rf_dagdegrd.c revision 1.12
1/*	$NetBSD: rf_dagdegrd.c,v 1.12 2002/08/02 03:42:33 oster Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/*
30 * rf_dagdegrd.c
31 *
32 * code for creating degraded read DAGs
33 */
34
35#include <sys/cdefs.h>
36__KERNEL_RCSID(0, "$NetBSD: rf_dagdegrd.c,v 1.12 2002/08/02 03:42:33 oster Exp $");
37
38#include <dev/raidframe/raidframevar.h>
39
40#include "rf_archs.h"
41#include "rf_raid.h"
42#include "rf_dag.h"
43#include "rf_dagutils.h"
44#include "rf_dagfuncs.h"
45#include "rf_debugMem.h"
46#include "rf_general.h"
47#include "rf_dagdegrd.h"
48
49
50/******************************************************************************
51 *
52 * General comments on DAG creation:
53 *
54 * All DAGs in this file use roll-away error recovery.  Each DAG has a single
55 * commit node, usually called "Cmt."  If an error occurs before the Cmt node
56 * is reached, the execution engine will halt forward execution and work
57 * backward through the graph, executing the undo functions.  Assuming that
58 * each node in the graph prior to the Cmt node are undoable and atomic - or -
59 * does not make changes to permanent state, the graph will fail atomically.
60 * If an error occurs after the Cmt node executes, the engine will roll-forward
61 * through the graph, blindly executing nodes until it reaches the end.
62 * If a graph reaches the end, it is assumed to have completed successfully.
63 *
64 * A graph has only 1 Cmt node.
65 *
66 */
67
68
69/******************************************************************************
70 *
71 * The following wrappers map the standard DAG creation interface to the
72 * DAG creation routines.  Additionally, these wrappers enable experimentation
73 * with new DAG structures by providing an extra level of indirection, allowing
74 * the DAG creation routines to be replaced at this single point.
75 */
76
77void
78rf_CreateRaidFiveDegradedReadDAG(
79    RF_Raid_t * raidPtr,
80    RF_AccessStripeMap_t * asmap,
81    RF_DagHeader_t * dag_h,
82    void *bp,
83    RF_RaidAccessFlags_t flags,
84    RF_AllocListElem_t * allocList)
85{
86	rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
87	    &rf_xorRecoveryFuncs);
88}
89
90
91/******************************************************************************
92 *
93 * DAG creation code begins here
94 */
95
96
97/******************************************************************************
98 * Create a degraded read DAG for RAID level 1
99 *
100 * Hdr -> Nil -> R(p/s)d -> Commit -> Trm
101 *
102 * The "Rd" node reads data from the surviving disk in the mirror pair
103 *   Rpd - read of primary copy
104 *   Rsd - read of secondary copy
105 *
106 * Parameters:  raidPtr   - description of the physical array
107 *              asmap     - logical & physical addresses for this access
108 *              bp        - buffer ptr (for holding write data)
109 *              flags     - general flags (e.g. disk locking)
110 *              allocList - list of memory allocated in DAG creation
111 *****************************************************************************/
112
113void
114rf_CreateRaidOneDegradedReadDAG(
115    RF_Raid_t * raidPtr,
116    RF_AccessStripeMap_t * asmap,
117    RF_DagHeader_t * dag_h,
118    void *bp,
119    RF_RaidAccessFlags_t flags,
120    RF_AllocListElem_t * allocList)
121{
122	RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
123	RF_StripeNum_t parityStripeID;
124	RF_ReconUnitNum_t which_ru;
125	RF_PhysDiskAddr_t *pda;
126	int     useMirror, i;
127
128	useMirror = 0;
129	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
130	    asmap->raidAddress, &which_ru);
131	if (rf_dagDebug) {
132		printf("[Creating RAID level 1 degraded read DAG]\n");
133	}
134	dag_h->creator = "RaidOneDegradedReadDAG";
135	/* alloc the Wnd nodes and the Wmir node */
136	if (asmap->numDataFailed == 0)
137		useMirror = RF_FALSE;
138	else
139		useMirror = RF_TRUE;
140
141	/* total number of nodes = 1 + (block + commit + terminator) */
142	RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
143	i = 0;
144	rdNode = &nodes[i];
145	i++;
146	blockNode = &nodes[i];
147	i++;
148	commitNode = &nodes[i];
149	i++;
150	termNode = &nodes[i];
151	i++;
152
153	/* this dag can not commit until the commit node is reached.   errors
154	 * prior to the commit point imply the dag has failed and must be
155	 * retried */
156	dag_h->numCommitNodes = 1;
157	dag_h->numCommits = 0;
158	dag_h->numSuccedents = 1;
159
160	/* initialize the block, commit, and terminator nodes */
161	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
162	    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
163	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
164	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
165	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
166	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
167
168	pda = asmap->physInfo;
169	RF_ASSERT(pda != NULL);
170	/* parityInfo must describe entire parity unit */
171	RF_ASSERT(asmap->parityInfo->next == NULL);
172
173	/* initialize the data node */
174	if (!useMirror) {
