rf_dagdegrd.c revision 1.1
1/*	$NetBSD: rf_dagdegrd.c,v 1.1 1998/11/13 04:20:27 oster Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/*
30 * rf_dagdegrd.c
31 *
32 * code for creating degraded read DAGs
33 *
34 * :
35 * Log: rf_dagdegrd.c,v
36 * Revision 1.20  1996/11/05 21:10:40  jimz
37 * failed pda generalization
38 *
39 * Revision 1.19  1996/08/19  23:30:36  jimz
40 * fix chained declustered accesses in degraded mode when mirror copy is failed
41 * (workload shifting not allowed when there are no duplicate copies extant)
42 *
43 * Revision 1.18  1996/07/31  16:29:01  jimz
44 * asm/asmap re-fix (EO merge)
45 *
46 * Revision 1.17  1996/07/31  15:34:34  jimz
47 * evenodd changes; bugfixes for double-degraded archs, generalize
48 * some formerly PQ-only functions
49 *
50 * Revision 1.16  1996/07/28  20:31:39  jimz
51 * i386netbsd port
52 * true/false fixup
53 *
54 * Revision 1.15  1996/07/27  23:36:08  jimz
55 * Solaris port of simulator
56 *
57 * Revision 1.14  1996/07/22  19:52:16  jimz
58 * switched node params to RF_DagParam_t, a union of
59 * a 64-bit int and a void *, for better portability
60 * attempted hpux port, but failed partway through for
61 * lack of a single C compiler capable of compiling all
62 * source files
63 *
64 * Revision 1.13  1996/06/09  02:36:46  jimz
65 * lots of little crufty cleanup- fixup whitespace
66 * issues, comment #ifdefs, improve typing in some
67 * places (esp size-related)
68 *
69 * Revision 1.12  1996/06/07  22:26:27  jimz
70 * type-ify which_ru (RF_ReconUnitNum_t)
71 *
72 * Revision 1.11  1996/06/07  21:33:04  jimz
73 * begin using consistent types for sector numbers,
74 * stripe numbers, row+col numbers, recon unit numbers
75 *
76 * Revision 1.10  1996/05/31  22:26:54  jimz
77 * fix a lot of mapping problems, memory allocation problems
78 * found some weird lock issues, fixed 'em
79 * more code cleanup
80 *
81 * Revision 1.9  1996/05/30  11:29:41  jimz
82 * Numerous bug fixes. Stripe lock release code disagreed with the taking code
83 * about when stripes should be locked (I made it consistent: no parity, no lock)
84 * There was a lot of extra serialization of I/Os which I've removed- a lot of
85 * it was to calculate values for the cache code, which is no longer with us.
86 * More types, function, macro cleanup. Added code to properly quiesce the array
87 * on shutdown. Made a lot of stuff array-specific which was (bogusly) general
88 * before. Fixed memory allocation, freeing bugs.
89 *
90 * Revision 1.8  1996/05/27  18:56:37  jimz
91 * more code cleanup
92 * better typing
93 * compiles in all 3 environments
94 *
95 * Revision 1.7  1996/05/24  22:17:04  jimz
96 * continue code + namespace cleanup
97 * typed a bunch of flags
98 *
99 * Revision 1.6  1996/05/24  04:28:55  jimz
100 * release cleanup ckpt
101 *
102 * Revision 1.5  1996/05/23  21:46:35  jimz
103 * checkpoint in code cleanup (release prep)
104 * lots of types, function names have been fixed
105 *
106 * Revision 1.4  1996/05/23  00:33:23  jimz
107 * code cleanup: move all debug decls to rf_options.c, all extern
108 * debug decls to rf_options.h, all debug vars preceded by rf_
109 *
110 * Revision 1.3  1996/05/18  19:51:34  jimz
111 * major code cleanup- fix syntax, make some types consistent,
112 * add prototypes, clean out dead code, et cetera
113 *
114 * Revision 1.2  1996/05/08  21:01:24  jimz
115 * fixed up enum type names that were conflicting with other
116 * enums and function names (ie, "panic")
117 * future naming trends will be towards RF_ and rf_ for
118 * everything raidframe-related
119 *
120 * Revision 1.1  1996/05/03  19:22:23  wvcii
121 * Initial revision
122 *
123 */
124
125#include "rf_types.h"
126#include "rf_raid.h"
127#include "rf_dag.h"
128#include "rf_dagutils.h"
129#include "rf_dagfuncs.h"
130#include "rf_threadid.h"
131#include "rf_debugMem.h"
132#include "rf_memchunk.h"
133#include "rf_general.h"
134#include "rf_dagdegrd.h"
135#include "rf_sys.h"
136
137
138/******************************************************************************
139 *
140 * General comments on DAG creation:
141 *
142 * All DAGs in this file use roll-away error recovery.  Each DAG has a single
143 * commit node, usually called "Cmt."  If an error occurs before the Cmt node
144 * is reached, the execution engine will halt forward execution and work
145 * backward through the graph, executing the undo functions.  Assuming that
146 * each node in the graph prior to the Cmt node are undoable and atomic - or -
147 * does not make changes to permanent state, the graph will fail atomically.
148 * If an error occurs after the Cmt node executes, the engine will roll-forward
149 * through the graph, blindly executing nodes until it reaches the end.
150 * If a graph reaches the end, it is assumed to have completed successfully.
151 *
152 * A graph has only 1 Cmt node.
153 *
154 */
155
156
157/******************************************************************************
158 *
159 * The following wrappers map the standard DAG creation interface to the
160 * DAG creation routines.  Additionally, these wrappers enable experimentation
161 * with new DAG structures by providing an extra level of indirection, allowing
162 * the DAG creation routines to be replaced at this single point.
