virtio.c revision 1.59
1/*	$NetBSD: virtio.c,v 1.59 2022/10/15 19:53:27 riastradh Exp $	*/
2
3/*
4 * Copyright (c) 2020 The NetBSD Foundation, Inc.
5 * Copyright (c) 2012 Stefan Fritsch, Alexander Fiveg.
6 * Copyright (c) 2010 Minoura Makoto.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__KERNEL_RCSID(0, "$NetBSD: virtio.c,v 1.59 2022/10/15 19:53:27 riastradh Exp $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/kernel.h>
36#include <sys/atomic.h>
37#include <sys/bus.h>
38#include <sys/device.h>
39#include <sys/kmem.h>
40#include <sys/module.h>
41
42#define VIRTIO_PRIVATE
43
44#include <dev/pci/virtioreg.h> /* XXX: move to non-pci */
45#include <dev/pci/virtiovar.h> /* XXX: move to non-pci */
46
47#define MINSEG_INDIRECT		2 /* use indirect if nsegs >= this value */
48
49/* incomplete list */
50static const char *virtio_device_name[] = {
51	"unknown (0)",			/*  0 */
52	"network",			/*  1 */
53	"block",			/*  2 */
54	"console",			/*  3 */
55	"entropy",			/*  4 */
56	"memory balloon",		/*  5 */
57	"I/O memory",			/*  6 */
58	"remote processor messaging",	/*  7 */
59	"SCSI",				/*  8 */
60	"9P transport",			/*  9 */
61};
62#define NDEVNAMES	__arraycount(virtio_device_name)
63
64static void	virtio_init_vq(struct virtio_softc *,
65		    struct virtqueue *, const bool);
66
67void
68virtio_set_status(struct virtio_softc *sc, int status)
69{
70	sc->sc_ops->set_status(sc, status);
71}
72
73/*
74 * Reset the device.
75 */
76/*
77 * To reset the device to a known state, do following:
78 *	virtio_reset(sc);	     // this will stop the device activity
79 *	<dequeue finished requests>; // virtio_dequeue() still can be called
80 *	<revoke pending requests in the vqs if any>;
81 *	virtio_reinit_start(sc);     // dequeue prohibitted
82 *	newfeatures = virtio_negotiate_features(sc, requestedfeatures);
83 *	<some other initialization>;
84 *	virtio_reinit_end(sc);	     // device activated; enqueue allowed
85 * Once attached, feature negotiation can only be allowed after virtio_reset.
86 */
87void
88virtio_reset(struct virtio_softc *sc)
89{
90	virtio_device_reset(sc);
91}
92
93int
94virtio_reinit_start(struct virtio_softc *sc)
95{
96	int i, r;
97
98	virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_ACK);
99	virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER);
100	for (i = 0; i < sc->sc_nvqs; i++) {
101		int n;
102		struct virtqueue *vq = &sc->sc_vqs[i];
103		n = sc->sc_ops->read_queue_size(sc, vq->vq_index);
104		if (n == 0)	/* vq disappeared */
105			continue;
106		if (n != vq->vq_num) {
107			panic("%s: virtqueue size changed, vq index %d\n",
108			    device_xname(sc->sc_dev),
109			    vq->vq_index);
110		}
111		virtio_init_vq(sc, vq, true);
112		sc->sc_ops->setup_queue(sc, vq->vq_index,
113		    vq->vq_dmamap->dm_segs[0].ds_addr);
114	}
115
116	r = sc->sc_ops->setup_interrupts(sc, 1);
117	if (r != 0)
118		goto fail;
119
120	return 0;
121
122fail:
123	virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
124
125	return 1;
126}
127
128void
129virtio_reinit_end(struct virtio_softc *sc)
130{
131	virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER_OK);
132}
133
134/*
135 * Feature negotiation.
136 */
137void
138virtio_negotiate_features(struct virtio_softc *sc, uint64_t guest_features)
139{
140	if (!(device_cfdata(sc->sc_dev)->cf_flags & 1) &&
141	    !(device_cfdata(sc->sc_child)->cf_flags & 1)) /* XXX */
142		guest_features |= VIRTIO_F_RING_INDIRECT_DESC;
143	sc->sc_ops->neg_features(sc, guest_features);
144	if (sc->sc_active_features & VIRTIO_F_RING_INDIRECT_DESC)
145		sc->sc_indirect = true;
146	else
147		sc->sc_indirect = false;
148}
149
150
151/*
152 * Device configuration registers readers/writers
153 */
154#if 0
155#define DPRINTFR(n, fmt, val, index, num) \
156	printf("\n%s (", n); \
157	for (int i = 0; i < num; i++) \
158		printf("%02x ", bus_space_read_1(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index+i)); \
159	printf(") -> "); printf(fmt, val); printf("\n");
160#define DPRINTFR2(n, fmt, val_s, val_n) \
161	printf("%s ", n); \
162	printf("\n        stream "); printf(fmt, val_s); printf(" norm "); printf(fmt, val_n); printf("\n");
163#else
164#define DPRINTFR(n, fmt, val, index, num)
165#define DPRINTFR2(n, fmt, val_s, val_n)
166#endif
167
168
169uint8_t
170virtio_read_device_config_1(struct virtio_softc *sc, int index)
171{
172	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
173	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
174	uint8_t val;
175
176	val = bus_space_read_1(iot, ioh, index);
177
178	DPRINTFR("read_1", "%02x", val, index, 1);
179	return val;
180}
181
182uint16_t
183virtio_read_device_config_2(struct virtio_softc *sc, int index)
184{
185	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
186	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
187	uint16_t val;
188
189	val = bus_space_read_2(iot, ioh, index);
190	if (BYTE_ORDER != sc->sc_bus_endian)
191		val = bswap16(val);
192
193	DPRINTFR("read_2", "%04x", val, index, 2);
194	DPRINTFR2("read_2", "%04x",
195	    bus_space_read_stream_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh,
196		index),
197	    bus_space_read_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
198	return val;
199}
200
201uint32_t
202virtio_read_device_config_4(struct virtio_softc *sc, int index)
203{
204	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
205	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
206	uint32_t val;
207
208	val = bus_space_read_4(iot, ioh, index);
209	if (BYTE_ORDER != sc->sc_bus_endian)
210		val = bswap32(val);
211
212	DPRINTFR("read_4", "%08x", val, index, 4);
213	DPRINTFR2("read_4", "%08x",
214	    bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh,
215		index),
216	    bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
217	return val;
218}
219
220/*
221 * The Virtio spec explicitly tells that reading and writing 8 bytes are not
222 * considered atomic and no triggers may be connected to reading or writing
223 * it. We access it using two 32 reads. See virtio spec 4.1.3.1.
