rf_dagdegrd.c revision 1.11
1/*	$NetBSD: rf_dagdegrd.c,v 1.11 2002/05/22 15:40:47 wiz Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/*
30 * rf_dagdegrd.c
31 *
32 * code for creating degraded read DAGs
33 */
34
35#include <sys/cdefs.h>
36__KERNEL_RCSID(0, "$NetBSD: rf_dagdegrd.c,v 1.11 2002/05/22 15:40:47 wiz Exp $");
37
38#include <dev/raidframe/raidframevar.h>
39
40#include "rf_archs.h"
41#include "rf_raid.h"
42#include "rf_dag.h"
43#include "rf_dagutils.h"
44#include "rf_dagfuncs.h"
45#include "rf_debugMem.h"
46#include "rf_memchunk.h"
47#include "rf_general.h"
48#include "rf_dagdegrd.h"
49
50
51/******************************************************************************
52 *
53 * General comments on DAG creation:
54 *
55 * All DAGs in this file use roll-away error recovery.  Each DAG has a single
56 * commit node, usually called "Cmt."  If an error occurs before the Cmt node
57 * is reached, the execution engine will halt forward execution and work
58 * backward through the graph, executing the undo functions.  Assuming that
59 * each node in the graph prior to the Cmt node are undoable and atomic - or -
60 * does not make changes to permanent state, the graph will fail atomically.
61 * If an error occurs after the Cmt node executes, the engine will roll-forward
62 * through the graph, blindly executing nodes until it reaches the end.
63 * If a graph reaches the end, it is assumed to have completed successfully.
64 *
65 * A graph has only 1 Cmt node.
66 *
67 */
68
69
70/******************************************************************************
71 *
72 * The following wrappers map the standard DAG creation interface to the
73 * DAG creation routines.  Additionally, these wrappers enable experimentation
74 * with new DAG structures by providing an extra level of indirection, allowing
75 * the DAG creation routines to be replaced at this single point.
76 */
77
78void
79rf_CreateRaidFiveDegradedReadDAG(
80    RF_Raid_t * raidPtr,
81    RF_AccessStripeMap_t * asmap,
82    RF_DagHeader_t * dag_h,
83    void *bp,
84    RF_RaidAccessFlags_t flags,
85    RF_AllocListElem_t * allocList)
86{
87	rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
88	    &rf_xorRecoveryFuncs);
89}
90
91
92/******************************************************************************
93 *
94 * DAG creation code begins here
95 */
96
97
98/******************************************************************************
99 * Create a degraded read DAG for RAID level 1
100 *
101 * Hdr -> Nil -> R(p/s)d -> Commit -> Trm
102 *
103 * The "Rd" node reads data from the surviving disk in the mirror pair
104 *   Rpd - read of primary copy
105 *   Rsd - read of secondary copy
106 *
107 * Parameters:  raidPtr   - description of the physical array
108 *              asmap     - logical & physical addresses for this access
109 *              bp        - buffer ptr (for holding write data)
110 *              flags     - general flags (e.g. disk locking)
111 *              allocList - list of memory allocated in DAG creation
112 *****************************************************************************/
113
114void
115rf_CreateRaidOneDegradedReadDAG(
116    RF_Raid_t * raidPtr,
117    RF_AccessStripeMap_t * asmap,
118    RF_DagHeader_t * dag_h,
119    void *bp,
120    RF_RaidAccessFlags_t flags,
121    RF_AllocListElem_t * allocList)
122{
123	RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
124	RF_StripeNum_t parityStripeID;
125	RF_ReconUnitNum_t which_ru;
126	RF_PhysDiskAddr_t *pda;
127	int     useMirror, i;
128
129	useMirror = 0;
130	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
131	    asmap->raidAddress, &which_ru);
132	if (rf_dagDebug) {
133		printf("[Creating RAID level 1 degraded read DAG]\n");
134	}
135	dag_h->creator = "RaidOneDegradedReadDAG";
136	/* alloc the Wnd nodes and the Wmir node */
137	if (asmap->numDataFailed == 0)
138		useMirror = RF_FALSE;
139	else
140		useMirror = RF_TRUE;
141
142	/* total number of nodes = 1 + (block + commit + terminator) */
143	RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
144	i = 0;
145	rdNode = &nodes[i];
146	i++;
147	blockNode = &nodes[i];
148	i++;
149	commitNode = &nodes[i];
150	i++;
151	termNode = &nodes[i];
152	i++;
153
154	/* this dag can not commit until the commit node is reached.   errors
155	 * prior to the commit point imply the dag has failed and must be
156	 * retried */
157	dag_h->numCommitNodes = 1;
158	dag_h->numCommits = 0;
159	dag_h->numSuccedents = 1;
160
161	/* initialize the block, commit, and terminator nodes */
162	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
163	    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
164	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
165	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
166	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
167	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
168
169	pda = asmap->physInfo;
170	RF_ASSERT(pda != NULL);
171	/* parityInfo must describe entire parity unit */
172	RF_ASSERT(asmap->parityInfo->next == NULL);
173
174	/* initialize the data node */
