rf_dagdegwr.c revision 1.1
1/*	$NetBSD: rf_dagdegwr.c,v 1.1 1998/11/13 04:20:27 oster Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/*
30 * rf_dagdegwr.c
31 *
32 * code for creating degraded write DAGs
33 *
34 * :
35 * Log: rf_dagdegwr.c,v
36 * Revision 1.23  1996/11/05 21:10:40  jimz
37 * failed pda generalization
38 *
39 * Revision 1.22  1996/08/23  14:49:48  jimz
40 * remove bogus assert from small write double deg DAG generator
41 *
42 * Revision 1.21  1996/08/21  05:09:44  jimz
43 * get rid of bogus fakery in DoubleDegSmallWrite
44 *
45 * Revision 1.20  1996/08/21  04:14:35  jimz
46 * cleanup doubledegsmallwrite
47 * NOTE: we need doubledeglargewrite
48 *
49 * Revision 1.19  1996/08/19  21:39:38  jimz
50 * CommonCreateSimpleDegradedWriteDAG() was unable to correctly create DAGs for
51 * complete stripe overwrite accesses- it assumed the necessity to read old
52 * data. Rather than do the "right" thing, and risk breaking a critical DAG so
53 * close to release, I made a no-op read node to stick in and link up in this
54 * case. Seems to work.
55 *
56 * Revision 1.18  1996/07/31  15:35:34  jimz
57 * evenodd changes; bugfixes for double-degraded archs, generalize
58 * some formerly PQ-only functions
59 *
60 * Revision 1.17  1996/07/28  20:31:39  jimz
61 * i386netbsd port
62 * true/false fixup
63 *
64 * Revision 1.16  1996/07/27  23:36:08  jimz
65 * Solaris port of simulator
66 *
67 * Revision 1.15  1996/07/27  16:30:19  jimz
68 * cleanup sweep
69 *
70 * Revision 1.14  1996/07/22  19:52:16  jimz
71 * switched node params to RF_DagParam_t, a union of
72 * a 64-bit int and a void *, for better portability
73 * attempted hpux port, but failed partway through for
74 * lack of a single C compiler capable of compiling all
75 * source files
76 *
77 * Revision 1.13  1996/06/09  02:36:46  jimz
78 * lots of little crufty cleanup- fixup whitespace
79 * issues, comment #ifdefs, improve typing in some
80 * places (esp size-related)
81 *
82 * Revision 1.12  1996/06/07  22:26:27  jimz
83 * type-ify which_ru (RF_ReconUnitNum_t)
84 *
85 * Revision 1.11  1996/06/07  21:33:04  jimz
86 * begin using consistent types for sector numbers,
87 * stripe numbers, row+col numbers, recon unit numbers
88 *
89 * Revision 1.10  1996/05/31  22:26:54  jimz
90 * fix a lot of mapping problems, memory allocation problems
91 * found some weird lock issues, fixed 'em
92 * more code cleanup
93 *
94 * Revision 1.9  1996/05/30  11:29:41  jimz
95 * Numerous bug fixes. Stripe lock release code disagreed with the taking code
96 * about when stripes should be locked (I made it consistent: no parity, no lock)
97 * There was a lot of extra serialization of I/Os which I've removed- a lot of
98 * it was to calculate values for the cache code, which is no longer with us.
99 * More types, function, macro cleanup. Added code to properly quiesce the array
100 * on shutdown. Made a lot of stuff array-specific which was (bogusly) general
101 * before. Fixed memory allocation, freeing bugs.
