22 15:40:48 wiz Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/*
30 * rf_dagdegwr.c
31 *
32 * code for creating degraded write DAGs
33 *
34 */
35
36#include <sys/cdefs.h>
37__KERNEL_RCSID(0, "$NetBSD: rf_dagdegwr.c,v 1.10 2002/05/22 15:40:48 wiz Exp $");
38
39#include <dev/raidframe/raidframevar.h>
40
41#include "rf_raid.h"
42#include "rf_dag.h"
43#include "rf_dagutils.h"
44#include "rf_dagfuncs.h"
45#include "rf_debugMem.h"
46#include "rf_memchunk.h"
47#include "rf_general.h"
48#include "rf_dagdegwr.h"
49
50
51/******************************************************************************
52 *
53 * General comments on DAG creation:
54 *
55 * All DAGs in this file use roll-away error recovery.  Each DAG has a single
56 * commit node, usually called "Cmt."  If an error occurs before the Cmt node
57 * is reached, the execution engine will halt forward execution and work
58 * backward through the graph, executing the undo functions.  Assuming that
59 * each node in the graph prior to the Cmt node are undoable and atomic - or -
60 * does not make changes to permanent state, the graph will fail atomically.
61 * If an error occurs after the Cmt node executes, the engine will roll-forward
62 * through the graph, blindly executing nodes until it reaches the end.
63 * If a graph reaches the end, it is assumed to have completed successfully.
64 *
65 * A graph has only 1 Cmt node.
66 *
67 */
68
69
70/******************************************************************************
71 *
72 * The following wrappers map the standard DAG creation interface to the
73 * DAG creation routines.  Additionally, these wrappers enable experimentation
74 * with new DAG structures by providing an extra level of indirection, allowing
75 * the DAG creation routines to be replaced at this single point.
76 */
77
78static
79RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
80{
81	rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
82	    flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
83}
84
85void
86rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList)
87	RF_Raid_t *raidPtr;
88	RF_AccessStripeMap_t *asmap;
89	RF_DagHeader_t *dag_h;
90	void   *bp;
91	RF_RaidAccessFlags_t flags;
92	RF_AllocListElem_t *allocList;
93{
94
95	RF_ASSERT(asmap->numDataFailed == 1);
96	dag_h->creator = "DegradedWriteDAG";
97
98	/*
99	 * if the access writes only a portion of the failed unit, and also
100	 * writes some portion of at least one surviving unit, we create two
101	 * DAGs, one for the failed component and one for the non-failed
102	 * component, and do them sequentially.  Note that the fact that we're
103	 * accessing only a portion of the failed unit indicates that the
104	 * access either starts or ends in the failed unit, and hence we need
105	 * create only two dags.  This is inefficient in that the same data or
106	 * parity can get read and written twice using this structure.  I need
107	 * to fix this to do the access all at once.
108	 */
109	RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 &&
110		    asmap->failedPDAs[0]->numSector !=
111			raidPtr->Layout.sectorsPerStripeUnit));
112	rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
113	    allocList);
114}
115
116
117
118/******************************************************************************
119 *
120 * DAG creation code begins here
121 */
122
123
124
125/******************************************************************************
126 *
127 * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
128 * write, which is as follows
129 *
130 *                                        / {Wnq} --\
131 * hdr -> blockNode ->  Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
132 *                  \  {Rod} /            \  Wnd ---/
133 *                                        \ {Wnd} -/
134 *
135 * commit nodes: Xor, Wnd
136 *
137 * IMPORTANT:
138 * This DAG generator does not work for double-degraded archs since it does not
139 * generate Q
140 *
141 * This dag is essentially identical to the large-write dag, except that the
142 * write to the failed data unit is suppressed.
143 *
144 * IMPORTANT:  this dag does not work in the case where the access writes only
145 * a portion of the failed unit, and also writes some portion of at least one
146 * surviving SU.  this case is handled in CreateDegradedWriteDAG above.
147 *
148 * The block & unblock nodes are leftovers from a previous version.  They
149 * do nothing, but I haven't deleted them because it would be a tremendous
150 * effort to put them back in.
151 *
152 * This dag is used whenever a one of the data units in a write has failed.