175		/* read primary copy of data */
176		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
177		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
178		rdNode->params[0].p = pda;
179		rdNode->params[1].p = pda->bufPtr;
180		rdNode->params[2].v = parityStripeID;
181		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
182	} else {
183		/* read secondary copy of data */
184		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
185		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
186		rdNode->params[0].p = asmap->parityInfo;
187		rdNode->params[1].p = pda->bufPtr;
188		rdNode->params[2].v = parityStripeID;
189		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
190	}
191
192	/* connect header to block node */
193	RF_ASSERT(dag_h->numSuccedents == 1);
194	RF_ASSERT(blockNode->numAntecedents == 0);
195	dag_h->succedents[0] = blockNode;
196
197	/* connect block node to rdnode */
198	RF_ASSERT(blockNode->numSuccedents == 1);
199	RF_ASSERT(rdNode->numAntecedents == 1);
200	blockNode->succedents[0] = rdNode;
201	rdNode->antecedents[0] = blockNode;
202	rdNode->antType[0] = rf_control;
203
204	/* connect rdnode to commit node */
205	RF_ASSERT(rdNode->numSuccedents == 1);
206	RF_ASSERT(commitNode->numAntecedents == 1);
207	rdNode->succedents[0] = commitNode;
208	commitNode->antecedents[0] = rdNode;
209	commitNode->antType[0] = rf_control;
210
211	/* connect commit node to terminator */
212	RF_ASSERT(commitNode->numSuccedents == 1);
213	RF_ASSERT(termNode->numAntecedents == 1);
214	RF_ASSERT(termNode->numSuccedents == 0);
215	commitNode->succedents[0] = termNode;
216	termNode->antecedents[0] = commitNode;
217	termNode->antType[0] = rf_control;
218}
219
220
221
222/******************************************************************************
223 *
224 * creates a DAG to perform a degraded-mode read of data within one stripe.
225 * This DAG is as follows:
226 *
227 * Hdr -> Block -> Rud -> Xor -> Cmt -> T
228 *              -> Rrd ->
229 *              -> Rp -->
230 *
231 * Each R node is a successor of the L node
232 * One successor arc from each R node goes to C, and the other to X
233 * There is one Rud for each chunk of surviving user data requested by the
234 * user, and one Rrd for each chunk of surviving user data _not_ being read by
235 * the user
236 * R = read, ud = user data, rd = recovery (surviving) data, p = parity
237 * X = XOR, C = Commit, T = terminate
238 *
239 * The block node guarantees a single source node.
240 *
241 * Note:  The target buffer for the XOR node is set to the actual user buffer
242 * where the failed data is supposed to end up.  This buffer is zero'd by the
243 * code here.  Thus, if you create a degraded read dag, use it, and then
244 * re-use, you have to be sure to zero the target buffer prior to the re-use.
245 *
246 * The recfunc argument at the end specifies the name and function used for
247 * the redundancy
248 * recovery function.
249 *
250 *****************************************************************************/
251
252void
253rf_CreateDegradedReadDAG(
254    RF_Raid_t * raidPtr,
255    RF_AccessStripeMap_t * asmap,
256    RF_DagHeader_t * dag_h,
257    void *bp,
258    RF_RaidAccessFlags_t flags,
259    RF_AllocListElem_t * allocList,
260    RF_RedFuncs_t * recFunc)
261{
262	RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *xorNode, *blockNode;
263	RF_DagNode_t *commitNode, *rpNode, *termNode;
264	int     nNodes, nRrdNodes, nRudNodes, nXorBufs, i;
265	int     j, paramNum;
266	RF_SectorCount_t sectorsPerSU;
267	RF_ReconUnitNum_t which_ru;
268	char   *overlappingPDAs;/* a temporary array of flags */
269	RF_AccessStripeMapHeader_t *new_asm_h[2];
270	RF_PhysDiskAddr_t *pda, *parityPDA;
271	RF_StripeNum_t parityStripeID;
272	RF_PhysDiskAddr_t *failedPDA;
273	RF_RaidLayout_t *layoutPtr;
274	char   *rpBuf;
275
276	layoutPtr = &(raidPtr->Layout);
277	/* failedPDA points to the pda within the asm that targets the failed
278	 * disk */
279	failedPDA = asmap->failedPDAs[0];
280	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
281	    asmap->raidAddress, &which_ru);
282	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
283
284	if (rf_dagDebug) {
285		printf("[Creating degraded read DAG]\n");
286	}
287	RF_ASSERT(asmap->numDataFailed == 1);
288	dag_h->creator = "DegradedReadDAG";
289
290	/*
291         * generate two ASMs identifying the surviving data we need
292         * in order to recover the lost data
293         */
294
295	/* overlappingPDAs array must be zero'd */
296	RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
297	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs,
298	    &rpBuf, overlappingPDAs, allocList);
299
300	/*
301         * create all the nodes at once
302         *
303         * -1 because no access is generated for the failed pda
304         */
305	nRudNodes = asmap->numStripeUnitsAccessed - 1;
306	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
307	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
308	nNodes = 5 + nRudNodes + nRrdNodes;	/* lock, unlock, xor, Rp, Rud,
309						 * Rrd */
