if_wpi.c revision 1.50
1/*  $NetBSD: if_wpi.c,v 1.50 2012/01/30 19:41:21 drochner Exp $    */
2
3/*-
4 * Copyright (c) 2006, 2007
5 *	Damien Bergamini <damien.bergamini@free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20#include <sys/cdefs.h>
21__KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.50 2012/01/30 19:41:21 drochner Exp $");
22
23/*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27
28#include <sys/param.h>
29#include <sys/sockio.h>
30#include <sys/sysctl.h>
31#include <sys/mbuf.h>
32#include <sys/kernel.h>
33#include <sys/socket.h>
34#include <sys/systm.h>
35#include <sys/malloc.h>
36#include <sys/mutex.h>
37#include <sys/once.h>
38#include <sys/conf.h>
39#include <sys/kauth.h>
40#include <sys/callout.h>
41#include <sys/proc.h>
42
43#include <sys/bus.h>
44#include <machine/endian.h>
45#include <sys/intr.h>
46
47#include <dev/pci/pcireg.h>
48#include <dev/pci/pcivar.h>
49#include <dev/pci/pcidevs.h>
50
51#include <net/bpf.h>
52#include <net/if.h>
53#include <net/if_arp.h>
54#include <net/if_dl.h>
55#include <net/if_ether.h>
56#include <net/if_media.h>
57#include <net/if_types.h>
58
59#include <net80211/ieee80211_var.h>
60#include <net80211/ieee80211_amrr.h>
61#include <net80211/ieee80211_radiotap.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/in_var.h>
66#include <netinet/ip.h>
67
68#include <dev/firmload.h>
69
70#include <dev/pci/if_wpireg.h>
71#include <dev/pci/if_wpivar.h>
72
73#ifdef WPI_DEBUG
74#define DPRINTF(x)	if (wpi_debug > 0) printf x
75#define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
76int wpi_debug = 1;
77#else
78#define DPRINTF(x)
79#define DPRINTFN(n, x)
80#endif
81
82/*
83 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84 */
85static const struct ieee80211_rateset wpi_rateset_11a =
86	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87
88static const struct ieee80211_rateset wpi_rateset_11b =
89	{ 4, { 2, 4, 11, 22 } };
90
91static const struct ieee80211_rateset wpi_rateset_11g =
92	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93
94static once_t wpi_firmware_init;
95static kmutex_t wpi_firmware_mutex;
96static size_t wpi_firmware_users;
97static uint8_t *wpi_firmware_image;
98static size_t wpi_firmware_size;
99
100static int  wpi_match(device_t, cfdata_t, void *);
101static void wpi_attach(device_t, device_t, void *);
102static int  wpi_detach(device_t , int);
103static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
104	void **, bus_size_t, bus_size_t, int);
105static void wpi_dma_contig_free(struct wpi_dma_info *);
106static int  wpi_alloc_shared(struct wpi_softc *);
107static void wpi_free_shared(struct wpi_softc *);
108static int  wpi_alloc_fwmem(struct wpi_softc *);
109static void wpi_free_fwmem(struct wpi_softc *);
110static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
111static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
112static int  wpi_alloc_rpool(struct wpi_softc *);
113static void wpi_free_rpool(struct wpi_softc *);
114static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
115static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
116static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
117static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
118	int);
119static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
120static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
121static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
122static void wpi_newassoc(struct ieee80211_node *, int);
123static int  wpi_media_change(struct ifnet *);
124static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
125static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
126static void wpi_mem_lock(struct wpi_softc *);
127static void wpi_mem_unlock(struct wpi_softc *);
128static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
129static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
130static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
131								   const uint32_t *, int);
132static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
133static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
134static int  wpi_load_firmware(struct wpi_softc *);
135static void wpi_calib_timeout(void *);
136static void wpi_iter_func(void *, struct ieee80211_node *);
137static void wpi_power_calibration(struct wpi_softc *, int);
138static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
139	struct wpi_rx_data *);