102 *
103 * Revision 1.8  1996/05/27  18:56:37  jimz
104 * more code cleanup
105 * better typing
106 * compiles in all 3 environments
107 *
108 * Revision 1.7  1996/05/24  22:17:04  jimz
109 * continue code + namespace cleanup
110 * typed a bunch of flags
111 *
112 * Revision 1.6  1996/05/24  04:28:55  jimz
113 * release cleanup ckpt
114 *
115 * Revision 1.5  1996/05/23  21:46:35  jimz
116 * checkpoint in code cleanup (release prep)
117 * lots of types, function names have been fixed
118 *
119 * Revision 1.4  1996/05/23  00:33:23  jimz
120 * code cleanup: move all debug decls to rf_options.c, all extern
121 * debug decls to rf_options.h, all debug vars preceded by rf_
122 *
123 * Revision 1.3  1996/05/18  19:51:34  jimz
124 * major code cleanup- fix syntax, make some types consistent,
125 * add prototypes, clean out dead code, et cetera
126 *
127 * Revision 1.2  1996/05/08  21:01:24  jimz
128 * fixed up enum type names that were conflicting with other
129 * enums and function names (ie, "panic")
130 * future naming trends will be towards RF_ and rf_ for
131 * everything raidframe-related
132 *
133 * Revision 1.1  1996/05/03  19:21:50  wvcii
134 * Initial revision
135 *
136 */
137
138#include "rf_types.h"
139#include "rf_raid.h"
140#include "rf_dag.h"
141#include "rf_dagutils.h"
142#include "rf_dagfuncs.h"
143#include "rf_threadid.h"
144#include "rf_debugMem.h"
145#include "rf_memchunk.h"
146#include "rf_general.h"
147#include "rf_dagdegwr.h"
148#include "rf_sys.h"
149
150
151/******************************************************************************
152 *
153 * General comments on DAG creation:
154 *
155 * All DAGs in this file use roll-away error recovery.  Each DAG has a single
156 * commit node, usually called "Cmt."  If an error occurs before the Cmt node
157 * is reached, the execution engine will halt forward execution and work
158 * backward through the graph, executing the undo functions.  Assuming that
159 * each node in the graph prior to the Cmt node are undoable and atomic - or -
160 * does not make changes to permanent state, the graph will fail atomically.
161 * If an error occurs after the Cmt node executes, the engine will roll-forward
162 * through the graph, blindly executing nodes until it reaches the end.
163 * If a graph reaches the end, it is assumed to have completed successfully.
164 *
165 * A graph has only 1 Cmt node.
166 *
167 */
168
169
170/******************************************************************************
171 *
172 * The following wrappers map the standard DAG creation interface to the
173 * DAG creation routines.  Additionally, these wrappers enable experimentation
174 * with new DAG structures by providing an extra level of indirection, allowing
175 * the DAG creation routines to be replaced at this single point.
176 */
177
178static RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
179{
180  rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
181    flags, allocList,1, rf_RecoveryXorFunc, RF_TRUE);
182}
183
184void rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList)
185  RF_Raid_t             *raidPtr;
186  RF_AccessStripeMap_t  *asmap;
187  RF_DagHeader_t        *dag_h;
188  void                  *bp;
189  RF_RaidAccessFlags_t   flags;
190  RF_AllocListElem_t    *allocList;
191{
192  RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
193  RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
194
195  RF_ASSERT( asmap->numDataFailed == 1 );
196  dag_h->creator = "DegradedWriteDAG";
197
198  /* if the access writes only a portion of the failed unit, and also writes
199   * some portion of at least one surviving unit, we create two DAGs, one for
200   * the failed component and one for the non-failed component, and do them
201   * sequentially.  Note that the fact that we're accessing only a portion of
202   * the failed unit indicates that the access either starts or ends in the
203   * failed unit, and hence we need create only two dags.  This is inefficient
204   * in that the same data or parity can get read and written twice using this
205   * structure.  I need to fix this to do the access all at once.
206   */
207  RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit));
208  rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList);
209}
210
211
212
213/******************************************************************************
214 *
215 * DAG creation code begins here
216 */
217
218
219
220/******************************************************************************
221 *
222 * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
223 * write, which is as follows
224 *
225 *                                        / {Wnq} --\
226 * hdr -> blockNode ->  Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
227 *                  \  {Rod} /            \  Wnd ---/
228 *                                        \ {Wnd} -/
229 *
230 * commit nodes: Xor, Wnd
231 *
232 * IMPORTANT:
233 * This DAG generator does not work for double-degraded archs since it does not
234 * generate Q
235 *
236 * This dag is essentially identical to the large-write dag, except that the
237 * write to the failed data unit is suppressed.
238 *
239 * IMPORTANT:  this dag does not work in the case where the access writes only
240 * a portion of the failed unit, and also writes some portion of at least one
241 * surviving SU.  this case is handled in CreateDegradedWriteDAG above.
242 *
243 * The block & unblock nodes are leftovers from a previous version.  They
244 * do nothing, but I haven't deleted them because it would be a tremendous
245 * effort to put them back in.
246 *
247 * This dag is used whenever a one of the data units in a write has failed.
248 * If it is the parity unit that failed, the nonredundant write dag (below)
249 * is used.