310	RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *),
311	    allocList);
312	i = 0;
313	blockNode = &nodes[i];
314	i++;
315	commitNode = &nodes[i];
316	i++;
317	xorNode = &nodes[i];
318	i++;
319	rpNode = &nodes[i];
320	i++;
321	termNode = &nodes[i];
322	i++;
323	rudNodes = &nodes[i];
324	i += nRudNodes;
325	rrdNodes = &nodes[i];
326	i += nRrdNodes;
327	RF_ASSERT(i == nNodes);
328
329	/* initialize nodes */
330	dag_h->numCommitNodes = 1;
331	dag_h->numCommits = 0;
332	/* this dag can not commit until the commit node is reached errors
333	 * prior to the commit point imply the dag has failed */
334	dag_h->numSuccedents = 1;
335
336	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
337	    NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
338	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
339	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
340	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
341	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
342	rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc,
343	    NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h,
344	    recFunc->SimpleName, allocList);
345
346	/* fill in the Rud nodes */
347	for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) {
348		if (pda == failedPDA) {
349			i--;
350			continue;
351		}
352		rf_InitNode(&rudNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
353		    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
354		    "Rud", allocList);
355		RF_ASSERT(pda);
356		rudNodes[i].params[0].p = pda;
357		rudNodes[i].params[1].p = pda->bufPtr;
358		rudNodes[i].params[2].v = parityStripeID;
359		rudNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
360	}
361
362	/* fill in the Rrd nodes */
363	i = 0;
364	if (new_asm_h[0]) {
365		for (pda = new_asm_h[0]->stripeMap->physInfo;
366		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
367		    i++, pda = pda->next) {
368			rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
369			    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
370			    dag_h, "Rrd", allocList);
371			RF_ASSERT(pda);
372			rrdNodes[i].params[0].p = pda;
373			rrdNodes[i].params[1].p = pda->bufPtr;
374			rrdNodes[i].params[2].v = parityStripeID;
375			rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
376		}
377	}
378	if (new_asm_h[1]) {
379		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
380		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
381		    j++, pda = pda->next) {
382			rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc,
383			    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
384			    dag_h, "Rrd", allocList);
385			RF_ASSERT(pda);
386			rrdNodes[i + j].params[0].p = pda;
387			rrdNodes[i + j].params[1].p = pda->bufPtr;
388			rrdNodes[i + j].params[2].v = parityStripeID;
389			rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
390		}
391	}
392	/* make a PDA for the parity unit */
393	RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
394	parityPDA->row = asmap->parityInfo->row;
395	parityPDA->col = asmap->parityInfo->col;
396	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
397	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
398	parityPDA->numSector = failedPDA->numSector;
399
400	/* initialize the Rp node */
401	rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
402	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList);
403	rpNode->params[0].p = parityPDA;
404	rpNode->params[1].p = rpBuf;
405	rpNode->params[2].v = parityStripeID;
406	rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
407
408	/*
409         * the last and nastiest step is to assign all
410         * the parameters of the Xor node
411         */
412	paramNum = 0;
413	for (i = 0; i < nRrdNodes; i++) {
414		/* all the Rrd nodes need to be xored together */
415		xorNode->params[paramNum++] = rrdNodes[i].params[0];
416		xorNode->params[paramNum++] = rrdNodes[i].params[1];
417	}
418	for (i = 0; i < nRudNodes; i++) {
419		/* any Rud nodes that overlap the failed access need to be
420		 * xored in */
421		if (overlappingPDAs[i]) {
422			RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
423			memcpy((char *) pda, (char *) rudNodes[i].params[0].p, sizeof(RF_PhysDiskAddr_t));
424			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
425			xorNode->params[paramNum++].p = pda;
426			xorNode->params[paramNum++].p = pda->bufPtr;
427		}
428	}
429	RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
430
431	/* install parity pda as last set of params to be xor'd */
432	xorNode->params[paramNum++].p = parityPDA;
433	xorNode->params[paramNum++].p = rpBuf;
434
435	/*
436         * the last 2 params to the recovery xor node are
437         * the failed PDA and the raidPtr
438         */
439	xorNode->params[paramNum++].p = failedPDA;
440	xorNode->params[paramNum++].p = raidPtr;
441	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
442
443	/*
444         * The xor node uses results[0] as the target buffer.
445         * Set pointer and zero the buffer. In the kernel, this
446         * may be a user buffer in which case we have to remap it.
