rf_dagdegrd.c revision 1.30
1/*	$NetBSD: rf_dagdegrd.c,v 1.30 2019/02/09 03:34:00 christos Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/*
30 * rf_dagdegrd.c
31 *
32 * code for creating degraded read DAGs
33 */
34
35#include <sys/cdefs.h>
36__KERNEL_RCSID(0, "$NetBSD: rf_dagdegrd.c,v 1.30 2019/02/09 03:34:00 christos Exp $");
37
38#include <dev/raidframe/raidframevar.h>
39
40#include "rf_archs.h"
41#include "rf_raid.h"
42#include "rf_dag.h"
43#include "rf_dagutils.h"
44#include "rf_dagfuncs.h"
45#include "rf_debugMem.h"
46#include "rf_general.h"
47#include "rf_dagdegrd.h"
48#include "rf_map.h"
49
50
51/******************************************************************************
52 *
53 * General comments on DAG creation:
54 *
55 * All DAGs in this file use roll-away error recovery.  Each DAG has a single
56 * commit node, usually called "Cmt."  If an error occurs before the Cmt node
57 * is reached, the execution engine will halt forward execution and work
58 * backward through the graph, executing the undo functions.  Assuming that
59 * each node in the graph prior to the Cmt node are undoable and atomic - or -
60 * does not make changes to permanent state, the graph will fail atomically.
61 * If an error occurs after the Cmt node executes, the engine will roll-forward
62 * through the graph, blindly executing nodes until it reaches the end.
63 * If a graph reaches the end, it is assumed to have completed successfully.
64 *
65 * A graph has only 1 Cmt node.
66 *
67 */
68
69
70/******************************************************************************
71 *
72 * The following wrappers map the standard DAG creation interface to the
73 * DAG creation routines.  Additionally, these wrappers enable experimentation
74 * with new DAG structures by providing an extra level of indirection, allowing
75 * the DAG creation routines to be replaced at this single point.
76 */
77
78void
79rf_CreateRaidFiveDegradedReadDAG(RF_Raid_t *raidPtr,
80				 RF_AccessStripeMap_t *asmap,
81				 RF_DagHeader_t *dag_h,
82				 void *bp,
83				 RF_RaidAccessFlags_t flags,
84				 RF_AllocListElem_t *allocList)
85{
86	rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
87	    &rf_xorRecoveryFuncs);
88}
89
90
91/******************************************************************************
92 *
93 * DAG creation code begins here
94 */
95
96
97/******************************************************************************
98 * Create a degraded read DAG for RAID level 1
99 *
100 * Hdr -> Nil -> R(p/s)d -> Commit -> Trm
101 *
102 * The "Rd" node reads data from the surviving disk in the mirror pair
103 *   Rpd - read of primary copy
104 *   Rsd - read of secondary copy
105 *
106 * Parameters:  raidPtr   - description of the physical array
107 *              asmap     - logical & physical addresses for this access
108 *              bp        - buffer ptr (for holding write data)
109 *              flags     - general flags (e.g. disk locking)
110 *              allocList - list of memory allocated in DAG creation
111 *****************************************************************************/
112
113void
114rf_CreateRaidOneDegradedReadDAG(RF_Raid_t *raidPtr,
115				RF_AccessStripeMap_t *asmap,
116				RF_DagHeader_t *dag_h,
117				void *bp,
118				RF_RaidAccessFlags_t flags,
119				RF_AllocListElem_t *allocList)
120{
121	RF_DagNode_t *rdNode, *blockNode, *commitNode, *termNode;
122	RF_StripeNum_t parityStripeID;
123	RF_ReconUnitNum_t which_ru;
124	RF_PhysDiskAddr_t *pda;
125	int     useMirror;
126
127	useMirror = 0;
128	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
129	    asmap->raidAddress, &which_ru);
130#if RF_DEBUG_DAG
131	if (rf_dagDebug) {
132		printf("[Creating RAID level 1 degraded read DAG]\n");
133	}
134#endif
135	dag_h->creator = "RaidOneDegradedReadDAG";
136	/* alloc the Wnd nodes and the Wmir node */
137	if (asmap->numDataFailed == 0)
138		useMirror = RF_FALSE;
139	else
140		useMirror = RF_TRUE;
141
142	/* total number of nodes = 1 + (block + commit + terminator) */
143
144	rdNode = rf_AllocDAGNode();
145	rdNode->list_next = dag_h->nodes;
146	dag_h->nodes = rdNode;
147
148	blockNode = rf_AllocDAGNode();
149	blockNode->list_next = dag_h->nodes;
150	dag_h->nodes = blockNode;
151
152	commitNode = rf_AllocDAGNode();
153	commitNode->list_next = dag_h->nodes;
154	dag_h->nodes = commitNode;
155
156	termNode = rf_AllocDAGNode();
157	termNode->list_next = dag_h->nodes;
158	dag_h->nodes = termNode;
159
160	/* this dag can not commit until the commit node is reached.   errors
161	 * prior to the commit point imply the dag has failed and must be
162	 * retried */
163	dag_h->numCommitNodes = 1;
164	dag_h->numCommits = 0;
165	dag_h->numSuccedents = 1;
166
167	/* initialize the block, commit, and terminator nodes */
168	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
169	    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
170	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
171	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
172	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
173	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
174
175	pda = asmap->physInfo;
176	RF_ASSERT(pda != NULL);
177	/* parityInfo must describe entire parity unit */
178	RF_ASSERT(asmap->parityInfo->next == NULL);
179
180	/* initialize the data node */
181	if (!useMirror) {
182		/* read primary copy of data */
183		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
184		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