163 */
164
165void rf_CreateRaidFiveDegradedReadDAG(
166  RF_Raid_t             *raidPtr,
167  RF_AccessStripeMap_t  *asmap,
168  RF_DagHeader_t        *dag_h,
169  void                  *bp,
170  RF_RaidAccessFlags_t   flags,
171  RF_AllocListElem_t    *allocList)
172{
173  rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
174    &rf_xorRecoveryFuncs);
175}
176
177
178/******************************************************************************
179 *
180 * DAG creation code begins here
181 */
182
183
184/******************************************************************************
185 * Create a degraded read DAG for RAID level 1
186 *
187 * Hdr -> Nil -> R(p/s)d -> Commit -> Trm
188 *
189 * The "Rd" node reads data from the surviving disk in the mirror pair
190 *   Rpd - read of primary copy
191 *   Rsd - read of secondary copy
192 *
193 * Parameters:  raidPtr   - description of the physical array
194 *              asmap     - logical & physical addresses for this access
195 *              bp        - buffer ptr (for holding write data)
196 *              flags     - general flags (e.g. disk locking)
197 *              allocList - list of memory allocated in DAG creation
198 *****************************************************************************/
199
200void rf_CreateRaidOneDegradedReadDAG(
201  RF_Raid_t             *raidPtr,
202  RF_AccessStripeMap_t  *asmap,
203  RF_DagHeader_t        *dag_h,
204  void                  *bp,
205  RF_RaidAccessFlags_t   flags,
206  RF_AllocListElem_t    *allocList)
207{
208  RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
209  RF_StripeNum_t parityStripeID;
210  RF_ReconUnitNum_t which_ru;
211  RF_PhysDiskAddr_t *pda;
212  int useMirror, i;
213
214  useMirror = 0;
215  parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
216    asmap->raidAddress, &which_ru);
217  if (rf_dagDebug) {
218    printf("[Creating RAID level 1 degraded read DAG]\n");
219  }
220  dag_h->creator = "RaidOneDegradedReadDAG";
221  /* alloc the Wnd nodes and the Wmir node */
222  if (asmap->numDataFailed == 0)
223    useMirror = RF_FALSE;
224  else
225    useMirror = RF_TRUE;
226
227  /* total number of nodes = 1 + (block + commit + terminator) */
228  RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
229  i = 0;
230  rdNode      = &nodes[i]; i++;
231  blockNode   = &nodes[i]; i++;
232  commitNode = &nodes[i]; i++;
233  termNode    = &nodes[i]; i++;
234
235  /* this dag can not commit until the commit node is reached.   errors prior
236   * to the commit point imply the dag has failed and must be retried
237   */
238  dag_h->numCommitNodes = 1;
239  dag_h->numCommits = 0;
240  dag_h->numSuccedents = 1;
241
242  /* initialize the block, commit, and terminator nodes */
243  rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
244    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
245  rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
246    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
247  rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
248    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
249
250  pda = asmap->physInfo;
251  RF_ASSERT(pda != NULL);
252  /* parityInfo must describe entire parity unit */
253  RF_ASSERT(asmap->parityInfo->next == NULL);
254
255  /* initialize the data node */
256  if (!useMirror) {
257    /* read primary copy of data */
258    rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
259      rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
260    rdNode->params[0].p = pda;
261    rdNode->params[1].p = pda->bufPtr;
262    rdNode->params[2].v = parityStripeID;
263    rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
264  }
265  else {
266    /* read secondary copy of data */
267    rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
268      rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
269    rdNode->params[0].p = asmap->parityInfo;
270    rdNode->params[1].p = pda->bufPtr;
271    rdNode->params[2].v = parityStripeID;
272    rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
273  }
274
275  /* connect header to block node */
276  RF_ASSERT(dag_h->numSuccedents == 1);
277  RF_ASSERT(blockNode->numAntecedents == 0);
278  dag_h->succedents[0] = blockNode;
279
280  /* connect block node to rdnode */
281  RF_ASSERT(blockNode->numSuccedents == 1);
282  RF_ASSERT(rdNode->numAntecedents == 1);
283  blockNode->succedents[0] = rdNode;
284  rdNode->antecedents[0] = blockNode;
285  rdNode->antType[0] = rf_control;
286
287  /* connect rdnode to commit node */
288  RF_ASSERT(rdNode->numSuccedents == 1);
289  RF_ASSERT(commitNode->numAntecedents == 1);
290  rdNode->succedents[0] = commitNode;
291  commitNode->antecedents[0] = rdNode;
292  commitNode->antType[0] = rf_control;
293
294  /* connect commit node to terminator */
295  RF_ASSERT(commitNode->numSuccedents == 1);
296  RF_ASSERT(termNode->numAntecedents == 1);
297  RF_ASSERT(termNode->numSuccedents == 0);
298  commitNode->succedents[0] = termNode;
299  termNode->antecedents[0] = commitNode;
300  termNode->antType[0] = rf_control;
301}
302
303
304
305/******************************************************************************
306 *
307 * creates a DAG to perform a degraded-mode read of data within one stripe.
308 * This DAG is as follows:
309 *
310 * Hdr -> Block -> Rud -> Xor -> Cmt -> T
311 *              -> Rrd ->
312 *              -> Rp -->
313 *
314 * Each R node is a successor of the L node
315 * One successor arc from each R node goes to C, and the other to X
316 * There is one Rud for each chunk of surviving user data requested by the
317 * user, and one Rrd for each chunk of surviving user data _not_ being read by
318 * the user
319 * R = read, ud = user data, rd = recovery (surviving) data, p = parity
320 * X = XOR, C = Commit, T = terminate
321 *
322 * The block node guarantees a single source node.