250 *****************************************************************************/
251
252void rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
253	allocList, nfaults, redFunc, allowBufferRecycle)
254  RF_Raid_t              *raidPtr;
255  RF_AccessStripeMap_t   *asmap;
256  RF_DagHeader_t         *dag_h;
257  void                   *bp;
258  RF_RaidAccessFlags_t    flags;
259  RF_AllocListElem_t     *allocList;
260  int                     nfaults;
261  int                   (*redFunc)(RF_DagNode_t *);
262  int                     allowBufferRecycle;
263{
264  int nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum, rdnodesFaked;
265  RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
266  RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode;
267  RF_SectorCount_t sectorsPerSU;
268  RF_ReconUnitNum_t which_ru;
269  char *xorTargetBuf = NULL; /* the target buffer for the XOR operation */
270  char *overlappingPDAs; /* a temporary array of flags */
271  RF_AccessStripeMapHeader_t *new_asm_h[2];
272  RF_PhysDiskAddr_t *pda, *parityPDA;
273  RF_StripeNum_t parityStripeID;
274  RF_PhysDiskAddr_t *failedPDA;
275  RF_RaidLayout_t *layoutPtr;
276
277  layoutPtr = &(raidPtr->Layout);
278  parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
279    &which_ru);
280  sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
281  /* failedPDA points to the pda within the asm that targets the failed disk */
282  failedPDA = asmap->failedPDAs[0];
283
284  if (rf_dagDebug)
285    printf("[Creating degraded-write DAG]\n");
286
287  RF_ASSERT( asmap->numDataFailed == 1 );
288  dag_h->creator = "SimpleDegradedWriteDAG";
289
290  /*
291   * Generate two ASMs identifying the surviving data
292   * we need in order to recover the lost data.
293   */
294  /* overlappingPDAs array must be zero'd */
295  RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
296  rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
297    &nXorBufs, NULL, overlappingPDAs, allocList);
298
299  /* create all the nodes at once */
300  nWndNodes = asmap->numStripeUnitsAccessed - 1;   /* no access is generated
301                                                  * for the failed pda */
302
303  nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
304              ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
305  /*
306   * XXX
307   *
308   * There's a bug with a complete stripe overwrite- that means 0 reads
309   * of old data, and the rest of the DAG generation code doesn't like
310   * that. A release is coming, and I don't wanna risk breaking a critical
311   * DAG generator, so here's what I'm gonna do- if there's no read nodes,
312   * I'm gonna fake there being a read node, and I'm gonna swap in a
313   * no-op node in its place (to make all the link-up code happy).
314   * This should be fixed at some point.  --jimz
315   */
316  if (nRrdNodes == 0) {
317    nRrdNodes = 1;
318    rdnodesFaked = 1;
319  }
320  else {
321    rdnodesFaked = 0;
322  }
323  /* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
324  nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
325  RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t),
326    (RF_DagNode_t *), allocList);
327  i = 0;
328  blockNode   = &nodes[i]; i += 1;
329  commitNode    = &nodes[i]; i += 1;
330  unblockNode = &nodes[i]; i += 1;
331  termNode    = &nodes[i]; i += 1;
332  xorNode     = &nodes[i]; i += 1;
333  wnpNode     = &nodes[i]; i += 1;
334  wndNodes    = &nodes[i]; i += nWndNodes;
335  rrdNodes    = &nodes[i]; i += nRrdNodes;
336  if (nfaults == 2) {
337    wnqNode   = &nodes[i]; i += 1;
338  }
339  else {
340    wnqNode = NULL;
341  }
342  RF_ASSERT(i == nNodes);
343
344  /* this dag can not commit until all rrd and xor Nodes have completed */
345  dag_h->numCommitNodes = 1;
346  dag_h->numCommits = 0;
347  dag_h->numSuccedents = 1;
348
349  RF_ASSERT( nRrdNodes > 0 );
350  rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
351    NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
352  rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
353    NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
354  rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
355    NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
356  rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
357    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
358  rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
359    nRrdNodes, 2*nXorBufs+2, nfaults, dag_h, "Xrc", allocList);
360
361  /*
362   * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
363   * the failed buffer, save a pointer to it so we can use it as the target
364   * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
365   * a buffer is the same size as the failed buffer, it must also be at the
366   * same alignment within the SU.