185		rdNode->params[0].p = pda;
186		rdNode->params[1].p = pda->bufPtr;
187		rdNode->params[2].v = parityStripeID;
188		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
189						       which_ru);
190	} else {
191		/* read secondary copy of data */
192		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
193		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
194		rdNode->params[0].p = asmap->parityInfo;
195		rdNode->params[1].p = pda->bufPtr;
196		rdNode->params[2].v = parityStripeID;
197		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
198						       which_ru);
199	}
200
201	/* connect header to block node */
202	RF_ASSERT(dag_h->numSuccedents == 1);
203	RF_ASSERT(blockNode->numAntecedents == 0);
204	dag_h->succedents[0] = blockNode;
205
206	/* connect block node to rdnode */
207	RF_ASSERT(blockNode->numSuccedents == 1);
208	RF_ASSERT(rdNode->numAntecedents == 1);
209	blockNode->succedents[0] = rdNode;
210	rdNode->antecedents[0] = blockNode;
211	rdNode->antType[0] = rf_control;
212
213	/* connect rdnode to commit node */
214	RF_ASSERT(rdNode->numSuccedents == 1);
215	RF_ASSERT(commitNode->numAntecedents == 1);
216	rdNode->succedents[0] = commitNode;
217	commitNode->antecedents[0] = rdNode;
218	commitNode->antType[0] = rf_control;
219
220	/* connect commit node to terminator */
221	RF_ASSERT(commitNode->numSuccedents == 1);
222	RF_ASSERT(termNode->numAntecedents == 1);
223	RF_ASSERT(termNode->numSuccedents == 0);
224	commitNode->succedents[0] = termNode;
225	termNode->antecedents[0] = commitNode;
226	termNode->antType[0] = rf_control;
227}
228
229
230
231/******************************************************************************
232 *
233 * creates a DAG to perform a degraded-mode read of data within one stripe.
234 * This DAG is as follows:
235 *
236 * Hdr -> Block -> Rud -> Xor -> Cmt -> T
237 *              -> Rrd ->
238 *              -> Rp -->
239 *
240 * Each R node is a successor of the L node
241 * One successor arc from each R node goes to C, and the other to X
242 * There is one Rud for each chunk of surviving user data requested by the
243 * user, and one Rrd for each chunk of surviving user data _not_ being read by
244 * the user
245 * R = read, ud = user data, rd = recovery (surviving) data, p = parity
246 * X = XOR, C = Commit, T = terminate
247 *
248 * The block node guarantees a single source node.
249 *
250 * Note:  The target buffer for the XOR node is set to the actual user buffer
251 * where the failed data is supposed to end up.  This buffer is zero'd by the
252 * code here.  Thus, if you create a degraded read dag, use it, and then
253 * re-use, you have to be sure to zero the target buffer prior to the re-use.
254 *
255 * The recfunc argument at the end specifies the name and function used for
256 * the redundancy
257 * recovery function.
258 *
259 *****************************************************************************/
260
261void
262rf_CreateDegradedReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
263			 RF_DagHeader_t *dag_h, void *bp,
264			 RF_RaidAccessFlags_t flags,
265			 RF_AllocListElem_t *allocList,
266			 const RF_RedFuncs_t *recFunc)
267{
268	RF_DagNode_t *rudNodes, *rrdNodes, *xorNode, *blockNode;
269	RF_DagNode_t *commitNode, *rpNode, *termNode;
270	RF_DagNode_t *tmpNode, *tmprudNode, *tmprrdNode;
271	int     nRrdNodes, nRudNodes, nXorBufs, i;
272	int     j, paramNum;
273	RF_SectorCount_t sectorsPerSU;
274	RF_ReconUnitNum_t which_ru;
275	char    overlappingPDAs[RF_MAXCOL];/* a temporary array of flags */
276	RF_AccessStripeMapHeader_t *new_asm_h[2];
277	RF_PhysDiskAddr_t *pda, *parityPDA;
278	RF_StripeNum_t parityStripeID;
279	RF_PhysDiskAddr_t *failedPDA;
280	RF_RaidLayout_t *layoutPtr;
281	char   *rpBuf;
282
283	layoutPtr = &(raidPtr->Layout);
284	/* failedPDA points to the pda within the asm that targets the failed
285	 * disk */
286	failedPDA = asmap->failedPDAs[0];
287	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
288	    asmap->raidAddress, &which_ru);
289	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
290
291#if RF_DEBUG_DAG
292	if (rf_dagDebug) {
293		printf("[Creating degraded read DAG]\n");
294	}
295#endif
296	RF_ASSERT(asmap->numDataFailed == 1);
297	dag_h->creator = "DegradedReadDAG";
298
299	/*
300         * generate two ASMs identifying the surviving data we need
301         * in order to recover the lost data
302         */
303
304	/* overlappingPDAs array must be zero'd */
305	memset(overlappingPDAs, 0, RF_MAXCOL);
306	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs,
307	    &rpBuf, overlappingPDAs, allocList);
308
309	/*
310         * create all the nodes at once
311         *
312         * -1 because no access is generated for the failed pda
313         */
314	nRudNodes = asmap->numStripeUnitsAccessed - 1;
315	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
316	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
317
318	blockNode = rf_AllocDAGNode();
319	blockNode->list_next = dag_h->nodes;
320	dag_h->nodes = blockNode;
321
322	commitNode = rf_AllocDAGNode();
323	commitNode->list_next = dag_h->nodes;
324	dag_h->nodes = commitNode;
325
326	xorNode = rf_AllocDAGNode();
327	xorNode->list_next = dag_h->nodes;
328	dag_h->nodes = xorNode;
329
330	rpNode = rf_AllocDAGNode();
331	rpNode->list_next = dag_h->nodes;
332	dag_h->nodes = rpNode;
333
334	termNode = rf_AllocDAGNode();
335	termNode->list_next = dag_h->nodes;
336	dag_h->nodes = termNode;
337