140static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
141static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
142static void wpi_notif_intr(struct wpi_softc *);
143static int  wpi_intr(void *);
144static void wpi_read_eeprom(struct wpi_softc *);
145static void wpi_read_eeprom_channels(struct wpi_softc *, int);
146static void wpi_read_eeprom_group(struct wpi_softc *, int);
147static uint8_t wpi_plcp_signal(int);
148static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
149	struct ieee80211_node *, int);
150static void wpi_start(struct ifnet *);
151static void wpi_watchdog(struct ifnet *);
152static int  wpi_ioctl(struct ifnet *, u_long, void *);
153static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
154static int  wpi_wme_update(struct ieee80211com *);
155static int  wpi_mrr_setup(struct wpi_softc *);
156static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
157static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
158static int  wpi_set_txpower(struct wpi_softc *,
159			    struct ieee80211_channel *, int);
160static int  wpi_get_power_index(struct wpi_softc *,
161		struct wpi_power_group *, struct ieee80211_channel *, int);
162static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
163static int  wpi_auth(struct wpi_softc *);
164static int  wpi_scan(struct wpi_softc *, uint16_t);
165static int  wpi_config(struct wpi_softc *);
166static void wpi_stop_master(struct wpi_softc *);
167static int  wpi_power_up(struct wpi_softc *);
168static int  wpi_reset(struct wpi_softc *);
169static void wpi_hw_config(struct wpi_softc *);
170static int  wpi_init(struct ifnet *);
171static void wpi_stop(struct ifnet *, int);
172static bool wpi_resume(device_t, const pmf_qual_t *);
173static int	wpi_getrfkill(struct wpi_softc *);
174static void wpi_sysctlattach(struct wpi_softc *);
175
176CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
177	wpi_detach, NULL);
178
179static int
180wpi_match(device_t parent, cfdata_t match __unused, void *aux)
181{
182	struct pci_attach_args *pa = aux;
183
184	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
185		return 0;
186
187	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
188	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
189		return 1;
190
191	return 0;
192}
193
194/* Base Address Register */
195#define WPI_PCI_BAR0	0x10
196
197static int
198wpi_attach_once(void)
199{
200	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
201	return 0;
202}
203
204static void
205wpi_attach(device_t parent __unused, device_t self, void *aux)
206{
207	struct wpi_softc *sc = device_private(self);
208	struct ieee80211com *ic = &sc->sc_ic;
209	struct ifnet *ifp = &sc->sc_ec.ec_if;
210	struct pci_attach_args *pa = aux;
211	const char *intrstr;
212	bus_space_tag_t memt;
213	bus_space_handle_t memh;
214	pci_intr_handle_t ih;
215	pcireg_t data;
216	int error, ac;
217
218	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
219	sc->fw_used = false;
220
221	sc->sc_dev = self;
222	sc->sc_pct = pa->pa_pc;
223	sc->sc_pcitag = pa->pa_tag;
224
225	callout_init(&sc->calib_to, 0);
226	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
227
228	pci_aprint_devinfo(pa, NULL);
229
230	/* enable bus-mastering */
231	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
232	data |= PCI_COMMAND_MASTER_ENABLE;
233	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
234
235	/* map the register window */
236	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
237		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
238	if (error != 0) {
239		aprint_error_dev(self, "could not map memory space\n");
240		return;
241	}
242
243	sc->sc_st = memt;
244	sc->sc_sh = memh;
245	sc->sc_dmat = pa->pa_dmat;
246
247	if (pci_intr_map(pa, &ih) != 0) {
248		aprint_error_dev(self, "could not map interrupt\n");
249		return;
250	}
251
252	intrstr = pci_intr_string(sc->sc_pct, ih);
253	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
254	if (sc->sc_ih == NULL) {
255		aprint_error_dev(self, "could not establish interrupt");
256		if (intrstr != NULL)
257			aprint_error(" at %s", intrstr);
258		aprint_error("\n");
259		return;
260	}
261	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
262
263	if (wpi_reset(sc) != 0) {
264		aprint_error_dev(self, "could not reset adapter\n");
265		return;
266	}
267
268 	/*
269	 * Allocate DMA memory for firmware transfers.
270	 */
271	if ((error = wpi_alloc_fwmem(sc)) != 0)
272		return;
273
274	/*
275	 * Allocate shared page and Tx/Rx rings.