224 */
225uint64_t
226virtio_read_device_config_8(struct virtio_softc *sc, int index)
227{
228	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
229	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
230	union {
231		uint64_t u64;
232		uint32_t l[2];
233	} v;
234	uint64_t val;
235
236	v.l[0] = bus_space_read_4(iot, ioh, index);
237	v.l[1] = bus_space_read_4(iot, ioh, index + 4);
238	if (sc->sc_bus_endian != sc->sc_struct_endian) {
239		v.l[0] = bswap32(v.l[0]);
240		v.l[1] = bswap32(v.l[1]);
241	}
242	val = v.u64;
243
244	if (BYTE_ORDER != sc->sc_struct_endian)
245		val = bswap64(val);
246
247	DPRINTFR("read_8", "%08lx", val, index, 8);
248	DPRINTFR2("read_8 low ", "%08x",
249	    bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh,
250		index),
251	    bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
252	DPRINTFR2("read_8 high ", "%08x",
253	    bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh,
254		index + 4),
255	    bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index + 4));
256	return val;
257}
258
259/*
260 * In the older virtio spec, device config registers are host endian. On newer
261 * they are little endian. Some newer devices however explicitly specify their
262 * register to always be little endian. These functions cater for these.
263 */
264uint16_t
265virtio_read_device_config_le_2(struct virtio_softc *sc, int index)
266{
267	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
268	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
269	uint16_t val;
270
271	val = bus_space_read_2(iot, ioh, index);
272	if (sc->sc_bus_endian != LITTLE_ENDIAN)
273		val = bswap16(val);
274
275	DPRINTFR("read_le_2", "%04x", val, index, 2);
276	DPRINTFR2("read_le_2", "%04x",
277	    bus_space_read_stream_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0),
278	    bus_space_read_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0));
279	return val;
280}
281
282uint32_t
283virtio_read_device_config_le_4(struct virtio_softc *sc, int index)
284{
285	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
286	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
287	uint32_t val;
288
289	val = bus_space_read_4(iot, ioh, index);
290	if (sc->sc_bus_endian != LITTLE_ENDIAN)
291		val = bswap32(val);
292
293	DPRINTFR("read_le_4", "%08x", val, index, 4);
294	DPRINTFR2("read_le_4", "%08x",
295	    bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0),
296	    bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0));
297	return val;
298}
299
300void
301virtio_write_device_config_1(struct virtio_softc *sc, int index, uint8_t value)
302{
303	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
304	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
305
306	bus_space_write_1(iot, ioh, index, value);
307}
308
309void
310virtio_write_device_config_2(struct virtio_softc *sc, int index,
311    uint16_t value)
312{
313	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
314	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
315
316	if (BYTE_ORDER != sc->sc_bus_endian)
317		value = bswap16(value);
318	bus_space_write_2(iot, ioh, index, value);
319}
320
321void
322virtio_write_device_config_4(struct virtio_softc *sc, int index,
323    uint32_t value)
324{
325	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
326	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
327
328	if (BYTE_ORDER != sc->sc_bus_endian)
329		value = bswap32(value);
330	bus_space_write_4(iot, ioh, index, value);
331}
332
333/*
334 * The Virtio spec explicitly tells that reading and writing 8 bytes are not
335 * considered atomic and no triggers may be connected to reading or writing
336 * it. We access it using two 32 bit writes. For good measure it is stated to
337 * always write lsb first just in case of a hypervisor bug. See See virtio
338 * spec 4.1.3.1.
339 */
340void
341virtio_write_device_config_8(struct virtio_softc *sc, int index,
342    uint64_t value)
343{
344	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
345	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
346	union {
347		uint64_t u64;
348		uint32_t l[2];
349	} v;
350
351	if (BYTE_ORDER != sc->sc_struct_endian)
352		value = bswap64(value);
353
354	v.u64 = value;
355	if (sc->sc_bus_endian != sc->sc_struct_endian) {
356		v.l[0] = bswap32(v.l[0]);
357		v.l[1] = bswap32(v.l[1]);
358	}
359
360	if (sc->sc_struct_endian == LITTLE_ENDIAN) {
361		bus_space_write_4(iot, ioh, index,     v.l[0]);
362		bus_space_write_4(iot, ioh, index + 4, v.l[1]);
363	} else {
364		bus_space_write_4(iot, ioh, index + 4, v.l[1]);
365		bus_space_write_4(iot, ioh, index,     v.l[0]);
366	}
367}
368
369/*
370 * In the older virtio spec, device config registers are host endian. On newer
371 * they are little endian. Some newer devices however explicitly specify their
372 * register to always be little endian. These functions cater for these.
373 */
374void
375virtio_write_device_config_le_2(struct virtio_softc *sc, int index,
376    uint16_t value)
377{
378	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
379	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
380
381	if (sc->sc_bus_endian != LITTLE_ENDIAN)
382		value = bswap16(value);
383	bus_space_write_2(iot, ioh, index, value);
384}
385
386void
387virtio_write_device_config_le_4(struct virtio_softc *sc, int index,
388    uint32_t value)
389{
390	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
391	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
392
393	if (sc->sc_bus_endian != LITTLE_ENDIAN)
394		value = bswap32(value);
395	bus_space_write_4(iot, ioh, index, value);
396}
397
398
399/*
400 * data structures endian helpers
401 */
402uint16_t
403virtio_rw16(struct virtio_softc *sc, uint16_t val)
404{
405	KASSERT(sc);
406	return BYTE_ORDER != sc->sc_struct_endian ? bswap16(val) : val;
407}
408
409uint32_t
410virtio_rw32(struct virtio_softc *sc, uint32_t val)
411{
412	KASSERT(sc);
413	return BYTE_ORDER != sc->sc_struct_endian ? bswap32(val) : val;
414}
415
416uint64_t
417virtio_rw64(struct virtio_softc *sc, uint64_t val)
418{
419	KASSERT(sc);
420	return BYTE_ORDER != sc->sc_struct_endian ? bswap64(val) : val;
421}
422
423
424/*
425 * Interrupt handler.
426 */
427static void
428virtio_soft_intr(void *arg)
429{
430	struct virtio_softc *sc = arg;
431
432	KASSERT(sc->sc_intrhand != NULL);
433
434	(*sc->sc_intrhand)(sc);
435}
436
437/*
438 * dmamap sync operations for a virtqueue.