175	if (!useMirror) {
176		/* read primary copy of data */
177		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
178		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
179		rdNode->params[0].p = pda;
180		rdNode->params[1].p = pda->bufPtr;
181		rdNode->params[2].v = parityStripeID;
182		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
183	} else {
184		/* read secondary copy of data */
185		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
186		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
187		rdNode->params[0].p = asmap->parityInfo;
188		rdNode->params[1].p = pda->bufPtr;
189		rdNode->params[2].v = parityStripeID;
190		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
191	}
192
193	/* connect header to block node */
194	RF_ASSERT(dag_h->numSuccedents == 1);
195	RF_ASSERT(blockNode->numAntecedents == 0);
196	dag_h->succedents[0] = blockNode;
197
198	/* connect block node to rdnode */
199	RF_ASSERT(blockNode->numSuccedents == 1);
200	RF_ASSERT(rdNode->numAntecedents == 1);
201	blockNode->succedents[0] = rdNode;
202	rdNode->antecedents[0] = blockNode;
203	rdNode->antType[0] = rf_control;
204
205	/* connect rdnode to commit node */
206	RF_ASSERT(rdNode->numSuccedents == 1);
207	RF_ASSERT(commitNode->numAntecedents == 1);
208	rdNode->succedents[0] = commitNode;
209	commitNode->antecedents[0] = rdNode;
210	commitNode->antType[0] = rf_control;
211
212	/* connect commit node to terminator */
213	RF_ASSERT(commitNode->numSuccedents == 1);
214	RF_ASSERT(termNode->numAntecedents == 1);
215	RF_ASSERT(termNode->numSuccedents == 0);
216	commitNode->succedents[0] = termNode;
217	termNode->antecedents[0] = commitNode;
218	termNode->antType[0] = rf_control;
219}
220
221
222
223/******************************************************************************
224 *
225 * creates a DAG to perform a degraded-mode read of data within one stripe.
226 * This DAG is as follows:
227 *
228 * Hdr -> Block -> Rud -> Xor -> Cmt -> T
229 *              -> Rrd ->
230 *              -> Rp -->
231 *
232 * Each R node is a successor of the L node
233 * One successor arc from each R node goes to C, and the other to X
234 * There is one Rud for each chunk of surviving user data requested by the
235 * user, and one Rrd for each chunk of surviving user data _not_ being read by
236 * the user
237 * R = read, ud = user data, rd = recovery (surviving) data, p = parity
238 * X = XOR, C = Commit, T = terminate
239 *
240 * The block node guarantees a single source node.
241 *
242 * Note:  The target buffer for the XOR node is set to the actual user buffer
243 * where the failed data is supposed to end up.  This buffer is zero'd by the
244 * code here.  Thus, if you create a degraded read dag, use it, and then
245 * re-use, you have to be sure to zero the target buffer prior to the re-use.
246 *
247 * The recfunc argument at the end specifies the name and function used for
248 * the redundancy
249 * recovery function.
250 *
251 *****************************************************************************/
252
253void
254rf_CreateDegradedReadDAG(
255    RF_Raid_t * raidPtr,
256    RF_AccessStripeMap_t * asmap,
257    RF_DagHeader_t * dag_h,
258    void *bp,
259    RF_RaidAccessFlags_t flags,
260    RF_AllocListElem_t * allocList,
261    RF_RedFuncs_t * recFunc)
262{
263	RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *xorNode, *blockNode;
264	RF_DagNode_t *commitNode, *rpNode, *termNode;
265	int     nNodes, nRrdNodes, nRudNodes, nXorBufs, i;
266	int     j, paramNum;
267	RF_SectorCount_t sectorsPerSU;
268	RF_ReconUnitNum_t which_ru;
269	char   *overlappingPDAs;/* a temporary array of flags */
270	RF_AccessStripeMapHeader_t *new_asm_h[2];
271	RF_PhysDiskAddr_t *pda, *parityPDA;
272	RF_StripeNum_t parityStripeID;
273	RF_PhysDiskAddr_t *failedPDA;
274	RF_RaidLayout_t *layoutPtr;
275	char   *rpBuf;
276
277	layoutPtr = &(raidPtr->Layout);
278	/* failedPDA points to the pda within the asm that targets the failed
279	 * disk */
280	failedPDA = asmap->failedPDAs[0];
281	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
282	    asmap->raidAddress, &which_ru);
283	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
284
285	if (rf_dagDebug) {
286		printf("[Creating degraded read DAG]\n");
287	}
288	RF_ASSERT(asmap->numDataFailed == 1);
289	dag_h->creator = "DegradedReadDAG";
290
291	/*
292         * generate two ASMs identifying the surviving data we need
293         * in order to recover the lost data
294         */
295
296	/* overlappingPDAs array must be zero'd */
297	RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
298	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs,
299	    &rpBuf, overlappingPDAs, allocList);
300
301	/*
302         * create all the nodes at once
303         *
304         * -1 because no access is generated for the failed pda
305         */
306	nRudNodes = asmap->numStripeUnitsAccessed - 1;
307	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
308	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
309	nNodes = 5 + nRudNodes + nRrdNodes;	/* lock, unlock, xor, Rp, Rud,
310						 * Rrd */
