if_wpi.c revision 1.69
1/*	$NetBSD: if_wpi.c,v 1.69 2014/12/19 11:54:02 bouyer Exp $	*/
2
3/*-
4 * Copyright (c) 2006, 2007
5 *	Damien Bergamini <damien.bergamini@free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20#include <sys/cdefs.h>
21__KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.69 2014/12/19 11:54:02 bouyer Exp $");
22
23/*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27
28#include <sys/param.h>
29#include <sys/sockio.h>
30#include <sys/sysctl.h>
31#include <sys/mbuf.h>
32#include <sys/kernel.h>
33#include <sys/socket.h>
34#include <sys/systm.h>
35#include <sys/malloc.h>
36#include <sys/mutex.h>
37#include <sys/once.h>
38#include <sys/conf.h>
39#include <sys/kauth.h>
40#include <sys/callout.h>
41#include <sys/proc.h>
42
43#include <sys/bus.h>
44#include <machine/endian.h>
45#include <sys/intr.h>
46
47#include <dev/pci/pcireg.h>
48#include <dev/pci/pcivar.h>
49#include <dev/pci/pcidevs.h>
50
51#include <net/bpf.h>
52#include <net/if.h>
53#include <net/if_arp.h>
54#include <net/if_dl.h>
55#include <net/if_ether.h>
56#include <net/if_media.h>
57#include <net/if_types.h>
58
59#include <netinet/in.h>
60#include <netinet/in_systm.h>
61#include <netinet/in_var.h>
62#include <netinet/ip.h>
63
64#include <net80211/ieee80211_var.h>
65#include <net80211/ieee80211_amrr.h>
66#include <net80211/ieee80211_radiotap.h>
67
68#include <dev/firmload.h>
69
70#include <dev/pci/if_wpireg.h>
71#include <dev/pci/if_wpivar.h>
72
73static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
74static once_t wpi_firmware_init;
75static kmutex_t wpi_firmware_mutex;
76static size_t wpi_firmware_users;
77static uint8_t *wpi_firmware_image;
78static size_t wpi_firmware_size;
79
80static int	wpi_match(device_t, cfdata_t, void *);
81static void	wpi_attach(device_t, device_t, void *);
82static int	wpi_detach(device_t , int);
83static int	wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
84		    void **, bus_size_t, bus_size_t, int);
85static void	wpi_dma_contig_free(struct wpi_dma_info *);
86static int	wpi_alloc_shared(struct wpi_softc *);
87static void	wpi_free_shared(struct wpi_softc *);
88static int	wpi_alloc_fwmem(struct wpi_softc *);
89static void	wpi_free_fwmem(struct wpi_softc *);
90static struct	wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
91static void	wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
92static int	wpi_alloc_rpool(struct wpi_softc *);
93static void	wpi_free_rpool(struct wpi_softc *);
94static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
95static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
96static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
97static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
98		    int, int);
99static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
100static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
101static struct	ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
102static void	wpi_newassoc(struct ieee80211_node *, int);
103static int	wpi_media_change(struct ifnet *);
104static int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
105static void	wpi_mem_lock(struct wpi_softc *);
106static void	wpi_mem_unlock(struct wpi_softc *);
107static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
108static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
109static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
110		    const uint32_t *, int);
111static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
112static int	wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
113static int	wpi_cache_firmware(struct wpi_softc *);
114static void	wpi_release_firmware(void);
115static int	wpi_load_firmware(struct wpi_softc *);
116static void	wpi_calib_timeout(void *);
117static void	wpi_iter_func(void *, struct ieee80211_node *);
118static void	wpi_power_calibration(struct wpi_softc *, int);
119static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
120		    struct wpi_rx_data *);
121static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
122static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
123static void	wpi_notif_intr(struct wpi_softc *);
124static int	wpi_intr(void *);
125static void	wpi_read_eeprom(struct wpi_softc *);
126static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
127static void	wpi_read_eeprom_group(struct wpi_softc *, int);
128static uint8_t	wpi_plcp_signal(int);
129static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
130		    struct ieee80211_node *, int);
131static void	wpi_start(struct ifnet *);
132static void	wpi_watchdog(struct ifnet *);
133static int	wpi_ioctl(struct ifnet *, u_long, void *);
134static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
135static int	wpi_wme_update(struct ieee80211com *);
136static int	wpi_mrr_setup(struct wpi_softc *);
137static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
138static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
139static int	wpi_set_txpower(struct wpi_softc *,
140		    struct ieee80211_channel *, int);
141static int	wpi_get_power_index(struct wpi_softc *,
142		    struct wpi_power_group *, struct ieee80211_channel *, int);
143static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
144static int	wpi_auth(struct wpi_softc *);
145static int	wpi_scan(struct wpi_softc *);
146static int	wpi_config(struct wpi_softc *);
147static void	wpi_stop_master(struct wpi_softc *);
148static int	wpi_power_up(struct wpi_softc *);
149static int	wpi_reset(struct wpi_softc *);
150static void	wpi_hw_config(struct wpi_softc *);
151static int	wpi_init(struct ifnet *);
152static void	wpi_stop(struct ifnet *, int);
153static bool	wpi_resume(device_t, const pmf_qual_t *);
154static int	wpi_getrfkill(struct wpi_softc *);
155static void	wpi_sysctlattach(struct wpi_softc *);
156
157#ifdef WPI_DEBUG
158#define DPRINTF(x)	do { if (wpi_debug > 0) printf x; } while (0)
159#define DPRINTFN(n, x)	do { if (wpi_debug >= (n)) printf x; } while (0)
160int wpi_debug = 1;
161#else
162#define DPRINTF(x)
163#define DPRINTFN(n, x)
164#endif
165
166CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
167	wpi_detach, NULL);
168
169static int
170wpi_match(device_t parent, cfdata_t match __unused, void *aux)
171{
172	struct pci_attach_args *pa = aux;
173
174	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
175		return 0;
176
177	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
178	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
179		return 1;
180
181	return 0;
182}
183
184/* Base Address Register */
185#define WPI_PCI_BAR0	0x10
186
187static int
188wpi_attach_once(void)
189{
190
191	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
192	return 0;
193}
194
195static void
196wpi_attach(device_t parent __unused, device_t self, void *aux)
197{
198	struct wpi_softc *sc = device_private(self);
199	struct ieee80211com *ic = &sc->sc_ic;
200	struct ifnet *ifp = &sc->sc_ec.ec_if;
201	struct pci_attach_args *pa = aux;
202	const char *intrstr;
203	bus_space_tag_t memt;
204	bus_space_handle_t memh;
205	pci_intr_handle_t ih;
206	pcireg_t data;
207	int ac, error;
208	char intrbuf[PCI_INTRSTR_LEN];
209
210	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
211	sc->fw_used = false;
212
213	sc->sc_dev = self;
214	sc->sc_pct = pa->pa_pc;
215	sc->sc_pcitag = pa->pa_tag;
216
217	callout_init(&sc->calib_to, 0);
218	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
219
220	pci_aprint_devinfo(pa, NULL);
221
222	/* enable bus-mastering */
223	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
224	data |= PCI_COMMAND_MASTER_ENABLE;
225	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
226
227	/* map the register window */
228	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
229	    PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
230	if (error != 0) {
231		aprint_error_dev(self, "could not map memory space\n");
232		return;
233	}
234
235	sc->sc_st = memt;
236	sc->sc_sh = memh;
237	sc->sc_dmat = pa->pa_dmat;
238
239	if (pci_intr_map(pa, &ih) != 0) {
240		aprint_error_dev(self, "could not map interrupt\n");
241		return;
242	}
243
244	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
245	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
246	if (sc->sc_ih == NULL) {
247		aprint_error_dev(self, "could not establish interrupt");
248		if (intrstr != NULL)
249			aprint_error(" at %s", intrstr);
250		aprint_error("\n");
251		return;
252	}
253	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
254
255	/*
256	 * Put adapter into a known state.
257	 */
258	if ((error = wpi_reset(sc)) != 0) {
259		aprint_error_dev(self, "could not reset adapter\n");
260		return;
261	}
262
263	/*
264	 * Allocate DMA memory for firmware transfers.
265	 */
266	if ((error = wpi_alloc_fwmem(sc)) != 0) {
267		aprint_error_dev(self, "could not allocate firmware memory\n");
268		return;
269	}
270
271	/*
272	 * Allocate shared page and Tx/Rx rings.
273	 */
274	if ((error = wpi_alloc_shared(sc)) != 0) {
275		aprint_error_dev(self, "could not allocate shared area\n");
276		goto fail1;
277	}
278
279	if ((error = wpi_alloc_rpool(sc)) != 0) {
280		aprint_error_dev(self, "could not allocate Rx buffers\n");
281		goto fail2;
282	}
283
284	for (ac = 0; ac < 4; ac++) {
285		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
286		    ac);
287		if (error != 0) {
288			aprint_error_dev(self,
289			    "could not allocate Tx ring %d\n", ac);
290			goto fail3;
291		}
292	}
293
294	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
295	if (error != 0) {
296		aprint_error_dev(self, "could not allocate command ring\n");
297		goto fail3;
298	}
299
300	error = wpi_alloc_rx_ring(sc, &sc->rxq);
301	if (error != 0) {
302		aprint_error_dev(self, "could not allocate Rx ring\n");
303		goto fail4;
304	}
305
306	ic->ic_ifp = ifp;
307	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
308	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
309	ic->ic_state = IEEE80211_S_INIT;
310
311	/* set device capabilities */
312	ic->ic_caps =
313	    IEEE80211_C_WPA |		/* 802.11i */
314	    IEEE80211_C_MONITOR |	/* monitor mode supported */
315	    IEEE80211_C_TXPMGT |	/* tx power management */
316	    IEEE80211_C_SHSLOT |	/* short slot time supported */
317	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
318	    IEEE80211_C_WME;		/* 802.11e */
319
320	/* read supported channels and MAC address from EEPROM */
321	wpi_read_eeprom(sc);
322
323	/* set supported .11a, .11b and .11g rates */
324	ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
325	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
326	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
327
328	/* IBSS channel undefined for now */
329	ic->ic_ibss_chan = &ic->ic_channels[0];
330
331	ifp->if_softc = sc;
332	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
333	ifp->if_init = wpi_init;
334	ifp->if_stop = wpi_stop;
335	ifp->if_ioctl = wpi_ioctl;
336	ifp->if_start = wpi_start;
337	ifp->if_watchdog = wpi_watchdog;
338	IFQ_SET_READY(&ifp->if_snd);
339	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
340
341	if_attach(ifp);
342	ieee80211_ifattach(ic);
343	/* override default methods */
344	ic->ic_node_alloc = wpi_node_alloc;
345	ic->ic_newassoc = wpi_newassoc;
346	ic->ic_wme.wme_update = wpi_wme_update;
347
348	/* override state transition machine */
349	sc->sc_newstate = ic->ic_newstate;
350	ic->ic_newstate = wpi_newstate;
351	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
352
353	sc->amrr.amrr_min_success_threshold =  1;
354	sc->amrr.amrr_max_success_threshold = 15;
355
356	wpi_sysctlattach(sc);
357
358	if (pmf_device_register(self, NULL, wpi_resume))
359		pmf_class_network_register(self, ifp);
360	else
361		aprint_error_dev(self, "couldn't establish power handler\n");
362
363	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
364	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
365	    &sc->sc_drvbpf);
366
367	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
368	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
369	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
370
371	sc->sc_txtap_len = sizeof sc->sc_txtapu;
372	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
373	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
374
375	ieee80211_announce(ic);
376
377	return;
378
379	/* free allocated memory if something failed during attachment */
380fail4:	wpi_free_tx_ring(sc, &sc->cmdq);
381fail3:	while (--ac >= 0)
382		wpi_free_tx_ring(sc, &sc->txq[ac]);
383	wpi_free_rpool(sc);
384fail2:	wpi_free_shared(sc);
385fail1:	wpi_free_fwmem(sc);
386}
387
388static int
389wpi_detach(device_t self, int flags __unused)
390{
391	struct wpi_softc *sc = device_private(self);
392	struct ifnet *ifp = sc->sc_ic.ic_ifp;
393	int ac;
394
395	wpi_stop(ifp, 1);
396
397	if (ifp != NULL)
398		bpf_detach(ifp);
399	ieee80211_ifdetach(&sc->sc_ic);
400	if (ifp != NULL)
401		if_detach(ifp);
402
403	for (ac = 0; ac < 4; ac++)
404		wpi_free_tx_ring(sc, &sc->txq[ac]);
405	wpi_free_tx_ring(sc, &sc->cmdq);
406	wpi_free_rx_ring(sc, &sc->rxq);
407	wpi_free_rpool(sc);
408	wpi_free_shared(sc);
409
410	if (sc->sc_ih != NULL) {
411		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
412		sc->sc_ih = NULL;
413	}
414
415	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
416
417	if (sc->fw_used) {
418		sc->fw_used = false;
419		wpi_release_firmware();
420	}
421
422	return 0;
423}
424
425static int
426wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
427    bus_size_t size, bus_size_t alignment, int flags)
428{
429	int nsegs, error;
430
431	dma->tag = tag;
432	dma->size = size;
433
434	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
435	if (error != 0)
436		goto fail;
437
438	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
439	    flags);
440	if (error != 0)
441		goto fail;
442
443	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
444	if (error != 0)
445		goto fail;
446
447	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
448	if (error != 0)
449		goto fail;
450
451	memset(dma->vaddr, 0, size);
452	bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
453
454	dma->paddr = dma->map->dm_segs[0].ds_addr;
455	if (kvap != NULL)
456		*kvap = dma->vaddr;
457
458	return 0;
459
460fail:	wpi_dma_contig_free(dma);
461	return error;
462}
463
464static void
465wpi_dma_contig_free(struct wpi_dma_info *dma)
466{
467	if (dma->map != NULL) {
468		if (dma->vaddr != NULL) {
469			bus_dmamap_unload(dma->tag, dma->map);
470			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
471			bus_dmamem_free(dma->tag, &dma->seg, 1);
472			dma->vaddr = NULL;
473		}
474		bus_dmamap_destroy(dma->tag, dma->map);
475		dma->map = NULL;
476	}
477}
478
479/*
480 * Allocate a shared page between host and NIC.