439 */
440static inline void
441vq_sync_descs(struct virtio_softc *sc, struct virtqueue *vq, int ops)
442{
443
444	/* availoffset == sizeof(vring_desc)*vq_num */
445	bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap, 0, vq->vq_availoffset,
446	    ops);
447}
448
449static inline void
450vq_sync_aring_all(struct virtio_softc *sc, struct virtqueue *vq, int ops)
451{
452	uint16_t hdrlen = offsetof(struct vring_avail, ring);
453	size_t payloadlen = sc->sc_nvqs * sizeof(uint16_t);
454	size_t usedlen = 0;
455
456	if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX)
457		usedlen = sizeof(uint16_t);
458	bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
459	    vq->vq_availoffset, hdrlen + payloadlen + usedlen, ops);
460}
461
462static inline void
463vq_sync_aring_header(struct virtio_softc *sc, struct virtqueue *vq, int ops)
464{
465	uint16_t hdrlen = offsetof(struct vring_avail, ring);
466
467	bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
468	    vq->vq_availoffset, hdrlen, ops);
469}
470
471static inline void
472vq_sync_aring_payload(struct virtio_softc *sc, struct virtqueue *vq, int ops)
473{
474	uint16_t hdrlen = offsetof(struct vring_avail, ring);
475	size_t payloadlen = sc->sc_nvqs * sizeof(uint16_t);
476
477	bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
478	    vq->vq_availoffset + hdrlen, payloadlen, ops);
479}
480
481static inline void
482vq_sync_aring_used(struct virtio_softc *sc, struct virtqueue *vq, int ops)
483{
484	uint16_t hdrlen = offsetof(struct vring_avail, ring);
485	size_t payloadlen = sc->sc_nvqs * sizeof(uint16_t);
486	size_t usedlen = sizeof(uint16_t);
487
488	if ((sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) == 0)
489		return;
490	bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
491	    vq->vq_availoffset + hdrlen + payloadlen, usedlen, ops);
492}
493
494static inline void
495vq_sync_uring_all(struct virtio_softc *sc, struct virtqueue *vq, int ops)
496{
497	uint16_t hdrlen = offsetof(struct vring_used, ring);
498	size_t payloadlen = sc->sc_nvqs * sizeof(struct vring_used_elem);
499	size_t availlen = 0;
500
501	if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX)
502		availlen = sizeof(uint16_t);
503	bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
504	    vq->vq_usedoffset, hdrlen + payloadlen + availlen, ops);
505}
506
507static inline void
508vq_sync_uring_header(struct virtio_softc *sc, struct virtqueue *vq, int ops)
509{
510	uint16_t hdrlen = offsetof(struct vring_used, ring);
511
512	bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
513	    vq->vq_usedoffset, hdrlen, ops);
514}
515
516static inline void
517vq_sync_uring_payload(struct virtio_softc *sc, struct virtqueue *vq, int ops)
518{
519	uint16_t hdrlen = offsetof(struct vring_used, ring);
520	size_t payloadlen = sc->sc_nvqs * sizeof(struct vring_used_elem);
521
522	bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
523	    vq->vq_usedoffset + hdrlen, payloadlen, ops);
524}
525
526static inline void
527vq_sync_uring_avail(struct virtio_softc *sc, struct virtqueue *vq, int ops)
528{
529	uint16_t hdrlen = offsetof(struct vring_used, ring);
530	size_t payloadlen = sc->sc_nvqs * sizeof(struct vring_used_elem);
531	size_t availlen = sizeof(uint16_t);
532
533	if ((sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) == 0)
534		return;
535	bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
536	    vq->vq_usedoffset + hdrlen + payloadlen, availlen, ops);
537}
538
539static inline void
540vq_sync_indirect(struct virtio_softc *sc, struct virtqueue *vq, int slot,
541    int ops)
542{
543	int offset = vq->vq_indirectoffset +
544	    sizeof(struct vring_desc) * vq->vq_maxnsegs * slot;
545
546	bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
547	    offset, sizeof(struct vring_desc) * vq->vq_maxnsegs, ops);
548}
549
550bool
551virtio_vq_is_enqueued(struct virtio_softc *sc, struct virtqueue *vq)
552{
553
554	if (vq->vq_queued) {
555		vq->vq_queued = 0;
556		vq_sync_aring_all(sc, vq, BUS_DMASYNC_POSTWRITE);
557	}
558
559	vq_sync_uring_header(sc, vq, BUS_DMASYNC_POSTREAD);
560	if (vq->vq_used_idx == virtio_rw16(sc, vq->vq_used->idx))
561		return 0;
562	vq_sync_uring_payload(sc, vq, BUS_DMASYNC_POSTREAD);
563	return 1;
564}
565
566/*
567 * Scan vq, bus_dmamap_sync for the vqs (not for the payload),
568 * and calls (*vq_done)() if some entries are consumed.
569 *
570 * Can be used as sc_intrhand.
571 */
572int
573virtio_vq_intr(struct virtio_softc *sc)
574{
575	struct virtqueue *vq;
576	int i, r = 0;
577
578	for (i = 0; i < sc->sc_nvqs; i++) {
579		vq = &sc->sc_vqs[i];
580		if (virtio_vq_is_enqueued(sc, vq) == 1) {
581			if (vq->vq_done)
582				r |= (*vq->vq_done)(vq);
583		}
584	}
585
586	return r;
587}
588
589int
590virtio_vq_intrhand(struct virtio_softc *sc)
591{
592	struct virtqueue *vq;
593	int i, r = 0;
594
595	for (i = 0; i < sc->sc_nvqs; i++) {
596		vq = &sc->sc_vqs[i];
597		r |= (*vq->vq_intrhand)(vq->vq_intrhand_arg);
598	}
599
600	return r;
601}
602
603
604/*
605 * Increase the event index in order to delay interrupts.
606 */
607int
608virtio_postpone_intr(struct virtio_softc *sc, struct virtqueue *vq,
609    uint16_t nslots)
610{
611	uint16_t	idx, nused;
612
613	idx = vq->vq_used_idx + nslots;
614
615	/* set the new event index: avail_ring->used_event = idx */
616	*vq->vq_used_event = virtio_rw16(sc, idx);
617	vq_sync_aring_used(vq->vq_owner, vq, BUS_DMASYNC_PREWRITE);
618	vq->vq_queued++;
619
620	nused = (uint16_t)
621	    (virtio_rw16(sc, vq->vq_used->idx) - vq->vq_used_idx);
622	KASSERT(nused <= vq->vq_num);
623
624	return nslots < nused;
625}
626
627/*
628 * Postpone interrupt until 3/4 of the available descriptors have been
629 * consumed.