338	for (i = 0; i < nRudNodes; i++) {
339		tmpNode = rf_AllocDAGNode();
340		tmpNode->list_next = dag_h->nodes;
341		dag_h->nodes = tmpNode;
342	}
343	rudNodes = dag_h->nodes;
344
345	for (i = 0; i < nRrdNodes; i++) {
346		tmpNode = rf_AllocDAGNode();
347		tmpNode->list_next = dag_h->nodes;
348		dag_h->nodes = tmpNode;
349	}
350	rrdNodes = dag_h->nodes;
351
352	/* initialize nodes */
353	dag_h->numCommitNodes = 1;
354	dag_h->numCommits = 0;
355	/* this dag can not commit until the commit node is reached errors
356	 * prior to the commit point imply the dag has failed */
357	dag_h->numSuccedents = 1;
358
359	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
360	    NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
361	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
362	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
363	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
364	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
365	rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc,
366	    NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h,
367	    recFunc->SimpleName, allocList);
368
369	/* fill in the Rud nodes */
370	tmprudNode = rudNodes;
371	for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) {
372		if (pda == failedPDA) {
373			i--;
374			continue;
375		}
376		rf_InitNode(tmprudNode, rf_wait, RF_FALSE, rf_DiskReadFunc,
377		    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
378		    "Rud", allocList);
379		RF_ASSERT(pda);
380		tmprudNode->params[0].p = pda;
381		tmprudNode->params[1].p = pda->bufPtr;
382		tmprudNode->params[2].v = parityStripeID;
383		tmprudNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
384		tmprudNode = tmprudNode->list_next;
385	}
386
387	/* fill in the Rrd nodes */
388	i = 0;
389	tmprrdNode = rrdNodes;
390	if (new_asm_h[0]) {
391		for (pda = new_asm_h[0]->stripeMap->physInfo;
392		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
393		    i++, pda = pda->next) {
394			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc,
395			    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
396			    dag_h, "Rrd", allocList);
397			RF_ASSERT(pda);
398			tmprrdNode->params[0].p = pda;
399			tmprrdNode->params[1].p = pda->bufPtr;
400			tmprrdNode->params[2].v = parityStripeID;
401			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
402			tmprrdNode = tmprrdNode->list_next;
403		}
404	}
405	if (new_asm_h[1]) {
406		/* tmprrdNode = rrdNodes; */ /* don't set this here -- old code was using i+j, which means
407		   we need to just continue using tmprrdNode for the next 'j' elements. */
408		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
409		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
410		    j++, pda = pda->next) {
411			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc,
412			    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
413			    dag_h, "Rrd", allocList);
414			RF_ASSERT(pda);
415			tmprrdNode->params[0].p = pda;
416			tmprrdNode->params[1].p = pda->bufPtr;
417			tmprrdNode->params[2].v = parityStripeID;
418			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
419			tmprrdNode = tmprrdNode->list_next;
420		}
421	}
422	/* make a PDA for the parity unit */
423	parityPDA = rf_AllocPhysDiskAddr();
424	parityPDA->next = dag_h->pda_cleanup_list;
425	dag_h->pda_cleanup_list = parityPDA;
426	parityPDA->col = asmap->parityInfo->col;
427	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
428	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
429	parityPDA->numSector = failedPDA->numSector;
430
431	/* initialize the Rp node */
432	rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
433	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList);
434	rpNode->params[0].p = parityPDA;
435	rpNode->params[1].p = rpBuf;
436	rpNode->params[2].v = parityStripeID;
437	rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
438
439	/*
440         * the last and nastiest step is to assign all
441         * the parameters of the Xor node
442         */
443	paramNum = 0;
444	tmprrdNode = rrdNodes;
445	for (i = 0; i < nRrdNodes; i++) {
446		/* all the Rrd nodes need to be xored together */
447		xorNode->params[paramNum++] = tmprrdNode->params[0];
448		xorNode->params[paramNum++] = tmprrdNode->params[1];
449		tmprrdNode = tmprrdNode->list_next;
450	}
451	tmprudNode = rudNodes;
452	for (i = 0; i < nRudNodes; i++) {
453		/* any Rud nodes that overlap the failed access need to be
454		 * xored in */
455		if (overlappingPDAs[i]) {
456			pda = rf_AllocPhysDiskAddr();
457			memcpy((char *) pda, (char *) tmprudNode->params[0].p, sizeof(RF_PhysDiskAddr_t));
458			/* add it into the pda_cleanup_list *after* the copy, TYVM */
459			pda->next = dag_h->pda_cleanup_list;
460			dag_h->pda_cleanup_list = pda;
461			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
462			xorNode->params[paramNum++].p = pda;
463			xorNode->params[paramNum++].p = pda->bufPtr;
464		}
465		tmprudNode = tmprudNode->list_next;
466	}
467
468	/* install parity pda as last set of params to be xor'd */
469	xorNode->params[paramNum++].p = parityPDA;
470	xorNode->params[paramNum++].p = rpBuf;
471
472	/*
473         * the last 2 params to the recovery xor node are
474         * the failed PDA and the raidPtr
475         */
476	xorNode->params[paramNum++].p = failedPDA;
477	xorNode->params[paramNum++].p = raidPtr;
478	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
479
480	/*
481         * The xor node uses results[0] as the target buffer.