153 * If it is the parity unit that failed, the nonredundant write dag (below)
154 * is used.
155 *****************************************************************************/
156
157void
158rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
159    allocList, nfaults, redFunc, allowBufferRecycle)
160	RF_Raid_t *raidPtr;
161	RF_AccessStripeMap_t *asmap;
162	RF_DagHeader_t *dag_h;
163	void   *bp;
164	RF_RaidAccessFlags_t flags;
165	RF_AllocListElem_t *allocList;
166	int     nfaults;
167	int     (*redFunc) (RF_DagNode_t *);
168	int     allowBufferRecycle;
169{
170	int     nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
171	        rdnodesFaked;
172	RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
173	RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode;
174	RF_SectorCount_t sectorsPerSU;
175	RF_ReconUnitNum_t which_ru;
176	char   *xorTargetBuf = NULL;	/* the target buffer for the XOR
177					 * operation */
178	char   *overlappingPDAs;/* a temporary array of flags */
179	RF_AccessStripeMapHeader_t *new_asm_h[2];
180	RF_PhysDiskAddr_t *pda, *parityPDA;
181	RF_StripeNum_t parityStripeID;
182	RF_PhysDiskAddr_t *failedPDA;
183	RF_RaidLayout_t *layoutPtr;
184
185	layoutPtr = &(raidPtr->Layout);
186	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
187	    &which_ru);
188	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
189	/* failedPDA points to the pda within the asm that targets the failed
190	 * disk */
191	failedPDA = asmap->failedPDAs[0];
192
193	if (rf_dagDebug)
194		printf("[Creating degraded-write DAG]\n");
195
196	RF_ASSERT(asmap->numDataFailed == 1);
197	dag_h->creator = "SimpleDegradedWriteDAG";
198
199	/*
200         * Generate two ASMs identifying the surviving data
201         * we need in order to recover the lost data.
202         */
203	/* overlappingPDAs array must be zero'd */
204	RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
205	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
206	    &nXorBufs, NULL, overlappingPDAs, allocList);
207
208	/* create all the nodes at once */
209	nWndNodes = asmap->numStripeUnitsAccessed - 1;	/* no access is
210							 * generated for the
211							 * failed pda */
212
213	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
214	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
215	/*
216         * XXX
217         *
218         * There's a bug with a complete stripe overwrite- that means 0 reads
219         * of old data, and the rest of the DAG generation code doesn't like
220         * that. A release is coming, and I don't wanna risk breaking a critical
221         * DAG generator, so here's what I'm gonna do- if there's no read nodes,
222         * I'm gonna fake there being a read node, and I'm gonna swap in a
223         * no-op node in its place (to make all the link-up code happy).
224         * This should be fixed at some point.  --jimz
225         */
226	if (nRrdNodes == 0) {
227		nRrdNodes = 1;
228		rdnodesFaked = 1;
229	} else {
230		rdnodesFaked = 0;
231	}
232	/* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
233	nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
234	RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t),
235	    (RF_DagNode_t *), allocList);
236	i = 0;
237	blockNode = &nodes[i];
238	i += 1;
239	commitNode = &nodes[i];
240	i += 1;
241	unblockNode = &nodes[i];
242	i += 1;
243	termNode = &nodes[i];
244	i += 1;
245	xorNode = &nodes[i];
246	i += 1;
247	wnpNode = &nodes[i];
248	i += 1;
249	wndNodes = &nodes[i];
250	i += nWndNodes;
251	rrdNodes = &nodes[i];
252	i += nRrdNodes;
253	if (nfaults == 2) {
254		wnqNode = &nodes[i];
255		i += 1;
256	} else {
257		wnqNode = NULL;
258	}
259	RF_ASSERT(i == nNodes);
260
261	/* this dag can not commit until all rrd and xor Nodes have completed */
262	dag_h->numCommitNodes = 1;
263	dag_h->numCommits = 0;
264	dag_h->numSuccedents = 1;
265
266	RF_ASSERT(nRrdNodes > 0);
267	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
268	    NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
269	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
270	    NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
271	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
272	    NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
273	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
274	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
275	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
276	    nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
277
278	/*
279         * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
280         * the failed buffer, save a pointer to it so we can use it as the target
281         * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
282         * a buffer is the same size as the failed buffer, it must also be at the
283         * same alignment within the SU.