630 */
631int
632virtio_postpone_intr_smart(struct virtio_softc *sc, struct virtqueue *vq)
633{
634	uint16_t	nslots;
635
636	nslots = (uint16_t)
637	    (virtio_rw16(sc, vq->vq_avail->idx) - vq->vq_used_idx) * 3 / 4;
638
639	return virtio_postpone_intr(sc, vq, nslots);
640}
641
642/*
643 * Postpone interrupt until all of the available descriptors have been
644 * consumed.
645 */
646int
647virtio_postpone_intr_far(struct virtio_softc *sc, struct virtqueue *vq)
648{
649	uint16_t	nslots;
650
651	nslots = (uint16_t)
652	    (virtio_rw16(sc, vq->vq_avail->idx) - vq->vq_used_idx);
653
654	return virtio_postpone_intr(sc, vq, nslots);
655}
656
657/*
658 * Start/stop vq interrupt.  No guarantee.
659 */
660void
661virtio_stop_vq_intr(struct virtio_softc *sc, struct virtqueue *vq)
662{
663
664	if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
665		/*
666		 * No way to disable the interrupt completely with
667		 * RingEventIdx. Instead advance used_event by half the
668		 * possible value. This won't happen soon and is far enough in
669		 * the past to not trigger a spurios interrupt.
670		 */
671		*vq->vq_used_event = virtio_rw16(sc, vq->vq_used_idx + 0x8000);
672		vq_sync_aring_used(sc, vq, BUS_DMASYNC_PREWRITE);
673	} else {
674		vq->vq_avail->flags |=
675		    virtio_rw16(sc, VRING_AVAIL_F_NO_INTERRUPT);
676		vq_sync_aring_header(sc, vq, BUS_DMASYNC_PREWRITE);
677	}
678	vq->vq_queued++;
679}
680
681int
682virtio_start_vq_intr(struct virtio_softc *sc, struct virtqueue *vq)
683{
684
685	if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
686		/*
687		 * If event index feature is negotiated, enabling interrupts
688		 * is done through setting the latest consumed index in the
689		 * used_event field
690		 */
691		*vq->vq_used_event = virtio_rw16(sc, vq->vq_used_idx);
692		vq_sync_aring_used(sc, vq, BUS_DMASYNC_PREWRITE);
693	} else {
694		vq->vq_avail->flags &=
695		    ~virtio_rw16(sc, VRING_AVAIL_F_NO_INTERRUPT);
696		vq_sync_aring_header(sc, vq, BUS_DMASYNC_PREWRITE);
697	}
698	vq->vq_queued++;
699
700	vq_sync_uring_header(sc, vq, BUS_DMASYNC_POSTREAD);
701	if (vq->vq_used_idx == virtio_rw16(sc, vq->vq_used->idx))
702		return 0;
703	vq_sync_uring_payload(sc, vq, BUS_DMASYNC_POSTREAD);
704	return 1;
705}
706
707/*
708 * Initialize vq structure.
709 */
710static void
711virtio_init_vq(struct virtio_softc *sc, struct virtqueue *vq,
712    const bool reinit)
713{
714	int i, j;
715	int vq_size = vq->vq_num;
716
717	memset(vq->vq_vaddr, 0, vq->vq_bytesize);
718
719	/* build the indirect descriptor chain */
720	if (vq->vq_indirect != NULL) {
721		struct vring_desc *vd;
722
723		for (i = 0; i < vq_size; i++) {
724			vd = vq->vq_indirect;
725			vd += vq->vq_maxnsegs * i;
726			for (j = 0; j < vq->vq_maxnsegs - 1; j++) {
727				vd[j].next = virtio_rw16(sc, j + 1);
728			}
729		}
730	}
731
732	/* free slot management */
733	SIMPLEQ_INIT(&vq->vq_freelist);
734	for (i = 0; i < vq_size; i++) {
735		SIMPLEQ_INSERT_TAIL(&vq->vq_freelist, &vq->vq_entries[i],
736		    qe_list);
737		vq->vq_entries[i].qe_index = i;
738	}
739	if (!reinit)
740		mutex_init(&vq->vq_freelist_lock, MUTEX_SPIN, sc->sc_ipl);
741
742	/* enqueue/dequeue status */
743	vq->vq_avail_idx = 0;
744	vq->vq_used_idx = 0;
745	vq->vq_queued = 0;
746	if (!reinit) {
747		mutex_init(&vq->vq_aring_lock, MUTEX_SPIN, sc->sc_ipl);
748		mutex_init(&vq->vq_uring_lock, MUTEX_SPIN, sc->sc_ipl);
749	}
750	vq_sync_uring_all(sc, vq, BUS_DMASYNC_PREREAD);
751	vq->vq_queued++;
752}
753
754/*
755 * Allocate/free a vq.
756 */
757int
758virtio_alloc_vq(struct virtio_softc *sc, struct virtqueue *vq, int index,
759    int maxsegsize, int maxnsegs, const char *name)
760{
761	int vq_size, allocsize1, allocsize2, allocsize3, allocsize = 0;
762	int rsegs, r, hdrlen;
763#define VIRTQUEUE_ALIGN(n)	(((n) + (VIRTIO_PAGE_SIZE - 1)) &	\
764				    ~(VIRTIO_PAGE_SIZE - 1))
765
766	/* Make sure callers allocate vqs in order */
767	KASSERT(sc->sc_nvqs == index);
768
769	memset(vq, 0, sizeof(*vq));
770
771	vq_size = sc->sc_ops->read_queue_size(sc, index);
772	if (vq_size == 0) {
773		aprint_error_dev(sc->sc_dev,
774		    "virtqueue not exist, index %d for %s\n",
775		    index, name);
776		goto err;
777	}
778
779	hdrlen = sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX ? 3 : 2;
780
781	/* allocsize1: descriptor table + avail ring + pad */
782	allocsize1 = VIRTQUEUE_ALIGN(sizeof(struct vring_desc)*vq_size
783	    + sizeof(uint16_t)*(hdrlen + vq_size));
784	/* allocsize2: used ring + pad */
785	allocsize2 = VIRTQUEUE_ALIGN(sizeof(uint16_t) * hdrlen
786	    + sizeof(struct vring_used_elem)*vq_size);
787	/* allocsize3: indirect table */
788	if (sc->sc_indirect && maxnsegs >= MINSEG_INDIRECT)
789		allocsize3 = sizeof(struct vring_desc) * maxnsegs * vq_size;
790	else
791		allocsize3 = 0;
792	allocsize = allocsize1 + allocsize2 + allocsize3;
793
794	/* alloc and map the memory */