482         * Set pointer and zero the buffer. In the kernel, this
483         * may be a user buffer in which case we have to remap it.
484         */
485	xorNode->results[0] = failedPDA->bufPtr;
486	memset(failedPDA->bufPtr, 0, rf_RaidAddressToByte(raidPtr,
487		failedPDA->numSector));
488
489	/* connect nodes to form graph */
490	/* connect the header to the block node */
491	RF_ASSERT(dag_h->numSuccedents == 1);
492	RF_ASSERT(blockNode->numAntecedents == 0);
493	dag_h->succedents[0] = blockNode;
494
495	/* connect the block node to the read nodes */
496	RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes));
497	RF_ASSERT(rpNode->numAntecedents == 1);
498	blockNode->succedents[0] = rpNode;
499	rpNode->antecedents[0] = blockNode;
500	rpNode->antType[0] = rf_control;
501	tmprrdNode = rrdNodes;
502	for (i = 0; i < nRrdNodes; i++) {
503		RF_ASSERT(tmprrdNode->numSuccedents == 1);
504		blockNode->succedents[1 + i] = tmprrdNode;
505		tmprrdNode->antecedents[0] = blockNode;
506		tmprrdNode->antType[0] = rf_control;
507		tmprrdNode = tmprrdNode->list_next;
508	}
509	tmprudNode = rudNodes;
510	for (i = 0; i < nRudNodes; i++) {
511		RF_ASSERT(tmprudNode->numSuccedents == 1);
512		blockNode->succedents[1 + nRrdNodes + i] = tmprudNode;
513		tmprudNode->antecedents[0] = blockNode;
514		tmprudNode->antType[0] = rf_control;
515		tmprudNode = tmprudNode->list_next;
516	}
517
518	/* connect the read nodes to the xor node */
519	RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes));
520	RF_ASSERT(rpNode->numSuccedents == 1);
521	rpNode->succedents[0] = xorNode;
522	xorNode->antecedents[0] = rpNode;
523	xorNode->antType[0] = rf_trueData;
524	tmprrdNode = rrdNodes;
525	for (i = 0; i < nRrdNodes; i++) {
526		RF_ASSERT(tmprrdNode->numSuccedents == 1);
527		tmprrdNode->succedents[0] = xorNode;
528		xorNode->antecedents[1 + i] = tmprrdNode;
529		xorNode->antType[1 + i] = rf_trueData;
530		tmprrdNode = tmprrdNode->list_next;
531	}
532	tmprudNode = rudNodes;
533	for (i = 0; i < nRudNodes; i++) {
534		RF_ASSERT(tmprudNode->numSuccedents == 1);
535		tmprudNode->succedents[0] = xorNode;
536		xorNode->antecedents[1 + nRrdNodes + i] = tmprudNode;
537		xorNode->antType[1 + nRrdNodes + i] = rf_trueData;
538		tmprudNode = tmprudNode->list_next;
539	}
540
541	/* connect the xor node to the commit node */
542	RF_ASSERT(xorNode->numSuccedents == 1);
543	RF_ASSERT(commitNode->numAntecedents == 1);
544	xorNode->succedents[0] = commitNode;
545	commitNode->antecedents[0] = xorNode;
546	commitNode->antType[0] = rf_control;
547
548	/* connect the termNode to the commit node */
549	RF_ASSERT(commitNode->numSuccedents == 1);
550	RF_ASSERT(termNode->numAntecedents == 1);
551	RF_ASSERT(termNode->numSuccedents == 0);
552	commitNode->succedents[0] = termNode;
553	termNode->antType[0] = rf_control;
554	termNode->antecedents[0] = commitNode;
555}
556
557#if (RF_INCLUDE_CHAINDECLUSTER > 0)
558/******************************************************************************
559 * Create a degraded read DAG for Chained Declustering
560 *
561 * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm
562 *
563 * The "Rd" node reads data from the surviving disk in the mirror pair
564 *   Rpd - read of primary copy
565 *   Rsd - read of secondary copy
566 *
567 * Parameters:  raidPtr   - description of the physical array
568 *              asmap     - logical & physical addresses for this access
569 *              bp        - buffer ptr (for holding write data)
570 *              flags     - general flags (e.g. disk locking)
571 *              allocList - list of memory allocated in DAG creation
572 *****************************************************************************/
573
574void
575rf_CreateRaidCDegradedReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
576			      RF_DagHeader_t *dag_h, void *bp,
577			      RF_RaidAccessFlags_t flags,
578			      RF_AllocListElem_t *allocList)
579{
580	RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
581	RF_StripeNum_t parityStripeID;
582	int     useMirror, i, shiftable;
583	RF_ReconUnitNum_t which_ru;
584	RF_PhysDiskAddr_t *pda;
585
586	if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
587		shiftable = RF_TRUE;
588	} else {
589		shiftable = RF_FALSE;
590	}
591	useMirror = 0;
592	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
593	    asmap->raidAddress, &which_ru);
594
595#if RF_DEBUG_DAG
596	if (rf_dagDebug) {
597		printf("[Creating RAID C degraded read DAG]\n");
598	}
599#endif
600	dag_h->creator = "RaidCDegradedReadDAG";
601	/* alloc the Wnd nodes and the Wmir node */
602	if (asmap->numDataFailed == 0)
603		useMirror = RF_FALSE;
604	else
605		useMirror = RF_TRUE;
606
607	/* total number of nodes = 1 + (block + commit + terminator) */
608	nodes = RF_MallocAndAdd(4 * sizeof(*nodes), allocList);
609	i = 0;
610	rdNode = &nodes[i];
611	i++;
612	blockNode = &nodes[i];
613	i++;
614	commitNode = &nodes[i];
615	i++;
616	termNode = &nodes[i];
617	i++;
618
619	/*
620         * This dag can not commit until the commit node is reached.