367   */
368  i = 0;
369  if (new_asm_h[0]) {
370    for (i=0, pda=new_asm_h[0]->stripeMap->physInfo;
371        i<new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
372        i++, pda=pda->next)
373    {
374      rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
375        rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
376      RF_ASSERT(pda);
377      rrdNodes[i].params[0].p = pda;
378      rrdNodes[i].params[1].p = pda->bufPtr;
379      rrdNodes[i].params[2].v = parityStripeID;
380      rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
381    }
382  }
383  /* i now equals the number of stripe units accessed in new_asm_h[0] */
384  if (new_asm_h[1]) {
385    for (j=0,pda=new_asm_h[1]->stripeMap->physInfo;
386        j<new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
387        j++, pda=pda->next)
388    {
389      rf_InitNode(&rrdNodes[i+j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
390        rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
391      RF_ASSERT(pda);
392      rrdNodes[i+j].params[0].p = pda;
393      rrdNodes[i+j].params[1].p = pda->bufPtr;
394      rrdNodes[i+j].params[2].v = parityStripeID;
395      rrdNodes[i+j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
396      if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
397        xorTargetBuf = pda->bufPtr;
398    }
399  }
400  if (rdnodesFaked) {
401    /*
402     * This is where we'll init that fake noop read node
403     * (XXX should the wakeup func be different?)
404     */
405    rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
406      NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
407  }
408
409  /*
410   * Make a PDA for the parity unit.  The parity PDA should start at
411   * the same offset into the SU as the failed PDA.
412   */
413  /*
414   * Danner comment:
415   * I don't think this copy is really necessary.
416   * We are in one of two cases here.
417   *   (1) The entire failed unit is written. Then asmap->parityInfo will
418   *       describe the entire parity.
419   *   (2) We are only writing a subset of the failed unit and nothing
420   *       else. Then the asmap->parityInfo describes the failed unit and
421   *       the copy can also be avoided.
422   */
423
424  RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
425  parityPDA->row = asmap->parityInfo->row;
426  parityPDA->col = asmap->parityInfo->col;
427  parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
428    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
429  parityPDA->numSector = failedPDA->numSector;
430
431  if (!xorTargetBuf) {
432    RF_CallocAndAdd(xorTargetBuf, 1,
433      rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
434  }
435
436  /* init the Wnp node */
437  rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
438    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
439  wnpNode->params[0].p = parityPDA;
440  wnpNode->params[1].p = xorTargetBuf;
441  wnpNode->params[2].v = parityStripeID;
442  wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
443
444  /* fill in the Wnq Node */
445  if (nfaults == 2) {
446    {
447      RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
448        (RF_PhysDiskAddr_t *), allocList);
449      parityPDA->row = asmap->qInfo->row;
450      parityPDA->col = asmap->qInfo->col;
451      parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
452        * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
453      parityPDA->numSector = failedPDA->numSector;
454
455      rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
456        rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
457      wnqNode->params[0].p = parityPDA;
458      RF_CallocAndAdd(xorNode->results[1], 1,
459        rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
460      wnqNode->params[1].p = xorNode->results[1];
461      wnqNode->params[2].v = parityStripeID;
462      wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
463    }
464  }
465
466  /* fill in the Wnd nodes */
467  for (pda=asmap->physInfo, i=0; i<nWndNodes; i++, pda=pda->next) {
468    if (pda == failedPDA) {
469      i--;
470      continue;
471    }
472    rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
473      rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
474    RF_ASSERT(pda);
475    wndNodes[i].params[0].p = pda;
476    wndNodes[i].params[1].p = pda->bufPtr;
477    wndNodes[i].params[2].v = parityStripeID;
478    wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
479  }
480
481  /* fill in the results of the xor node */
482  xorNode->results[0] = xorTargetBuf;
483
484  /* fill in the params of the xor node */
485
486  paramNum=0;
487  if (rdnodesFaked == 0) {
488    for (i=0; i<nRrdNodes; i++) {
489      /* all the Rrd nodes need to be xored together */
490      xorNode->params[paramNum++] = rrdNodes[i].params[0];
491      xorNode->params[paramNum++] = rrdNodes[i].params[1];
492    }
493  }
494  for (i=0; i < nWndNodes; i++) {
495    /* any Wnd nodes that overlap the failed access need to be xored in */
496    if (overlappingPDAs[i]) {
497      RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
498      bcopy((char *)wndNodes[i].params[0].p, (char *)pda, sizeof(RF_PhysDiskAddr_t));
499      rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
500      xorNode->params[paramNum++].p = pda;
501      xorNode->params[paramNum++].p = pda->bufPtr;
502    }
503  }
504  RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
505
506  /*
507   * Install the failed PDA into the xor param list so that the
508   * new data gets xor'd in.
509   */
510  xorNode->params[paramNum++].p = failedPDA;
511  xorNode->params[paramNum++].p = failedPDA->bufPtr;
512
513  /*
514   * The last 2 params to the recovery xor node are always the failed
515   * PDA and the raidPtr. install the failedPDA even though we have just
516   * done so above. This allows us to use the same XOR function for both
517   * degraded reads and degraded writes.