311	RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *),
312	    allocList);
313	i = 0;
314	blockNode = &nodes[i];
315	i++;
316	commitNode = &nodes[i];
317	i++;
318	xorNode = &nodes[i];
319	i++;
320	rpNode = &nodes[i];
321	i++;
322	termNode = &nodes[i];
323	i++;
324	rudNodes = &nodes[i];
325	i += nRudNodes;
326	rrdNodes = &nodes[i];
327	i += nRrdNodes;
328	RF_ASSERT(i == nNodes);
329
330	/* initialize nodes */
331	dag_h->numCommitNodes = 1;
332	dag_h->numCommits = 0;
333	/* this dag can not commit until the commit node is reached errors
334	 * prior to the commit point imply the dag has failed */
335	dag_h->numSuccedents = 1;
336
337	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
338	    NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
339	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
340	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
341	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
342	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
343	rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc,
344	    NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h,
345	    recFunc->SimpleName, allocList);
346
347	/* fill in the Rud nodes */
348	for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) {
349		if (pda == failedPDA) {
350			i--;
351			continue;
352		}
353		rf_InitNode(&rudNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
354		    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
355		    "Rud", allocList);
356		RF_ASSERT(pda);
357		rudNodes[i].params[0].p = pda;
358		rudNodes[i].params[1].p = pda->bufPtr;
359		rudNodes[i].params[2].v = parityStripeID;
360		rudNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
361	}
362
363	/* fill in the Rrd nodes */
364	i = 0;
365	if (new_asm_h[0]) {
366		for (pda = new_asm_h[0]->stripeMap->physInfo;
367		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
368		    i++, pda = pda->next) {
369			rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
370			    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
371			    dag_h, "Rrd", allocList);
372			RF_ASSERT(pda);
373			rrdNodes[i].params[0].p = pda;
374			rrdNodes[i].params[1].p = pda->bufPtr;
375			rrdNodes[i].params[2].v = parityStripeID;
376			rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
377		}
378	}
379	if (new_asm_h[1]) {
380		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
381		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
382		    j++, pda = pda->next) {
383			rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc,
384			    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
385			    dag_h, "Rrd", allocList);
386			RF_ASSERT(pda);
387			rrdNodes[i + j].params[0].p = pda;
388			rrdNodes[i + j].params[1].p = pda->bufPtr;
389			rrdNodes[i + j].params[2].v = parityStripeID;
390			rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
391		}
392	}
393	/* make a PDA for the parity unit */
394	RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
395	parityPDA->row = asmap->parityInfo->row;
396	parityPDA->col = asmap->parityInfo->col;
397	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
398	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
399	parityPDA->numSector = failedPDA->numSector;
400
401	/* initialize the Rp node */
402	rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
403	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList);
404	rpNode->params[0].p = parityPDA;
405	rpNode->params[1].p = rpBuf;
406	rpNode->params[2].v = parityStripeID;
407	rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
408
409	/*
410         * the last and nastiest step is to assign all
411         * the parameters of the Xor node
412         */
413	paramNum = 0;
414	for (i = 0; i < nRrdNodes; i++) {
415		/* all the Rrd nodes need to be xored together */
416		xorNode->params[paramNum++] = rrdNodes[i].params[0];
417		xorNode->params[paramNum++] = rrdNodes[i].params[1];
418	}
419	for (i = 0; i < nRudNodes; i++) {
420		/* any Rud nodes that overlap the failed access need to be
421		 * xored in */
422		if (overlappingPDAs[i]) {
423			RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
424			memcpy((char *) pda, (char *) rudNodes[i].params[0].p, sizeof(RF_PhysDiskAddr_t));
425			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
426			xorNode->params[paramNum++].p = pda;
427			xorNode->params[paramNum++].p = pda->bufPtr;
428		}
429	}
430	RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
431
432	/* install parity pda as last set of params to be xor'd */
433	xorNode->params[paramNum++].p = parityPDA;
434	xorNode->params[paramNum++].p = rpBuf;
435
436	/*
437         * the last 2 params to the recovery xor node are
438         * the failed PDA and the raidPtr
439         */
440	xorNode->params[paramNum++].p = failedPDA;
441	xorNode->params[paramNum++].p = raidPtr;
442	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
443
444	/*
445         * The xor node uses results[0] as the target buffer.
446         * Set pointer and zero the buffer. In the kernel, this
447         * may be a user buffer in which case we have to remap it.