621         * Errors prior to the commit point imply the dag has failed
622         * and must be retried.
623         */
624	dag_h->numCommitNodes = 1;
625	dag_h->numCommits = 0;
626	dag_h->numSuccedents = 1;
627
628	/* initialize the block, commit, and terminator nodes */
629	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
630	    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
631	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
632	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
633	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
634	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
635
636	pda = asmap->physInfo;
637	RF_ASSERT(pda != NULL);
638	/* parityInfo must describe entire parity unit */
639	RF_ASSERT(asmap->parityInfo->next == NULL);
640
641	/* initialize the data node */
642	if (!useMirror) {
643		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
644		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
645		if (shiftable && rf_compute_workload_shift(raidPtr, pda)) {
646			/* shift this read to the next disk in line */
647			rdNode->params[0].p = asmap->parityInfo;
648			rdNode->params[1].p = pda->bufPtr;
649			rdNode->params[2].v = parityStripeID;
650			rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
651		} else {
652			/* read primary copy */
653			rdNode->params[0].p = pda;
654			rdNode->params[1].p = pda->bufPtr;
655			rdNode->params[2].v = parityStripeID;
656			rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
657		}
658	} else {
659		/* read secondary copy of data */
660		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
661		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
662		rdNode->params[0].p = asmap->parityInfo;
663		rdNode->params[1].p = pda->bufPtr;
664		rdNode->params[2].v = parityStripeID;
665		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
666	}
667
668	/* connect header to block node */
669	RF_ASSERT(dag_h->numSuccedents == 1);
670	RF_ASSERT(blockNode->numAntecedents == 0);
671	dag_h->succedents[0] = blockNode;
672
673	/* connect block node to rdnode */
674	RF_ASSERT(blockNode->numSuccedents == 1);
675	RF_ASSERT(rdNode->numAntecedents == 1);
676	blockNode->succedents[0] = rdNode;
677	rdNode->antecedents[0] = blockNode;
678	rdNode->antType[0] = rf_control;
679
680	/* connect rdnode to commit node */
681	RF_ASSERT(rdNode->numSuccedents == 1);
682	RF_ASSERT(commitNode->numAntecedents == 1);
683	rdNode->succedents[0] = commitNode;
684	commitNode->antecedents[0] = rdNode;
685	commitNode->antType[0] = rf_control;
686
687	/* connect commit node to terminator */
688	RF_ASSERT(commitNode->numSuccedents == 1);
689	RF_ASSERT(termNode->numAntecedents == 1);
690	RF_ASSERT(termNode->numSuccedents == 0);
691	commitNode->succedents[0] = termNode;
692	termNode->antecedents[0] = commitNode;
693	termNode->antType[0] = rf_control;
694}
695#endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
696
697#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
698/*
699 * XXX move this elsewhere?