518   */
519  xorNode->params[paramNum++].p = failedPDA;
520  xorNode->params[paramNum++].p = raidPtr;
521  RF_ASSERT( paramNum == 2*nXorBufs+2 );
522
523  /*
524   * Code to link nodes begins here
525   */
526
527  /* link header to block node */
528  RF_ASSERT(blockNode->numAntecedents == 0);
529  dag_h->succedents[0] = blockNode;
530
531  /* link block node to rd nodes */
532  RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
533  for (i = 0; i < nRrdNodes; i++) {
534    RF_ASSERT(rrdNodes[i].numAntecedents == 1);
535    blockNode->succedents[i] = &rrdNodes[i];
536    rrdNodes[i].antecedents[0] = blockNode;
537    rrdNodes[i].antType[0] = rf_control;
538  }
539
540  /* link read nodes to xor node*/
541  RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
542  for (i = 0; i < nRrdNodes; i++) {
543    RF_ASSERT(rrdNodes[i].numSuccedents == 1);
544    rrdNodes[i].succedents[0] = xorNode;
545    xorNode->antecedents[i] = &rrdNodes[i];
546    xorNode->antType[i] = rf_trueData;
547  }
548
549  /* link xor node to commit node */
550  RF_ASSERT(xorNode->numSuccedents == 1);
551  RF_ASSERT(commitNode->numAntecedents == 1);
552  xorNode->succedents[0] = commitNode;
553  commitNode->antecedents[0] = xorNode;
554  commitNode->antType[0] = rf_control;
555
556  /* link commit node to wnd nodes */
557  RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
558  for (i = 0; i < nWndNodes; i++) {
559    RF_ASSERT(wndNodes[i].numAntecedents == 1);
560    commitNode->succedents[i] = &wndNodes[i];
561    wndNodes[i].antecedents[0] = commitNode;
562    wndNodes[i].antType[0] = rf_control;
563  }
564
565  /* link the commit node to wnp, wnq nodes */
566  RF_ASSERT(wnpNode->numAntecedents == 1);
567  commitNode->succedents[nWndNodes] = wnpNode;
568  wnpNode->antecedents[0] = commitNode;
569  wnpNode->antType[0] = rf_control;
570  if (nfaults == 2) {
571    RF_ASSERT(wnqNode->numAntecedents == 1);
572    commitNode->succedents[nWndNodes + 1] = wnqNode;
573    wnqNode->antecedents[0] = commitNode;
574    wnqNode->antType[0] = rf_control;
575  }
576
577  /* link write new data nodes to unblock node */
578  RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
579  for(i = 0; i < nWndNodes; i++) {
580    RF_ASSERT(wndNodes[i].numSuccedents == 1);
581    wndNodes[i].succedents[0] = unblockNode;
582    unblockNode->antecedents[i] = &wndNodes[i];
583    unblockNode->antType[i] = rf_control;
584  }
585
586  /* link write new parity node to unblock node */
587  RF_ASSERT(wnpNode->numSuccedents == 1);
588  wnpNode->succedents[0] = unblockNode;
589  unblockNode->antecedents[nWndNodes] = wnpNode;
590  unblockNode->antType[nWndNodes] = rf_control;
591
592  /* link write new q node to unblock node */
593  if (nfaults == 2) {
594    RF_ASSERT(wnqNode->numSuccedents == 1);
595    wnqNode->succedents[0] = unblockNode;
596    unblockNode->antecedents[nWndNodes+1] = wnqNode;
597    unblockNode->antType[nWndNodes+1] = rf_control;
598  }
599
600  /* link unblock node to term node */
601  RF_ASSERT(unblockNode->numSuccedents == 1);
602  RF_ASSERT(termNode->numAntecedents == 1);
603  RF_ASSERT(termNode->numSuccedents == 0);
604  unblockNode->succedents[0] = termNode;
605  termNode->antecedents[0]  = unblockNode;
606  termNode->antType[0] = rf_control;
607}
608
609#define CONS_PDA(if,start,num) \
610  pda_p->row = asmap->if->row;    pda_p->col = asmap->if->col; \
611  pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
612  pda_p->numSector = num; \
613  pda_p->next = NULL; \
614  RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
615
616void rf_WriteGenerateFailedAccessASMs(
617  RF_Raid_t              *raidPtr,
618  RF_AccessStripeMap_t   *asmap,
619  RF_PhysDiskAddr_t     **pdap,
620  int                    *nNodep,
621  RF_PhysDiskAddr_t     **pqpdap,
622  int                    *nPQNodep,
623  RF_AllocListElem_t     *allocList)
624{
625  RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
626  int PDAPerDisk,i;
627  RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
628  int numDataCol = layoutPtr->numDataCol;
629  int state;
630  unsigned napdas;
631  RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
632  RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
633  RF_PhysDiskAddr_t *pda_p;
634  RF_RaidAddr_t sosAddr;
635
636  /* determine how many pda's we will have to generate per unaccess stripe.