323 *
324 * Note:  The target buffer for the XOR node is set to the actual user buffer
325 * where the failed data is supposed to end up.  This buffer is zero'd by the
326 * code here.  Thus, if you create a degraded read dag, use it, and then
327 * re-use, you have to be sure to zero the target buffer prior to the re-use.
328 *
329 * The recfunc argument at the end specifies the name and function used for
330 * the redundancy
331 * recovery function.
332 *
333 *****************************************************************************/
334
335void rf_CreateDegradedReadDAG(
336  RF_Raid_t             *raidPtr,
337  RF_AccessStripeMap_t  *asmap,
338  RF_DagHeader_t        *dag_h,
339  void                  *bp,
340  RF_RaidAccessFlags_t   flags,
341  RF_AllocListElem_t    *allocList,
342  RF_RedFuncs_t         *recFunc)
343{
344  RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *xorNode, *blockNode;
345  RF_DagNode_t *commitNode, *rpNode, *termNode;
346  int nNodes, nRrdNodes, nRudNodes, nXorBufs, i;
347  int j, paramNum;
348  RF_SectorCount_t sectorsPerSU;
349  RF_ReconUnitNum_t which_ru;
350  char *overlappingPDAs; /* a temporary array of flags */
351  RF_AccessStripeMapHeader_t *new_asm_h[2];
352  RF_PhysDiskAddr_t *pda, *parityPDA;
353  RF_StripeNum_t parityStripeID;
354  RF_PhysDiskAddr_t *failedPDA;
355  RF_RaidLayout_t *layoutPtr;
356  char *rpBuf;
357
358  layoutPtr = &(raidPtr->Layout);
359  /* failedPDA points to the pda within the asm that targets the failed disk */
360  failedPDA = asmap->failedPDAs[0];
361  parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
362    asmap->raidAddress, &which_ru);
363  sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
364
365  if (rf_dagDebug) {
366    printf("[Creating degraded read DAG]\n");
367  }
368
369  RF_ASSERT( asmap->numDataFailed == 1 );
370  dag_h->creator = "DegradedReadDAG";
371
372  /*
373   * generate two ASMs identifying the surviving data we need
374   * in order to recover the lost data
375   */
376
377  /* overlappingPDAs array must be zero'd */
378  RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
379  rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs,
380    &rpBuf, overlappingPDAs, allocList);
381
382  /*
383   * create all the nodes at once
384   *
385   * -1 because no access is generated for the failed pda
386   */
387  nRudNodes = asmap->numStripeUnitsAccessed-1;
388  nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
389              ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
390  nNodes = 5 + nRudNodes + nRrdNodes; /* lock, unlock, xor, Rp, Rud, Rrd */
391  RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *),
392    allocList);
393  i = 0;
394  blockNode   = &nodes[i]; i++;
395  commitNode  = &nodes[i]; i++;
396  xorNode     = &nodes[i]; i++;
397  rpNode      = &nodes[i]; i++;
398  termNode    = &nodes[i]; i++;
399  rudNodes    = &nodes[i]; i += nRudNodes;
400  rrdNodes    = &nodes[i]; i += nRrdNodes;
401  RF_ASSERT(i == nNodes);
402
403  /* initialize nodes */
404  dag_h->numCommitNodes = 1;
405  dag_h->numCommits = 0;
406  /* this dag can not commit until the commit node is reached
407   * errors prior to the commit point imply the dag has failed
408   */
409  dag_h->numSuccedents = 1;
410
411  rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
412    NULL, nRudNodes+nRrdNodes+1, 0, 0, 0, dag_h, "Nil", allocList);
413  rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
414    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
415  rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
416    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
417  rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc,
418    NULL, 1, nRudNodes+nRrdNodes+1, 2*nXorBufs+2, 1, dag_h,
419	recFunc->SimpleName, allocList);
420
421  /* fill in the Rud nodes */
422  for (pda=asmap->physInfo, i=0; i<nRudNodes; i++, pda=pda->next) {
423    if (pda == failedPDA) {i--; continue;}
424    rf_InitNode(&rudNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
425      rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
426      "Rud", allocList);
427    RF_ASSERT(pda);
428    rudNodes[i].params[0].p = pda;
429    rudNodes[i].params[1].p = pda->bufPtr;
430    rudNodes[i].params[2].v = parityStripeID;
431    rudNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
432  }
433
434  /* fill in the Rrd nodes */
435  i = 0;
436  if (new_asm_h[0]) {
437    for (pda=new_asm_h[0]->stripeMap->physInfo;
438         i<new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
439         i++, pda=pda->next)
440    {
441      rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
442        rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
443        dag_h, "Rrd", allocList);
444      RF_ASSERT(pda);
445      rrdNodes[i].params[0].p = pda;
446      rrdNodes[i].params[1].p = pda->bufPtr;
447      rrdNodes[i].params[2].v = parityStripeID;
448      rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
449    }
450  }
451  if (new_asm_h[1]) {
452    for (j=0,pda=new_asm_h[1]->stripeMap->physInfo;
453         j<new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
454         j++, pda=pda->next)
455    {
456      rf_InitNode(&rrdNodes[i+j], rf_wait, RF_FALSE, rf_DiskReadFunc,
457        rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
458        dag_h, "Rrd", allocList);
459      RF_ASSERT(pda);
460      rrdNodes[i+j].params[0].p = pda;
461      rrdNodes[i+j].params[1].p = pda->bufPtr;
462      rrdNodes[i+j].params[2].v = parityStripeID;
463      rrdNodes[i+j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
464    }
465  }
466
467  /* make a PDA for the parity unit */
468  RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
469  parityPDA->row = asmap->parityInfo->row;
470  parityPDA->col = asmap->parityInfo->col;
471  parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
472    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
473  parityPDA->numSector = failedPDA->numSector;
474
475  /* initialize the Rp node */
476  rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
477    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList);
478  rpNode->params[0].p = parityPDA;
479  rpNode->params[1].p = rpBuf;
480  rpNode->params[2].v = parityStripeID;
481  rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
482
483  /*
484   * the last and nastiest step is to assign all
485   * the parameters of the Xor node
486   */
487  paramNum=0;
488  for (i=0; i<nRrdNodes; i++) {
489    /* all the Rrd nodes need to be xored together */
490    xorNode->params[paramNum++] = rrdNodes[i].params[0];
491    xorNode->params[paramNum++] = rrdNodes[i].params[1];
492  }
493  for (i=0; i<nRudNodes; i++) {
494    /* any Rud nodes that overlap the failed access need to be xored in */
495    if (overlappingPDAs[i]) {
496      RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
497      bcopy((char *)rudNodes[i].params[0].p, (char *)pda, sizeof(RF_PhysDiskAddr_t));
498      rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
499      xorNode->params[paramNum++].p = pda;
500      xorNode->params[paramNum++].p = pda->bufPtr;
501    }
502  }
503  RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
504
505  /* install parity pda as last set of params to be xor'd */
506  xorNode->params[paramNum++].p = parityPDA;
507  xorNode->params[paramNum++].p = rpBuf;
508
509  /*
510   * the last 2 params to the recovery xor node are
511   * the failed PDA and the raidPtr
512   */
513  xorNode->params[paramNum++].p = failedPDA;
514  xorNode->params[paramNum++].p = raidPtr;
515  RF_ASSERT( paramNum == 2*nXorBufs+2 );
516
517  /*
518   * The xor node uses results[0] as the target buffer.