700 */
701void
702rf_DD_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
703			       RF_PhysDiskAddr_t **pdap, int *nNodep,
704			       RF_PhysDiskAddr_t **pqpdap, int *nPQNodep,
705			       RF_AllocListElem_t *allocList)
706{
707	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
708	int     PDAPerDisk, i;
709	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
710	int     numDataCol = layoutPtr->numDataCol;
711	int     state;
712	RF_SectorNum_t suoff, suend;
713	unsigned firstDataCol, napdas, count;
714	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0;
715	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
716	RF_PhysDiskAddr_t *pda_p;
717	RF_PhysDiskAddr_t *phys_p;
718	RF_RaidAddr_t sosAddr;
719
720	/* determine how many pda's we will have to generate per unaccess
721	 * stripe. If there is only one failed data unit, it is one; if two,
722	 * possibly two, depending whether they overlap. */
723
724	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
725	fone_end = fone_start + fone->numSector;
726
727#define BUF_ALLOC(num) \
728  RF_MallocAndAdd(rf_RaidAddressToByte(raidPtr, num), allocList)
729#define CONS_PDA(if,start,num) \
730  pda_p->col = asmap->if->col; \
731  pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
732  pda_p->numSector = num; \
733  pda_p->next = NULL; \
734  pda_p->bufPtr = BUF_ALLOC(num)
735
736	if (asmap->numDataFailed == 1) {
737		PDAPerDisk = 1;
738		state = 1;
739		*pqpdap = RF_MallocAndAdd(2 * sizeof(**pqpdap), allocList);
740		pda_p = *pqpdap;
741		/* build p */
742		CONS_PDA(parityInfo, fone_start, fone->numSector);
743		pda_p->type = RF_PDA_TYPE_PARITY;
744		pda_p++;
745		/* build q */
746		CONS_PDA(qInfo, fone_start, fone->numSector);
747		pda_p->type = RF_PDA_TYPE_Q;
748	} else {
749		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
750		ftwo_end = ftwo_start + ftwo->numSector;
751		if (fone->numSector + ftwo->numSector > secPerSU) {
752			PDAPerDisk = 1;
753			state = 2;
754			*pqpdap = RF_MallocAndAdd(2 * sizeof(**pqpdap), allocList);
755			pda_p = *pqpdap;
756			CONS_PDA(parityInfo, 0, secPerSU);
757			pda_p->type = RF_PDA_TYPE_PARITY;
758			pda_p++;
759			CONS_PDA(qInfo, 0, secPerSU);
760			pda_p->type = RF_PDA_TYPE_Q;
761		} else {
762			PDAPerDisk = 2;
763			state = 3;
764			/* four of them, fone, then ftwo */
765			*pqpdap = RF_MallocAndAdd(4 * sizeof(**pqpdap), allocList);
766			pda_p = *pqpdap;
767			CONS_PDA(parityInfo, fone_start, fone->numSector);
768			pda_p->type = RF_PDA_TYPE_PARITY;
769			pda_p++;
770			CONS_PDA(qInfo, fone_start, fone->numSector);
771			pda_p->type = RF_PDA_TYPE_Q;
772			pda_p++;
773			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
774			pda_p->type = RF_PDA_TYPE_PARITY;
775			pda_p++;
776			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
777			pda_p->type = RF_PDA_TYPE_Q;
778		}
779	}
780	/* figure out number of nonaccessed pda */
781	napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0));
782	*nPQNodep = PDAPerDisk;
783
784	/* sweep over the over accessed pda's, figuring out the number of
785	 * additional pda's to generate. Of course, skip the failed ones */
786
787	count = 0;
788	for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) {
789		if ((pda_p == fone) || (pda_p == ftwo))
790			continue;
791		suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector);
792		suend = suoff + pda_p->numSector;
793		switch (state) {
794		case 1:	/* one failed PDA to overlap */
795			/* if a PDA doesn't contain the failed unit, it can
796			 * only miss the start or end, not both */
797			if ((suoff > fone_start) || (suend < fone_end))
798				count++;
799			break;
800		case 2:	/* whole stripe */
801			if (suoff)	/* leak at begining */
802				count++;
803			if (suend < numDataCol)	/* leak at end */
804				count++;
805			break;
806		case 3:	/* two disjoint units */
807			if ((suoff > fone_start) || (suend < fone_end))
808				count++;
809			if ((suoff > ftwo_start) || (suend < ftwo_end))
810				count++;
811			break;
812		default:
813			RF_PANIC();
814		}
815	}
816
817	napdas += count;
818	*nNodep = napdas;
819	if (napdas == 0)
820		return;		/* short circuit */
821
822	/* allocate up our list of pda's */
823
824	pda_p = RF_MallocAndAdd(napdas * sizeof(*pdap), allocList);
825	*pdap = pda_p;
826
827	/* linkem together */
828	for (i = 0; i < (napdas - 1); i++)
829		pda_p[i].next = pda_p + (i + 1);
830
831	/* march through the one's up to the first accessed disk */
832	firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol;
833	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
834	for (i = 0; i < firstDataCol; i++) {
835		if ((pda_p - (*pdap)) == napdas)
836			continue;
837		pda_p->type = RF_PDA_TYPE_DATA;
838		pda_p->raidAddress = sosAddr + (i * secPerSU);
839		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
840		/* skip over dead disks */
841		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
842			continue;
843		switch (state) {
844		case 1:	/* fone */
845			pda_p->numSector = fone->numSector;
846			pda_p->raidAddress += fone_start;
847			pda_p->startSector += fone_start;
848			pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
849			break;
850		case 2:	/* full stripe */
851			pda_p->numSector = secPerSU;
852			pda_p->bufPtr = BUF_ALLOC(secPerSU);
853			break;
854		case 3:	/* two slabs */
855			pda_p->numSector = fone->numSector;
856			pda_p->raidAddress += fone_start;
857			pda_p->startSector += fone_start;
858			pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
859			pda_p++;
860			pda_p->type = RF_PDA_TYPE_DATA;
861			pda_p->raidAddress = sosAddr + (i * secPerSU);