448         */
449	xorNode->results[0] = failedPDA->bufPtr;
450	RF_BZERO(bp, failedPDA->bufPtr, rf_RaidAddressToByte(raidPtr,
451		failedPDA->numSector));
452
453	/* connect nodes to form graph */
454	/* connect the header to the block node */
455	RF_ASSERT(dag_h->numSuccedents == 1);
456	RF_ASSERT(blockNode->numAntecedents == 0);
457	dag_h->succedents[0] = blockNode;
458
459	/* connect the block node to the read nodes */
460	RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes));
461	RF_ASSERT(rpNode->numAntecedents == 1);
462	blockNode->succedents[0] = rpNode;
463	rpNode->antecedents[0] = blockNode;
464	rpNode->antType[0] = rf_control;
465	for (i = 0; i < nRrdNodes; i++) {
466		RF_ASSERT(rrdNodes[i].numSuccedents == 1);
467		blockNode->succedents[1 + i] = &rrdNodes[i];
468		rrdNodes[i].antecedents[0] = blockNode;
469		rrdNodes[i].antType[0] = rf_control;
470	}
471	for (i = 0; i < nRudNodes; i++) {
472		RF_ASSERT(rudNodes[i].numSuccedents == 1);
473		blockNode->succedents[1 + nRrdNodes + i] = &rudNodes[i];
474		rudNodes[i].antecedents[0] = blockNode;
475		rudNodes[i].antType[0] = rf_control;
476	}
477
478	/* connect the read nodes to the xor node */
479	RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes));
480	RF_ASSERT(rpNode->numSuccedents == 1);
481	rpNode->succedents[0] = xorNode;
482	xorNode->antecedents[0] = rpNode;
483	xorNode->antType[0] = rf_trueData;
484	for (i = 0; i < nRrdNodes; i++) {
485		RF_ASSERT(rrdNodes[i].numSuccedents == 1);
486		rrdNodes[i].succedents[0] = xorNode;
487		xorNode->antecedents[1 + i] = &rrdNodes[i];
488		xorNode->antType[1 + i] = rf_trueData;
489	}
490	for (i = 0; i < nRudNodes; i++) {
491		RF_ASSERT(rudNodes[i].numSuccedents == 1);
492		rudNodes[i].succedents[0] = xorNode;
493		xorNode->antecedents[1 + nRrdNodes + i] = &rudNodes[i];
494		xorNode->antType[1 + nRrdNodes + i] = rf_trueData;
495	}
496
497	/* connect the xor node to the commit node */
498	RF_ASSERT(xorNode->numSuccedents == 1);
499	RF_ASSERT(commitNode->numAntecedents == 1);
500	xorNode->succedents[0] = commitNode;
501	commitNode->antecedents[0] = xorNode;
502	commitNode->antType[0] = rf_control;
503
504	/* connect the termNode to the commit node */
505	RF_ASSERT(commitNode->numSuccedents == 1);
506	RF_ASSERT(termNode->numAntecedents == 1);
507	RF_ASSERT(termNode->numSuccedents == 0);
508	commitNode->succedents[0] = termNode;
509	termNode->antType[0] = rf_control;
510	termNode->antecedents[0] = commitNode;
511}
512
513#if (RF_INCLUDE_CHAINDECLUSTER > 0)
514/******************************************************************************
515 * Create a degraded read DAG for Chained Declustering
516 *
517 * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm
518 *
519 * The "Rd" node reads data from the surviving disk in the mirror pair
520 *   Rpd - read of primary copy
521 *   Rsd - read of secondary copy
522 *
523 * Parameters:  raidPtr   - description of the physical array
524 *              asmap     - logical & physical addresses for this access
525 *              bp        - buffer ptr (for holding write data)
526 *              flags     - general flags (e.g. disk locking)
527 *              allocList - list of memory allocated in DAG creation
528 *****************************************************************************/
529
530void
531rf_CreateRaidCDegradedReadDAG(
532    RF_Raid_t * raidPtr,
533    RF_AccessStripeMap_t * asmap,
534    RF_DagHeader_t * dag_h,
535    void *bp,
536    RF_RaidAccessFlags_t flags,
537    RF_AllocListElem_t * allocList)
538{
539	RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
540	RF_StripeNum_t parityStripeID;
541	int     useMirror, i, shiftable;
542	RF_ReconUnitNum_t which_ru;
543	RF_PhysDiskAddr_t *pda;
544
545	if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
546		shiftable = RF_TRUE;
547	} else {
548		shiftable = RF_FALSE;
549	}
550	useMirror = 0;
551	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
552	    asmap->raidAddress, &which_ru);
553
554	if (rf_dagDebug) {
555		printf("[Creating RAID C degraded read DAG]\n");
556	}
557	dag_h->creator = "RaidCDegradedReadDAG";
558	/* alloc the Wnd nodes and the Wmir node */
559	if (asmap->numDataFailed == 0)
560		useMirror = RF_FALSE;
561	else
562		useMirror = RF_TRUE;
563
564	/* total number of nodes = 1 + (block + commit + terminator) */
565	RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
566	i = 0;
567	rdNode = &nodes[i];
568	i++;
569	blockNode = &nodes[i];
570	i++;
571	commitNode = &nodes[i];
572	i++;
573	termNode = &nodes[i];
574	i++;
575
576	/*
577         * This dag can not commit until the commit node is reached.