447         */
448	xorNode->results[0] = failedPDA->bufPtr;
449	RF_BZERO(bp, failedPDA->bufPtr, rf_RaidAddressToByte(raidPtr,
450		failedPDA->numSector));
451
452	/* connect nodes to form graph */
453	/* connect the header to the block node */
454	RF_ASSERT(dag_h->numSuccedents == 1);
455	RF_ASSERT(blockNode->numAntecedents == 0);
456	dag_h->succedents[0] = blockNode;
457
458	/* connect the block node to the read nodes */
459	RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes));
460	RF_ASSERT(rpNode->numAntecedents == 1);
461	blockNode->succedents[0] = rpNode;
462	rpNode->antecedents[0] = blockNode;
463	rpNode->antType[0] = rf_control;
464	for (i = 0; i < nRrdNodes; i++) {
465		RF_ASSERT(rrdNodes[i].numSuccedents == 1);
466		blockNode->succedents[1 + i] = &rrdNodes[i];
467		rrdNodes[i].antecedents[0] = blockNode;
468		rrdNodes[i].antType[0] = rf_control;
469	}
470	for (i = 0; i < nRudNodes; i++) {
471		RF_ASSERT(rudNodes[i].numSuccedents == 1);
472		blockNode->succedents[1 + nRrdNodes + i] = &rudNodes[i];
473		rudNodes[i].antecedents[0] = blockNode;
474		rudNodes[i].antType[0] = rf_control;
475	}
476
477	/* connect the read nodes to the xor node */
478	RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes));
479	RF_ASSERT(rpNode->numSuccedents == 1);
480	rpNode->succedents[0] = xorNode;
481	xorNode->antecedents[0] = rpNode;
482	xorNode->antType[0] = rf_trueData;
483	for (i = 0; i < nRrdNodes; i++) {
484		RF_ASSERT(rrdNodes[i].numSuccedents == 1);
485		rrdNodes[i].succedents[0] = xorNode;
486		xorNode->antecedents[1 + i] = &rrdNodes[i];
487		xorNode->antType[1 + i] = rf_trueData;
488	}
489	for (i = 0; i < nRudNodes; i++) {
490		RF_ASSERT(rudNodes[i].numSuccedents == 1);
491		rudNodes[i].succedents[0] = xorNode;
492		xorNode->antecedents[1 + nRrdNodes + i] = &rudNodes[i];
493		xorNode->antType[1 + nRrdNodes + i] = rf_trueData;
494	}
495
496	/* connect the xor node to the commit node */
497	RF_ASSERT(xorNode->numSuccedents == 1);
498	RF_ASSERT(commitNode->numAntecedents == 1);
499	xorNode->succedents[0] = commitNode;
500	commitNode->antecedents[0] = xorNode;
501	commitNode->antType[0] = rf_control;
502
503	/* connect the termNode to the commit node */
504	RF_ASSERT(commitNode->numSuccedents == 1);
505	RF_ASSERT(termNode->numAntecedents == 1);
506	RF_ASSERT(termNode->numSuccedents == 0);
507	commitNode->succedents[0] = termNode;
508	termNode->antType[0] = rf_control;
509	termNode->antecedents[0] = commitNode;
510}
511
512#if (RF_INCLUDE_CHAINDECLUSTER > 0)
513/******************************************************************************
514 * Create a degraded read DAG for Chained Declustering
515 *
516 * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm
517 *
518 * The "Rd" node reads data from the surviving disk in the mirror pair
519 *   Rpd - read of primary copy
520 *   Rsd - read of secondary copy
521 *
522 * Parameters:  raidPtr   - description of the physical array
523 *              asmap     - logical & physical addresses for this access
524 *              bp        - buffer ptr (for holding write data)
525 *              flags     - general flags (e.g. disk locking)
526 *              allocList - list of memory allocated in DAG creation
527 *****************************************************************************/
528
529void
530rf_CreateRaidCDegradedReadDAG(
531    RF_Raid_t * raidPtr,
532    RF_AccessStripeMap_t * asmap,
533    RF_DagHeader_t * dag_h,
534    void *bp,
535    RF_RaidAccessFlags_t flags,
536    RF_AllocListElem_t * allocList)
537{
538	RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
539	RF_StripeNum_t parityStripeID;
540	int     useMirror, i, shiftable;
541	RF_ReconUnitNum_t which_ru;
542	RF_PhysDiskAddr_t *pda;
543
544	if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
545		shiftable = RF_TRUE;
546	} else {
547		shiftable = RF_FALSE;
548	}
549	useMirror = 0;
550	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
551	    asmap->raidAddress, &which_ru);
552
553	if (rf_dagDebug) {
554		printf("[Creating RAID C degraded read DAG]\n");
555	}
556	dag_h->creator = "RaidCDegradedReadDAG";
557	/* alloc the Wnd nodes and the Wmir node */
558	if (asmap->numDataFailed == 0)
559		useMirror = RF_FALSE;
560	else
561		useMirror = RF_TRUE;
562
563	/* total number of nodes = 1 + (block + commit + terminator) */
564	RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
565	i = 0;
566	rdNode = &nodes[i];
567	i++;
568	blockNode = &nodes[i];
569	i++;
570	commitNode = &nodes[i];
571	i++;
572	termNode = &nodes[i];
573	i++;
574
575	/*
576         * This dag can not commit until the commit node is reached.