481 */
482static int
483wpi_alloc_shared(struct wpi_softc *sc)
484{
485	int error;
486
487	/* must be aligned on a 4K-page boundary */
488	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
489	    (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
490	    BUS_DMA_NOWAIT);
491	if (error != 0)
492		aprint_error_dev(sc->sc_dev,
493		    "could not allocate shared area DMA memory\n");
494
495	return error;
496}
497
498static void
499wpi_free_shared(struct wpi_softc *sc)
500{
501	wpi_dma_contig_free(&sc->shared_dma);
502}
503
504/*
505 * Allocate DMA-safe memory for firmware transfer.
506 */
507static int
508wpi_alloc_fwmem(struct wpi_softc *sc)
509{
510	int error;
511
512	/* allocate enough contiguous space to store text and data */
513	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
514	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
515	    BUS_DMA_NOWAIT);
516
517	if (error != 0)
518		aprint_error_dev(sc->sc_dev,
519		    "could not allocate firmware transfer area DMA memory\n");
520	return error;
521}
522
523static void
524wpi_free_fwmem(struct wpi_softc *sc)
525{
526	wpi_dma_contig_free(&sc->fw_dma);
527}
528
529static struct wpi_rbuf *
530wpi_alloc_rbuf(struct wpi_softc *sc)
531{
532	struct wpi_rbuf *rbuf;
533
534	mutex_enter(&sc->rxq.freelist_mtx);
535	rbuf = SLIST_FIRST(&sc->rxq.freelist);
536	if (rbuf != NULL) {
537		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
538	}
539	mutex_exit(&sc->rxq.freelist_mtx);
540
541	return rbuf;
542}
543
544/*
545 * This is called automatically by the network stack when the mbuf to which our
546 * Rx buffer is attached is freed.
547 */
548static void
549wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
550{
551	struct wpi_rbuf *rbuf = arg;
552	struct wpi_softc *sc = rbuf->sc;
553
554	/* put the buffer back in the free list */
555
556	mutex_enter(&sc->rxq.freelist_mtx);
557	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
558	mutex_exit(&sc->rxq.freelist_mtx);
559
560	if (__predict_true(m != NULL))
561		pool_cache_put(mb_cache, m);
562}
563
564static int
565wpi_alloc_rpool(struct wpi_softc *sc)
566{
567	struct wpi_rx_ring *ring = &sc->rxq;
568	int i, error;
569
570	/* allocate a big chunk of DMA'able memory.. */
571	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
572	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
573	if (error != 0) {
574		aprint_normal_dev(sc->sc_dev,
575		    "could not allocate Rx buffers DMA memory\n");
576		return error;
577	}
578
579	/* ..and split it into 3KB chunks */
580	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
581	SLIST_INIT(&ring->freelist);
582	for (i = 0; i < WPI_RBUF_COUNT; i++) {
583		struct wpi_rbuf *rbuf = &ring->rbuf[i];
584
585		rbuf->sc = sc;	/* backpointer for callbacks */
586		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
587		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
588
589		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
590	}
591
592	return 0;
593}
594
595static void
596wpi_free_rpool(struct wpi_softc *sc)
597{
598	wpi_dma_contig_free(&sc->rxq.buf_dma);
599}
600
601static int
602wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
603{
604	bus_size_t size;
605	int i, error;
606
607	ring->cur = 0;
608
609	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
610	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
611	    (void **)&ring->desc, size,
612	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
613	if (error != 0) {
614		aprint_error_dev(sc->sc_dev,
615		    "could not allocate rx ring DMA memory\n");
616		goto fail;
617	}
618
619	/*
620	 * Setup Rx buffers.
621	 */
622	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
623		struct wpi_rx_data *data = &ring->data[i];
624		struct wpi_rbuf *rbuf;
625
626		error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
627		    WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
628		if (error) {
629			aprint_error_dev(sc->sc_dev,
630			    "could not allocate rx dma map\n");
631			goto fail;
632		}
633
634		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
635		if (data->m == NULL) {
636			aprint_error_dev(sc->sc_dev,
637			    "could not allocate rx mbuf\n");
638			error = ENOMEM;
639			goto fail;
640		}
641		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
642			m_freem(data->m);
643			data->m = NULL;
644			aprint_error_dev(sc->sc_dev,
645			    "could not allocate rx cluster\n");
646			error = ENOMEM;
647			goto fail;
648		}
649		/* attach Rx buffer to mbuf */
650		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
651		    rbuf);
652		data->m->m_flags |= M_EXT_RW;
653
654		error = bus_dmamap_load(sc->sc_dmat, data->map,
655		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
656		    BUS_DMA_NOWAIT | BUS_DMA_READ);
657		if (error) {
658			aprint_error_dev(sc->sc_dev,
659			    "could not load mbuf: %d\n", error);
660			goto fail;
661		}
662
663		ring->desc[i] = htole32(rbuf->paddr);
664	}
665
666	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
667	    BUS_DMASYNC_PREWRITE);
668
669	return 0;
670
671fail:	wpi_free_rx_ring(sc, ring);
672	return error;
673}
674
675static void
676wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
677{
678	int ntries;
679
680	wpi_mem_lock(sc);
681
682	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
683	for (ntries = 0; ntries < 100; ntries++) {
684		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
685			break;
686		DELAY(10);
687	}
688#ifdef WPI_DEBUG
689	if (ntries == 100 && wpi_debug > 0)
690		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
691#endif
692	wpi_mem_unlock(sc);
693
694	ring->cur = 0;
695}
696
697static void
698wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
699{
700	int i;
701
702	wpi_dma_contig_free(&ring->desc_dma);
703
704	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
705		if (ring->data[i].m != NULL) {
706			bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
707			m_freem(ring->data[i].m);
708		}
709		if (ring->data[i].map != NULL) {
710			bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
711		}
712	}
713}
714
715static int
716wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
717    int qid)
718{
719	int i, error;
720
721	ring->qid = qid;
722	ring->count = count;
723	ring->queued = 0;
724	ring->cur = 0;
725
726	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
727	    (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
728	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
729	if (error != 0) {
730		aprint_error_dev(sc->sc_dev,
731		    "could not allocate tx ring DMA memory\n");
732		goto fail;
733	}
734
735	/* update shared page with ring's base address */
736	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
737	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
738	    sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
739
740	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
741	    (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
742	    BUS_DMA_NOWAIT);
743	if (error != 0) {
744		aprint_error_dev(sc->sc_dev,
745		    "could not allocate tx cmd DMA memory\n");
746		goto fail;
747	}
748
749	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
750	    M_NOWAIT | M_ZERO);
751	if (ring->data == NULL) {
752		aprint_error_dev(sc->sc_dev,
753		    "could not allocate tx data slots\n");
754		goto fail;
755	}
756
757	for (i = 0; i < count; i++) {
758		struct wpi_tx_data *data = &ring->data[i];
759
760		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
761		    WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
762		    &data->map);
763		if (error != 0) {
764			aprint_error_dev(sc->sc_dev,
765			    "could not create tx buf DMA map\n");
766			goto fail;
767		}
768	}
769
770	return 0;
771
772fail:	wpi_free_tx_ring(sc, ring);
773	return error;
774}
775
776static void
777wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
778{
779	int i, ntries;
780
781	wpi_mem_lock(sc);
782
783	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
784	for (ntries = 0; ntries < 100; ntries++) {
785		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
786			break;
787		DELAY(10);
788	}
789#ifdef WPI_DEBUG
790	if (ntries == 100 && wpi_debug > 0) {
791		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
792		    ring->qid);
793	}
794#endif
795	wpi_mem_unlock(sc);
796
797	for (i = 0; i < ring->count; i++) {
798		struct wpi_tx_data *data = &ring->data[i];
799
800		if (data->m != NULL) {
801			bus_dmamap_unload(sc->sc_dmat, data->map);
802			m_freem(data->m);
803			data->m = NULL;
804		}
805	}
806
807	ring->queued = 0;
808	ring->cur = 0;
809}
810
811static void
812wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
813{
814	int i;
815
816	wpi_dma_contig_free(&ring->desc_dma);
817	wpi_dma_contig_free(&ring->cmd_dma);
818
819	if (ring->data != NULL) {
820		for (i = 0; i < ring->count; i++) {
821			struct wpi_tx_data *data = &ring->data[i];
822
823			if (data->m != NULL) {
824				bus_dmamap_unload(sc->sc_dmat, data->map);
825				m_freem(data->m);
826			}
827		}
828		free(ring->data, M_DEVBUF);
829	}
830}
831
832/*ARGUSED*/
833static struct ieee80211_node *
834wpi_node_alloc(struct ieee80211_node_table *nt __unused)
835{
836	struct wpi_node *wn;
837
838	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
839
840	return (struct ieee80211_node *)wn;
841}
842
843static void
844wpi_newassoc(struct ieee80211_node *ni, int isnew)
845{
846	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
847	int i;
848
849	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
850
851	/* set rate to some reasonable initial value */
852	for (i = ni->ni_rates.rs_nrates - 1;
853	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
854	     i--);
855	ni->ni_txrate = i;
856}
857
858static int
859wpi_media_change(struct ifnet *ifp)
860{
861	int error;
862
863	error = ieee80211_media_change(ifp);
864	if (error != ENETRESET)
865		return error;
866
867	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
868		wpi_init(ifp);
869
870	return 0;
871}
872
873static int
874wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
875{
876	struct ifnet *ifp = ic->ic_ifp;
877	struct wpi_softc *sc = ifp->if_softc;
878	struct ieee80211_node *ni;
879	enum ieee80211_state ostate = ic->ic_state;
880	int error;
881
882	callout_stop(&sc->calib_to);
883
884	switch (nstate) {
885	case IEEE80211_S_SCAN:
886
887		if (sc->is_scanning)
888			break;
889
890		sc->is_scanning = true;
891
892		if (ostate != IEEE80211_S_SCAN) {
893			/* make the link LED blink while we're scanning */
894			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
895		}
896
897		if ((error = wpi_scan(sc)) != 0) {
898			aprint_error_dev(sc->sc_dev,
899			    "could not initiate scan\n");
900			return error;
901		}
902		break;
903
904	case IEEE80211_S_ASSOC:
905		if (ic->ic_state != IEEE80211_S_RUN)
906			break;
907		/* FALLTHROUGH */
908	case IEEE80211_S_AUTH:
909		/* reset state to handle reassociations correctly */
910		sc->config.associd = 0;
911		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
912
913		if ((error = wpi_auth(sc)) != 0) {
914			aprint_error_dev(sc->sc_dev,
915			    "could not send authentication request\n");
916			return error;
917		}
918		break;
919
920	case IEEE80211_S_RUN:
921		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
922			/* link LED blinks while monitoring */
923			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
924			break;
925		}
926		ni = ic->ic_bss;
927
928		if (ic->ic_opmode != IEEE80211_M_STA) {
929			(void) wpi_auth(sc);    /* XXX */
930			wpi_setup_beacon(sc, ni);
931		}
932
933		wpi_enable_tsf(sc, ni);
934
935		/* update adapter's configuration */
936		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
937		/* short preamble/slot time are negotiated when associating */
938		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
939		    WPI_CONFIG_SHSLOT);
940		if (ic->ic_flags & IEEE80211_F_SHSLOT)
941			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
942		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
943			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
944		sc->config.filter |= htole32(WPI_FILTER_BSS);
945		if (ic->ic_opmode != IEEE80211_M_STA)
946			sc->config.filter |= htole32(WPI_FILTER_BEACON);
947
948/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
949
950		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
951		    sc->config.flags));
952		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
953		    sizeof (struct wpi_config), 1);
954		if (error != 0) {
955			aprint_error_dev(sc->sc_dev,
956			    "could not update configuration\n");
957			return error;
958		}
959
960		/* configuration has changed, set Tx power accordingly */
961		if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
962			aprint_error_dev(sc->sc_dev,
963			    "could not set Tx power\n");
964			return error;
965		}
966
967		if (ic->ic_opmode == IEEE80211_M_STA) {
968			/* fake a join to init the tx rate */
969			wpi_newassoc(ni, 1);
970		}
971
972		/* start periodic calibration timer */
973		sc->calib_cnt = 0;
974		callout_schedule(&sc->calib_to, hz/2);
975
976		/* link LED always on while associated */
977		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
978		break;
979
980	case IEEE80211_S_INIT:
981		sc->is_scanning = false;
982		break;
983	}
984
985	return sc->sc_newstate(ic, nstate, arg);
986}
987
988/*
989 * Grab exclusive access to NIC memory.