578         * Errors prior to the commit point imply the dag has failed
579         * and must be retried.
580         */
581	dag_h->numCommitNodes = 1;
582	dag_h->numCommits = 0;
583	dag_h->numSuccedents = 1;
584
585	/* initialize the block, commit, and terminator nodes */
586	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
587	    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
588	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
589	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
590	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
591	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
592
593	pda = asmap->physInfo;
594	RF_ASSERT(pda != NULL);
595	/* parityInfo must describe entire parity unit */
596	RF_ASSERT(asmap->parityInfo->next == NULL);
597
598	/* initialize the data node */
599	if (!useMirror) {
600		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
601		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
602		if (shiftable && rf_compute_workload_shift(raidPtr, pda)) {
603			/* shift this read to the next disk in line */
604			rdNode->params[0].p = asmap->parityInfo;
605			rdNode->params[1].p = pda->bufPtr;
606			rdNode->params[2].v = parityStripeID;
607			rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
608		} else {
609			/* read primary copy */
610			rdNode->params[0].p = pda;
611			rdNode->params[1].p = pda->bufPtr;
612			rdNode->params[2].v = parityStripeID;
613			rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
614		}
615	} else {
616		/* read secondary copy of data */
617		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
618		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
619		rdNode->params[0].p = asmap->parityInfo;
620		rdNode->params[1].p = pda->bufPtr;
621		rdNode->params[2].v = parityStripeID;
622		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
623	}
624
625	/* connect header to block node */
626	RF_ASSERT(dag_h->numSuccedents == 1);
627	RF_ASSERT(blockNode->numAntecedents == 0);
628	dag_h->succedents[0] = blockNode;
629
630	/* connect block node to rdnode */
631	RF_ASSERT(blockNode->numSuccedents == 1);
632	RF_ASSERT(rdNode->numAntecedents == 1);
633	blockNode->succedents[0] = rdNode;
634	rdNode->antecedents[0] = blockNode;
635	rdNode->antType[0] = rf_control;
636
637	/* connect rdnode to commit node */
638	RF_ASSERT(rdNode->numSuccedents == 1);
639	RF_ASSERT(commitNode->numAntecedents == 1);
640	rdNode->succedents[0] = commitNode;
641	commitNode->antecedents[0] = rdNode;
642	commitNode->antType[0] = rf_control;
643
644	/* connect commit node to terminator */
645	RF_ASSERT(commitNode->numSuccedents == 1);
646	RF_ASSERT(termNode->numAntecedents == 1);
647	RF_ASSERT(termNode->numSuccedents == 0);
648	commitNode->succedents[0] = termNode;
649	termNode->antecedents[0] = commitNode;
650	termNode->antType[0] = rf_control;
651}
652#endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
653
654#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
655/*
656 * XXX move this elsewhere?
657 */
658void
659rf_DD_GenerateFailedAccessASMs(
660    RF_Raid_t * raidPtr,
661    RF_AccessStripeMap_t * asmap,
662    RF_PhysDiskAddr_t ** pdap,
663    int *nNodep,
664    RF_PhysDiskAddr_t ** pqpdap,
665    int *nPQNodep,
666    RF_AllocListElem_t * allocList)
667{
668	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
669	int     PDAPerDisk, i;
670	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
671	int     numDataCol = layoutPtr->numDataCol;
672	int     state;
673	RF_SectorNum_t suoff, suend;
674	unsigned firstDataCol, napdas, count;
675	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0;
676	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
677	RF_PhysDiskAddr_t *pda_p;
678	RF_PhysDiskAddr_t *phys_p;
679	RF_RaidAddr_t sosAddr;
680
681	/* determine how many pda's we will have to generate per unaccess
682	 * stripe. If there is only one failed data unit, it is one; if two,
683	 * possibly two, depending wether they overlap. */
684
685	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
686	fone_end = fone_start + fone->numSector;
687
688#define CONS_PDA(if,start,num) \
689  pda_p->row = asmap->if->row;    pda_p->col = asmap->if->col; \
690  pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
691  pda_p->numSector = num; \
692  pda_p->next = NULL; \
693  RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
694
695	if (asmap->numDataFailed == 1) {
696		PDAPerDisk = 1;
697		state = 1;
698		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
699		pda_p = *pqpdap;
700		/* build p */
701		CONS_PDA(parityInfo, fone_start, fone->numSector);
702		pda_p->type = RF_PDA_TYPE_PARITY;
703		pda_p++;
704		/* build q */
705		CONS_PDA(qInfo, fone_start, fone->numSector);
706		pda_p->type = RF_PDA_TYPE_Q;
707	} else {
708		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
709		ftwo_end = ftwo_start + ftwo->numSector;
710		if (fone->numSector + ftwo->numSector > secPerSU) {