577         * Errors prior to the commit point imply the dag has failed
578         * and must be retried.
579         */
580	dag_h->numCommitNodes = 1;
581	dag_h->numCommits = 0;
582	dag_h->numSuccedents = 1;
583
584	/* initialize the block, commit, and terminator nodes */
585	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
586	    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
587	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
588	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
589	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
590	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
591
592	pda = asmap->physInfo;
593	RF_ASSERT(pda != NULL);
594	/* parityInfo must describe entire parity unit */
595	RF_ASSERT(asmap->parityInfo->next == NULL);
596
597	/* initialize the data node */
598	if (!useMirror) {
599		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
600		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
601		if (shiftable && rf_compute_workload_shift(raidPtr, pda)) {
602			/* shift this read to the next disk in line */
603			rdNode->params[0].p = asmap->parityInfo;
604			rdNode->params[1].p = pda->bufPtr;
605			rdNode->params[2].v = parityStripeID;
606			rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
607		} else {
608			/* read primary copy */
609			rdNode->params[0].p = pda;
610			rdNode->params[1].p = pda->bufPtr;
611			rdNode->params[2].v = parityStripeID;
612			rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
613		}
614	} else {
615		/* read secondary copy of data */
616		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
617		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
618		rdNode->params[0].p = asmap->parityInfo;
619		rdNode->params[1].p = pda->bufPtr;
620		rdNode->params[2].v = parityStripeID;
621		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
622	}
623
624	/* connect header to block node */
625	RF_ASSERT(dag_h->numSuccedents == 1);
626	RF_ASSERT(blockNode->numAntecedents == 0);
627	dag_h->succedents[0] = blockNode;
628
629	/* connect block node to rdnode */
630	RF_ASSERT(blockNode->numSuccedents == 1);
631	RF_ASSERT(rdNode->numAntecedents == 1);
632	blockNode->succedents[0] = rdNode;
633	rdNode->antecedents[0] = blockNode;
634	rdNode->antType[0] = rf_control;
635
636	/* connect rdnode to commit node */
637	RF_ASSERT(rdNode->numSuccedents == 1);
638	RF_ASSERT(commitNode->numAntecedents == 1);
639	rdNode->succedents[0] = commitNode;
640	commitNode->antecedents[0] = rdNode;
641	commitNode->antType[0] = rf_control;
642
643	/* connect commit node to terminator */
644	RF_ASSERT(commitNode->numSuccedents == 1);
645	RF_ASSERT(termNode->numAntecedents == 1);
646	RF_ASSERT(termNode->numSuccedents == 0);
647	commitNode->succedents[0] = termNode;
648	termNode->antecedents[0] = commitNode;
649	termNode->antType[0] = rf_control;
650}
651#endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
652
653#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
654/*
655 * XXX move this elsewhere?
656 */
657void
658rf_DD_GenerateFailedAccessASMs(
659    RF_Raid_t * raidPtr,
660    RF_AccessStripeMap_t * asmap,
661    RF_PhysDiskAddr_t ** pdap,
662    int *nNodep,
663    RF_PhysDiskAddr_t ** pqpdap,
664    int *nPQNodep,
665    RF_AllocListElem_t * allocList)
666{
667	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
668	int     PDAPerDisk, i;
669	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
670	int     numDataCol = layoutPtr->numDataCol;
671	int     state;
672	RF_SectorNum_t suoff, suend;
673	unsigned firstDataCol, napdas, count;
674	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0;
675	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
676	RF_PhysDiskAddr_t *pda_p;
677	RF_PhysDiskAddr_t *phys_p;
678	RF_RaidAddr_t sosAddr;
679
680	/* determine how many pda's we will have to generate per unaccess
681	 * stripe. If there is only one failed data unit, it is one; if two,
682	 * possibly two, depending wether they overlap. */
683
684	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
685	fone_end = fone_start + fone->numSector;
686
687#define CONS_PDA(if,start,num) \
688  pda_p->row = asmap->if->row;    pda_p->col = asmap->if->col; \
689  pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
690  pda_p->numSector = num; \
691  pda_p->next = NULL; \
692  RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
693
694	if (asmap->numDataFailed == 1) {
695		PDAPerDisk = 1;
696		state = 1;
697		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
698		pda_p = *pqpdap;
699		/* build p */
700		CONS_PDA(parityInfo, fone_start, fone->numSector);
701		pda_p->type = RF_PDA_TYPE_PARITY;
702		pda_p++;
703		/* build q */
704		CONS_PDA(qInfo, fone_start, fone->numSector);
705		pda_p->type = RF_PDA_TYPE_Q;
706	} else {
707		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
708		ftwo_end = ftwo_start + ftwo->numSector;
709		if (fone->numSector + ftwo->numSector > secPerSU) {