990 */
991static void
992wpi_mem_lock(struct wpi_softc *sc)
993{
994	uint32_t tmp;
995	int ntries;
996
997	tmp = WPI_READ(sc, WPI_GPIO_CTL);
998	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
999
1000	/* spin until we actually get the lock */
1001	for (ntries = 0; ntries < 1000; ntries++) {
1002		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1003		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1004			break;
1005		DELAY(10);
1006	}
1007	if (ntries == 1000)
1008		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1009}
1010
1011/*
1012 * Release lock on NIC memory.
1013 */
1014static void
1015wpi_mem_unlock(struct wpi_softc *sc)
1016{
1017	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1018	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1019}
1020
1021static uint32_t
1022wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1023{
1024	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1025	return WPI_READ(sc, WPI_READ_MEM_DATA);
1026}
1027
1028static void
1029wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1030{
1031	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1032	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1033}
1034
1035static void
1036wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1037    const uint32_t *data, int wlen)
1038{
1039	for (; wlen > 0; wlen--, data++, addr += 4)
1040		wpi_mem_write(sc, addr, *data);
1041}
1042
1043/*
1044 * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1045 * instead of using the traditional bit-bang method.
1046 */
1047static int
1048wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1049{
1050	uint8_t *out = data;
1051	uint32_t val;
1052	int ntries;
1053
1054	wpi_mem_lock(sc);
1055	for (; len > 0; len -= 2, addr++) {
1056		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1057
1058		for (ntries = 0; ntries < 10; ntries++) {
1059			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1060			    WPI_EEPROM_READY)
1061				break;
1062			DELAY(5);
1063		}
1064		if (ntries == 10) {
1065			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1066			return ETIMEDOUT;
1067		}
1068		*out++ = val >> 16;
1069		if (len > 1)
1070			*out++ = val >> 24;
1071	}
1072	wpi_mem_unlock(sc);
1073
1074	return 0;
1075}
1076
1077/*
1078 * The firmware boot code is small and is intended to be copied directly into
1079 * the NIC internal memory.
1080 */
1081int
1082wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1083{
1084	int ntries;
1085
1086	size /= sizeof (uint32_t);
1087
1088	wpi_mem_lock(sc);
1089
1090	/* copy microcode image into NIC memory */
1091	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1092	    (const uint32_t *)ucode, size);
1093
1094	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1095	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1096	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1097
1098	/* run microcode */
1099	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1100
1101	/* wait for transfer to complete */
1102	for (ntries = 0; ntries < 1000; ntries++) {
1103		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1104			break;
1105		DELAY(10);
1106	}
1107	if (ntries == 1000) {
1108		wpi_mem_unlock(sc);
1109		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1110		return ETIMEDOUT;
1111	}
1112	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1113
1114	wpi_mem_unlock(sc);
1115
1116	return 0;
1117}
1118
1119static int
1120wpi_cache_firmware(struct wpi_softc *sc)
1121{
1122	const char *const fwname = wpi_firmware_name;
1123	firmware_handle_t fw;
1124	int error;
1125
1126	/* sc is used here only to report error messages.  */
1127
1128	mutex_enter(&wpi_firmware_mutex);
1129
1130	if (wpi_firmware_users == SIZE_MAX) {
1131		mutex_exit(&wpi_firmware_mutex);
1132		return ENFILE;	/* Too many of something in the system...  */
1133	}
1134	if (wpi_firmware_users++) {
1135		KASSERT(wpi_firmware_image != NULL);
1136		KASSERT(wpi_firmware_size > 0);
1137		mutex_exit(&wpi_firmware_mutex);
1138		return 0;	/* Already good to go.  */
1139	}
1140
1141	KASSERT(wpi_firmware_image == NULL);
1142	KASSERT(wpi_firmware_size == 0);
1143
1144	/* load firmware image from disk */
1145	if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1146		aprint_error_dev(sc->sc_dev,
1147		    "could not open firmware file %s: %d\n", fwname, error);
1148		goto fail0;
1149	}
1150
1151	wpi_firmware_size = firmware_get_size(fw);
1152
1153	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1154	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1155	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1156	    WPI_FW_BOOT_TEXT_MAXSZ) {
1157		aprint_error_dev(sc->sc_dev,
1158		    "firmware file %s too large: %zu bytes\n",
1159		    fwname, wpi_firmware_size);
1160		error = EFBIG;
1161		goto fail1;
1162	}
1163
1164	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1165		aprint_error_dev(sc->sc_dev,
1166		    "firmware file %s too small: %zu bytes\n",
1167		    fwname, wpi_firmware_size);
1168		error = EINVAL;
1169		goto fail1;
1170	}
1171
1172	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1173	if (wpi_firmware_image == NULL) {
1174		aprint_error_dev(sc->sc_dev,
1175		    "not enough memory for firmware file %s\n", fwname);
1176		error = ENOMEM;
1177		goto fail1;
1178	}
1179
1180	error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1181	if (error != 0) {
1182		aprint_error_dev(sc->sc_dev,
1183		    "error reading firmware file %s: %d\n", fwname, error);
1184		goto fail2;
1185	}
1186
1187	/* Success!  */
1188	firmware_close(fw);
1189	mutex_exit(&wpi_firmware_mutex);
1190	return 0;
1191
1192fail2:
1193	firmware_free(wpi_firmware_image, wpi_firmware_size);
1194	wpi_firmware_image = NULL;
1195fail1:
1196	wpi_firmware_size = 0;
1197	firmware_close(fw);
1198fail0:
1199	KASSERT(wpi_firmware_users == 1);
1200	wpi_firmware_users = 0;
1201	KASSERT(wpi_firmware_image == NULL);
1202	KASSERT(wpi_firmware_size == 0);
1203
1204	mutex_exit(&wpi_firmware_mutex);
1205	return error;
1206}
1207
1208static void
1209wpi_release_firmware(void)
1210{
1211
1212	mutex_enter(&wpi_firmware_mutex);
1213
1214	KASSERT(wpi_firmware_users > 0);
1215	KASSERT(wpi_firmware_image != NULL);
1216	KASSERT(wpi_firmware_size != 0);
1217
1218	if (--wpi_firmware_users == 0) {
1219		firmware_free(wpi_firmware_image, wpi_firmware_size);
1220		wpi_firmware_image = NULL;
1221		wpi_firmware_size = 0;
1222	}
1223
1224	mutex_exit(&wpi_firmware_mutex);
1225}
1226
1227static int
1228wpi_load_firmware(struct wpi_softc *sc)
1229{
1230	struct wpi_dma_info *dma = &sc->fw_dma;
1231	struct wpi_firmware_hdr hdr;
1232	const uint8_t *init_text, *init_data, *main_text, *main_data;
1233	const uint8_t *boot_text;
1234	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1235	uint32_t boot_textsz;
1236	size_t size;
1237	int error;
1238
1239	if (!sc->fw_used) {
1240		if ((error = wpi_cache_firmware(sc)) != 0)
1241			return error;
1242		sc->fw_used = true;
1243	}
1244
1245	KASSERT(sc->fw_used);
1246	KASSERT(wpi_firmware_image != NULL);
1247	KASSERT(wpi_firmware_size > sizeof(hdr));
1248
1249	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1250
1251	main_textsz = le32toh(hdr.main_textsz);
1252	main_datasz = le32toh(hdr.main_datasz);
1253	init_textsz = le32toh(hdr.init_textsz);
1254	init_datasz = le32toh(hdr.init_datasz);
1255	boot_textsz = le32toh(hdr.boot_textsz);
1256
1257	/* sanity-check firmware segments sizes */
1258	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1259	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1260	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1261	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1262	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1263	    (boot_textsz & 3) != 0) {
1264		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1265		error = EINVAL;
1266		goto free_firmware;
1267	}
1268
1269	/* check that all firmware segments are present */
1270	size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1271	    main_datasz + init_textsz + init_datasz + boot_textsz;
1272	if (wpi_firmware_size < size) {
1273		aprint_error_dev(sc->sc_dev,
1274		    "firmware file truncated: %zu bytes, expected %zu bytes\n",
1275		    wpi_firmware_size, size);
1276		error = EINVAL;
1277		goto free_firmware;
1278	}
1279
1280	/* get pointers to firmware segments */
1281	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1282	main_data = main_text + main_textsz;
1283	init_text = main_data + main_datasz;
1284	init_data = init_text + init_textsz;
1285	boot_text = init_data + init_datasz;
1286
1287	/* copy initialization images into pre-allocated DMA-safe memory */
1288	memcpy(dma->vaddr, init_data, init_datasz);
1289	memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1290	    init_textsz);
1291
1292	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1293
1294	/* tell adapter where to find initialization images */
1295	wpi_mem_lock(sc);
1296	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1297	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1298	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1299	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1300	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1301	wpi_mem_unlock(sc);
1302
1303	/* load firmware boot code */
1304	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1305		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1306		return error;
1307	}
1308
1309	/* now press "execute" ;-) */
1310	WPI_WRITE(sc, WPI_RESET, 0);
1311
1312	/* wait at most one second for first alive notification */
1313	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1314		/* this isn't what was supposed to happen.. */
1315		aprint_error_dev(sc->sc_dev,
1316		    "timeout waiting for adapter to initialize\n");
1317	}
1318
1319	/* copy runtime images into pre-allocated DMA-safe memory */
1320	memcpy(dma->vaddr, main_data, main_datasz);
1321	memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1322	    main_textsz);
1323
1324	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1325
1326	/* tell adapter where to find runtime images */
1327	wpi_mem_lock(sc);
1328	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1329	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1330	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1331	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1332	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1333	wpi_mem_unlock(sc);
1334
1335	/* wait at most one second for second alive notification */
1336	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1337		/* this isn't what was supposed to happen.. */
1338		aprint_error_dev(sc->sc_dev,
1339		    "timeout waiting for adapter to initialize\n");
1340	}
1341
1342	return error;
1343
1344free_firmware:
1345	sc->fw_used = false;
1346	wpi_release_firmware();
1347	return error;
1348}
1349
1350static void
1351wpi_calib_timeout(void *arg)
1352{
1353	struct wpi_softc *sc = arg;
1354	struct ieee80211com *ic = &sc->sc_ic;
1355	int temp, s;
1356
1357	/* automatic rate control triggered every 500ms */
1358	if (ic->ic_fixed_rate == -1) {
1359		s = splnet();
1360		if (ic->ic_opmode == IEEE80211_M_STA)
1361			wpi_iter_func(sc, ic->ic_bss);
1362		else
1363			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1364		splx(s);
1365	}
1366
1367	/* update sensor data */
1368	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1369
1370	/* automatic power calibration every 60s */
1371	if (++sc->calib_cnt >= 120) {
1372		wpi_power_calibration(sc, temp);
1373		sc->calib_cnt = 0;
1374	}
1375
1376	callout_schedule(&sc->calib_to, hz/2);
1377}
1378
1379static void
1380wpi_iter_func(void *arg, struct ieee80211_node *ni)
1381{
1382	struct wpi_softc *sc = arg;
1383	struct wpi_node *wn = (struct wpi_node *)ni;
1384
1385	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1386}
1387
1388/*
1389 * This function is called periodically (every 60 seconds) to adjust output
1390 * power to temperature changes.