519   * Set pointer and zero the buffer. In the kernel, this
520   * may be a user buffer in which case we have to remap it.
521   */
522  xorNode->results[0] = failedPDA->bufPtr;
523  RF_BZERO(bp, failedPDA->bufPtr, rf_RaidAddressToByte(raidPtr,
524    failedPDA->numSector));
525
526  /* connect nodes to form graph */
527  /* connect the header to the block node */
528  RF_ASSERT(dag_h->numSuccedents == 1);
529  RF_ASSERT(blockNode->numAntecedents == 0);
530  dag_h->succedents[0] = blockNode;
531
532  /* connect the block node to the read nodes */
533  RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes));
534  RF_ASSERT(rpNode->numAntecedents == 1);
535  blockNode->succedents[0] = rpNode;
536  rpNode->antecedents[0] = blockNode;
537  rpNode->antType[0] = rf_control;
538  for (i = 0; i < nRrdNodes; i++) {
539    RF_ASSERT(rrdNodes[i].numSuccedents == 1);
540    blockNode->succedents[1 + i] = &rrdNodes[i];
541    rrdNodes[i].antecedents[0] = blockNode;
542    rrdNodes[i].antType[0] = rf_control;
543  }
544  for (i = 0; i < nRudNodes; i++) {
545    RF_ASSERT(rudNodes[i].numSuccedents == 1);
546    blockNode->succedents[1 + nRrdNodes + i] = &rudNodes[i];
547    rudNodes[i].antecedents[0] = blockNode;
548    rudNodes[i].antType[0] = rf_control;
549  }
550
551  /* connect the read nodes to the xor node */
552  RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes));
553  RF_ASSERT(rpNode->numSuccedents == 1);
554  rpNode->succedents[0] = xorNode;
555  xorNode->antecedents[0] = rpNode;
556  xorNode->antType[0] = rf_trueData;
557  for (i = 0; i < nRrdNodes; i++) {
558    RF_ASSERT(rrdNodes[i].numSuccedents == 1);
559    rrdNodes[i].succedents[0] = xorNode;
560    xorNode->antecedents[1 + i] = &rrdNodes[i];
561    xorNode->antType[1 + i] = rf_trueData;
562  }
563  for (i = 0; i < nRudNodes; i++) {
564    RF_ASSERT(rudNodes[i].numSuccedents == 1);
565    rudNodes[i].succedents[0] = xorNode;
566    xorNode->antecedents[1 + nRrdNodes + i] = &rudNodes[i];
567    xorNode->antType[1 + nRrdNodes + i] = rf_trueData;
568  }
569
570  /* connect the xor node to the commit node */
571  RF_ASSERT(xorNode->numSuccedents == 1);
572  RF_ASSERT(commitNode->numAntecedents == 1);
573  xorNode->succedents[0] = commitNode;
574  commitNode->antecedents[0] = xorNode;
575  commitNode->antType[0] = rf_control;
576
577  /* connect the termNode to the commit node */
578  RF_ASSERT(commitNode->numSuccedents == 1);
579  RF_ASSERT(termNode->numAntecedents == 1);
580  RF_ASSERT(termNode->numSuccedents == 0);
581  commitNode->succedents[0] = termNode;
582  termNode->antType[0] = rf_control;
583  termNode->antecedents[0]  = commitNode;
584}
585
586
587/******************************************************************************
588 * Create a degraded read DAG for Chained Declustering
589 *
590 * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm
591 *
592 * The "Rd" node reads data from the surviving disk in the mirror pair
593 *   Rpd - read of primary copy
594 *   Rsd - read of secondary copy
595 *
596 * Parameters:  raidPtr   - description of the physical array
597 *              asmap     - logical & physical addresses for this access
598 *              bp        - buffer ptr (for holding write data)
599 *              flags     - general flags (e.g. disk locking)
600 *              allocList - list of memory allocated in DAG creation
601 *****************************************************************************/
602
603void rf_CreateRaidCDegradedReadDAG(
604  RF_Raid_t             *raidPtr,
605  RF_AccessStripeMap_t  *asmap,
606  RF_DagHeader_t        *dag_h,
607  void                  *bp,
608  RF_RaidAccessFlags_t   flags,
609  RF_AllocListElem_t    *allocList)
610{
611  RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
612  RF_StripeNum_t parityStripeID;
613  int useMirror, i, shiftable;
614  RF_ReconUnitNum_t which_ru;
615  RF_PhysDiskAddr_t *pda;
616
617  if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
618    shiftable = RF_TRUE;
619  }
620  else {
621    shiftable = RF_FALSE;
622  }
623  useMirror = 0;
624  parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
625    asmap->raidAddress, &which_ru);
626
627  if (rf_dagDebug) {
628    printf("[Creating RAID C degraded read DAG]\n");
629  }
630  dag_h->creator = "RaidCDegradedReadDAG";
631  /* alloc the Wnd nodes and the Wmir node */
632  if (asmap->numDataFailed == 0)
633    useMirror = RF_FALSE;
634  else
635    useMirror = RF_TRUE;
636
637  /* total number of nodes = 1 + (block + commit + terminator) */
638  RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
639  i = 0;
640  rdNode      = &nodes[i]; i++;
641  blockNode   = &nodes[i]; i++;
642  commitNode = &nodes[i]; i++;
643  termNode    = &nodes[i]; i++;
644
645  /*
646   * This dag can not commit until the commit node is reached.