637     If there is only one failed data unit, it is one; if two, possibly two,
638     depending wether they overlap. */
639
640  fone_start = rf_StripeUnitOffset(layoutPtr,fone->startSector);
641  fone_end = fone_start + fone->numSector;
642
643  if (asmap->numDataFailed==1)
644    {
645      PDAPerDisk = 1;
646      state = 1;
647      RF_MallocAndAdd(*pqpdap,2*sizeof(RF_PhysDiskAddr_t),(RF_PhysDiskAddr_t *), allocList);
648      pda_p = *pqpdap;
649      /* build p */
650      CONS_PDA(parityInfo,fone_start,fone->numSector);
651      pda_p->type = RF_PDA_TYPE_PARITY;
652      pda_p++;
653      /* build q */
654      CONS_PDA(qInfo,fone_start,fone->numSector);
655      pda_p->type = RF_PDA_TYPE_Q;
656    }
657  else
658    {
659      ftwo_start = rf_StripeUnitOffset(layoutPtr,ftwo->startSector);
660      ftwo_end = ftwo_start + ftwo->numSector;
661      if (fone->numSector + ftwo->numSector > secPerSU)
662	{
663	  PDAPerDisk = 1;
664	  state = 2;
665	  RF_MallocAndAdd(*pqpdap,2*sizeof(RF_PhysDiskAddr_t),(RF_PhysDiskAddr_t *), allocList);
666	  pda_p = *pqpdap;
667	  CONS_PDA(parityInfo,0,secPerSU);
668	  pda_p->type = RF_PDA_TYPE_PARITY;
669	  pda_p++;
670	  CONS_PDA(qInfo,0,secPerSU);
671	  pda_p->type = RF_PDA_TYPE_Q;
672	}
673      else
674	{
675	  PDAPerDisk = 2;
676	  state = 3;
677	  /* four of them, fone, then ftwo */
678	  RF_MallocAndAdd(*pqpdap,4*sizeof(RF_PhysDiskAddr_t),(RF_PhysDiskAddr_t *), allocList);
679	  pda_p = *pqpdap;
680	  CONS_PDA(parityInfo,fone_start,fone->numSector);
681	  pda_p->type = RF_PDA_TYPE_PARITY;
682	  pda_p++;
683	  CONS_PDA(qInfo,fone_start,fone->numSector);
684	  pda_p->type = RF_PDA_TYPE_Q;
685	  pda_p++;
686	  CONS_PDA(parityInfo,ftwo_start,ftwo->numSector);
687	  pda_p->type = RF_PDA_TYPE_PARITY;
688	  pda_p++;
689	  CONS_PDA(qInfo,ftwo_start,ftwo->numSector);
690	  pda_p->type = RF_PDA_TYPE_Q;
691	}
692    }
693  /* figure out number of nonaccessed pda */
694  napdas = PDAPerDisk * (numDataCol - 2);
695  *nPQNodep = PDAPerDisk;
696
697  *nNodep = napdas;
698  if (napdas == 0) return; /* short circuit */
699
700  /* allocate up our list of pda's */
701
702  RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
703  *pdap = pda_p;
704
705  /* linkem together */
706  for (i=0; i < (napdas-1); i++)
707    pda_p[i].next = pda_p+(i+1);
708
709  sosAddr      = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
710  for (i=0; i < numDataCol; i++)
711    {
712      if ((pda_p - (*pdap)) == napdas)
713	continue;
714      pda_p->type = RF_PDA_TYPE_DATA;
715      pda_p->raidAddress = sosAddr + (i * secPerSU);
716      (raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
717      /* skip over dead disks */
718      if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
719	continue;
720      switch (state)
721	{
722	case 1: /* fone */
723	  pda_p->numSector = fone->numSector;
724	  pda_p->raidAddress += fone_start;
725	  pda_p->startSector += fone_start;
726	  RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
727	  break;
728	case 2: /* full stripe */
729	  pda_p->numSector = secPerSU;
730	  RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,secPerSU), (char *), allocList);
731	  break;
732	case 3: /* two slabs */
733	  pda_p->numSector = fone->numSector;
734	  pda_p->raidAddress += fone_start;
735	  pda_p->startSector += fone_start;
736	  RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
737	  pda_p++;
738          pda_p->type = RF_PDA_TYPE_DATA;
739          pda_p->raidAddress = sosAddr + (i * secPerSU);
740          (raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
741	  pda_p->numSector = ftwo->numSector;
742	  pda_p->raidAddress += ftwo_start;