284         */
285	i = 0;
286	if (new_asm_h[0]) {
287		for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
288		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
289		    i++, pda = pda->next) {
290			rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
291			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
292			RF_ASSERT(pda);
293			rrdNodes[i].params[0].p = pda;
294			rrdNodes[i].params[1].p = pda->bufPtr;
295			rrdNodes[i].params[2].v = parityStripeID;
296			rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
297		}
298	}
299	/* i now equals the number of stripe units accessed in new_asm_h[0] */
300	if (new_asm_h[1]) {
301		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
302		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
303		    j++, pda = pda->next) {
304			rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
305			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
306			RF_ASSERT(pda);
307			rrdNodes[i + j].params[0].p = pda;
308			rrdNodes[i + j].params[1].p = pda->bufPtr;
309			rrdNodes[i + j].params[2].v = parityStripeID;
310			rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
311			if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
312				xorTargetBuf = pda->bufPtr;
313		}
314	}
315	if (rdnodesFaked) {
316		/*
317	         * This is where we'll init that fake noop read node
318	         * (XXX should the wakeup func be different?)
319	         */
320		rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
321		    NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
322	}
323	/*
324         * Make a PDA for the parity unit.  The parity PDA should start at
325         * the same offset into the SU as the failed PDA.
326         */
327	/* Danner comment: I don't think this copy is really necessary. We are
328	 * in one of two cases here. (1) The entire failed unit is written.
329	 * Then asmap->parityInfo will describe the entire parity. (2) We are
330	 * only writing a subset of the failed unit and nothing else. Then the
331	 * asmap->parityInfo describes the failed unit and the copy can also
332	 * be avoided. */
333
334	RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
335	parityPDA->row = asmap->parityInfo->row;
336	parityPDA->col = asmap->parityInfo->col;
337	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
338	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
339	parityPDA->numSector = failedPDA->numSector;
340
341	if (!xorTargetBuf) {
342		RF_CallocAndAdd(xorTargetBuf, 1,
343		    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
344	}
345	/* init the Wnp node */
346	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
347	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
348	wnpNode->params[0].p = parityPDA;
349	wnpNode->params[1].p = xorTargetBuf;
350	wnpNode->params[2].v = parityStripeID;
351	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
352
353	/* fill in the Wnq Node */
354	if (nfaults == 2) {
355		{
356			RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
357			    (RF_PhysDiskAddr_t *), allocList);
358			parityPDA->row = asmap->qInfo->row;
359			parityPDA->col = asmap->qInfo->col;
360			parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
361			    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
362			parityPDA->numSector = failedPDA->numSector;
363
364			rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
365			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
366			wnqNode->params[0].p = parityPDA;
367			RF_CallocAndAdd(xorNode->results[1], 1,
368			    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
369			wnqNode->params[1].p = xorNode->results[1];
370			wnqNode->params[2].v = parityStripeID;
371			wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
372		}
373	}
374	/* fill in the Wnd nodes */
375	for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
376		if (pda == failedPDA) {
377			i--;
378			continue;
379		}
380		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
381		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
382		RF_ASSERT(pda);
383		wndNodes[i].params[0].p = pda;
384		wndNodes[i].params[1].p = pda->bufPtr;
385		wndNodes[i].params[2].v = parityStripeID;
386		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
387	}
388
389	/* fill in the results of the xor node */
390	xorNode->results[0] = xorTargetBuf;
391
392	/* fill in the params of the xor node */
393
394	paramNum = 0;
395	if (rdnodesFaked == 0) {
396		for (i = 0; i < nRrdNodes; i++) {
397			/* all the Rrd nodes need to be xored together */
398			xorNode->params[paramNum++] = rrdNodes[i].params[0];
399			xorNode->params[paramNum++] = rrdNodes[i].params[1];
400		}
401	}
402	for (i = 0; i < nWndNodes; i++) {
403		/* any Wnd nodes that overlap the failed access need to be
404		 * xored in */
405		if (overlappingPDAs[i]) {
406			RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
407			memcpy((char *) pda, (char *) wndNodes[i].params[0].p, sizeof(RF_PhysDiskAddr_t));
408			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
409			xorNode->params[paramNum++].p = pda;
410			xorNode->params[paramNum++].p = pda->bufPtr;
411		}
412	}
413	RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
414
415	/*
416         * Install the failed PDA into the xor param list so that the
417         * new data gets xor'd in.