711			PDAPerDisk = 1;
712			state = 2;
713			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
714			pda_p = *pqpdap;
715			CONS_PDA(parityInfo, 0, secPerSU);
716			pda_p->type = RF_PDA_TYPE_PARITY;
717			pda_p++;
718			CONS_PDA(qInfo, 0, secPerSU);
719			pda_p->type = RF_PDA_TYPE_Q;
720		} else {
721			PDAPerDisk = 2;
722			state = 3;
723			/* four of them, fone, then ftwo */
724			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
725			pda_p = *pqpdap;
726			CONS_PDA(parityInfo, fone_start, fone->numSector);
727			pda_p->type = RF_PDA_TYPE_PARITY;
728			pda_p++;
729			CONS_PDA(qInfo, fone_start, fone->numSector);
730			pda_p->type = RF_PDA_TYPE_Q;
731			pda_p++;
732			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
733			pda_p->type = RF_PDA_TYPE_PARITY;
734			pda_p++;
735			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
736			pda_p->type = RF_PDA_TYPE_Q;
737		}
738	}
739	/* figure out number of nonaccessed pda */
740	napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0));
741	*nPQNodep = PDAPerDisk;
742
743	/* sweep over the over accessed pda's, figuring out the number of
744	 * additional pda's to generate. Of course, skip the failed ones */
745
746	count = 0;
747	for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) {
748		if ((pda_p == fone) || (pda_p == ftwo))
749			continue;
750		suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector);
751		suend = suoff + pda_p->numSector;
752		switch (state) {
753		case 1:	/* one failed PDA to overlap */
754			/* if a PDA doesn't contain the failed unit, it can
755			 * only miss the start or end, not both */
756			if ((suoff > fone_start) || (suend < fone_end))
757				count++;
758			break;
759		case 2:	/* whole stripe */
760			if (suoff)	/* leak at begining */
761				count++;
762			if (suend < numDataCol)	/* leak at end */
763				count++;
764			break;
765		case 3:	/* two disjoint units */
766			if ((suoff > fone_start) || (suend < fone_end))
767				count++;
768			if ((suoff > ftwo_start) || (suend < ftwo_end))
769				count++;
770			break;
771		default:
772			RF_PANIC();
773		}
774	}
775
776	napdas += count;
777	*nNodep = napdas;
778	if (napdas == 0)
779		return;		/* short circuit */
780
781	/* allocate up our list of pda's */
782
783	RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
784	*pdap = pda_p;
785
786	/* linkem together */
787	for (i = 0; i < (napdas - 1); i++)
788		pda_p[i].next = pda_p + (i + 1);
789
790	/* march through the one's up to the first accessed disk */
791	firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol;
792	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
793	for (i = 0; i < firstDataCol; i++) {
794		if ((pda_p - (*pdap)) == napdas)
795			continue;
796		pda_p->type = RF_PDA_TYPE_DATA;
797		pda_p->raidAddress = sosAddr + (i * secPerSU);
798		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
799		/* skip over dead disks */
800		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
801			continue;
802		switch (state) {
803		case 1:	/* fone */
804			pda_p->numSector = fone->numSector;
805			pda_p->raidAddress += fone_start;
806			pda_p->startSector += fone_start;
807			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
808			break;
809		case 2:	/* full stripe */
810			pda_p->numSector = secPerSU;
811			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
812			break;
813		case 3:	/* two slabs */
814			pda_p->numSector = fone->numSector;
815			pda_p->raidAddress += fone_start;
816			pda_p->startSector += fone_start;
817			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
818			pda_p++;
819			pda_p->type = RF_PDA_TYPE_DATA;
820			pda_p->raidAddress = sosAddr + (i * secPerSU);
821			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
822			pda_p->numSector = ftwo->numSector;
823			pda_p->raidAddress += ftwo_start;
824			pda_p->startSector += ftwo_start;
825			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
826			break;
827		default:
828			RF_PANIC();
829		}
830		pda_p++;
831	}
832
833	/* march through the touched stripe units */
834	for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) {
835		if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1]))
836			continue;
837		suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector);
838		suend = suoff + phys_p->numSector;
839		switch (state) {
840		case 1:	/* single buffer */
841			if (suoff > fone_start) {
842				RF_ASSERT(suend >= fone_end);
843				/* The data read starts after the mapped
844				 * access, snip off the begining */
845				pda_p->numSector = suoff - fone_start;
846				pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
847				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
848				RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
849				pda_p++;
850			}
851			if (suend < fone_end) {
852				RF_ASSERT(suoff <= fone_start);
853				/* The data read stops before the end of the
854				 * failed access, extend */