743	  pda_p->startSector += ftwo_start;
744	  RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
745	  break;
746	default:
747	  RF_PANIC();
748	}
749      pda_p++;
750    }
751
752  RF_ASSERT  (pda_p - *pdap == napdas);
753  return;
754}
755
756#define DISK_NODE_PDA(node)  ((node)->params[0].p)
757
758#define DISK_NODE_PARAMS(_node_,_p_) \
759  (_node_).params[0].p = _p_ ; \
760  (_node_).params[1].p = (_p_)->bufPtr; \
761  (_node_).params[2].v = parityStripeID; \
762  (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
763
764void rf_DoubleDegSmallWrite(
765  RF_Raid_t              *raidPtr,
766  RF_AccessStripeMap_t   *asmap,
767  RF_DagHeader_t         *dag_h,
768  void                   *bp,
769  RF_RaidAccessFlags_t    flags,
770  RF_AllocListElem_t     *allocList,
771  char                   *redundantReadNodeName,
772  char                   *redundantWriteNodeName,
773  char                   *recoveryNodeName,
774  int                   (*recovFunc)(RF_DagNode_t *))
775{
776  RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
777  RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode, *unblockNode, *rpNodes,*rqNodes, *wpNodes, *wqNodes, *termNode;
778  RF_PhysDiskAddr_t *pda, *pqPDAs;
779  RF_PhysDiskAddr_t *npdas;
780  int nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
781  RF_ReconUnitNum_t which_ru;
782  int nPQNodes;
783  RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
784
785  /* simple small write case -
786     First part looks like a reconstruct-read of the failed data units.
787     Then a write of all data units not failed. */
788
789
790  /*
791             Hdr
792	      |
793       ------Block-
794      /  /         \
795    Rrd  Rrd ...  Rrd  Rp Rq
796      \  \          /
797      -------PQ-----
798            /   \   \
799          Wud   Wp  WQ
800           \    |   /
801           --Unblock-
802                |
803                T
804
805   Rrd = read recovery data  (potentially none)
806   Wud = write user data (not incl. failed disks)
807   Wp = Write P (could be two)
808   Wq = Write Q (could be two)
809
810   */
811
812  rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes,allocList);
813
814  RF_ASSERT(asmap->numDataFailed == 1);
815
816  nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
817  nReadNodes = nRrdNodes + 2*nPQNodes;
818  nWriteNodes = nWudNodes+ 2*nPQNodes;
819  nNodes = 4 + nReadNodes + nWriteNodes;
820
821  RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
822  blockNode = nodes;
823  unblockNode = blockNode+1;
824  termNode = unblockNode+1;
825  recoveryNode = termNode+1;
826  rrdNodes = recoveryNode+1;
827  rpNodes = rrdNodes + nRrdNodes;
828  rqNodes = rpNodes + nPQNodes;
829  wudNodes = rqNodes + nPQNodes;
830  wpNodes = wudNodes + nWudNodes;
831  wqNodes = wpNodes + nPQNodes;
832
833  dag_h->creator = "PQ_DDSimpleSmallWrite";
834  dag_h->numSuccedents = 1;
835  dag_h->succedents[0] = blockNode;
836  rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
837  termNode->antecedents[0]  = unblockNode;
838  termNode->antType[0] = rf_control;
839
840  /* init the block and unblock nodes */
841  /* The block node has all the read nodes as successors */
842  rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
843  for (i=0; i < nReadNodes; i++)
844    blockNode->succedents[i] = rrdNodes+i;
845
846  /* The unblock node has all the writes as successors */
847  rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
848  for (i=0; i < nWriteNodes; i++) {
849    unblockNode->antecedents[i] = wudNodes+i;
850    unblockNode->antType[i] = rf_control;
851  }
852  unblockNode->succedents[0] = termNode;