710			PDAPerDisk = 1;
711			state = 2;
712			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
713			pda_p = *pqpdap;
714			CONS_PDA(parityInfo, 0, secPerSU);
715			pda_p->type = RF_PDA_TYPE_PARITY;
716			pda_p++;
717			CONS_PDA(qInfo, 0, secPerSU);
718			pda_p->type = RF_PDA_TYPE_Q;
719		} else {
720			PDAPerDisk = 2;
721			state = 3;
722			/* four of them, fone, then ftwo */
723			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
724			pda_p = *pqpdap;
725			CONS_PDA(parityInfo, fone_start, fone->numSector);
726			pda_p->type = RF_PDA_TYPE_PARITY;
727			pda_p++;
728			CONS_PDA(qInfo, fone_start, fone->numSector);
729			pda_p->type = RF_PDA_TYPE_Q;
730			pda_p++;
731			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
732			pda_p->type = RF_PDA_TYPE_PARITY;
733			pda_p++;
734			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
735			pda_p->type = RF_PDA_TYPE_Q;
736		}
737	}
738	/* figure out number of nonaccessed pda */
739	napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0));
740	*nPQNodep = PDAPerDisk;
741
742	/* sweep over the over accessed pda's, figuring out the number of
743	 * additional pda's to generate. Of course, skip the failed ones */
744
745	count = 0;
746	for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) {
747		if ((pda_p == fone) || (pda_p == ftwo))
748			continue;
749		suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector);
750		suend = suoff + pda_p->numSector;
751		switch (state) {
752		case 1:	/* one failed PDA to overlap */
753			/* if a PDA doesn't contain the failed unit, it can
754			 * only miss the start or end, not both */
755			if ((suoff > fone_start) || (suend < fone_end))
756				count++;
757			break;
758		case 2:	/* whole stripe */
759			if (suoff)	/* leak at begining */
760				count++;
761			if (suend < numDataCol)	/* leak at end */
762				count++;
763			break;
764		case 3:	/* two disjoint units */
765			if ((suoff > fone_start) || (suend < fone_end))
766				count++;
767			if ((suoff > ftwo_start) || (suend < ftwo_end))
768				count++;
769			break;
770		default:
771			RF_PANIC();
772		}
773	}
774
775	napdas += count;
776	*nNodep = napdas;
777	if (napdas == 0)
778		return;		/* short circuit */
779
780	/* allocate up our list of pda's */
781
782	RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
783	*pdap = pda_p;
784
785	/* linkem together */
786	for (i = 0; i < (napdas - 1); i++)
787		pda_p[i].next = pda_p + (i + 1);
788
789	/* march through the one's up to the first accessed disk */
790	firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol;
791	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
792	for (i = 0; i < firstDataCol; i++) {
793		if ((pda_p - (*pdap)) == napdas)
794			continue;
795		pda_p->type = RF_PDA_TYPE_DATA;
796		pda_p->raidAddress = sosAddr + (i * secPerSU);
797		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
798		/* skip over dead disks */
799		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
800			continue;
801		switch (state) {
802		case 1:	/* fone */
803			pda_p->numSector = fone->numSector;
804			pda_p->raidAddress += fone_start;
805			pda_p->startSector += fone_start;
806			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
807			break;
808		case 2:	/* full stripe */
809			pda_p->numSector = secPerSU;
810			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
811			break;
812		case 3:	/* two slabs */
813			pda_p->numSector = fone->numSector;
814			pda_p->raidAddress += fone_start;
815			pda_p->startSector += fone_start;
816			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
817			pda_p++;
818			pda_p->type = RF_PDA_TYPE_DATA;
819			pda_p->raidAddress = sosAddr + (i * secPerSU);
820			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
821			pda_p->numSector = ftwo->numSector;
822			pda_p->raidAddress += ftwo_start;
823			pda_p->startSector += ftwo_start;
824			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
825			break;
826		default:
827			RF_PANIC();
828		}
829		pda_p++;
830	}
831
832	/* march through the touched stripe units */
833	for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) {
834		if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1]))
835			continue;
836		suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector);
837		suend = suoff + phys_p->numSector;
838		switch (state) {
839		case 1:	/* single buffer */
840			if (suoff > fone_start) {
841				RF_ASSERT(suend >= fone_end);
842				/* The data read starts after the mapped
843				 * access, snip off the begining */
844				pda_p->numSector = suoff - fone_start;
845				pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
846				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
847				RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
848				pda_p++;
849			}
850			if (suend < fone_end) {
851				RF_ASSERT(suoff <= fone_start);
852				/* The data read stops before the end of the
853				 * failed access, extend */