795	r = bus_dmamem_alloc(sc->sc_dmat, allocsize, VIRTIO_PAGE_SIZE, 0,
796	    &vq->vq_segs[0], 1, &rsegs, BUS_DMA_WAITOK);
797	if (r != 0) {
798		aprint_error_dev(sc->sc_dev,
799		    "virtqueue %d for %s allocation failed, "
800		    "error code %d\n", index, name, r);
801		goto err;
802	}
803	r = bus_dmamem_map(sc->sc_dmat, &vq->vq_segs[0], rsegs, allocsize,
804	    &vq->vq_vaddr, BUS_DMA_WAITOK);
805	if (r != 0) {
806		aprint_error_dev(sc->sc_dev,
807		    "virtqueue %d for %s map failed, "
808		    "error code %d\n", index, name, r);
809		goto err;
810	}
811	r = bus_dmamap_create(sc->sc_dmat, allocsize, 1, allocsize, 0,
812	    BUS_DMA_WAITOK, &vq->vq_dmamap);
813	if (r != 0) {
814		aprint_error_dev(sc->sc_dev,
815		    "virtqueue %d for %s dmamap creation failed, "
816		    "error code %d\n", index, name, r);
817		goto err;
818	}
819	r = bus_dmamap_load(sc->sc_dmat, vq->vq_dmamap,
820	    vq->vq_vaddr, allocsize, NULL, BUS_DMA_WAITOK);
821	if (r != 0) {
822		aprint_error_dev(sc->sc_dev,
823		    "virtqueue %d for %s dmamap load failed, "
824		    "error code %d\n", index, name, r);
825		goto err;
826	}
827
828	/* remember addresses and offsets for later use */
829	vq->vq_owner = sc;
830	vq->vq_num = vq_size;
831	vq->vq_index = index;
832	vq->vq_desc = vq->vq_vaddr;
833	vq->vq_availoffset = sizeof(struct vring_desc)*vq_size;
834	vq->vq_avail = (void *)(((char *)vq->vq_desc) + vq->vq_availoffset);
835	vq->vq_used_event = (uint16_t *)((char *)vq->vq_avail +
836	    offsetof(struct vring_avail, ring[vq->vq_num]));
837	vq->vq_usedoffset = allocsize1;
838	vq->vq_used = (void *)(((char *)vq->vq_desc) + vq->vq_usedoffset);
839	vq->vq_avail_event = (uint16_t *)((char *)vq->vq_used +
840	    offsetof(struct vring_used, ring[vq->vq_num]));
841
842	if (allocsize3 > 0) {
843		vq->vq_indirectoffset = allocsize1 + allocsize2;
844		vq->vq_indirect = (void *)(((char *)vq->vq_desc)
845		    + vq->vq_indirectoffset);
846	}
847	vq->vq_bytesize = allocsize;
848	vq->vq_maxsegsize = maxsegsize;
849	vq->vq_maxnsegs = maxnsegs;
850
851	/* free slot management */
852	vq->vq_entries = kmem_zalloc(sizeof(struct vq_entry)*vq_size,
853	    KM_SLEEP);
854	virtio_init_vq(sc, vq, false);
855
856	/* set the vq address */
857	sc->sc_ops->setup_queue(sc, index,
858	    vq->vq_dmamap->dm_segs[0].ds_addr);
859
860	aprint_verbose_dev(sc->sc_dev,
861	    "allocated %u byte for virtqueue %d for %s, size %d\n",
862	    allocsize, index, name, vq_size);
863	if (allocsize3 > 0)
864		aprint_verbose_dev(sc->sc_dev,
865		    "using %d byte (%d entries) indirect descriptors\n",
866		    allocsize3, maxnsegs * vq_size);
867
868	sc->sc_nvqs++;
869
870	return 0;
871
872err:
873	sc->sc_ops->setup_queue(sc, index, 0);
874	if (vq->vq_dmamap)
875		bus_dmamap_destroy(sc->sc_dmat, vq->vq_dmamap);
876	if (vq->vq_vaddr)
877		bus_dmamem_unmap(sc->sc_dmat, vq->vq_vaddr, allocsize);
878	if (vq->vq_segs[0].ds_addr)
879		bus_dmamem_free(sc->sc_dmat, &vq->vq_segs[0], 1);
880	memset(vq, 0, sizeof(*vq));
881
882	return -1;
883}
884
885int
886virtio_free_vq(struct virtio_softc *sc, struct virtqueue *vq)
887{
888	struct vq_entry *qe;
889	int i = 0;
890
891	/* device must be already deactivated */
892	/* confirm the vq is empty */
893	SIMPLEQ_FOREACH(qe, &vq->vq_freelist, qe_list) {
894		i++;
895	}
896	if (i != vq->vq_num) {
897		printf("%s: freeing non-empty vq, index %d\n",
898		    device_xname(sc->sc_dev), vq->vq_index);
899		return EBUSY;
900	}
901
902	/* tell device that there's no virtqueue any longer */
903	sc->sc_ops->setup_queue(sc, vq->vq_index, 0);
904
905	vq_sync_aring_all(sc, vq, BUS_DMASYNC_POSTWRITE);
906
907	kmem_free(vq->vq_entries, sizeof(*vq->vq_entries) * vq->vq_num);
908	bus_dmamap_unload(sc->sc_dmat, vq->vq_dmamap);
909	bus_dmamap_destroy(sc->sc_dmat, vq->vq_dmamap);
910	bus_dmamem_unmap(sc->sc_dmat, vq->vq_vaddr, vq->vq_bytesize);
911	bus_dmamem_free(sc->sc_dmat, &vq->vq_segs[0], 1);
912	mutex_destroy(&vq->vq_freelist_lock);
913	mutex_destroy(&vq->vq_uring_lock);
914	mutex_destroy(&vq->vq_aring_lock);
915	memset(vq, 0, sizeof(*vq));
916
917	sc->sc_nvqs--;
918
919	return 0;
920}
921
922/*
923 * Free descriptor management.
924 */
925static struct vq_entry *
926vq_alloc_entry(struct virtqueue *vq)
927{
928	struct vq_entry *qe;
929
930	mutex_enter(&vq->vq_freelist_lock);
931	if (SIMPLEQ_EMPTY(&vq->vq_freelist)) {
932		mutex_exit(&vq->vq_freelist_lock);
933		return NULL;
934	}
935	qe = SIMPLEQ_FIRST(&vq->vq_freelist);
936	SIMPLEQ_REMOVE_HEAD(&vq->vq_freelist, qe_list);
937	mutex_exit(&vq->vq_freelist_lock);
938
939	return qe;
940}
941
942static void
943vq_free_entry(struct virtqueue *vq, struct vq_entry *qe)
944{
945	mutex_enter(&vq->vq_freelist_lock);
946	SIMPLEQ_INSERT_TAIL(&vq->vq_freelist, qe, qe_list);
947	mutex_exit(&vq->vq_freelist_lock);
948
949	return;
950}
951
952/*
953 * Enqueue several dmamaps as a single request.