862			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
863			pda_p->numSector = ftwo->numSector;
864			pda_p->raidAddress += ftwo_start;
865			pda_p->startSector += ftwo_start;
866			pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
867			break;
868		default:
869			RF_PANIC();
870		}
871		pda_p++;
872	}
873
874	/* march through the touched stripe units */
875	for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) {
876		if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1]))
877			continue;
878		suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector);
879		suend = suoff + phys_p->numSector;
880		switch (state) {
881		case 1:	/* single buffer */
882			if (suoff > fone_start) {
883				RF_ASSERT(suend >= fone_end);
884				/* The data read starts after the mapped
885				 * access, snip off the begining */
886				pda_p->numSector = suoff - fone_start;
887				pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
888				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
889				pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
890				pda_p++;
891			}
892			if (suend < fone_end) {
893				RF_ASSERT(suoff <= fone_start);
894				/* The data read stops before the end of the
895				 * failed access, extend */
896				pda_p->numSector = fone_end - suend;
897				pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
898				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
899				pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
900				pda_p++;
901			}
902			break;
903		case 2:	/* whole stripe unit */
904			RF_ASSERT((suoff == 0) || (suend == secPerSU));
905			if (suend < secPerSU) {	/* short read, snip from end
906						 * on */
907				pda_p->numSector = secPerSU - suend;
908				pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
909				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
910				pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
911				pda_p++;
912			} else
913				if (suoff > 0) {	/* short at front */
914					pda_p->numSector = suoff;
915					pda_p->raidAddress = sosAddr + (i * secPerSU);
916					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
917					pda_p->bufPtr =
918					    BUF_ALLOC(pda_p->numSector);
919					pda_p++;
920				}
921			break;
922		case 3:	/* two nonoverlapping failures */
923			if ((suoff > fone_start) || (suend < fone_end)) {
924				if (suoff > fone_start) {
925					RF_ASSERT(suend >= fone_end);
926					/* The data read starts after the
927					 * mapped access, snip off the
928					 * begining */
929					pda_p->numSector = suoff - fone_start;
930					pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
931					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
932					pda_p->bufPtr =
933					    BUF_ALLOC(pda_p->numSector);
934					pda_p++;
935				}
936				if (suend < fone_end) {
937					RF_ASSERT(suoff <= fone_start);
938					/* The data read stops before the end
939					 * of the failed access, extend */
940					pda_p->numSector = fone_end - suend;
941					pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
942					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
943					pda_p->bufPtr =
944					    BUF_ALLOC(pda_p->numSector);
945					pda_p++;
946				}
947			}
948			if ((suoff > ftwo_start) || (suend < ftwo_end)) {
949				if (suoff > ftwo_start) {
950					RF_ASSERT(suend >= ftwo_end);
951					/* The data read starts after the
952					 * mapped access, snip off the
953					 * begining */
954					pda_p->numSector = suoff - ftwo_start;
955					pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start;
956					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
957					pda_p->bufPtr =
958					    BUF_ALLOC(pda_p->numSector);
959					pda_p++;
960				}
961				if (suend < ftwo_end) {
962					RF_ASSERT(suoff <= ftwo_start);
963					/* The data read stops before the end
964					 * of the failed access, extend */
965					pda_p->numSector = ftwo_end - suend;
966					pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
967					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
968					pda_p->bufPtr =
969					    BUF_ALLOC(pda_p->numSector);
970					pda_p++;
971				}
972			}
973			break;
974		default:
975			RF_PANIC();
976		}
977	}
978
979	/* after the last accessed disk */
980	for (; i < numDataCol; i++) {
981		if ((pda_p - (*pdap)) == napdas)
982			continue;
983		pda_p->type = RF_PDA_TYPE_DATA;
984		pda_p->raidAddress = sosAddr + (i * secPerSU);
985		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
986		/* skip over dead disks */
987		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
988			continue;
989		switch (state) {
990		case 1:	/* fone */
991			pda_p->numSector = fone->numSector;
992			pda_p->raidAddress += fone_start;
993			pda_p->startSector += fone_start;
994			pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
995			break;
996		case 2:	/* full stripe */
997			pda_p->numSector = secPerSU;
998			pda_p->bufPtr = BUF_ALLOC(secPerSU);
999			break;
1000		case 3:	/* two slabs */
1001			pda_p->numSector = fone->numSector;
1002			pda_p->raidAddress += fone_start;
1003			pda_p->startSector += fone_start;
1004			pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
1005			pda_p++;
1006			pda_p->type = RF_PDA_TYPE_DATA;
1007			pda_p->raidAddress = sosAddr + (i * secPerSU);
1008			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
1009			pda_p->numSector = ftwo->numSector;
1010			pda_p->raidAddress += ftwo_start;
1011			pda_p->startSector += ftwo_start;
1012			pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
1013			break;
1014		default:
1015			RF_PANIC();
1016		}