1391 */
1392void
1393wpi_power_calibration(struct wpi_softc *sc, int temp)
1394{
1395	/* sanity-check read value */
1396	if (temp < -260 || temp > 25) {
1397		/* this can't be correct, ignore */
1398		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1399		return;
1400	}
1401
1402	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1403
1404	/* adjust Tx power if need be */
1405	if (abs(temp - sc->temp) <= 6)
1406		return;
1407
1408	sc->temp = temp;
1409
1410	if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
1411		/* just warn, too bad for the automatic calibration... */
1412		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1413	}
1414}
1415
1416static void
1417wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1418    struct wpi_rx_data *data)
1419{
1420	struct ieee80211com *ic = &sc->sc_ic;
1421	struct ifnet *ifp = ic->ic_ifp;
1422	struct wpi_rx_ring *ring = &sc->rxq;
1423	struct wpi_rx_stat *stat;
1424	struct wpi_rx_head *head;
1425	struct wpi_rx_tail *tail;
1426	struct wpi_rbuf *rbuf;
1427	struct ieee80211_frame *wh;
1428	struct ieee80211_node *ni;
1429	struct mbuf *m, *mnew;
1430	int data_off, error;
1431
1432	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1433	    BUS_DMASYNC_POSTREAD);
1434	stat = (struct wpi_rx_stat *)(desc + 1);
1435
1436	if (stat->len > WPI_STAT_MAXLEN) {
1437		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1438		ifp->if_ierrors++;
1439		return;
1440	}
1441
1442	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1443	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1444
1445	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1446	    "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
1447	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1448	    le64toh(tail->tstamp)));
1449
1450	/*
1451	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1452	 * to radiotap in monitor mode).
1453	 */
1454	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1455		DPRINTF(("rx tail flags error %x\n",
1456		    le32toh(tail->flags)));
1457		ifp->if_ierrors++;
1458		return;
1459	}
1460
1461	/* Compute where are the useful datas */
1462	data_off = (char*)(head + 1) - mtod(data->m, char*);
1463
1464	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1465	if (mnew == NULL) {
1466		ifp->if_ierrors++;
1467		return;
1468	}
1469
1470	rbuf = wpi_alloc_rbuf(sc);
1471	if (rbuf == NULL) {
1472		m_freem(mnew);
1473		ifp->if_ierrors++;
1474		return;
1475	}
1476
1477	/* attach Rx buffer to mbuf */
1478	MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1479		rbuf);
1480	mnew->m_flags |= M_EXT_RW;
1481
1482	bus_dmamap_unload(sc->sc_dmat, data->map);
1483
1484	error = bus_dmamap_load(sc->sc_dmat, data->map,
1485	    mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
1486	    BUS_DMA_NOWAIT | BUS_DMA_READ);
1487	if (error) {
1488		device_printf(sc->sc_dev,
1489		    "couldn't load rx mbuf: %d\n", error);
1490		m_freem(mnew);
1491		ifp->if_ierrors++;
1492
1493		error = bus_dmamap_load(sc->sc_dmat, data->map,
1494		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1495		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1496		if (error)
1497			panic("%s: bus_dmamap_load failed: %d\n",
1498			    device_xname(sc->sc_dev), error);
1499		return;
1500	}
1501
1502	/* new mbuf loaded successfully */
1503	m = data->m;
1504	data->m = mnew;
1505
1506	/* update Rx descriptor */
1507	ring->desc[ring->cur] = htole32(rbuf->paddr);
1508	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1509	    ring->desc_dma.size,
1510	    BUS_DMASYNC_PREWRITE);
1511
1512	m->m_data = (char*)m->m_data + data_off;
1513	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1514
1515	/* finalize mbuf */
1516	m->m_pkthdr.rcvif = ifp;
1517
1518	if (sc->sc_drvbpf != NULL) {
1519		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1520
1521		tap->wr_flags = 0;
1522		tap->wr_chan_freq =
1523		    htole16(ic->ic_channels[head->chan].ic_freq);
1524		tap->wr_chan_flags =
1525		    htole16(ic->ic_channels[head->chan].ic_flags);
1526		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1527		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1528		tap->wr_tsft = tail->tstamp;
1529		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1530		switch (head->rate) {
1531		/* CCK rates */
1532		case  10: tap->wr_rate =   2; break;
1533		case  20: tap->wr_rate =   4; break;
1534		case  55: tap->wr_rate =  11; break;
1535		case 110: tap->wr_rate =  22; break;
1536		/* OFDM rates */
1537		case 0xd: tap->wr_rate =  12; break;
1538		case 0xf: tap->wr_rate =  18; break;
1539		case 0x5: tap->wr_rate =  24; break;
1540		case 0x7: tap->wr_rate =  36; break;
1541		case 0x9: tap->wr_rate =  48; break;
1542		case 0xb: tap->wr_rate =  72; break;
1543		case 0x1: tap->wr_rate =  96; break;
1544		case 0x3: tap->wr_rate = 108; break;
1545		/* unknown rate: should not happen */
1546		default:  tap->wr_rate =   0;
1547		}
1548		if (le16toh(head->flags) & 0x4)
1549			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1550
1551		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1552	}
1553
1554	/* grab a reference to the source node */
1555	wh = mtod(m, struct ieee80211_frame *);
1556	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1557
1558	/* send the frame to the 802.11 layer */
1559	ieee80211_input(ic, m, ni, stat->rssi, 0);
1560
1561	/* release node reference */
1562	ieee80211_free_node(ni);
1563}
1564
1565static void
1566wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1567{
1568	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1569	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1570	struct wpi_tx_data *data = &ring->data[desc->idx];
1571	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1572	struct wpi_node *wn = (struct wpi_node *)data->ni;
1573
1574	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1575	    "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1576	    stat->nkill, stat->rate, le32toh(stat->duration),
1577	    le32toh(stat->status)));
1578
1579	/*
1580	 * Update rate control statistics for the node.
1581	 * XXX we should not count mgmt frames since they're always sent at
1582	 * the lowest available bit-rate.