855				pda_p->numSector = fone_end - suend;
856				pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
857				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
858				RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
859				pda_p++;
860			}
861			break;
862		case 2:	/* whole stripe unit */
863			RF_ASSERT((suoff == 0) || (suend == secPerSU));
864			if (suend < secPerSU) {	/* short read, snip from end
865						 * on */
866				pda_p->numSector = secPerSU - suend;
867				pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
868				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
869				RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
870				pda_p++;
871			} else
872				if (suoff > 0) {	/* short at front */
873					pda_p->numSector = suoff;
874					pda_p->raidAddress = sosAddr + (i * secPerSU);
875					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
876					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
877					pda_p++;
878				}
879			break;
880		case 3:	/* two nonoverlapping failures */
881			if ((suoff > fone_start) || (suend < fone_end)) {
882				if (suoff > fone_start) {
883					RF_ASSERT(suend >= fone_end);
884					/* The data read starts after the
885					 * mapped access, snip off the
886					 * begining */
887					pda_p->numSector = suoff - fone_start;
888					pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
889					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
890					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
891					pda_p++;
892				}
893				if (suend < fone_end) {
894					RF_ASSERT(suoff <= fone_start);
895					/* The data read stops before the end
896					 * of the failed access, extend */
897					pda_p->numSector = fone_end - suend;
898					pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
899					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
900					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
901					pda_p++;
902				}
903			}
904			if ((suoff > ftwo_start) || (suend < ftwo_end)) {
905				if (suoff > ftwo_start) {
906					RF_ASSERT(suend >= ftwo_end);
907					/* The data read starts after the
908					 * mapped access, snip off the
909					 * begining */
910					pda_p->numSector = suoff - ftwo_start;
911					pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start;
912					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
913					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
914					pda_p++;
915				}
916				if (suend < ftwo_end) {
917					RF_ASSERT(suoff <= ftwo_start);
918					/* The data read stops before the end
919					 * of the failed access, extend */
920					pda_p->numSector = ftwo_end - suend;
921					pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
922					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
923					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
924					pda_p++;
925				}
926			}
927			break;
928		default:
929			RF_PANIC();
930		}
931	}
932
933	/* after the last accessed disk */
934	for (; i < numDataCol; i++) {
935		if ((pda_p - (*pdap)) == napdas)
936			continue;
937		pda_p->type = RF_PDA_TYPE_DATA;
938		pda_p->raidAddress = sosAddr + (i * secPerSU);
939		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
940		/* skip over dead disks */
941		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
942			continue;
943		switch (state) {
944		case 1:	/* fone */
945			pda_p->numSector = fone->numSector;
946			pda_p->raidAddress += fone_start;
947			pda_p->startSector += fone_start;
948			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
949			break;
950		case 2:	/* full stripe */
951			pda_p->numSector = secPerSU;
952			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
953			break;
954		case 3:	/* two slabs */
955			pda_p->numSector = fone->numSector;
956			pda_p->raidAddress += fone_start;
957			pda_p->startSector += fone_start;
958			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
959			pda_p++;
960			pda_p->type = RF_PDA_TYPE_DATA;
961			pda_p->raidAddress = sosAddr + (i * secPerSU);
962			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
963			pda_p->numSector = ftwo->numSector;
964			pda_p->raidAddress += ftwo_start;
965			pda_p->startSector += ftwo_start;
966			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
967			break;
968		default:
969			RF_PANIC();
970		}
971		pda_p++;
972	}
973
974	RF_ASSERT(pda_p - *pdap == napdas);
975	return;
976}
977#define INIT_DISK_NODE(node,name) \
978rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
979(node)->succedents[0] = unblockNode; \
980(node)->succedents[1] = recoveryNode; \
981(node)->antecedents[0] = blockNode; \
982(node)->antType[0] = rf_control
983
984#define DISK_NODE_PARAMS(_node_,_p_) \
985  (_node_).params[0].p = _p_ ; \
986  (_node_).params[1].p = (_p_)->bufPtr; \
987  (_node_).params[2].v = parityStripeID; \
988  (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
989
990void
991rf_DoubleDegRead(