418         */
419	xorNode->params[paramNum++].p = failedPDA;
420	xorNode->params[paramNum++].p = failedPDA->bufPtr;
421
422	/*
423         * The last 2 params to the recovery xor node are always the failed
424         * PDA and the raidPtr. install the failedPDA even though we have just
425         * done so above. This allows us to use the same XOR function for both
426         * degraded reads and degraded writes.
427         */
428	xorNode->params[paramNum++].p = failedPDA;
429	xorNode->params[paramNum++].p = raidPtr;
430	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
431
432	/*
433         * Code to link nodes begins here
434         */
435
436	/* link header to block node */
437	RF_ASSERT(blockNode->numAntecedents == 0);
438	dag_h->succedents[0] = blockNode;
439
440	/* link block node to rd nodes */
441	RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
442	for (i = 0; i < nRrdNodes; i++) {
443		RF_ASSERT(rrdNodes[i].numAntecedents == 1);
444		blockNode->succedents[i] = &rrdNodes[i];
445		rrdNodes[i].antecedents[0] = blockNode;
446		rrdNodes[i].antType[0] = rf_control;
447	}
448
449	/* link read nodes to xor node */
450	RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
451	for (i = 0; i < nRrdNodes; i++) {
452		RF_ASSERT(rrdNodes[i].numSuccedents == 1);
453		rrdNodes[i].succedents[0] = xorNode;
454		xorNode->antecedents[i] = &rrdNodes[i];
455		xorNode->antType[i] = rf_trueData;
456	}
457
458	/* link xor node to commit node */
459	RF_ASSERT(xorNode->numSuccedents == 1);
460	RF_ASSERT(commitNode->numAntecedents == 1);
461	xorNode->succedents[0] = commitNode;
462	commitNode->antecedents[0] = xorNode;
463	commitNode->antType[0] = rf_control;
464
465	/* link commit node to wnd nodes */
466	RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
467	for (i = 0; i < nWndNodes; i++) {
468		RF_ASSERT(wndNodes[i].numAntecedents == 1);
469		commitNode->succedents[i] = &wndNodes[i];
470		wndNodes[i].antecedents[0] = commitNode;
471		wndNodes[i].antType[0] = rf_control;
472	}
473
474	/* link the commit node to wnp, wnq nodes */
475	RF_ASSERT(wnpNode->numAntecedents == 1);
476	commitNode->succedents[nWndNodes] = wnpNode;
477	wnpNode->antecedents[0] = commitNode;
478	wnpNode->antType[0] = rf_control;
479	if (nfaults == 2) {
480		RF_ASSERT(wnqNode->numAntecedents == 1);
481		commitNode->succedents[nWndNodes + 1] = wnqNode;
482		wnqNode->antecedents[0] = commitNode;
483		wnqNode->antType[0] = rf_control;
484	}
485	/* link write new data nodes to unblock node */
486	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
487	for (i = 0; i < nWndNodes; i++) {
488		RF_ASSERT(wndNodes[i].numSuccedents == 1);
489		wndNodes[i].succedents[0] = unblockNode;
490		unblockNode->antecedents[i] = &wndNodes[i];
491		unblockNode->antType[i] = rf_control;
492	}
493
494	/* link write new parity node to unblock node */
495	RF_ASSERT(wnpNode->numSuccedents == 1);
496	wnpNode->succedents[0] = unblockNode;
497	unblockNode->antecedents[nWndNodes] = wnpNode;
498	unblockNode->antType[nWndNodes] = rf_control;
499
500	/* link write new q node to unblock node */
501	if (nfaults == 2) {
502		RF_ASSERT(wnqNode->numSuccedents == 1);
503		wnqNode->succedents[0] = unblockNode;
504		unblockNode->antecedents[nWndNodes + 1] = wnqNode;
505		unblockNode->antType[nWndNodes + 1] = rf_control;
506	}
507	/* link unblock node to term node */
508	RF_ASSERT(unblockNode->numSuccedents == 1);
509	RF_ASSERT(termNode->numAntecedents == 1);
510	RF_ASSERT(termNode->numSuccedents == 0);
511	unblockNode->succedents[0] = termNode;
512	termNode->antecedents[0] = unblockNode;
513	termNode->antType[0] = rf_control;
514}
515#define CONS_PDA(if,start,num) \
516  pda_p->row = asmap->if->row;    pda_p->col = asmap->if->col; \