1583	 */
1584	wn->amn.amn_txcnt++;
1585	if (stat->ntries > 0) {
1586		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1587		wn->amn.amn_retrycnt++;
1588	}
1589
1590	if ((le32toh(stat->status) & 0xff) != 1)
1591		ifp->if_oerrors++;
1592	else
1593		ifp->if_opackets++;
1594
1595	bus_dmamap_unload(sc->sc_dmat, data->map);
1596	m_freem(data->m);
1597	data->m = NULL;
1598	ieee80211_free_node(data->ni);
1599	data->ni = NULL;
1600
1601	ring->queued--;
1602
1603	sc->sc_tx_timer = 0;
1604	ifp->if_flags &= ~IFF_OACTIVE;
1605	wpi_start(ifp);
1606}
1607
1608static void
1609wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1610{
1611	struct wpi_tx_ring *ring = &sc->cmdq;
1612	struct wpi_tx_data *data;
1613
1614	if ((desc->qid & 7) != 4)
1615		return;	/* not a command ack */
1616
1617	data = &ring->data[desc->idx];
1618
1619	/* if the command was mapped in a mbuf, free it */
1620	if (data->m != NULL) {
1621		bus_dmamap_unload(sc->sc_dmat, data->map);
1622		m_freem(data->m);
1623		data->m = NULL;
1624	}
1625
1626	wakeup(&ring->cmd[desc->idx]);
1627}
1628
1629static void
1630wpi_notif_intr(struct wpi_softc *sc)
1631{
1632	struct ieee80211com *ic = &sc->sc_ic;
1633	struct ifnet *ifp =  ic->ic_ifp;
1634	uint32_t hw;
1635
1636	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1637	    sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
1638
1639	hw = le32toh(sc->shared->next);
1640	while (sc->rxq.cur != hw) {
1641		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1642		struct wpi_rx_desc *desc;
1643
1644		bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1645		    BUS_DMASYNC_POSTREAD);
1646		desc = mtod(data->m, struct wpi_rx_desc *);
1647
1648		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1649		    "len=%d\n", desc->qid, desc->idx, desc->flags,
1650		    desc->type, le32toh(desc->len)));
1651
1652		if (!(desc->qid & 0x80))	/* reply to a command */
1653			wpi_cmd_intr(sc, desc);
1654
1655		switch (desc->type) {
1656		case WPI_RX_DONE:
1657			/* a 802.11 frame was received */
1658			wpi_rx_intr(sc, desc, data);
1659			break;
1660
1661		case WPI_TX_DONE:
1662			/* a 802.11 frame has been transmitted */
1663			wpi_tx_intr(sc, desc);
1664			break;
1665
1666		case WPI_UC_READY:
1667		{
1668			struct wpi_ucode_info *uc =
1669			    (struct wpi_ucode_info *)(desc + 1);
1670
1671			/* the microcontroller is ready */
1672			DPRINTF(("microcode alive notification version %x "
1673			    "alive %x\n", le32toh(uc->version),
1674			    le32toh(uc->valid)));
1675
1676			if (le32toh(uc->valid) != 1) {
1677				aprint_error_dev(sc->sc_dev,
1678				    "microcontroller initialization failed\n");
1679			}
1680			break;
1681		}
1682		case WPI_STATE_CHANGED:
1683		{
1684			uint32_t *status = (uint32_t *)(desc + 1);
1685
1686			/* enabled/disabled notification */
1687			DPRINTF(("state changed to %x\n", le32toh(*status)));
1688
1689			if (le32toh(*status) & 1) {
1690				/* the radio button has to be pushed */
1691				aprint_error_dev(sc->sc_dev,
1692				    "Radio transmitter is off\n");
1693				/* turn the interface down */
1694				ifp->if_flags &= ~IFF_UP;
1695				wpi_stop(ifp, 1);
1696				return;	/* no further processing */
1697			}
1698			break;
1699		}
1700		case WPI_START_SCAN:
1701		{
1702#if 0
1703			struct wpi_start_scan *scan =
1704			    (struct wpi_start_scan *)(desc + 1);
1705
1706			DPRINTFN(2, ("scanning channel %d status %x\n",
1707			    scan->chan, le32toh(scan->status)));
1708
1709			/* fix current channel */
1710			ic->ic_curchan = &ic->ic_channels[scan->chan];
1711#endif
1712			break;
1713		}
1714		case WPI_STOP_SCAN:
1715		{
1716#ifdef WPI_DEBUG
1717			struct wpi_stop_scan *scan =
1718			    (struct wpi_stop_scan *)(desc + 1);
1719#endif
1720
1721			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1722			    scan->nchan, scan->status, scan->chan));
1723
1724			sc->is_scanning = false;
1725			if (ic->ic_state == IEEE80211_S_SCAN)
1726				ieee80211_next_scan(ic);
1727
1728			break;
1729		}
1730		}
1731
1732		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1733	}
1734
1735	/* tell the firmware what we have processed */
1736	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1737	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1738}
1739
1740static int
1741wpi_intr(void *arg)
1742{
1743	struct wpi_softc *sc = arg;
1744	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1745	uint32_t r;
1746
1747	r = WPI_READ(sc, WPI_INTR);
1748	if (r == 0 || r == 0xffffffff)
1749		return 0;	/* not for us */
1750
1751	DPRINTFN(6, ("interrupt reg %x\n", r));
1752
1753	/* disable interrupts */
1754	WPI_WRITE(sc, WPI_MASK, 0);
1755	/* ack interrupts */
1756	WPI_WRITE(sc, WPI_INTR, r);
1757
1758	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1759		/* SYSTEM FAILURE, SYSTEM FAILURE */
1760		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1761		ifp->if_flags &= ~IFF_UP;
1762		wpi_stop(ifp, 1);
1763		return 1;
1764	}
1765
1766	if (r & WPI_RX_INTR)
1767		wpi_notif_intr(sc);
1768
1769	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1770		wakeup(sc);
1771
1772	/* re-enable interrupts */
1773	if (ifp->if_flags & IFF_UP)
1774		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1775
1776	return 1;
1777}
1778
1779static uint8_t
1780wpi_plcp_signal(int rate)
1781{
1782	switch (rate) {
1783	/* CCK rates (returned values are device-dependent) */
1784	case 2:		return 10;
1785	case 4:		return 20;
1786	case 11:	return 55;
1787	case 22:	return 110;
1788
1789	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1790	/* R1-R4, (u)ral is R4-R1 */
1791	case 12:	return 0xd;
1792	case 18:	return 0xf;
1793	case 24:	return 0x5;
1794	case 36:	return 0x7;
1795	case 48:	return 0x9;
1796	case 72:	return 0xb;
1797	case 96:	return 0x1;
1798	case 108:	return 0x3;
1799
1800	/* unsupported rates (should not get there) */
1801	default:	return 0;
1802	}
1803}
1804
1805/* quickly determine if a given rate is CCK or OFDM */
1806#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1807
1808static int
1809wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1810    int ac)
1811{
1812	struct ieee80211com *ic = &sc->sc_ic;
1813	struct wpi_tx_ring *ring = &sc->txq[ac];
1814	struct wpi_tx_desc *desc;
1815	struct wpi_tx_data *data;
1816	struct wpi_tx_cmd *cmd;
1817	struct wpi_cmd_data *tx;
1818	struct ieee80211_frame *wh;
1819	struct ieee80211_key *k;
1820	const struct chanAccParams *cap;
1821	struct mbuf *mnew;
1822	int i, rate, error, hdrlen, noack = 0;
1823
1824	desc = &ring->desc[ring->cur];
1825	data = &ring->data[ring->cur];
1826
1827	wh = mtod(m0, struct ieee80211_frame *);
1828
1829	if (ieee80211_has_qos(wh)) {
1830		cap = &ic->ic_wme.wme_chanParams;
1831		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1832	}
1833
1834	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1835		k = ieee80211_crypto_encap(ic, ni, m0);
1836		if (k == NULL) {
1837			m_freem(m0);
1838			return ENOBUFS;
1839		}
1840
1841		/* packet header may have moved, reset our local pointer */
1842		wh = mtod(m0, struct ieee80211_frame *);
1843	}
1844
1845	hdrlen = ieee80211_anyhdrsize(wh);
1846
1847	/* pickup a rate */
1848	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1849	    IEEE80211_FC0_TYPE_MGT) {
1850		/* mgmt frames are sent at the lowest available bit-rate */
1851		rate = ni->ni_rates.rs_rates[0];
1852	} else {
1853		if (ic->ic_fixed_rate != -1) {
1854			rate = ic->ic_sup_rates[ic->ic_curmode].
1855			    rs_rates[ic->ic_fixed_rate];
1856		} else
1857			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1858	}
1859	rate &= IEEE80211_RATE_VAL;
1860
1861	if (sc->sc_drvbpf != NULL) {
1862		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1863
1864		tap->wt_flags = 0;
1865		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1866		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1867		tap->wt_rate = rate;
1868		tap->wt_hwqueue = ac;
1869		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1870			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1871
1872		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1873	}
1874
1875	cmd = &ring->cmd[ring->cur];
1876	cmd->code = WPI_CMD_TX_DATA;
1877	cmd->flags = 0;
1878	cmd->qid = ring->qid;
1879	cmd->idx = ring->cur;
1880
1881	tx = (struct wpi_cmd_data *)cmd->data;
1882	/* no need to zero tx, all fields are reinitialized here */
1883	tx->flags = 0;
1884
1885	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1886		tx->flags |= htole32(WPI_TX_NEED_ACK);
1887	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1888		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1889
1890	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1891
1892	/* retrieve destination node's id */
1893	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1894		WPI_ID_BSS;
1895
1896	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1897	    IEEE80211_FC0_TYPE_MGT) {
1898		/* tell h/w to set timestamp in probe responses */
1899		if ((wh->i_fc[0] &
1900		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1901		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1902			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1903
1904		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1905			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1906			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1907			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1908			tx->timeout = htole16(3);
1909		else
1910			tx->timeout = htole16(2);
1911	} else
1912		tx->timeout = htole16(0);
1913
1914	tx->rate = wpi_plcp_signal(rate);
1915
1916	/* be very persistant at sending frames out */
1917	tx->rts_ntries = 7;
1918	tx->data_ntries = 15;
1919
1920	tx->ofdm_mask = 0xff;
1921	tx->cck_mask = 0x0f;
1922	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1923
1924	tx->len = htole16(m0->m_pkthdr.len);
1925
1926	/* save and trim IEEE802.11 header */
1927	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1928	m_adj(m0, hdrlen);
1929
1930	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1931	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1932	if (error != 0 && error != EFBIG) {
1933		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1934		    error);
1935		m_freem(m0);
1936		return error;
1937	}
1938	if (error != 0) {
1939		/* too many fragments, linearize */
1940
1941		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1942		if (mnew == NULL) {
1943			m_freem(m0);
1944			return ENOMEM;
1945		}
1946		M_COPY_PKTHDR(mnew, m0);
1947		if (m0->m_pkthdr.len > MHLEN) {
1948			MCLGET(mnew, M_DONTWAIT);
1949			if (!(mnew->m_flags & M_EXT)) {
1950				m_freem(m0);
1951				m_freem(mnew);
1952				return ENOMEM;
1953			}
1954		}
1955
1956		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1957		m_freem(m0);
1958		mnew->m_len = mnew->m_pkthdr.len;
1959		m0 = mnew;
1960
1961		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1962		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1963		if (error != 0) {
1964			aprint_error_dev(sc->sc_dev,
1965			    "could not map mbuf (error %d)\n", error);
1966			m_freem(m0);
1967			return error;
1968		}
1969	}
1970
1971	data->m = m0;
1972	data->ni = ni;
1973
1974	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1975	    ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1976
1977	/* first scatter/gather segment is used by the tx data command */
1978	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1979	    (1 + data->map->dm_nsegs) << 24);
1980	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1981	    ring->cur * sizeof (struct wpi_tx_cmd));
1982	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
1983	    ((hdrlen + 3) & ~3));
1984	for (i = 1; i <= data->map->dm_nsegs; i++) {
1985		desc->segs[i].addr =
1986		    htole32(data->map->dm_segs[i - 1].ds_addr);
1987		desc->segs[i].len  =
1988		    htole32(data->map->dm_segs[i - 1].ds_len);
1989	}
1990
1991	ring->queued++;
1992
1993	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1994	    data->map->dm_mapsize,
1995	    BUS_DMASYNC_PREWRITE);
1996	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
1997	    ring->cmd_dma.size,
1998	    BUS_DMASYNC_PREWRITE);
1999	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2000	    ring->desc_dma.size,
2001	    BUS_DMASYNC_PREWRITE);
2002
2003	/* kick ring */
2004	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2005	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2006
2007	return 0;
2008}
2009
2010static void
2011wpi_start(struct ifnet *ifp)
2012{
2013	struct wpi_softc *sc = ifp->if_softc;
2014	struct ieee80211com *ic = &sc->sc_ic;
2015	struct ieee80211_node *ni;
2016	struct ether_header *eh;
2017	struct mbuf *m0;
2018	int ac;
2019
2020	/*
2021	 * net80211 may still try to send management frames even if the
2022	 * IFF_RUNNING flag is not set...