647   * Errors prior to the commit point imply the dag has failed
648   * and must be retried.
649   */
650  dag_h->numCommitNodes = 1;
651  dag_h->numCommits = 0;
652  dag_h->numSuccedents = 1;
653
654  /* initialize the block, commit, and terminator nodes */
655  rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
656    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
657  rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
658    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
659  rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
660    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
661
662  pda = asmap->physInfo;
663  RF_ASSERT(pda != NULL);
664  /* parityInfo must describe entire parity unit */
665  RF_ASSERT(asmap->parityInfo->next == NULL);
666
667  /* initialize the data node */
668  if (!useMirror) {
669    rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
670      rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
671    if (shiftable && rf_compute_workload_shift(raidPtr, pda)) {
672     /* shift this read to the next disk in line */
673  	 rdNode->params[0].p = asmap->parityInfo;
674   	 rdNode->params[1].p = pda->bufPtr;
675	 rdNode->params[2].v = parityStripeID;
676	 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
677	}
678    else {
679      /* read primary copy */
680      rdNode->params[0].p = pda;
681      rdNode->params[1].p = pda->bufPtr;
682      rdNode->params[2].v = parityStripeID;
683      rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
684    }
685  }
686  else {
687    /* read secondary copy of data */
688    rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
689      rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
690    rdNode->params[0].p = asmap->parityInfo;
691    rdNode->params[1].p = pda->bufPtr;
692    rdNode->params[2].v = parityStripeID;
693    rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
694  }
695
696  /* connect header to block node */
697  RF_ASSERT(dag_h->numSuccedents == 1);
698  RF_ASSERT(blockNode->numAntecedents == 0);
699  dag_h->succedents[0] = blockNode;
700
701  /* connect block node to rdnode */
702  RF_ASSERT(blockNode->numSuccedents == 1);
703  RF_ASSERT(rdNode->numAntecedents == 1);
704  blockNode->succedents[0] = rdNode;
705  rdNode->antecedents[0] = blockNode;
706  rdNode->antType[0] = rf_control;
707
708  /* connect rdnode to commit node */
709  RF_ASSERT(rdNode->numSuccedents == 1);
710  RF_ASSERT(commitNode->numAntecedents == 1);
711  rdNode->succedents[0] = commitNode;
712  commitNode->antecedents[0] = rdNode;
713  commitNode->antType[0] = rf_control;
714
715  /* connect commit node to terminator */
716  RF_ASSERT(commitNode->numSuccedents == 1);
717  RF_ASSERT(termNode->numAntecedents == 1);
718  RF_ASSERT(termNode->numSuccedents == 0);
719  commitNode->succedents[0] = termNode;
720  termNode->antecedents[0] = commitNode;
721  termNode->antType[0] = rf_control;
722}
723
724/*
725 * XXX move this elsewhere?
726 */
727void rf_DD_GenerateFailedAccessASMs(
728  RF_Raid_t              *raidPtr,
729  RF_AccessStripeMap_t   *asmap,
730  RF_PhysDiskAddr_t     **pdap,
731  int                    *nNodep,
732  RF_PhysDiskAddr_t     **pqpdap,
733  int                    *nPQNodep,
734  RF_AllocListElem_t     *allocList)
735{
736  RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
737  int PDAPerDisk,i;
738  RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
739  int numDataCol = layoutPtr->numDataCol;
740  int state;
741  RF_SectorNum_t suoff, suend;
742  unsigned firstDataCol, napdas, count;
743  RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0;
744  RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
745  RF_PhysDiskAddr_t *pda_p;
746  RF_PhysDiskAddr_t *phys_p;
747  RF_RaidAddr_t sosAddr;
748
749  /* determine how many pda's we will have to generate per unaccess stripe.