854				pda_p->numSector = fone_end - suend;
855				pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
856				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
857				RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
858				pda_p++;
859			}
860			break;
861		case 2:	/* whole stripe unit */
862			RF_ASSERT((suoff == 0) || (suend == secPerSU));
863			if (suend < secPerSU) {	/* short read, snip from end
864						 * on */
865				pda_p->numSector = secPerSU - suend;
866				pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
867				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
868				RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
869				pda_p++;
870			} else
871				if (suoff > 0) {	/* short at front */
872					pda_p->numSector = suoff;
873					pda_p->raidAddress = sosAddr + (i * secPerSU);
874					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
875					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
876					pda_p++;
877				}
878			break;
879		case 3:	/* two nonoverlapping failures */
880			if ((suoff > fone_start) || (suend < fone_end)) {
881				if (suoff > fone_start) {
882					RF_ASSERT(suend >= fone_end);
883					/* The data read starts after the
884					 * mapped access, snip off the
885					 * begining */
886					pda_p->numSector = suoff - fone_start;
887					pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
888					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
889					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
890					pda_p++;
891				}
892				if (suend < fone_end) {
893					RF_ASSERT(suoff <= fone_start);
894					/* The data read stops before the end
895					 * of the failed access, extend */
896					pda_p->numSector = fone_end - suend;
897					pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
898					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
899					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
900					pda_p++;
901				}
902			}
903			if ((suoff > ftwo_start) || (suend < ftwo_end)) {
904				if (suoff > ftwo_start) {
905					RF_ASSERT(suend >= ftwo_end);
906					/* The data read starts after the
907					 * mapped access, snip off the
908					 * begining */
909					pda_p->numSector = suoff - ftwo_start;
910					pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start;
911					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
912					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
913					pda_p++;
914				}
915				if (suend < ftwo_end) {
916					RF_ASSERT(suoff <= ftwo_start);
917					/* The data read stops before the end
918					 * of the failed access, extend */
919					pda_p->numSector = ftwo_end - suend;
920					pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
921					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
922					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
923					pda_p++;
924				}
925			}
926			break;
927		default:
928			RF_PANIC();
929		}
930	}
931
932	/* after the last accessed disk */
933	for (; i < numDataCol; i++) {
934		if ((pda_p - (*pdap)) == napdas)
935			continue;
936		pda_p->type = RF_PDA_TYPE_DATA;
937		pda_p->raidAddress = sosAddr + (i * secPerSU);
938		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
939		/* skip over dead disks */
940		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
941			continue;
942		switch (state) {
943		case 1:	/* fone */
944			pda_p->numSector = fone->numSector;
945			pda_p->raidAddress += fone_start;
946			pda_p->startSector += fone_start;
947			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
948			break;
949		case 2:	/* full stripe */
950			pda_p->numSector = secPerSU;
951			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
952			break;
953		case 3:	/* two slabs */
954			pda_p->numSector = fone->numSector;
955			pda_p->raidAddress += fone_start;
956			pda_p->startSector += fone_start;
957			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
958			pda_p++;
959			pda_p->type = RF_PDA_TYPE_DATA;
960			pda_p->raidAddress = sosAddr + (i * secPerSU);
961			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
962			pda_p->numSector = ftwo->numSector;
963			pda_p->raidAddress += ftwo_start;
964			pda_p->startSector += ftwo_start;
965			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
966			break;
967		default:
968			RF_PANIC();
969		}
970		pda_p++;
971	}
972
973	RF_ASSERT(pda_p - *pdap == napdas);
974	return;
975}
976#define INIT_DISK_NODE(node,name) \
977rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
978(node)->succedents[0] = unblockNode; \
979(node)->succedents[1] = recoveryNode; \
980(node)->antecedents[0] = blockNode; \
981(node)->antType[0] = rf_control
982
983#define DISK_NODE_PARAMS(_node_,_p_) \
984  (_node_).params[0].p = _p_ ; \
985  (_node_).params[1].p = (_p_)->bufPtr; \
986  (_node_).params[2].v = parityStripeID; \
987  (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
988
989void
990rf_DoubleDegRead(