954 */
955/*
956 * Typical usage:
957 *  <queue size> number of followings are stored in arrays
958 *  - command blocks (in dmamem) should be pre-allocated and mapped
959 *  - dmamaps for command blocks should be pre-allocated and loaded
960 *  - dmamaps for payload should be pre-allocated
961 *      r = virtio_enqueue_prep(sc, vq, &slot);		// allocate a slot
962 *	if (r)		// currently 0 or EAGAIN
963 *		return r;
964 *	r = bus_dmamap_load(dmat, dmamap_payload[slot], data, count, ..);
965 *	if (r) {
966 *		virtio_enqueue_abort(sc, vq, slot);
967 *		return r;
968 *	}
969 *	r = virtio_enqueue_reserve(sc, vq, slot,
970 *	    dmamap_payload[slot]->dm_nsegs + 1);
971 *							// ^ +1 for command
972 *	if (r) {	// currently 0 or EAGAIN
973 *		bus_dmamap_unload(dmat, dmamap_payload[slot]);
974 *		return r;				// do not call abort()
975 *	}
976 *	<setup and prepare commands>
977 *	bus_dmamap_sync(dmat, dmamap_cmd[slot],... BUS_DMASYNC_PREWRITE);
978 *	bus_dmamap_sync(dmat, dmamap_payload[slot],...);
979 *	virtio_enqueue(sc, vq, slot, dmamap_cmd[slot], false);
980 *	virtio_enqueue(sc, vq, slot, dmamap_payload[slot], iswrite);
981 *	virtio_enqueue_commit(sc, vq, slot, true);
982 */
983
984/*
985 * enqueue_prep: allocate a slot number
986 */
987int
988virtio_enqueue_prep(struct virtio_softc *sc, struct virtqueue *vq, int *slotp)
989{
990	struct vq_entry *qe1;
991
992	KASSERT(slotp != NULL);
993
994	qe1 = vq_alloc_entry(vq);
995	if (qe1 == NULL)
996		return EAGAIN;
997	/* next slot is not allocated yet */
998	qe1->qe_next = -1;
999	*slotp = qe1->qe_index;
1000
1001	return 0;
1002}
1003
1004/*
1005 * enqueue_reserve: allocate remaining slots and build the descriptor chain.
1006 */
1007int
1008virtio_enqueue_reserve(struct virtio_softc *sc, struct virtqueue *vq,
1009    int slot, int nsegs)
1010{
1011	int indirect;
1012	struct vq_entry *qe1 = &vq->vq_entries[slot];
1013
1014	KASSERT(qe1->qe_next == -1);
1015	KASSERT(1 <= nsegs && nsegs <= vq->vq_num);
1016
1017	if ((vq->vq_indirect != NULL) &&
1018	    (nsegs >= MINSEG_INDIRECT) &&
1019	    (nsegs <= vq->vq_maxnsegs))
1020		indirect = 1;
1021	else
1022		indirect = 0;
1023	qe1->qe_indirect = indirect;
1024
1025	if (indirect) {
1026		struct vring_desc *vd;
1027		uint64_t addr;
1028		int i;
1029
1030		vd = &vq->vq_desc[qe1->qe_index];
1031		addr = vq->vq_dmamap->dm_segs[0].ds_addr
1032		    + vq->vq_indirectoffset;
1033		addr += sizeof(struct vring_desc)
1034		    * vq->vq_maxnsegs * qe1->qe_index;
1035		vd->addr  = virtio_rw64(sc, addr);
1036		vd->len   = virtio_rw32(sc, sizeof(struct vring_desc) * nsegs);
1037		vd->flags = virtio_rw16(sc, VRING_DESC_F_INDIRECT);
1038
1039		vd = vq->vq_indirect;
1040		vd += vq->vq_maxnsegs * qe1->qe_index;
1041		qe1->qe_desc_base = vd;
1042
1043		for (i = 0; i < nsegs - 1; i++) {
1044			vd[i].flags = virtio_rw16(sc, VRING_DESC_F_NEXT);
1045		}
1046		vd[i].flags  = virtio_rw16(sc, 0);
1047		qe1->qe_next = 0;
1048
1049		return 0;
1050	} else {
1051		struct vring_desc *vd;
1052		struct vq_entry *qe;
1053		int i, s;
1054
1055		vd = &vq->vq_desc[0];
1056		qe1->qe_desc_base = vd;
1057		qe1->qe_next = qe1->qe_index;
1058		s = slot;
1059		for (i = 0; i < nsegs - 1; i++) {
1060			qe = vq_alloc_entry(vq);
1061			if (qe == NULL) {
1062				vd[s].flags = virtio_rw16(sc, 0);
1063				virtio_enqueue_abort(sc, vq, slot);
1064				return EAGAIN;
1065			}
1066			vd[s].flags = virtio_rw16(sc, VRING_DESC_F_NEXT);
1067			vd[s].next  = virtio_rw16(sc, qe->qe_index);
1068			s = qe->qe_index;
1069		}
1070		vd[s].flags = virtio_rw16(sc, 0);
1071
1072		return 0;
1073	}
1074}
1075
1076/*
1077 * enqueue: enqueue a single dmamap.
1078 */
1079int
1080virtio_enqueue(struct virtio_softc *sc, struct virtqueue *vq, int slot,
1081    bus_dmamap_t dmamap, bool write)
1082{
1083	struct vq_entry *qe1 = &vq->vq_entries[slot];
1084	struct vring_desc *vd = qe1->qe_desc_base;
1085	int i;
1086	int s = qe1->qe_next;
1087
1088	KASSERT(s >= 0);
1089	KASSERT(dmamap->dm_nsegs > 0);
1090
1091	for (i = 0; i < dmamap->dm_nsegs; i++) {
1092		vd[s].addr = virtio_rw64(sc, dmamap->dm_segs[i].ds_addr);
1093		vd[s].len  = virtio_rw32(sc, dmamap->dm_segs[i].ds_len);
1094		if (!write)
1095			vd[s].flags |= virtio_rw16(sc, VRING_DESC_F_WRITE);
1096		s = virtio_rw16(sc, vd[s].next);
1097	}
1098	qe1->qe_next = s;
1099
1100	return 0;
1101}
1102
1103int
1104virtio_enqueue_p(struct virtio_softc *sc, struct virtqueue *vq, int slot,
1105    bus_dmamap_t dmamap, bus_addr_t start, bus_size_t len,
1106    bool write)
1107{
1108	struct vq_entry *qe1 = &vq->vq_entries[slot];
1109	struct vring_desc *vd = qe1->qe_desc_base;
1110	int s = qe1->qe_next;
1111
1112	KASSERT(s >= 0);
1113	KASSERT(dmamap->dm_nsegs == 1); /* XXX */
1114	KASSERT(dmamap->dm_segs[0].ds_len > start);
1115	KASSERT(dmamap->dm_segs[0].ds_len >= start + len);
1116
1117	vd[s].addr = virtio_rw64(sc, dmamap->dm_segs[0].ds_addr + start);
1118	vd[s].len  = virtio_rw32(sc, len);
1119	if (!write)
1120		vd[s].flags |= virtio_rw16(sc, VRING_DESC_F_WRITE);
1121	qe1->qe_next = virtio_rw16(sc, vd[s].next);
1122
1123	return 0;
1124}
1125
1126/*
1127 * enqueue_commit: add it to the aring.