750     If there is only one failed data unit, it is one; if two, possibly two,
751     depending wether they overlap. */
752
753  fone_start = rf_StripeUnitOffset(layoutPtr,fone->startSector);
754  fone_end = fone_start + fone->numSector;
755
756#define CONS_PDA(if,start,num) \
757  pda_p->row = asmap->if->row;    pda_p->col = asmap->if->col; \
758  pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
759  pda_p->numSector = num; \
760  pda_p->next = NULL; \
761  RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
762
763  if (asmap->numDataFailed==1)
764    {
765      PDAPerDisk = 1;
766      state = 1;
767      RF_MallocAndAdd(*pqpdap,2*sizeof(RF_PhysDiskAddr_t),(RF_PhysDiskAddr_t *), allocList);
768      pda_p = *pqpdap;
769      /* build p */
770      CONS_PDA(parityInfo,fone_start,fone->numSector);
771      pda_p->type = RF_PDA_TYPE_PARITY;
772      pda_p++;
773      /* build q */
774      CONS_PDA(qInfo,fone_start,fone->numSector);
775      pda_p->type = RF_PDA_TYPE_Q;
776    }
777  else
778    {
779      ftwo_start = rf_StripeUnitOffset(layoutPtr,ftwo->startSector);
780      ftwo_end = ftwo_start + ftwo->numSector;
781      if (fone->numSector + ftwo->numSector > secPerSU)
782	{
783	  PDAPerDisk = 1;
784	  state = 2;
785	  RF_MallocAndAdd(*pqpdap,2*sizeof(RF_PhysDiskAddr_t),(RF_PhysDiskAddr_t *), allocList);
786	  pda_p = *pqpdap;
787	  CONS_PDA(parityInfo,0,secPerSU);
788	  pda_p->type = RF_PDA_TYPE_PARITY;
789	  pda_p++;
790	  CONS_PDA(qInfo,0,secPerSU);
791	  pda_p->type = RF_PDA_TYPE_Q;
792	}
793      else
794	{
795	  PDAPerDisk = 2;
796	  state = 3;
797	  /* four of them, fone, then ftwo */
798	  RF_MallocAndAdd(*pqpdap,4*sizeof(RF_PhysDiskAddr_t),(RF_PhysDiskAddr_t *), allocList);
799	  pda_p = *pqpdap;
800	  CONS_PDA(parityInfo,fone_start,fone->numSector);
801	  pda_p->type = RF_PDA_TYPE_PARITY;
802	  pda_p++;
803	  CONS_PDA(qInfo,fone_start,fone->numSector);
804	  pda_p->type = RF_PDA_TYPE_Q;
805	  pda_p++;
806	  CONS_PDA(parityInfo,ftwo_start,ftwo->numSector);
807	  pda_p->type = RF_PDA_TYPE_PARITY;
808	  pda_p++;
809	  CONS_PDA(qInfo,ftwo_start,ftwo->numSector);
810	  pda_p->type = RF_PDA_TYPE_Q;
811	}
812    }
813  /* figure out number of nonaccessed pda */
814  napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo==NULL ? 1 : 0));
815  *nPQNodep = PDAPerDisk;
816
817  /* sweep over the over accessed pda's, figuring out the number of
818     additional pda's to generate. Of course, skip the failed ones */
819
820  count = 0;
821  for ( pda_p=asmap->physInfo; pda_p; pda_p= pda_p->next)
822    {
823      if ((pda_p == fone) || (pda_p == ftwo))
824	continue;
825      suoff = rf_StripeUnitOffset(layoutPtr,pda_p->startSector);
826      suend = suoff + pda_p->numSector;
827      switch (state)
828	{
829	case 1: /* one failed PDA to overlap */
830	  /* if a PDA doesn't contain the failed unit, it can
831	     only miss the start or end, not both */
832	  if ((suoff > fone_start) || (suend <fone_end))
833	    count++;
834	  break;
835	case 2: /* whole stripe */
836	  if (suoff) /* leak at begining */
837	    count++;
838	  if (suend < numDataCol) /* leak at end */
839	    count++;
840	  break;
841	case 3: /* two disjoint units */
842	  if ((suoff > fone_start) || (suend <fone_end))
843	    count++;
844	  if ((suoff > ftwo_start) || (suend <ftwo_end))
845	    count++;
846	  break;
847	default:
848	  RF_PANIC();
849	}
850    }
851
852  napdas += count;
853  *nNodep = napdas;
854  if (napdas == 0) return; /* short circuit */
855
856  /* allocate up our list of pda's */
857
858  RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
859  *pdap = pda_p;
860
861  /* linkem together */
862  for (i=0; i < (napdas-1); i++)
863    pda_p[i].next = pda_p+(i+1);
864
865  /* march through the one's up to the first accessed disk */
866  firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout),asmap->physInfo->raidAddress) % numDataCol;
867  sosAddr      = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
868  for (i=0; i < firstDataCol; i++)
869    {
870      if ((pda_p - (*pdap)) == napdas)
871	continue;
872      pda_p->type = RF_PDA_TYPE_DATA;
873      pda_p->raidAddress = sosAddr + (i * secPerSU);
874      (raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
875      /* skip over dead disks */
876      if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
877	continue;
878      switch (state)
879	{
880	case 1: /* fone */
881	  pda_p->numSector = fone->numSector;
882	  pda_p->raidAddress += fone_start;
883	  pda_p->startSector += fone_start;
884	  RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
885	  break;
886	case 2: /* full stripe */
887	  pda_p->numSector = secPerSU;
888	  RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,secPerSU), (char *), allocList);
889	  break;
890	case 3: /* two slabs */
891	  pda_p->numSector = fone->numSector;
892	  pda_p->raidAddress += fone_start;
893	  pda_p->startSector += fone_start;
894	  RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
895	  pda_p++;
896          pda_p->type = RF_PDA_TYPE_DATA;
897          pda_p->raidAddress = sosAddr + (i * secPerSU);
898          (raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
899	  pda_p->numSector = ftwo->numSector;
900	  pda_p->raidAddress += ftwo_start;
901	  pda_p->startSector += ftwo_start;
902	  RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
903	  break;
904	default:
905	  RF_PANIC();
906	}
907      pda_p++;
908    }
909
910  /* march through the touched stripe units */
911  for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++)
912    {