992    RF_Raid_t * raidPtr,
993    RF_AccessStripeMap_t * asmap,
994    RF_DagHeader_t * dag_h,
995    void *bp,
996    RF_RaidAccessFlags_t flags,
997    RF_AllocListElem_t * allocList,
998    char *redundantReadNodeName,
999    char *recoveryNodeName,
1000    int (*recovFunc) (RF_DagNode_t *))
1001{
1002	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1003	RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode,
1004	       *unblockNode, *rpNodes, *rqNodes, *termNode;
1005	RF_PhysDiskAddr_t *pda, *pqPDAs;
1006	RF_PhysDiskAddr_t *npdas;
1007	int     nNodes, nRrdNodes, nRudNodes, i;
1008	RF_ReconUnitNum_t which_ru;
1009	int     nReadNodes, nPQNodes;
1010	RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
1011	RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1];
1012	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
1013
1014	if (rf_dagDebug)
1015		printf("[Creating Double Degraded Read DAG]\n");
1016	rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
1017
1018	nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
1019	nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes;
1020	nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes;
1021
1022	RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
1023	i = 0;
1024	blockNode = &nodes[i];
1025	i += 1;
1026	unblockNode = &nodes[i];
1027	i += 1;
1028	recoveryNode = &nodes[i];
1029	i += 1;
1030	termNode = &nodes[i];
1031	i += 1;
1032	rudNodes = &nodes[i];
1033	i += nRudNodes;
1034	rrdNodes = &nodes[i];
1035	i += nRrdNodes;
1036	rpNodes = &nodes[i];
1037	i += nPQNodes;
1038	rqNodes = &nodes[i];
1039	i += nPQNodes;
1040	RF_ASSERT(i == nNodes);
1041
1042	dag_h->numSuccedents = 1;
1043	dag_h->succedents[0] = blockNode;
1044	dag_h->creator = "DoubleDegRead";
1045	dag_h->numCommits = 0;
1046	dag_h->numCommitNodes = 1;	/* unblock */
1047
1048	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList);
1049	termNode->antecedents[0] = unblockNode;
1050	termNode->antType[0] = rf_control;
1051	termNode->antecedents[1] = recoveryNode;
1052	termNode->antType[1] = rf_control;
1053
1054	/* init the block and unblock nodes */
1055	/* The block node has all nodes except itself, unblock and recovery as
1056	 * successors. Similarly for predecessors of the unblock. */
1057	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
1058	rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList);
1059
1060	for (i = 0; i < nReadNodes; i++) {
1061		blockNode->succedents[i] = rudNodes + i;
1062		unblockNode->antecedents[i] = rudNodes + i;
1063		unblockNode->antType[i] = rf_control;
1064	}
1065	unblockNode->succedents[0] = termNode;
1066
1067	/* The recovery node has all the reads as predecessors, and the term
1068	 * node as successors. It gets a pda as a param from each of the read
1069	 * nodes plus the raidPtr. For each failed unit is has a result pda. */
1070	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
1071	    1,			/* succesors */
1072	    nReadNodes,		/* preds */
1073	    nReadNodes + 2,	/* params */
1074	    asmap->numDataFailed,	/* results */
1075	    dag_h, recoveryNodeName, allocList);
1076
1077	recoveryNode->succedents[0] = termNode;
1078	for (i = 0; i < nReadNodes; i++) {
1079		recoveryNode->antecedents[i] = rudNodes + i;
1080		recoveryNode->antType[i] = rf_trueData;
1081	}
1082
1083	/* build the read nodes, then come back and fill in recovery params
1084	 * and results */
1085	pda = asmap->physInfo;
1086	for (i = 0; i < nRudNodes; pda = pda->next) {
1087		if ((pda == failedPDA) || (pda == failedPDAtwo))
1088			continue;
1089		INIT_DISK_NODE(rudNodes + i, "Rud");
1090		RF_ASSERT(pda);
1091		DISK_NODE_PARAMS(rudNodes[i], pda);
1092		i++;
1093	}
1094
1095	pda = npdas;
1096	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
1097		INIT_DISK_NODE(rrdNodes + i, "Rrd");
1098		RF_ASSERT(pda);
1099		DISK_NODE_PARAMS(rrdNodes[i], pda);
1100	}
1101
1102	/* redundancy pdas */
1103	pda = pqPDAs;
1104	INIT_DISK_NODE(rpNodes, "Rp");
1105	RF_ASSERT(pda);
1106	DISK_NODE_PARAMS(rpNodes[0], pda);
1107	pda++;
1108	INIT_DISK_NODE(rqNodes, redundantReadNodeName);
1109	RF_ASSERT(pda);
1110	DISK_NODE_PARAMS(rqNodes[0], pda);
1111	if (nPQNodes == 2) {
1112		pda++;
1113		INIT_DISK_NODE(rpNodes + 1, "Rp");
1114		RF_ASSERT(pda);
1115		DISK_NODE_PARAMS(rpNodes[1], pda);
1116		pda++;
1117		INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName);
1118		RF_ASSERT(pda);
1119		DISK_NODE_PARAMS(rqNodes[1], pda);
1120	}
1121	/* fill in recovery node params */
1122	for (i = 0; i < nReadNodes; i++)
1123		recoveryNode->params[i] = rudNodes[i].params[0];	/* pda */
1124	recoveryNode->params[i++].p = (void *) raidPtr;
1125	recoveryNode->params[i++].p = (void *) asmap;
1126	recoveryNode->results[0] = failedPDA;
1127	if (asmap->numDataFailed == 2)
1128		recoveryNode->results[1] = failedPDAtwo;
1129
1130	/* zero fill the target data buffers? */
1131}
1132
1133#endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
1134