1128 */
1129int
1130virtio_enqueue_commit(struct virtio_softc *sc, struct virtqueue *vq, int slot,
1131    bool notifynow)
1132{
1133	struct vq_entry *qe1;
1134
1135	if (slot < 0) {
1136		mutex_enter(&vq->vq_aring_lock);
1137		goto notify;
1138	}
1139	vq_sync_descs(sc, vq, BUS_DMASYNC_PREWRITE);
1140	qe1 = &vq->vq_entries[slot];
1141	if (qe1->qe_indirect)
1142		vq_sync_indirect(sc, vq, slot, BUS_DMASYNC_PREWRITE);
1143	mutex_enter(&vq->vq_aring_lock);
1144	vq->vq_avail->ring[(vq->vq_avail_idx++) % vq->vq_num] =
1145	    virtio_rw16(sc, slot);
1146
1147notify:
1148	if (notifynow) {
1149		uint16_t o, n, t;
1150		uint16_t flags;
1151
1152		o = virtio_rw16(sc, vq->vq_avail->idx);
1153		n = vq->vq_avail_idx;
1154
1155		/*
1156		 * Prepare for `device->CPU' (host->guest) transfer
1157		 * into the buffer.  This must happen before we commit
1158		 * the vq->vq_avail->idx update to ensure we're not
1159		 * still using the buffer in case program-prior loads
1160		 * or stores in it get delayed past the store to
1161		 * vq->vq_avail->idx.
1162		 */
1163		vq_sync_uring_all(sc, vq, BUS_DMASYNC_PREREAD);
1164
1165		/* ensure payload is published, then avail idx */
1166		vq_sync_aring_payload(sc, vq, BUS_DMASYNC_PREWRITE);
1167		vq->vq_avail->idx = virtio_rw16(sc, vq->vq_avail_idx);
1168		vq_sync_aring_header(sc, vq, BUS_DMASYNC_PREWRITE);
1169		vq->vq_queued++;
1170
1171		if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
1172			vq_sync_uring_avail(sc, vq, BUS_DMASYNC_POSTREAD);
1173			t = virtio_rw16(sc, *vq->vq_avail_event) + 1;
1174			if ((uint16_t) (n - t) < (uint16_t) (n - o))
1175				sc->sc_ops->kick(sc, vq->vq_index);
1176		} else {
1177			vq_sync_uring_header(sc, vq, BUS_DMASYNC_POSTREAD);
1178			flags = virtio_rw16(sc, vq->vq_used->flags);
1179			if (!(flags & VRING_USED_F_NO_NOTIFY))
1180				sc->sc_ops->kick(sc, vq->vq_index);
1181		}
1182	}
1183	mutex_exit(&vq->vq_aring_lock);
1184
1185	return 0;
1186}
1187
1188/*
1189 * enqueue_abort: rollback.
1190 */
1191int
1192virtio_enqueue_abort(struct virtio_softc *sc, struct virtqueue *vq, int slot)
1193{
1194	struct vq_entry *qe = &vq->vq_entries[slot];
1195	struct vring_desc *vd;
1196	int s;
1197
1198	if (qe->qe_next < 0) {
1199		vq_free_entry(vq, qe);
1200		return 0;
1201	}
1202
1203	s = slot;
1204	vd = &vq->vq_desc[0];
1205	while (virtio_rw16(sc, vd[s].flags) & VRING_DESC_F_NEXT) {
1206		s = virtio_rw16(sc, vd[s].next);
1207		vq_free_entry(vq, qe);
1208		qe = &vq->vq_entries[s];
1209	}
1210	vq_free_entry(vq, qe);
1211	return 0;
1212}
1213
1214/*
1215 * Dequeue a request.
1216 */
1217/*
1218 * dequeue: dequeue a request from uring; dmamap_sync for uring is
1219 *	    already done in the interrupt handler.
1220 */
1221int
1222virtio_dequeue(struct virtio_softc *sc, struct virtqueue *vq,
1223    int *slotp, int *lenp)
1224{
1225	uint16_t slot, usedidx;
1226	struct vq_entry *qe;
1227
1228	if (vq->vq_used_idx == virtio_rw16(sc, vq->vq_used->idx))
1229		return ENOENT;
1230	mutex_enter(&vq->vq_uring_lock);
1231	usedidx = vq->vq_used_idx++;
1232	mutex_exit(&vq->vq_uring_lock);
1233	usedidx %= vq->vq_num;
1234	slot = virtio_rw32(sc, vq->vq_used->ring[usedidx].id);
1235	qe = &vq->vq_entries[slot];
1236
1237	if (qe->qe_indirect)
1238		vq_sync_indirect(sc, vq, slot, BUS_DMASYNC_POSTWRITE);
1239
1240	if (slotp)
1241		*slotp = slot;
1242	if (lenp)
1243		*lenp = virtio_rw32(sc, vq->vq_used->ring[usedidx].len);
1244
1245	return 0;
1246}
1247
1248/*
1249 * dequeue_commit: complete dequeue; the slot is recycled for future use.
1250 *                 if you forget to call this the slot will be leaked.
1251 */
1252int
1253virtio_dequeue_commit(struct virtio_softc *sc, struct virtqueue *vq, int slot)
1254{
1255	struct vq_entry *qe = &vq->vq_entries[slot];
1256	struct vring_desc *vd = &vq->vq_desc[0];
1257	int s = slot;
1258
1259	while (virtio_rw16(sc, vd[s].flags) & VRING_DESC_F_NEXT) {
1260		s = virtio_rw16(sc, vd[s].next);
1261		vq_free_entry(vq, qe);
1262		qe = &vq->vq_entries[s];
1263	}
1264	vq_free_entry(vq, qe);
1265
1266	return 0;
1267}
1268
1269/*
1270 * Attach a child, fill all the members.