913      if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1]))
914	continue;
915      suoff = rf_StripeUnitOffset(layoutPtr,phys_p->startSector);
916      suend = suoff + phys_p->numSector;
917      switch(state)
918	{
919	case 1: /* single buffer */
920	  if (suoff > fone_start)
921	    {
922	      RF_ASSERT( suend >= fone_end );
923	      /* The data read starts after the mapped access,
924		 snip off the begining */
925	      pda_p->numSector = suoff - fone_start;
926	      pda_p->raidAddress = sosAddr + (i*secPerSU) + fone_start;
927	      (raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
928	      RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
929	      pda_p++;
930	    }
931	  if (suend < fone_end)
932	    {
933	      RF_ASSERT ( suoff <= fone_start);
934	      /* The data read stops before the end of the failed access, extend */
935	      pda_p->numSector = fone_end - suend;
936	      pda_p->raidAddress = sosAddr + (i*secPerSU) + suend; /* off by one? */
937	      (raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
938	      RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
939	      pda_p++;
940	    }
941	  break;
942	case 2: /* whole stripe unit */
943	  RF_ASSERT( (suoff == 0) || (suend == secPerSU));
944	  if (suend < secPerSU)
945	    { /* short read, snip from end on */
946	      pda_p->numSector = secPerSU - suend;
947	      pda_p->raidAddress = sosAddr + (i*secPerSU) + suend; /* off by one? */
948	      (raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
949	      RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
950	      pda_p++;
951	    }
952	  else
953	    if (suoff > 0)
954	      { /* short at front */
955		pda_p->numSector = suoff;
956		pda_p->raidAddress = sosAddr + (i*secPerSU);
957		(raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
958		RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
959		pda_p++;
960	      }
961	  break;
962	case 3: /* two nonoverlapping failures */
963	  if ((suoff > fone_start) || (suend <fone_end))
964	    {
965	      if (suoff > fone_start)
966		{
967		  RF_ASSERT( suend >= fone_end );
968		  /* The data read starts after the mapped access,
969		     snip off the begining */
970		  pda_p->numSector = suoff - fone_start;
971		  pda_p->raidAddress = sosAddr + (i*secPerSU) + fone_start;
972		  (raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
973		  RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
974		  pda_p++;
975		}
976	      if (suend < fone_end)
977		{
978		  RF_ASSERT ( suoff <= fone_start);
979		  /* The data read stops before the end of the failed access, extend */
980		  pda_p->numSector = fone_end - suend;
981		  pda_p->raidAddress = sosAddr + (i*secPerSU) + suend; /* off by one? */
982		  (raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
983		  RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
984		  pda_p++;
985		}
986	    }
987	  if ((suoff > ftwo_start) || (suend <ftwo_end))
988	    {
989	      if (suoff > ftwo_start)
990		{
991		  RF_ASSERT( suend >= ftwo_end );
992		  /* The data read starts after the mapped access,
993		     snip off the begining */
994		  pda_p->numSector = suoff - ftwo_start;
995		  pda_p->raidAddress = sosAddr + (i*secPerSU) + ftwo_start;
996		  (raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
997		  RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
998		  pda_p++;
999		}
1000	      if (suend < ftwo_end)
1001		{
1002		  RF_ASSERT ( suoff <= ftwo_start);
1003		  /* The data read stops before the end of the failed access, extend */
1004		  pda_p->numSector = ftwo_end - suend;
1005		  pda_p->raidAddress = sosAddr + (i*secPerSU) + suend; /* off by one? */
1006		  (raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
1007		  RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
1008		  pda_p++;
1009		}
1010	    }
1011	  break;
1012	default:
1013	  RF_PANIC();
1014        }
1015    }
1016
1017  /* after the last accessed disk */
1018  for (; i < numDataCol; i++ )
1019    {
1020      if ((pda_p - (*pdap)) == napdas)
1021	continue;
1022      pda_p->type = RF_PDA_TYPE_DATA;
1023      pda_p->raidAddress = sosAddr + (i * secPerSU);
1024      (raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
1025      /* skip over dead disks */
1026      if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
1027	continue;
1028      switch (state)
1029	{
1030	case 1: /* fone */
1031	  pda_p->numSector = fone->numSector;
1032	  pda_p->raidAddress += fone_start;
1033	  pda_p->startSector += fone_start;
1034	  RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
1035	  break;
1036	case 2: /* full stripe */
1037	  pda_p->numSector = secPerSU;
1038	  RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,secPerSU), (char *), allocList);
1039	  break;
1040	case 3: /* two slabs */
1041	  pda_p->numSector = fone->numSector;
1042	  pda_p->raidAddress += fone_start;
1043	  pda_p->startSector += fone_start;
1044	  RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
1045	  pda_p++;
1046          pda_p->type = RF_PDA_TYPE_DATA;
1047          pda_p->raidAddress = sosAddr + (i * secPerSU);
1048          (raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
1049	  pda_p->numSector = ftwo->numSector;
1050	  pda_p->raidAddress += ftwo_start;
1051	  pda_p->startSector += ftwo_start;
1052	  RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
1053	  break;
1054	default:
1055	  RF_PANIC();
1056	}
1057      pda_p++;
1058    }
1059
1060  RF_ASSERT  (pda_p - *pdap == napdas);
1061  return;
1062}
1063
1064#define INIT_DISK_NODE(node,name) \