1017		pda_p++;
1018	}
1019
1020	RF_ASSERT(pda_p - *pdap == napdas);
1021	return;
1022}
1023#define INIT_DISK_NODE(node,name) \
1024rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
1025(node)->succedents[0] = unblockNode; \
1026(node)->succedents[1] = recoveryNode; \
1027(node)->antecedents[0] = blockNode; \
1028(node)->antType[0] = rf_control
1029
1030#define DISK_NODE_PARAMS(_node_,_p_) \
1031  (_node_).params[0].p = _p_ ; \
1032  (_node_).params[1].p = (_p_)->bufPtr; \
1033  (_node_).params[2].v = parityStripeID; \
1034  (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru)
1035
1036void
1037rf_DoubleDegRead(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1038		 RF_DagHeader_t *dag_h, void *bp,
1039		 RF_RaidAccessFlags_t flags,
1040		 RF_AllocListElem_t *allocList,
1041		 const char *redundantReadNodeName,
1042		 const char *recoveryNodeName,
1043		 int (*recovFunc) (RF_DagNode_t *))
1044{
1045	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1046	RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode,
1047	       *unblockNode, *rpNodes, *rqNodes, *termNode;
1048	RF_PhysDiskAddr_t *pda, *pqPDAs;
1049	RF_PhysDiskAddr_t *npdas;
1050	int     nNodes, nRrdNodes, nRudNodes, i;
1051	RF_ReconUnitNum_t which_ru;
1052	int     nReadNodes, nPQNodes;
1053	RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
1054	RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1];
1055	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
1056
1057#if RF_DEBUG_DAG
1058	if (rf_dagDebug)
1059		printf("[Creating Double Degraded Read DAG]\n");
1060#endif
1061	rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
1062
1063	nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
1064	nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes;
1065	nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes;
1066
1067	nodes = RF_MallocAndAdd(nNodes * sizeof(*nodes), allocList);
1068	i = 0;
1069	blockNode = &nodes[i];
1070	i += 1;
1071	unblockNode = &nodes[i];
1072	i += 1;
1073	recoveryNode = &nodes[i];
1074	i += 1;
1075	termNode = &nodes[i];
1076	i += 1;
1077	rudNodes = &nodes[i];
1078	i += nRudNodes;
1079	rrdNodes = &nodes[i];
1080	i += nRrdNodes;
1081	rpNodes = &nodes[i];
1082	i += nPQNodes;
1083	rqNodes = &nodes[i];
1084	i += nPQNodes;
1085	RF_ASSERT(i == nNodes);
1086
1087	dag_h->numSuccedents = 1;
1088	dag_h->succedents[0] = blockNode;
1089	dag_h->creator = "DoubleDegRead";
1090	dag_h->numCommits = 0;
1091	dag_h->numCommitNodes = 1;	/* unblock */
1092
1093	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList);
1094	termNode->antecedents[0] = unblockNode;
1095	termNode->antType[0] = rf_control;
1096	termNode->antecedents[1] = recoveryNode;
1097	termNode->antType[1] = rf_control;
1098
1099	/* init the block and unblock nodes */
1100	/* The block node has all nodes except itself, unblock and recovery as
1101	 * successors. Similarly for predecessors of the unblock. */
1102	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
1103	rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList);
1104
1105	for (i = 0; i < nReadNodes; i++) {
1106		blockNode->succedents[i] = rudNodes + i;
1107		unblockNode->antecedents[i] = rudNodes + i;
1108		unblockNode->antType[i] = rf_control;
1109	}
1110	unblockNode->succedents[0] = termNode;
1111
1112	/* The recovery node has all the reads as predecessors, and the term
1113	 * node as successors. It gets a pda as a param from each of the read
1114	 * nodes plus the raidPtr. For each failed unit is has a result pda. */
1115	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
1116	    1,			/* succesors */
1117	    nReadNodes,		/* preds */
1118	    nReadNodes + 2,	/* params */
1119	    asmap->numDataFailed,	/* results */
1120	    dag_h, recoveryNodeName, allocList);
1121
1122	recoveryNode->succedents[0] = termNode;
1123	for (i = 0; i < nReadNodes; i++) {
1124		recoveryNode->antecedents[i] = rudNodes + i;
1125		recoveryNode->antType[i] = rf_trueData;
1126	}
1127
1128	/* build the read nodes, then come back and fill in recovery params
1129	 * and results */
1130	pda = asmap->physInfo;
1131	for (i = 0; i < nRudNodes; pda = pda->next) {
1132		if ((pda == failedPDA) || (pda == failedPDAtwo))
1133			continue;
1134		INIT_DISK_NODE(rudNodes + i, "Rud");
1135		RF_ASSERT(pda);
1136		DISK_NODE_PARAMS(rudNodes[i], pda);
1137		i++;
1138	}
1139
1140	pda = npdas;
1141	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
1142		INIT_DISK_NODE(rrdNodes + i, "Rrd");
1143		RF_ASSERT(pda);
1144		DISK_NODE_PARAMS(rrdNodes[i], pda);
1145	}
1146
1147	/* redundancy pdas */
1148	pda = pqPDAs;
1149	INIT_DISK_NODE(rpNodes, "Rp");
1150	RF_ASSERT(pda);
1151	DISK_NODE_PARAMS(rpNodes[0], pda);
1152	pda++;
1153	INIT_DISK_NODE(rqNodes, redundantReadNodeName);
1154	RF_ASSERT(pda);
1155	DISK_NODE_PARAMS(rqNodes[0], pda);
1156	if (nPQNodes == 2) {
1157		pda++;
1158		INIT_DISK_NODE(rpNodes + 1, "Rp");
1159		RF_ASSERT(pda);
1160		DISK_NODE_PARAMS(rpNodes[1], pda);
1161		pda++;
1162		INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName);
1163		RF_ASSERT(pda);
1164		DISK_NODE_PARAMS(rqNodes[1], pda);
1165	}
1166	/* fill in recovery node params */
1167	for (i = 0; i < nReadNodes; i++)
1168		recoveryNode->params[i] = rudNodes[i].params[0];	/* pda */
1169	recoveryNode->params[i++].p = (void *) raidPtr;
1170	recoveryNode->params[i++].p = (void *) asmap;
1171	recoveryNode->results[0] = failedPDA;
1172	if (asmap->numDataFailed == 2)
1173		recoveryNode->results[1] = failedPDAtwo;
1174
1175	/* zero fill the target data buffers? */
1176}
1177
1178#endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
1179