1271 */
1272void
1273virtio_child_attach_start(struct virtio_softc *sc, device_t child, int ipl,
1274    struct virtqueue *vqs,
1275    virtio_callback config_change,
1276    virtio_callback intr_hand,
1277    int req_flags, int req_features, const char *feat_bits)
1278{
1279	char buf[1024];
1280
1281	sc->sc_child = child;
1282	sc->sc_ipl = ipl;
1283	sc->sc_vqs = vqs;
1284	sc->sc_config_change = config_change;
1285	sc->sc_intrhand = intr_hand;
1286	sc->sc_flags = req_flags;
1287
1288	virtio_negotiate_features(sc, req_features);
1289	snprintb(buf, sizeof(buf), feat_bits, sc->sc_active_features);
1290	aprint_normal(": features: %s\n", buf);
1291	aprint_naive("\n");
1292}
1293
1294void
1295virtio_child_attach_set_vqs(struct virtio_softc *sc,
1296    struct virtqueue *vqs, int nvq_pairs)
1297{
1298
1299	KASSERT(nvq_pairs == 1 ||
1300	    (sc->sc_flags & VIRTIO_F_INTR_SOFTINT) == 0);
1301	if (nvq_pairs > 1)
1302		sc->sc_child_mq = true;
1303
1304	sc->sc_vqs = vqs;
1305}
1306
1307int
1308virtio_child_attach_finish(struct virtio_softc *sc)
1309{
1310	int r;
1311
1312	sc->sc_finished_called = true;
1313	r = sc->sc_ops->alloc_interrupts(sc);
1314	if (r != 0) {
1315		aprint_error_dev(sc->sc_dev,
1316		    "failed to allocate interrupts\n");
1317		goto fail;
1318	}
1319
1320	r = sc->sc_ops->setup_interrupts(sc, 0);
1321	if (r != 0) {
1322		aprint_error_dev(sc->sc_dev, "failed to setup interrupts\n");
1323		goto fail;
1324	}
1325
1326	KASSERT(sc->sc_soft_ih == NULL);
1327	if (sc->sc_flags & VIRTIO_F_INTR_SOFTINT) {
1328		u_int flags = SOFTINT_NET;
1329		if (sc->sc_flags & VIRTIO_F_INTR_MPSAFE)
1330			flags |= SOFTINT_MPSAFE;
1331
1332		sc->sc_soft_ih = softint_establish(flags, virtio_soft_intr,
1333		    sc);
1334		if (sc->sc_soft_ih == NULL) {
1335			sc->sc_ops->free_interrupts(sc);
1336			aprint_error_dev(sc->sc_dev,
1337			    "failed to establish soft interrupt\n");
1338			goto fail;
1339		}
1340	}
1341
1342	virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER_OK);
1343	return 0;
1344
1345fail:
1346	if (sc->sc_soft_ih) {
1347		softint_disestablish(sc->sc_soft_ih);
1348		sc->sc_soft_ih = NULL;
1349	}
1350
1351	sc->sc_ops->free_interrupts(sc);
1352
1353	virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
1354	return 1;
1355}
1356
1357void
1358virtio_child_detach(struct virtio_softc *sc)
1359{
1360	sc->sc_child = NULL;
1361	sc->sc_vqs = NULL;
1362
1363	virtio_device_reset(sc);
1364
1365	sc->sc_ops->free_interrupts(sc);
1366
1367	if (sc->sc_soft_ih) {
1368		softint_disestablish(sc->sc_soft_ih);
1369		sc->sc_soft_ih = NULL;
1370	}
1371}
1372
1373void
1374virtio_child_attach_failed(struct virtio_softc *sc)
1375{
1376	virtio_child_detach(sc);
1377
1378	virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
1379
1380	sc->sc_child = VIRTIO_CHILD_FAILED;
1381}
1382
1383bus_dma_tag_t
1384virtio_dmat(struct virtio_softc *sc)
1385{
1386	return sc->sc_dmat;
1387}
1388
1389device_t
1390virtio_child(struct virtio_softc *sc)
1391{
1392	return sc->sc_child;
1393}
1394
1395int
1396virtio_intrhand(struct virtio_softc *sc)
1397{
1398	return (*sc->sc_intrhand)(sc);
1399}
1400
1401uint64_t
1402virtio_features(struct virtio_softc *sc)
1403{
1404	return sc->sc_active_features;
1405}
1406
1407int
1408virtio_attach_failed(struct virtio_softc *sc)
1409{
1410	device_t self = sc->sc_dev;
1411
1412	/* no error if its not connected, but its failed */
1413	if (sc->sc_childdevid == 0)
1414		return 1;
1415
1416	if (sc->sc_child == NULL) {
1417		aprint_error_dev(self,
1418		    "no matching child driver; not configured\n");
1419		return 1;
1420	}
1421
1422	if (sc->sc_child == VIRTIO_CHILD_FAILED) {
1423		aprint_error_dev(self, "virtio configuration failed\n");
1424		return 1;
1425	}
1426
1427	/* sanity check */
1428	if (!sc->sc_finished_called) {
1429		aprint_error_dev(self, "virtio internal error, child driver "
1430		    "signaled OK but didn't initialize interrupts\n");
1431		return 1;
1432	}
1433
1434	return 0;
1435}
1436
1437void
1438virtio_print_device_type(device_t self, int id, int revision)
1439{
1440	aprint_normal_dev(self, "%s device (id %d, rev. 0x%02x)\n",
1441	    (id < NDEVNAMES ? virtio_device_name[id] : "Unknown"),
1442	    id,
1443	    revision);
1444}
1445
1446
1447MODULE(MODULE_CLASS_DRIVER, virtio, NULL);
1448
1449#ifdef _MODULE
1450#include "ioconf.c"
1451#endif
1452
1453static int
1454virtio_modcmd(modcmd_t cmd, void *opaque)
1455{
1456	int error = 0;
1457
1458#ifdef _MODULE
1459	switch (cmd) {
1460	case MODULE_CMD_INIT:
1461		error = config_init_component(cfdriver_ioconf_virtio,
1462		    cfattach_ioconf_virtio, cfdata_ioconf_virtio);
1463		break;
1464	case MODULE_CMD_FINI:
1465		error = config_fini_component(cfdriver_ioconf_virtio,
1466		    cfattach_ioconf_virtio, cfdata_ioconf_virtio);
1467		break;
1468	default:
1469		error = ENOTTY;
1470		break;
1471	}
1472#endif
1473
1474	return error;
1475}
1476