2023	 */
2024	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2025		return;
2026
2027	for (;;) {
2028		IF_DEQUEUE(&ic->ic_mgtq, m0);
2029		if (m0 != NULL) {
2030
2031			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2032			m0->m_pkthdr.rcvif = NULL;
2033
2034			/* management frames go into ring 0 */
2035			if (sc->txq[0].queued > sc->txq[0].count - 8) {
2036				ifp->if_oerrors++;
2037				continue;
2038			}
2039			bpf_mtap3(ic->ic_rawbpf, m0);
2040			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2041				ifp->if_oerrors++;
2042				break;
2043			}
2044		} else {
2045			if (ic->ic_state != IEEE80211_S_RUN)
2046				break;
2047			IFQ_POLL(&ifp->if_snd, m0);
2048			if (m0 == NULL)
2049				break;
2050
2051			if (m0->m_len < sizeof (*eh) &&
2052			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2053				ifp->if_oerrors++;
2054				continue;
2055			}
2056			eh = mtod(m0, struct ether_header *);
2057			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2058			if (ni == NULL) {
2059				m_freem(m0);
2060				ifp->if_oerrors++;
2061				continue;
2062			}
2063
2064			/* classify mbuf so we can find which tx ring to use */
2065			if (ieee80211_classify(ic, m0, ni) != 0) {
2066				m_freem(m0);
2067				ieee80211_free_node(ni);
2068				ifp->if_oerrors++;
2069				continue;
2070			}
2071
2072			/* no QoS encapsulation for EAPOL frames */
2073			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2074			    M_WME_GETAC(m0) : WME_AC_BE;
2075
2076			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2077				/* there is no place left in this ring */
2078				ifp->if_flags |= IFF_OACTIVE;
2079				break;
2080			}
2081			IFQ_DEQUEUE(&ifp->if_snd, m0);
2082			bpf_mtap(ifp, m0);
2083			m0 = ieee80211_encap(ic, m0, ni);
2084			if (m0 == NULL) {
2085				ieee80211_free_node(ni);
2086				ifp->if_oerrors++;
2087				continue;
2088			}
2089			bpf_mtap3(ic->ic_rawbpf, m0);
2090			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2091				ieee80211_free_node(ni);
2092				ifp->if_oerrors++;
2093				break;
2094			}
2095		}
2096
2097		sc->sc_tx_timer = 5;
2098		ifp->if_timer = 1;
2099	}
2100}
2101
2102static void
2103wpi_watchdog(struct ifnet *ifp)
2104{
2105	struct wpi_softc *sc = ifp->if_softc;
2106
2107	ifp->if_timer = 0;
2108
2109	if (sc->sc_tx_timer > 0) {
2110		if (--sc->sc_tx_timer == 0) {
2111			aprint_error_dev(sc->sc_dev, "device timeout\n");
2112			ifp->if_flags &= ~IFF_UP;
2113			wpi_stop(ifp, 1);
2114			ifp->if_oerrors++;
2115			return;
2116		}
2117		ifp->if_timer = 1;
2118	}
2119
2120	ieee80211_watchdog(&sc->sc_ic);
2121}
2122
2123static int
2124wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2125{
2126#define IS_RUNNING(ifp) \
2127	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2128
2129	struct wpi_softc *sc = ifp->if_softc;
2130	struct ieee80211com *ic = &sc->sc_ic;
2131	int s, error = 0;
2132
2133	s = splnet();
2134
2135	switch (cmd) {
2136	case SIOCSIFFLAGS:
2137		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2138			break;
2139		if (ifp->if_flags & IFF_UP) {
2140			if (!(ifp->if_flags & IFF_RUNNING))
2141				wpi_init(ifp);
2142		} else {
2143			if (ifp->if_flags & IFF_RUNNING)
2144				wpi_stop(ifp, 1);
2145		}
2146		break;
2147
2148	case SIOCADDMULTI:
2149	case SIOCDELMULTI:
2150		/* XXX no h/w multicast filter? --dyoung */
2151		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2152			/* setup multicast filter, etc */
2153			error = 0;
2154		}
2155		break;
2156
2157	default:
2158		error = ieee80211_ioctl(ic, cmd, data);
2159	}
2160
2161	if (error == ENETRESET) {
2162		if (IS_RUNNING(ifp) &&
2163			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2164			wpi_init(ifp);
2165		error = 0;
2166	}
2167
2168	splx(s);
2169	return error;
2170
2171#undef IS_RUNNING
2172}
2173
2174/*
2175 * Extract various information from EEPROM.
2176 */
2177static void
2178wpi_read_eeprom(struct wpi_softc *sc)
2179{
2180	struct ieee80211com *ic = &sc->sc_ic;
2181	char domain[4];
2182	int i;
2183
2184	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2185	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2186	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2187
2188	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2189	    sc->type));
2190
2191	/* read and print regulatory domain */
2192	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2193	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2194
2195	/* read and print MAC address */
2196	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2197	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2198
2199	/* read the list of authorized channels */
2200	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2201		wpi_read_eeprom_channels(sc, i);
2202
2203	/* read the list of power groups */
2204	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2205		wpi_read_eeprom_group(sc, i);
2206}
2207
2208static void
2209wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2210{
2211	struct ieee80211com *ic = &sc->sc_ic;
2212	const struct wpi_chan_band *band = &wpi_bands[n];
2213	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2214	int chan, i;
2215
2216	wpi_read_prom_data(sc, band->addr, channels,
2217	    band->nchan * sizeof (struct wpi_eeprom_chan));
2218
2219	for (i = 0; i < band->nchan; i++) {
2220		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2221			continue;
2222
2223		chan = band->chan[i];
2224
2225		if (n == 0) {	/* 2GHz band */
2226			ic->ic_channels[chan].ic_freq =
2227			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2228			ic->ic_channels[chan].ic_flags =
2229			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2230			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2231
2232		} else {	/* 5GHz band */
2233			/*
2234			 * Some 3945ABG adapters support channels 7, 8, 11
2235			 * and 12 in the 2GHz *and* 5GHz bands.
2236			 * Because of limitations in our net80211(9) stack,
2237			 * we can't support these channels in 5GHz band.
2238			 */
2239			if (chan <= 14)
2240				continue;
2241
2242			ic->ic_channels[chan].ic_freq =
2243			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2244			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2245		}
2246
2247		/* is active scan allowed on this channel? */
2248		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2249			ic->ic_channels[chan].ic_flags |=
2250			    IEEE80211_CHAN_PASSIVE;
2251		}
2252
2253		/* save maximum allowed power for this channel */
2254		sc->maxpwr[chan] = channels[i].maxpwr;
2255
2256		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2257		    chan, channels[i].flags, sc->maxpwr[chan]));
2258	}
2259}
2260
2261static void
2262wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2263{
2264	struct wpi_power_group *group = &sc->groups[n];
2265	struct wpi_eeprom_group rgroup;
2266	int i;
2267
2268	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2269	    sizeof rgroup);
2270
2271	/* save power group information */
2272	group->chan   = rgroup.chan;
2273	group->maxpwr = rgroup.maxpwr;
2274	/* temperature at which the samples were taken */
2275	group->temp   = (int16_t)le16toh(rgroup.temp);
2276
2277	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2278	    group->chan, group->maxpwr, group->temp));
2279
2280	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2281		group->samples[i].index = rgroup.samples[i].index;
2282		group->samples[i].power = rgroup.samples[i].power;
2283
2284		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2285		    group->samples[i].index, group->samples[i].power));
2286	}
2287}
2288
2289/*
2290 * Send a command to the firmware.
2291 */
2292static int
2293wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2294{
2295	struct wpi_tx_ring *ring = &sc->cmdq;
2296	struct wpi_tx_desc *desc;
2297	struct wpi_tx_cmd *cmd;
2298	struct wpi_dma_info *dma;
2299
2300	KASSERT(size <= sizeof cmd->data);
2301
2302	desc = &ring->desc[ring->cur];
2303	cmd = &ring->cmd[ring->cur];
2304
2305	cmd->code = code;
2306	cmd->flags = 0;
2307	cmd->qid = ring->qid;
2308	cmd->idx = ring->cur;
2309	memcpy(cmd->data, buf, size);
2310
2311	dma = &ring->cmd_dma;
2312	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2313
2314	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2315	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2316	    ring->cur * sizeof (struct wpi_tx_cmd));
2317	desc->segs[0].len  = htole32(4 + size);
2318
2319	dma = &ring->desc_dma;
2320	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2321
2322	/* kick cmd ring */
2323	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2324	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2325
2326	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2327}
2328
2329static int
2330wpi_wme_update(struct ieee80211com *ic)
2331{
2332#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2333#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2334	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2335	const struct wmeParams *wmep;
2336	struct wpi_wme_setup wme;
2337	int ac;
2338
2339	/* don't override default WME values if WME is not actually enabled */
2340	if (!(ic->ic_flags & IEEE80211_F_WME))
2341		return 0;
2342
2343	wme.flags = 0;
2344	for (ac = 0; ac < WME_NUM_AC; ac++) {
2345		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2346		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2347		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2348		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2349		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2350
2351		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2352		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2353		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2354	}
2355
2356	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2357#undef WPI_USEC
2358#undef WPI_EXP2
2359}
2360
2361/*
2362 * Configure h/w multi-rate retries.
2363 */
2364static int
2365wpi_mrr_setup(struct wpi_softc *sc)
2366{
2367	struct ieee80211com *ic = &sc->sc_ic;
2368	struct wpi_mrr_setup mrr;
2369	int i, error;
2370
2371	/* CCK rates (not used with 802.11a) */
2372	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2373		mrr.rates[i].flags = 0;
2374		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2375		/* fallback to the immediate lower CCK rate (if any) */
2376		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2377		/* try one time at this rate before falling back to "next" */
2378		mrr.rates[i].ntries = 1;
2379	}
2380
2381	/* OFDM rates (not used with 802.11b) */
2382	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2383		mrr.rates[i].flags = 0;
2384		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2385		/* fallback to the immediate lower rate (if any) */
2386		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2387		mrr.rates[i].next = (i == WPI_OFDM6) ?
2388		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2389			WPI_OFDM6 : WPI_CCK2) :
2390		    i - 1;
2391		/* try one time at this rate before falling back to "next" */
2392		mrr.rates[i].ntries = 1;
2393	}
2394
2395	/* setup MRR for control frames */
2396	mrr.which = htole32(WPI_MRR_CTL);
2397	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2398	if (error != 0) {
2399		aprint_error_dev(sc->sc_dev,
2400		    "could not setup MRR for control frames\n");
2401		return error;
2402	}
2403
2404	/* setup MRR for data frames */
2405	mrr.which = htole32(WPI_MRR_DATA);
2406	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2407	if (error != 0) {
2408		aprint_error_dev(sc->sc_dev,
2409		    "could not setup MRR for data frames\n");
2410		return error;
2411	}
2412
2413	return 0;
2414}
2415
2416static void
2417wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2418{
2419	struct wpi_cmd_led led;
2420
2421	led.which = which;
2422	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2423	led.off = off;
2424	led.on = on;
2425
2426	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2427}
2428
2429static void
2430wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2431{
2432	struct wpi_cmd_tsf tsf;
2433	uint64_t val, mod;
2434
2435	memset(&tsf, 0, sizeof tsf);
2436	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2437	tsf.bintval = htole16(ni->ni_intval);
2438	tsf.lintval = htole16(10);
2439
2440	/* compute remaining time until next beacon */
2441	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
2442	mod = le64toh(tsf.tstamp) % val;
2443	tsf.binitval = htole32((uint32_t)(val - mod));
2444
2445	DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
2446	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2447
2448	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2449		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2450}
2451
2452/*
2453 * Update Tx power to match what is defined for channel `c'.
2454 */
2455static int
2456wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2457{
2458	struct ieee80211com *ic = &sc->sc_ic;
2459	struct wpi_power_group *group;
2460	struct wpi_cmd_txpower txpower;
2461	u_int chan;
2462	int i;
2463
2464	/* get channel number */
2465	chan = ieee80211_chan2ieee(ic, c);
2466
2467	/* find the power group to which this channel belongs */
2468	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2469		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2470			if (chan <= group->chan)
2471				break;
2472	} else
2473		group = &sc->groups[0];
2474
2475	memset(&txpower, 0, sizeof txpower);
2476	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2477	txpower.chan = htole16(chan);
2478
2479	/* set Tx power for all OFDM and CCK rates */
2480	for (i = 0; i <= 11 ; i++) {
2481		/* retrieve Tx power for this channel/rate combination */
2482		int idx = wpi_get_power_index(sc, group, c,
2483		    wpi_ridx_to_rate[i]);
2484
2485		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2486
2487		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2488			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2489			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2490		} else {
2491			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2492			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2493		}
2494		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2495		    wpi_ridx_to_rate[i], idx));
2496	}
2497
2498	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2499}
2500
2501/*
2502 * Determine Tx power index for a given channel/rate combination.
2503 * This takes into account the regulatory information from EEPROM and the
2504 * current temperature.