517  pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
518  pda_p->numSector = num; \
519  pda_p->next = NULL; \
520  RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
521#if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
522void
523rf_WriteGenerateFailedAccessASMs(
524    RF_Raid_t * raidPtr,
525    RF_AccessStripeMap_t * asmap,
526    RF_PhysDiskAddr_t ** pdap,
527    int *nNodep,
528    RF_PhysDiskAddr_t ** pqpdap,
529    int *nPQNodep,
530    RF_AllocListElem_t * allocList)
531{
532	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
533	int     PDAPerDisk, i;
534	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
535	int     numDataCol = layoutPtr->numDataCol;
536	int     state;
537	unsigned napdas;
538	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
539	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
540	RF_PhysDiskAddr_t *pda_p;
541	RF_RaidAddr_t sosAddr;
542
543	/* determine how many pda's we will have to generate per unaccess
544	 * stripe. If there is only one failed data unit, it is one; if two,
545	 * possibly two, depending wether they overlap. */
546
547	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
548	fone_end = fone_start + fone->numSector;
549
550	if (asmap->numDataFailed == 1) {
551		PDAPerDisk = 1;
552		state = 1;
553		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
554		pda_p = *pqpdap;
555		/* build p */
556		CONS_PDA(parityInfo, fone_start, fone->numSector);
557		pda_p->type = RF_PDA_TYPE_PARITY;
558		pda_p++;
559		/* build q */
560		CONS_PDA(qInfo, fone_start, fone->numSector);
561		pda_p->type = RF_PDA_TYPE_Q;
562	} else {
563		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
564		ftwo_end = ftwo_start + ftwo->numSector;
565		if (fone->numSector + ftwo->numSector > secPerSU) {
566			PDAPerDisk = 1;
567			state = 2;
568			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
569			pda_p = *pqpdap;
570			CONS_PDA(parityInfo, 0, secPerSU);
571			pda_p->type = RF_PDA_TYPE_PARITY;
572			pda_p++;
573			CONS_PDA(qInfo, 0, secPerSU);
574			pda_p->type = RF_PDA_TYPE_Q;
575		} else {
576			PDAPerDisk = 2;
577			state = 3;
578			/* four of them, fone, then ftwo */
579			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
580			pda_p = *pqpdap;
581			CONS_PDA(parityInfo, fone_start, fone->numSector);
582			pda_p->type = RF_PDA_TYPE_PARITY;
583			pda_p++;
584			CONS_PDA(qInfo, fone_start, fone->numSector);
585			pda_p->type = RF_PDA_TYPE_Q;
586			pda_p++;
587			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
588			pda_p->type = RF_PDA_TYPE_PARITY;
589			pda_p++;
590			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
591			pda_p->type = RF_PDA_TYPE_Q;
592		}
593	}
594	/* figure out number of nonaccessed pda */
595	napdas = PDAPerDisk * (numDataCol - 2);
596	*nPQNodep = PDAPerDisk;
597
598	*nNodep = napdas;
599	if (napdas == 0)
600		return;		/* short circuit */
601
602	/* allocate up our list of pda's */
603
604	RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
605	*pdap = pda_p;
606
607	/* linkem together */
608	for (i = 0; i < (napdas - 1); i++)
609		pda_p[i].next = pda_p + (i + 1);
610
611	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
612	for (i = 0; i < numDataCol; i++) {
613		if ((pda_p - (*pdap)) == napdas)
614			continue;
615		pda_p->type = RF_PDA_TYPE_DATA;
616		pda_p->raidAddress = sosAddr + (i * secPerSU);
617		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
618		/* skip over dead disks */
619		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
620			continue;
621		switch (state) {
622		case 1:	/* fone */
623			pda_p->numSector = fone->numSector;
624			pda_p->raidAddress += fone_start;
625			pda_p->startSector += fone_start;