853
854#define INIT_READ_NODE(node,name) \
855  rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
856  (node)->succedents[0] = recoveryNode; \
857  (node)->antecedents[0] = blockNode; \
858  (node)->antType[0] = rf_control;
859
860  /* build the read nodes */
861  pda = npdas;
862  for (i=0; i < nRrdNodes; i++, pda = pda->next) {
863    INIT_READ_NODE(rrdNodes+i,"rrd");
864    DISK_NODE_PARAMS(rrdNodes[i],pda);
865  }
866
867  /* read redundancy pdas */
868  pda = pqPDAs;
869  INIT_READ_NODE(rpNodes,"Rp");
870  RF_ASSERT(pda);
871  DISK_NODE_PARAMS(rpNodes[0],pda);
872  pda++;
873  INIT_READ_NODE(rqNodes, redundantReadNodeName );
874  RF_ASSERT(pda);
875  DISK_NODE_PARAMS(rqNodes[0],pda);
876  if (nPQNodes==2)
877    {
878      pda++;
879      INIT_READ_NODE(rpNodes+1,"Rp");
880      RF_ASSERT(pda);
881      DISK_NODE_PARAMS(rpNodes[1],pda);
882      pda++;
883      INIT_READ_NODE(rqNodes+1,redundantReadNodeName );
884      RF_ASSERT(pda);
885      DISK_NODE_PARAMS(rqNodes[1],pda);
886    }
887
888  /* the recovery node has all reads as precedessors and all writes as successors.
889     It generates a result for every write P or write Q node.
890     As parameters, it takes a pda per read and a pda per stripe of user data written.
891     It also takes as the last params the raidPtr and asm.
892     For results, it takes PDA for P & Q. */
893
894
895    rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
896           nWriteNodes, /* succesors */
897           nReadNodes, /* preds */
898           nReadNodes + nWudNodes + 3, /* params */
899           2 * nPQNodes, /* results */
900           dag_h, recoveryNodeName, allocList);
901
902
903
904  for (i=0; i < nReadNodes; i++ )
905    {
906      recoveryNode->antecedents[i] = rrdNodes+i;
907      recoveryNode->antType[i] = rf_control;
908      recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes+i);
909    }
910  for (i=0; i < nWudNodes; i++)
911    {
912      recoveryNode->succedents[i] = wudNodes+i;
913    }
914  recoveryNode->params[nReadNodes+nWudNodes].p = asmap->failedPDAs[0];
915  recoveryNode->params[nReadNodes+nWudNodes+1].p = raidPtr;
916  recoveryNode->params[nReadNodes+nWudNodes+2].p = asmap;
917
918  for ( ; i < nWriteNodes; i++)
919      recoveryNode->succedents[i] = wudNodes+i;
920
921  pda = pqPDAs;
922  recoveryNode->results[0] = pda;
923  pda++;
924  recoveryNode->results[1] = pda;
925  if ( nPQNodes == 2)
926    {
927      pda++;
928      recoveryNode->results[2] = pda;
929      pda++;
930      recoveryNode->results[3] = pda;
931    }
932
933  /* fill writes */
934#define INIT_WRITE_NODE(node,name) \
935  rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
936    (node)->succedents[0] = unblockNode; \
937    (node)->antecedents[0] = recoveryNode; \
938    (node)->antType[0] = rf_control;
939
940  pda = asmap->physInfo;
941  for (i=0; i < nWudNodes; i++)
942    {
943      INIT_WRITE_NODE(wudNodes+i,"Wd");
944      DISK_NODE_PARAMS(wudNodes[i],pda);
945      recoveryNode->params[nReadNodes+i].p = DISK_NODE_PDA(wudNodes+i);
946      pda = pda->next;
947    }
948  /* write redundancy pdas */
949  pda = pqPDAs;
950  INIT_WRITE_NODE(wpNodes,"Wp");
951  RF_ASSERT(pda);
952  DISK_NODE_PARAMS(wpNodes[0],pda);
953  pda++;
954  INIT_WRITE_NODE(wqNodes,"Wq");
955  RF_ASSERT(pda);
956  DISK_NODE_PARAMS(wqNodes[0],pda);
957  if (nPQNodes==2)
958    {
959      pda++;
960      INIT_WRITE_NODE(wpNodes+1,"Wp");
961      RF_ASSERT(pda);
962      DISK_NODE_PARAMS(wpNodes[1],pda);
963      pda++;
964      INIT_WRITE_NODE(wqNodes+1,"Wq");
965      RF_ASSERT(pda);
966      DISK_NODE_PARAMS(wqNodes[1],pda);
967    }
968}
969