2505 */
2506static int
2507wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2508    struct ieee80211_channel *c, int rate)
2509{
2510/* fixed-point arithmetic division using a n-bit fractional part */
2511#define fdivround(a, b, n)	\
2512	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2513
2514/* linear interpolation */
2515#define interpolate(x, x1, y1, x2, y2, n)	\
2516	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2517
2518	struct ieee80211com *ic = &sc->sc_ic;
2519	struct wpi_power_sample *sample;
2520	int pwr, idx;
2521	u_int chan;
2522
2523	/* get channel number */
2524	chan = ieee80211_chan2ieee(ic, c);
2525
2526	/* default power is group's maximum power - 3dB */
2527	pwr = group->maxpwr / 2;
2528
2529	/* decrease power for highest OFDM rates to reduce distortion */
2530	switch (rate) {
2531	case 72:	/* 36Mb/s */
2532		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2533		break;
2534	case 96:	/* 48Mb/s */
2535		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2536		break;
2537	case 108:	/* 54Mb/s */
2538		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2539		break;
2540	}
2541
2542	/* never exceed channel's maximum allowed Tx power */
2543	pwr = min(pwr, sc->maxpwr[chan]);
2544
2545	/* retrieve power index into gain tables from samples */
2546	for (sample = group->samples; sample < &group->samples[3]; sample++)
2547		if (pwr > sample[1].power)
2548			break;
2549	/* fixed-point linear interpolation using a 19-bit fractional part */
2550	idx = interpolate(pwr, sample[0].power, sample[0].index,
2551	    sample[1].power, sample[1].index, 19);
2552
2553	/*-
2554	 * Adjust power index based on current temperature:
2555	 * - if cooler than factory-calibrated: decrease output power
2556	 * - if warmer than factory-calibrated: increase output power
2557	 */
2558	idx -= (sc->temp - group->temp) * 11 / 100;
2559
2560	/* decrease power for CCK rates (-5dB) */
2561	if (!WPI_RATE_IS_OFDM(rate))
2562		idx += 10;
2563
2564	/* keep power index in a valid range */
2565	if (idx < 0)
2566		return 0;
2567	if (idx > WPI_MAX_PWR_INDEX)
2568		return WPI_MAX_PWR_INDEX;
2569	return idx;
2570
2571#undef interpolate
2572#undef fdivround
2573}
2574
2575/*
2576 * Build a beacon frame that the firmware will broadcast periodically in
2577 * IBSS or HostAP modes.
2578 */
2579static int
2580wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2581{
2582	struct ieee80211com *ic = &sc->sc_ic;
2583	struct wpi_tx_ring *ring = &sc->cmdq;
2584	struct wpi_tx_desc *desc;
2585	struct wpi_tx_data *data;
2586	struct wpi_tx_cmd *cmd;
2587	struct wpi_cmd_beacon *bcn;
2588	struct ieee80211_beacon_offsets bo;
2589	struct mbuf *m0;
2590	int error;
2591
2592	desc = &ring->desc[ring->cur];
2593	data = &ring->data[ring->cur];
2594
2595	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2596	if (m0 == NULL) {
2597		aprint_error_dev(sc->sc_dev,
2598		    "could not allocate beacon frame\n");
2599		return ENOMEM;
2600	}
2601
2602	cmd = &ring->cmd[ring->cur];
2603	cmd->code = WPI_CMD_SET_BEACON;
2604	cmd->flags = 0;
2605	cmd->qid = ring->qid;
2606	cmd->idx = ring->cur;
2607
2608	bcn = (struct wpi_cmd_beacon *)cmd->data;
2609	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2610	bcn->id = WPI_ID_BROADCAST;
2611	bcn->ofdm_mask = 0xff;
2612	bcn->cck_mask = 0x0f;
2613	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2614	bcn->len = htole16(m0->m_pkthdr.len);
2615	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2616	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2617	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2618
2619	/* save and trim IEEE802.11 header */
2620	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2621	m_adj(m0, sizeof (struct ieee80211_frame));
2622
2623	/* assume beacon frame is contiguous */
2624	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2625	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2626	if (error != 0) {
2627		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2628		m_freem(m0);
2629		return error;
2630	}
2631
2632	data->m = m0;
2633
2634	/* first scatter/gather segment is used by the beacon command */
2635	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2636	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2637	    ring->cur * sizeof (struct wpi_tx_cmd));
2638	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2639	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2640	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2641
2642	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2643	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2644	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2645	    BUS_DMASYNC_PREWRITE);
2646
2647	/* kick cmd ring */
2648	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2649	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2650
2651	return 0;
2652}
2653
2654static int
2655wpi_auth(struct wpi_softc *sc)
2656{
2657	struct ieee80211com *ic = &sc->sc_ic;
2658	struct ieee80211_node *ni = ic->ic_bss;
2659	struct wpi_node_info node;
2660	int error;
2661
2662	/* update adapter's configuration */
2663	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2664	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2665	sc->config.flags = htole32(WPI_CONFIG_TSF);
2666	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2667		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2668		    WPI_CONFIG_24GHZ);
2669	}
2670	switch (ic->ic_curmode) {
2671	case IEEE80211_MODE_11A:
2672		sc->config.cck_mask  = 0;
2673		sc->config.ofdm_mask = 0x15;
2674		break;
2675	case IEEE80211_MODE_11B:
2676		sc->config.cck_mask  = 0x03;
2677		sc->config.ofdm_mask = 0;
2678		break;
2679	default:	/* assume 802.11b/g */
2680		sc->config.cck_mask  = 0x0f;
2681		sc->config.ofdm_mask = 0x15;
2682	}
2683	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2684	    sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2685	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2686	    sizeof (struct wpi_config), 1);
2687	if (error != 0) {
2688		aprint_error_dev(sc->sc_dev, "could not configure\n");
2689		return error;
2690	}
2691
2692	/* configuration has changed, set Tx power accordingly */
2693	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2694		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2695		return error;
2696	}
2697
2698	/* add default node */
2699	memset(&node, 0, sizeof node);
2700	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2701	node.id = WPI_ID_BSS;
2702	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2703	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2704	node.action = htole32(WPI_ACTION_SET_RATE);
2705	node.antenna = WPI_ANTENNA_BOTH;
2706	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2707	if (error != 0) {
2708		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2709		return error;
2710	}
2711
2712	return 0;
2713}
2714
2715/*
2716 * Send a scan request to the firmware.  Since this command is huge, we map it
2717 * into a mbuf instead of using the pre-allocated set of commands.
2718 */
2719static int
2720wpi_scan(struct wpi_softc *sc)
2721{
2722	struct ieee80211com *ic = &sc->sc_ic;
2723	struct wpi_tx_ring *ring = &sc->cmdq;
2724	struct wpi_tx_desc *desc;
2725	struct wpi_tx_data *data;
2726	struct wpi_tx_cmd *cmd;
2727	struct wpi_scan_hdr *hdr;
2728	struct wpi_scan_chan *chan;
2729	struct ieee80211_frame *wh;
2730	struct ieee80211_rateset *rs;
2731	struct ieee80211_channel *c;
2732	uint8_t *frm;
2733	int pktlen, error, nrates;
2734
2735	if (ic->ic_curchan == NULL)
2736		return EIO;
2737
2738	desc = &ring->desc[ring->cur];
2739	data = &ring->data[ring->cur];
2740
2741	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2742	if (data->m == NULL) {
2743		aprint_error_dev(sc->sc_dev,
2744		    "could not allocate mbuf for scan command\n");
2745		return ENOMEM;
2746	}
2747	MCLGET(data->m, M_DONTWAIT);
2748	if (!(data->m->m_flags & M_EXT)) {
2749		m_freem(data->m);
2750		data->m = NULL;
2751		aprint_error_dev(sc->sc_dev,
2752		    "could not allocate mbuf for scan command\n");
2753		return ENOMEM;
2754	}
2755
2756	cmd = mtod(data->m, struct wpi_tx_cmd *);
2757	cmd->code = WPI_CMD_SCAN;
2758	cmd->flags = 0;
2759	cmd->qid = ring->qid;
2760	cmd->idx = ring->cur;
2761
2762	hdr = (struct wpi_scan_hdr *)cmd->data;
2763	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2764	hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
2765	hdr->cmd.id = WPI_ID_BROADCAST;
2766	hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
2767	/*
2768	 * Move to the next channel if no packets are received within 5 msecs
2769	 * after sending the probe request (this helps to reduce the duration
2770	 * of active scans).
2771	 */
2772	hdr->quiet = htole16(5);	/* timeout in milliseconds */
2773	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2774
2775	if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
2776		hdr->crc_threshold = htole16(1);
2777		/* send probe requests at 6Mbps */
2778		hdr->cmd.rate = wpi_plcp_signal(12);
2779		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2780	} else {
2781		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2782		/* send probe requests at 1Mbps */
2783		hdr->cmd.rate = wpi_plcp_signal(2);
2784		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2785	}
2786
2787	/* for directed scans, firmware inserts the essid IE itself */
2788	if (ic->ic_des_esslen != 0) {
2789		hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2790		hdr->essid[0].len = ic->ic_des_esslen;
2791		memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2792	}
2793
2794	/*
2795	 * Build a probe request frame.  Most of the following code is a
2796	 * copy & paste of what is done in net80211.