991    RF_Raid_t * raidPtr,
992    RF_AccessStripeMap_t * asmap,
993    RF_DagHeader_t * dag_h,
994    void *bp,
995    RF_RaidAccessFlags_t flags,
996    RF_AllocListElem_t * allocList,
997    char *redundantReadNodeName,
998    char *recoveryNodeName,
999    int (*recovFunc) (RF_DagNode_t *))
1000{
1001	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1002	RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode,
1003	       *unblockNode, *rpNodes, *rqNodes, *termNode;
1004	RF_PhysDiskAddr_t *pda, *pqPDAs;
1005	RF_PhysDiskAddr_t *npdas;
1006	int     nNodes, nRrdNodes, nRudNodes, i;
1007	RF_ReconUnitNum_t which_ru;
1008	int     nReadNodes, nPQNodes;
1009	RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
1010	RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1];
1011	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
1012
1013	if (rf_dagDebug)
1014		printf("[Creating Double Degraded Read DAG]\n");
1015	rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
1016
1017	nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
1018	nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes;
1019	nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes;
1020
1021	RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
1022	i = 0;
1023	blockNode = &nodes[i];
1024	i += 1;
1025	unblockNode = &nodes[i];
1026	i += 1;
1027	recoveryNode = &nodes[i];
1028	i += 1;
1029	termNode = &nodes[i];
1030	i += 1;
1031	rudNodes = &nodes[i];
1032	i += nRudNodes;
1033	rrdNodes = &nodes[i];
1034	i += nRrdNodes;
1035	rpNodes = &nodes[i];
1036	i += nPQNodes;
1037	rqNodes = &nodes[i];
1038	i += nPQNodes;
1039	RF_ASSERT(i == nNodes);
1040
1041	dag_h->numSuccedents = 1;
1042	dag_h->succedents[0] = blockNode;
1043	dag_h->creator = "DoubleDegRead";
1044	dag_h->numCommits = 0;
1045	dag_h->numCommitNodes = 1;	/* unblock */
1046
1047	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList);
1048	termNode->antecedents[0] = unblockNode;
1049	termNode->antType[0] = rf_control;
1050	termNode->antecedents[1] = recoveryNode;
1051	termNode->antType[1] = rf_control;
1052
1053	/* init the block and unblock nodes */
1054	/* The block node has all nodes except itself, unblock and recovery as
1055	 * successors. Similarly for predecessors of the unblock. */
1056	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
1057	rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList);
1058
1059	for (i = 0; i < nReadNodes; i++) {
1060		blockNode->succedents[i] = rudNodes + i;
1061		unblockNode->antecedents[i] = rudNodes + i;
1062		unblockNode->antType[i] = rf_control;
1063	}
1064	unblockNode->succedents[0] = termNode;
1065
1066	/* The recovery node has all the reads as predecessors, and the term
1067	 * node as successors. It gets a pda as a param from each of the read
1068	 * nodes plus the raidPtr. For each failed unit is has a result pda. */
1069	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
1070	    1,			/* succesors */
1071	    nReadNodes,		/* preds */
1072	    nReadNodes + 2,	/* params */
1073	    asmap->numDataFailed,	/* results */
1074	    dag_h, recoveryNodeName, allocList);
1075
1076	recoveryNode->succedents[0] = termNode;
1077	for (i = 0; i < nReadNodes; i++) {
1078		recoveryNode->antecedents[i] = rudNodes + i;
1079		recoveryNode->antType[i] = rf_trueData;
1080	}
1081
1082	/* build the read nodes, then come back and fill in recovery params
1083	 * and results */
1084	pda = asmap->physInfo;
1085	for (i = 0; i < nRudNodes; pda = pda->next) {
1086		if ((pda == failedPDA) || (pda == failedPDAtwo))
1087			continue;
1088		INIT_DISK_NODE(rudNodes + i, "Rud");
1089		RF_ASSERT(pda);
1090		DISK_NODE_PARAMS(rudNodes[i], pda);
1091		i++;
1092	}
1093
1094	pda = npdas;
1095	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
1096		INIT_DISK_NODE(rrdNodes + i, "Rrd");
1097		RF_ASSERT(pda);
1098		DISK_NODE_PARAMS(rrdNodes[i], pda);
1099	}
1100
1101	/* redundancy pdas */
1102	pda = pqPDAs;
1103	INIT_DISK_NODE(rpNodes, "Rp");
1104	RF_ASSERT(pda);
1105	DISK_NODE_PARAMS(rpNodes[0], pda);
1106	pda++;
1107	INIT_DISK_NODE(rqNodes, redundantReadNodeName);
1108	RF_ASSERT(pda);
1109	DISK_NODE_PARAMS(rqNodes[0], pda);
1110	if (nPQNodes == 2) {
1111		pda++;
1112		INIT_DISK_NODE(rpNodes + 1, "Rp");
1113		RF_ASSERT(pda);
1114		DISK_NODE_PARAMS(rpNodes[1], pda);
1115		pda++;
1116		INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName);
1117		RF_ASSERT(pda);
1118		DISK_NODE_PARAMS(rqNodes[1], pda);
1119	}
1120	/* fill in recovery node params */
1121	for (i = 0; i < nReadNodes; i++)
1122		recoveryNode->params[i] = rudNodes[i].params[0];	/* pda */
1123	recoveryNode->params[i++].p = (void *) raidPtr;
1124	recoveryNode->params[i++].p = (void *) asmap;
1125	recoveryNode->results[0] = failedPDA;
1126	if (asmap->numDataFailed == 2)
1127		recoveryNode->results[1] = failedPDAtwo;
1128
1129	/* zero fill the target data buffers? */
1130}
1131
1132#endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
1133