626			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
627			break;
628		case 2:	/* full stripe */
629			pda_p->numSector = secPerSU;
630			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
631			break;
632		case 3:	/* two slabs */
633			pda_p->numSector = fone->numSector;
634			pda_p->raidAddress += fone_start;
635			pda_p->startSector += fone_start;
636			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
637			pda_p++;
638			pda_p->type = RF_PDA_TYPE_DATA;
639			pda_p->raidAddress = sosAddr + (i * secPerSU);
640			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
641			pda_p->numSector = ftwo->numSector;
642			pda_p->raidAddress += ftwo_start;
643			pda_p->startSector += ftwo_start;
644			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
645			break;
646		default:
647			RF_PANIC();
648		}
649		pda_p++;
650	}
651
652	RF_ASSERT(pda_p - *pdap == napdas);
653	return;
654}
655#define DISK_NODE_PDA(node)  ((node)->params[0].p)
656
657#define DISK_NODE_PARAMS(_node_,_p_) \
658  (_node_).params[0].p = _p_ ; \
659  (_node_).params[1].p = (_p_)->bufPtr; \
660  (_node_).params[2].v = parityStripeID; \
661  (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
662
663void
664rf_DoubleDegSmallWrite(
665    RF_Raid_t * raidPtr,
666    RF_AccessStripeMap_t * asmap,
667    RF_DagHeader_t * dag_h,
668    void *bp,
669    RF_RaidAccessFlags_t flags,
670    RF_AllocListElem_t * allocList,
671    char *redundantReadNodeName,
672    char *redundantWriteNodeName,
673    char *recoveryNodeName,
674    int (*recovFunc) (RF_DagNode_t *))
675{
676	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
677	RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
678	       *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
679	RF_PhysDiskAddr_t *pda, *pqPDAs;
680	RF_PhysDiskAddr_t *npdas;
681	int     nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
682	RF_ReconUnitNum_t which_ru;
683	int     nPQNodes;
684	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
685
686	/* simple small write case - First part looks like a reconstruct-read
687	 * of the failed data units. Then a write of all data units not
688	 * failed. */
689
690
691	/* Hdr | ------Block- /  /         \   Rrd  Rrd ...  Rrd  Rp Rq \  \
692	 * /  -------PQ----- /   \   \ Wud   Wp  WQ	     \    |   /
693	 * --Unblock- | T
694	 *
695	 * Rrd = read recovery data  (potentially none) Wud = write user data
696	 * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
697	 * (could be two)
698	 *
699	 */
700
701	rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
702
703	RF_ASSERT(asmap->numDataFailed == 1);
704
705	nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
706	nReadNodes = nRrdNodes + 2 * nPQNodes;
707	nWriteNodes = nWudNodes + 2 * nPQNodes;
708	nNodes = 4 + nReadNodes + nWriteNodes;
709
710	RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
711	blockNode = nodes;
712	unblockNode = blockNode + 1;
713	termNode = unblockNode + 1;
714	recoveryNode = termNode + 1;
715	rrdNodes = recoveryNode + 1;
716	rpNodes = rrdNodes + nRrdNodes;
717	rqNodes = rpNodes + nPQNodes;
718	wudNodes = rqNodes + nPQNodes;
719	wpNodes = wudNodes + nWudNodes;
720	wqNodes = wpNodes + nPQNodes;
721
722	dag_h->creator = "PQ_DDSimpleSmallWrite";
723	dag_h->numSuccedents = 1;
724	dag_h->succedents[0] = blockNode;
725	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
726	termNode->antecedents[0] = unblockNode;
727	termNode->antType[0] = rf_control;
728
729	/* init the block and unblock nodes */
730	/* The block node has all the read nodes as successors */
731	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
732	for (i = 0; i < nReadNodes; i++)
733		blockNode->succedents[i] = rrdNodes + i;
734
735	/* The unblock node has all the writes as successors */