2797	 */
2798	wh = (struct ieee80211_frame *)(hdr + 1);
2799	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2800	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2801	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2802	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2803	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2804	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2805	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2806	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2807
2808	frm = (uint8_t *)(wh + 1);
2809
2810	/* add empty essid IE (firmware generates it for directed scans) */
2811	*frm++ = IEEE80211_ELEMID_SSID;
2812	*frm++ = 0;
2813
2814	/* add supported rates IE */
2815	*frm++ = IEEE80211_ELEMID_RATES;
2816	nrates = rs->rs_nrates;
2817	if (nrates > IEEE80211_RATE_SIZE)
2818		nrates = IEEE80211_RATE_SIZE;
2819	*frm++ = nrates;
2820	memcpy(frm, rs->rs_rates, nrates);
2821	frm += nrates;
2822
2823	/* add supported xrates IE */
2824	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2825		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2826		*frm++ = IEEE80211_ELEMID_XRATES;
2827		*frm++ = nrates;
2828		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2829		frm += nrates;
2830	}
2831
2832	/* setup length of probe request */
2833	hdr->cmd.len = htole16(frm - (uint8_t *)wh);
2834
2835	chan = (struct wpi_scan_chan *)frm;
2836	c = ic->ic_curchan;
2837
2838	chan->chan = ieee80211_chan2ieee(ic, c);
2839	chan->flags = 0;
2840	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2841		chan->flags |= WPI_CHAN_ACTIVE;
2842		if (ic->ic_des_esslen != 0)
2843			chan->flags |= WPI_CHAN_DIRECT;
2844	}
2845	chan->dsp_gain = 0x6e;
2846	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2847		chan->rf_gain = 0x3b;
2848		chan->active  = htole16(10);
2849		chan->passive = htole16(110);
2850	} else {
2851		chan->rf_gain = 0x28;
2852		chan->active  = htole16(20);
2853		chan->passive = htole16(120);
2854	}
2855	hdr->nchan++;
2856	chan++;
2857
2858	frm += sizeof (struct wpi_scan_chan);
2859
2860	hdr->len = htole16(frm - (uint8_t *)hdr);
2861	pktlen = frm - (uint8_t *)cmd;
2862
2863	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
2864	    BUS_DMA_NOWAIT);
2865	if (error != 0) {
2866		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2867		m_freem(data->m);
2868		data->m = NULL;
2869		return error;
2870	}
2871
2872	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2873	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2874	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2875
2876	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2877	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2878	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2879	    BUS_DMASYNC_PREWRITE);
2880
2881	/* kick cmd ring */
2882	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2883	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2884
2885	return 0;	/* will be notified async. of failure/success */
2886}
2887
2888static int
2889wpi_config(struct wpi_softc *sc)
2890{
2891	struct ieee80211com *ic = &sc->sc_ic;
2892	struct ifnet *ifp = ic->ic_ifp;
2893	struct wpi_power power;
2894	struct wpi_bluetooth bluetooth;
2895	struct wpi_node_info node;
2896	int error;
2897
2898	memset(&power, 0, sizeof power);
2899	power.flags = htole32(WPI_POWER_CAM | 0x8);
2900	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2901	if (error != 0) {
2902		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2903		return error;
2904	}
2905
2906	/* configure bluetooth coexistence */
2907	memset(&bluetooth, 0, sizeof bluetooth);
2908	bluetooth.flags = 3;
2909	bluetooth.lead = 0xaa;
2910	bluetooth.kill = 1;
2911	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2912	    0);
2913	if (error != 0) {
2914		aprint_error_dev(sc->sc_dev,
2915			"could not configure bluetooth coexistence\n");
2916		return error;
2917	}
2918
2919	/* configure adapter */
2920	memset(&sc->config, 0, sizeof (struct wpi_config));
2921	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2922	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2923	/* set default channel */
2924	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2925	sc->config.flags = htole32(WPI_CONFIG_TSF);
2926	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2927		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2928		    WPI_CONFIG_24GHZ);
2929	}
2930	sc->config.filter = 0;
2931	switch (ic->ic_opmode) {
2932	case IEEE80211_M_STA:
2933		sc->config.mode = WPI_MODE_STA;
2934		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2935		break;
2936	case IEEE80211_M_IBSS:
2937	case IEEE80211_M_AHDEMO:
2938		sc->config.mode = WPI_MODE_IBSS;
2939		break;
2940	case IEEE80211_M_HOSTAP:
2941		sc->config.mode = WPI_MODE_HOSTAP;
2942		break;
2943	case IEEE80211_M_MONITOR:
2944		sc->config.mode = WPI_MODE_MONITOR;
2945		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2946		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2947		break;
2948	}
2949	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2950	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2951	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2952	    sizeof (struct wpi_config), 0);
2953	if (error != 0) {
2954		aprint_error_dev(sc->sc_dev, "configure command failed\n");
2955		return error;
2956	}
2957
2958	/* configuration has changed, set Tx power accordingly */
2959	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2960		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2961		return error;
2962	}
2963
2964	/* add broadcast node */
2965	memset(&node, 0, sizeof node);
2966	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2967	node.id = WPI_ID_BROADCAST;
2968	node.rate = wpi_plcp_signal(2);
2969	node.action = htole32(WPI_ACTION_SET_RATE);
2970	node.antenna = WPI_ANTENNA_BOTH;
2971	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2972	if (error != 0) {
2973		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2974		return error;
2975	}
2976
2977	if ((error = wpi_mrr_setup(sc)) != 0) {
2978		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2979		return error;
2980	}
2981
2982	return 0;
2983}
2984
2985static void
2986wpi_stop_master(struct wpi_softc *sc)
2987{
2988	uint32_t tmp;
2989	int ntries;
2990
2991	tmp = WPI_READ(sc, WPI_RESET);
2992	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2993
2994	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2995	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2996		return;	/* already asleep */
2997
2998	for (ntries = 0; ntries < 100; ntries++) {
2999		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3000			break;
3001		DELAY(10);
3002	}
3003	if (ntries == 100) {
3004		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
3005	}
3006}
3007
3008static int
3009wpi_power_up(struct wpi_softc *sc)
3010{
3011	uint32_t tmp;
3012	int ntries;
3013
3014	wpi_mem_lock(sc);
3015	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3016	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3017	wpi_mem_unlock(sc);
3018
3019	for (ntries = 0; ntries < 5000; ntries++) {
3020		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3021			break;
3022		DELAY(10);
3023	}
3024	if (ntries == 5000) {
3025		aprint_error_dev(sc->sc_dev,
3026		    "timeout waiting for NIC to power up\n");
3027		return ETIMEDOUT;
3028	}
3029	return 0;
3030}
3031
3032static int
3033wpi_reset(struct wpi_softc *sc)
3034{
3035	uint32_t tmp;
3036	int ntries;
3037
3038	/* clear any pending interrupts */
3039	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3040
3041	tmp = WPI_READ(sc, WPI_PLL_CTL);
3042	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3043
3044	tmp = WPI_READ(sc, WPI_CHICKEN);
3045	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3046
3047	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3048	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3049
3050	/* wait for clock stabilization */
3051	for (ntries = 0; ntries < 1000; ntries++) {
3052		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3053			break;
3054		DELAY(10);
3055	}
3056	if (ntries == 1000) {
3057		aprint_error_dev(sc->sc_dev,
3058		    "timeout waiting for clock stabilization\n");
3059		return ETIMEDOUT;
3060	}
3061
3062	/* initialize EEPROM */
3063	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3064	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3065		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3066		return EIO;
3067	}
3068	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3069
3070	return 0;
3071}
3072
3073static void
3074wpi_hw_config(struct wpi_softc *sc)
3075{
3076	uint32_t rev, hw;
3077
3078	/* voodoo from the reference driver */
3079	hw = WPI_READ(sc, WPI_HWCONFIG);
3080
3081	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3082	rev = PCI_REVISION(rev);
3083	if ((rev & 0xc0) == 0x40)
3084		hw |= WPI_HW_ALM_MB;
3085	else if (!(rev & 0x80))
3086		hw |= WPI_HW_ALM_MM;
3087
3088	if (sc->cap == 0x80)
3089		hw |= WPI_HW_SKU_MRC;
3090
3091	hw &= ~WPI_HW_REV_D;
3092	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3093		hw |= WPI_HW_REV_D;
3094
3095	if (sc->type > 1)
3096		hw |= WPI_HW_TYPE_B;
3097
3098	DPRINTF(("setting h/w config %x\n", hw));
3099	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3100}
3101
3102static int
3103wpi_init(struct ifnet *ifp)
3104{
3105	struct wpi_softc *sc = ifp->if_softc;
3106	struct ieee80211com *ic = &sc->sc_ic;
3107	uint32_t tmp;
3108	int qid, ntries, error;
3109
3110	wpi_stop(ifp,1);
3111	(void)wpi_reset(sc);
3112
3113	wpi_mem_lock(sc);
3114	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3115	DELAY(20);
3116	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3117	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3118	wpi_mem_unlock(sc);
3119
3120	(void)wpi_power_up(sc);
3121	wpi_hw_config(sc);
3122
3123	/* init Rx ring */
3124	wpi_mem_lock(sc);
3125	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3126	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3127	    offsetof(struct wpi_shared, next));
3128	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3129	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3130	wpi_mem_unlock(sc);
3131
3132	/* init Tx rings */
3133	wpi_mem_lock(sc);
3134	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
3135	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
3136	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
3137	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3138	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3139	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3140	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3141
3142	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3143	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3144
3145	for (qid = 0; qid < 6; qid++) {
3146		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3147		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3148		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3149	}
3150	wpi_mem_unlock(sc);
3151
3152	/* clear "radio off" and "disable command" bits (reversed logic) */
3153	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3154	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3155
3156	/* clear any pending interrupts */
3157	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3158	/* enable interrupts */
3159	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3160
3161	/* not sure why/if this is necessary... */
3162	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3163	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3164
3165	if ((error = wpi_load_firmware(sc)) != 0)
3166		/* wpi_load_firmware prints error messages for us.  */
3167		goto fail1;
3168
3169	/* Check the status of the radio switch */
3170	if (wpi_getrfkill(sc)) {
3171		aprint_error_dev(sc->sc_dev,
3172		    "radio is disabled by hardware switch\n");
3173		ifp->if_flags &= ~IFF_UP;
3174		error = EBUSY;
3175		goto fail1;
3176	}
3177
3178	/* wait for thermal sensors to calibrate */
3179	for (ntries = 0; ntries < 1000; ntries++) {
3180		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3181			break;
3182		DELAY(10);
3183	}
3184	if (ntries == 1000) {
3185		aprint_error_dev(sc->sc_dev,
3186		    "timeout waiting for thermal sensors calibration\n");
3187		error = ETIMEDOUT;
3188		goto fail1;
3189	}
3190	DPRINTF(("temperature %d\n", sc->temp));
3191
3192	if ((error = wpi_config(sc)) != 0) {
3193		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3194		goto fail1;
3195	}
3196
3197	ifp->if_flags &= ~IFF_OACTIVE;
3198	ifp->if_flags |= IFF_RUNNING;
3199
3200	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3201		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3202			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3203	}
3204	else
3205		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3206
3207	return 0;
3208
3209fail1:	wpi_stop(ifp, 1);
3210	return error;
3211}
3212
3213static void
3214wpi_stop(struct ifnet *ifp, int disable)
3215{
3216	struct wpi_softc *sc = ifp->if_softc;
3217	struct ieee80211com *ic = &sc->sc_ic;
3218	uint32_t tmp;
3219	int ac;
3220
3221	ifp->if_timer = sc->sc_tx_timer = 0;
3222	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3223
3224	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3225
3226	/* disable interrupts */
3227	WPI_WRITE(sc, WPI_MASK, 0);
3228	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3229	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3230	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3231
3232	wpi_mem_lock(sc);
3233	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3234	wpi_mem_unlock(sc);
3235
3236	/* reset all Tx rings */
3237	for (ac = 0; ac < 4; ac++)
3238		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3239	wpi_reset_tx_ring(sc, &sc->cmdq);
3240
3241	/* reset Rx ring */
3242	wpi_reset_rx_ring(sc, &sc->rxq);
3243
3244	wpi_mem_lock(sc);
3245	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3246	wpi_mem_unlock(sc);
3247
3248	DELAY(5);
3249
3250	wpi_stop_master(sc);
3251
3252	tmp = WPI_READ(sc, WPI_RESET);
3253	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3254}
3255
3256static bool
3257wpi_resume(device_t dv, const pmf_qual_t *qual)
3258{
3259	struct wpi_softc *sc = device_private(dv);
3260
3261	(void)wpi_reset(sc);
3262
3263	return true;
3264}
3265
3266/*
3267 * Return whether or not the radio is enabled in hardware
3268 * (i.e. the rfkill switch is "off").
3269 */
3270static int
3271wpi_getrfkill(struct wpi_softc *sc)
3272{
3273	uint32_t tmp;
3274
3275	wpi_mem_lock(sc);
3276	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3277	wpi_mem_unlock(sc);
3278
3279	return !(tmp & 0x01);
3280}
3281
3282static int
3283wpi_sysctl_radio(SYSCTLFN_ARGS)
3284{
3285	struct sysctlnode node;
3286	struct wpi_softc *sc;
3287	int val, error;
3288
3289	node = *rnode;
3290	sc = (struct wpi_softc *)node.sysctl_data;
3291
3292	val = !wpi_getrfkill(sc);
3293
3294	node.sysctl_data = &val;
3295	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3296
3297	if (error || newp == NULL)
3298		return error;
3299
3300	return 0;
3301}
3302
3303static void
3304wpi_sysctlattach(struct wpi_softc *sc)
3305{
3306	int rc;
3307	const struct sysctlnode *rnode;
3308	const struct sysctlnode *cnode;
3309
3310	struct sysctllog **clog = &sc->sc_sysctllog;
3311
3312	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3313	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3314	    SYSCTL_DESCR("wpi controls and statistics"),
3315	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
3316		goto err;
3317
3318	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3319	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3320	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3321	    wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3322		goto err;
3323
3324#ifdef WPI_DEBUG
3325	/* control debugging printfs */
3326	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3327	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3328	    "debug", SYSCTL_DESCR("Enable debugging output"),
3329	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3330		goto err;
3331#endif
3332
3333	return;
3334err:
3335	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3336}
3337