1065rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
1066(node)->succedents[0] = unblockNode; \
1067(node)->succedents[1] = recoveryNode; \
1068(node)->antecedents[0] = blockNode; \
1069(node)->antType[0] = rf_control
1070
1071#define DISK_NODE_PARAMS(_node_,_p_) \
1072  (_node_).params[0].p = _p_ ; \
1073  (_node_).params[1].p = (_p_)->bufPtr; \
1074  (_node_).params[2].v = parityStripeID; \
1075  (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
1076
1077void rf_DoubleDegRead(
1078  RF_Raid_t              *raidPtr,
1079  RF_AccessStripeMap_t   *asmap,
1080  RF_DagHeader_t         *dag_h,
1081  void                   *bp,
1082  RF_RaidAccessFlags_t    flags,
1083  RF_AllocListElem_t     *allocList,
1084  char                   *redundantReadNodeName,
1085  char                   *recoveryNodeName,
1086  int                   (*recovFunc)(RF_DagNode_t *))
1087{
1088  RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1089  RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode, *unblockNode, *rpNodes, *rqNodes, *termNode;
1090  RF_PhysDiskAddr_t *pda, *pqPDAs;
1091  RF_PhysDiskAddr_t *npdas;
1092  int nNodes, nRrdNodes, nRudNodes, i;
1093  RF_ReconUnitNum_t which_ru;
1094  int nReadNodes, nPQNodes;
1095  RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
1096  RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1];
1097  RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
1098
1099  if (rf_dagDebug) printf("[Creating Double Degraded Read DAG]\n");
1100  rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes,allocList);
1101
1102  nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
1103  nReadNodes = nRrdNodes + nRudNodes + 2*nPQNodes;
1104  nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes;
1105
1106  RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
1107  i = 0;
1108  blockNode    = &nodes[i]; i += 1;
1109  unblockNode  = &nodes[i]; i += 1;
1110  recoveryNode = &nodes[i]; i += 1;
1111  termNode     = &nodes[i]; i += 1;
1112  rudNodes     = &nodes[i]; i += nRudNodes;
1113  rrdNodes     = &nodes[i]; i += nRrdNodes;
1114  rpNodes      = &nodes[i]; i += nPQNodes;
1115  rqNodes      = &nodes[i]; i += nPQNodes;
1116  RF_ASSERT(i == nNodes);
1117
1118  dag_h->numSuccedents = 1;
1119  dag_h->succedents[0] = blockNode;
1120  dag_h->creator = "DoubleDegRead";
1121  dag_h->numCommits = 0;
1122  dag_h->numCommitNodes = 1; /*unblock */
1123
1124  rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList);
1125  termNode->antecedents[0]  = unblockNode;
1126  termNode->antType[0] = rf_control;
1127  termNode->antecedents[1]  = recoveryNode;
1128  termNode->antType[1] = rf_control;
1129
1130  /* init the block and unblock nodes */
1131  /* The block node has all nodes except itself, unblock and recovery as successors. Similarly for
1132     predecessors of the unblock. */
1133  rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
1134  rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList);
1135
1136  for (i=0; i < nReadNodes; i++)
1137    {
1138      blockNode->succedents[i] = rudNodes+i;
1139      unblockNode->antecedents[i] = rudNodes+i;
1140      unblockNode->antType[i] = rf_control;
1141    }
1142  unblockNode->succedents[0] = termNode;
1143
1144  /* The recovery node has all the reads as predecessors, and the term node as successors. It gets a pda as a param
1145     from each of the read nodes plus the raidPtr.
1146     For each failed unit is has a result pda. */
1147  rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
1148	   1, /* succesors */
1149	   nReadNodes, /* preds */
1150	   nReadNodes+2, /* params */
1151	   asmap->numDataFailed, /* results */
1152	   dag_h, recoveryNodeName, allocList);
1153
1154  recoveryNode->succedents[0] = termNode;
1155  for (i=0; i < nReadNodes; i++) {
1156    recoveryNode->antecedents[i] = rudNodes+i;
1157    recoveryNode->antType[i] = rf_trueData;
1158  }
1159
1160  /* build the read nodes, then come back and fill in recovery params and results */
1161  pda = asmap->physInfo;
1162  for (i=0; i < nRudNodes; pda = pda->next)
1163    {
1164      if ((pda == failedPDA) || (pda == failedPDAtwo))
1165	continue;
1166      INIT_DISK_NODE(rudNodes+i,"Rud");
1167      RF_ASSERT(pda);
1168      DISK_NODE_PARAMS(rudNodes[i],pda);
1169      i++;
1170    }
1171
1172  pda = npdas;
1173  for (i=0; i < nRrdNodes; i++, pda = pda->next)
1174    {
1175      INIT_DISK_NODE(rrdNodes+i,"Rrd");
1176      RF_ASSERT(pda);
1177      DISK_NODE_PARAMS(rrdNodes[i],pda);
1178    }
1179
1180  /* redundancy pdas */
1181  pda = pqPDAs;
1182  INIT_DISK_NODE(rpNodes,"Rp");
1183  RF_ASSERT(pda);
1184  DISK_NODE_PARAMS(rpNodes[0],pda);
1185  pda++;
1186  INIT_DISK_NODE(rqNodes,redundantReadNodeName );
1187  RF_ASSERT(pda);
1188  DISK_NODE_PARAMS(rqNodes[0],pda);
1189  if (nPQNodes==2)
1190    {
1191      pda++;
1192      INIT_DISK_NODE(rpNodes+1,"Rp");
1193      RF_ASSERT(pda);
1194      DISK_NODE_PARAMS(rpNodes[1],pda);
1195      pda++;
1196      INIT_DISK_NODE( rqNodes+1,redundantReadNodeName );
1197      RF_ASSERT(pda);
1198      DISK_NODE_PARAMS(rqNodes[1],pda);
1199    }
1200
1201  /* fill in recovery node params */
1202  for (i=0; i < nReadNodes; i++)
1203    recoveryNode->params[i] = rudNodes[i].params[0]; /* pda */
1204  recoveryNode->params[i++].p = (void *) raidPtr;
1205  recoveryNode->params[i++].p = (void *) asmap;
1206  recoveryNode->results[0] = failedPDA;
1207  if (asmap->numDataFailed ==2 )
1208    recoveryNode->results[1] = failedPDAtwo;
1209
1210  /* zero fill the target data buffers? */
1211}
1212