736	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
737	for (i = 0; i < nWriteNodes; i++) {
738		unblockNode->antecedents[i] = wudNodes + i;
739		unblockNode->antType[i] = rf_control;
740	}
741	unblockNode->succedents[0] = termNode;
742
743#define INIT_READ_NODE(node,name) \
744  rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
745  (node)->succedents[0] = recoveryNode; \
746  (node)->antecedents[0] = blockNode; \
747  (node)->antType[0] = rf_control;
748
749	/* build the read nodes */
750	pda = npdas;
751	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
752		INIT_READ_NODE(rrdNodes + i, "rrd");
753		DISK_NODE_PARAMS(rrdNodes[i], pda);
754	}
755
756	/* read redundancy pdas */
757	pda = pqPDAs;
758	INIT_READ_NODE(rpNodes, "Rp");
759	RF_ASSERT(pda);
760	DISK_NODE_PARAMS(rpNodes[0], pda);
761	pda++;
762	INIT_READ_NODE(rqNodes, redundantReadNodeName);
763	RF_ASSERT(pda);
764	DISK_NODE_PARAMS(rqNodes[0], pda);
765	if (nPQNodes == 2) {
766		pda++;
767		INIT_READ_NODE(rpNodes + 1, "Rp");
768		RF_ASSERT(pda);
769		DISK_NODE_PARAMS(rpNodes[1], pda);
770		pda++;
771		INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
772		RF_ASSERT(pda);
773		DISK_NODE_PARAMS(rqNodes[1], pda);
774	}
775	/* the recovery node has all reads as precedessors and all writes as
776	 * successors. It generates a result for every write P or write Q
777	 * node. As parameters, it takes a pda per read and a pda per stripe
778	 * of user data written. It also takes as the last params the raidPtr
779	 * and asm. For results, it takes PDA for P & Q. */
780
781
782	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
783	    nWriteNodes,	/* succesors */
784	    nReadNodes,		/* preds */
785	    nReadNodes + nWudNodes + 3,	/* params */
786	    2 * nPQNodes,	/* results */
787	    dag_h, recoveryNodeName, allocList);
788
789
790
791	for (i = 0; i < nReadNodes; i++) {
792		recoveryNode->antecedents[i] = rrdNodes + i;
793		recoveryNode->antType[i] = rf_control;
794		recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
795	}
796	for (i = 0; i < nWudNodes; i++) {
797		recoveryNode->succedents[i] = wudNodes + i;
798	}
799	recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
800	recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
801	recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
802
803	for (; i < nWriteNodes; i++)
804		recoveryNode->succedents[i] = wudNodes + i;
805
806	pda = pqPDAs;
807	recoveryNode->results[0] = pda;
808	pda++;
809	recoveryNode->results[1] = pda;
810	if (nPQNodes == 2) {
811		pda++;
812		recoveryNode->results[2] = pda;
813		pda++;
814		recoveryNode->results[3] = pda;
815	}
816	/* fill writes */
817#define INIT_WRITE_NODE(node,name) \
818  rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
819    (node)->succedents[0] = unblockNode; \
820    (node)->antecedents[0] = recoveryNode; \
821    (node)->antType[0] = rf_control;
822
823	pda = asmap->physInfo;
824	for (i = 0; i < nWudNodes; i++) {
825		INIT_WRITE_NODE(wudNodes + i, "Wd");
826		DISK_NODE_PARAMS(wudNodes[i], pda);
827		recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
828		pda = pda->next;
829	}
830	/* write redundancy pdas */
831	pda = pqPDAs;
832	INIT_WRITE_NODE(wpNodes, "Wp");
833	RF_ASSERT(pda);
834	DISK_NODE_PARAMS(wpNodes[0], pda);
835	pda++;
836	INIT_WRITE_NODE(wqNodes, "Wq");
837	RF_ASSERT(pda);
838	DISK_NODE_PARAMS(wqNodes[0], pda);
839	if (nPQNodes == 2) {
840		pda++;
841		INIT_WRITE_NODE(wpNodes + 1, "Wp");
842		RF_ASSERT(pda);
843		DISK_NODE_PARAMS(wpNodes[1], pda);
844		pda++;
845		INIT_WRITE_NODE(wqNodes + 1, "Wq");
846		RF_ASSERT(pda);
847		DISK_NODE_PARAMS(wqNodes[1], pda);
848	}
849}
850#endif   /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
851