276	 */
277	if ((error = wpi_alloc_shared(sc)) != 0) {
278		aprint_error_dev(self, "could not allocate shared area\n");
279		goto fail1;
280	}
281
282	if ((error = wpi_alloc_rpool(sc)) != 0) {
283		aprint_error_dev(self, "could not allocate Rx buffers\n");
284		goto fail2;
285	}
286
287	for (ac = 0; ac < 4; ac++) {
288		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
289		if (error != 0) {
290			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
291			goto fail3;
292		}
293	}
294
295	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
296	if (error != 0) {
297		aprint_error_dev(self, "could not allocate command ring\n");
298		goto fail3;
299	}
300
301	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
302		aprint_error_dev(self, "could not allocate Rx ring\n");
303		goto fail4;
304	}
305
306	ic->ic_ifp = ifp;
307	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
308	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
309	ic->ic_state = IEEE80211_S_INIT;
310
311	/* set device capabilities */
312	ic->ic_caps =
313		IEEE80211_C_IBSS |       /* IBSS mode support */
314		IEEE80211_C_WPA |        /* 802.11i */
315		IEEE80211_C_MONITOR |    /* monitor mode supported */
316		IEEE80211_C_TXPMGT |     /* tx power management */
317		IEEE80211_C_SHSLOT |     /* short slot time supported */
318		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
319		IEEE80211_C_WME;         /* 802.11e */
320
321	/* read supported channels and MAC address from EEPROM */
322	wpi_read_eeprom(sc);
323
324	/* set supported .11a, .11b, .11g rates */
325	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
326	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
327	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
328
329	ic->ic_ibss_chan = &ic->ic_channels[0];
330
331	ifp->if_softc = sc;
332	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
333	ifp->if_init = wpi_init;
334	ifp->if_stop = wpi_stop;
335	ifp->if_ioctl = wpi_ioctl;
336	ifp->if_start = wpi_start;
337	ifp->if_watchdog = wpi_watchdog;
338	IFQ_SET_READY(&ifp->if_snd);
339	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
340
341	if_attach(ifp);
342	ieee80211_ifattach(ic);
343	/* override default methods */
344	ic->ic_node_alloc = wpi_node_alloc;
345	ic->ic_newassoc = wpi_newassoc;
346	ic->ic_wme.wme_update = wpi_wme_update;
347
348	/* override state transition machine */
349	sc->sc_newstate = ic->ic_newstate;
350	ic->ic_newstate = wpi_newstate;
351	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
352
353	sc->amrr.amrr_min_success_threshold = 1;
354	sc->amrr.amrr_max_success_threshold = 15;
355
356	wpi_sysctlattach(sc);
357
358	if (pmf_device_register(self, NULL, wpi_resume))
359		pmf_class_network_register(self, ifp);
360	else
361		aprint_error_dev(self, "couldn't establish power handler\n");
362
363	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
364	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
365	    &sc->sc_drvbpf);
366
367	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
368	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
369	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
370
371	sc->sc_txtap_len = sizeof sc->sc_txtapu;
372	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
373	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
374
375	ieee80211_announce(ic);
376
377	return;
378
379fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
380fail3:  while (--ac >= 0)
381			wpi_free_tx_ring(sc, &sc->txq[ac]);
382	wpi_free_rpool(sc);
383fail2:	wpi_free_shared(sc);
384fail1:	wpi_free_fwmem(sc);
385}
386
387static int
388wpi_detach(device_t self, int flags __unused)
389{
390	struct wpi_softc *sc = device_private(self);
391	struct ifnet *ifp = sc->sc_ic.ic_ifp;
392	int ac;
393
394	wpi_stop(ifp, 1);
395
396	if (ifp != NULL)
397		bpf_detach(ifp);
398	ieee80211_ifdetach(&sc->sc_ic);
399	if (ifp != NULL)
400		if_detach(ifp);
401
402	for (ac = 0; ac < 4; ac++)
403		wpi_free_tx_ring(sc, &sc->txq[ac]);
404	wpi_free_tx_ring(sc, &sc->cmdq);
405	wpi_free_rx_ring(sc, &sc->rxq);
406	wpi_free_rpool(sc);
407	wpi_free_shared(sc);
408
409	if (sc->sc_ih != NULL) {
410		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
411		sc->sc_ih = NULL;
412	}
413
414	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
415
416	if (sc->fw_used) {
417		mutex_enter(&wpi_firmware_mutex);
418		if (--wpi_firmware_users == 0)
419			firmware_free(wpi_firmware_image, wpi_firmware_size);
420		mutex_exit(&wpi_firmware_mutex);
421	}
422
423	return 0;
424}
425
426static int
427wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
428	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
429{
430	int nsegs, error;
431
432	dma->tag = tag;
433	dma->size = size;
434
435	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
436	if (error != 0)
437		goto fail;
438
439	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
440	    flags);
441	if (error != 0)
442		goto fail;
443
444	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
445	if (error != 0)
446		goto fail;
447
448	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
449	if (error != 0)
450		goto fail;
451
452	memset(dma->vaddr, 0, size);
453
454	dma->paddr = dma->map->dm_segs[0].ds_addr;
455	if (kvap != NULL)
456		*kvap = dma->vaddr;
457
458	return 0;
459
460fail:   wpi_dma_contig_free(dma);
461	return error;
462}
463
464static void
465wpi_dma_contig_free(struct wpi_dma_info *dma)
466{
467	if (dma->map != NULL) {
468		if (dma->vaddr != NULL) {
469			bus_dmamap_unload(dma->tag, dma->map);
470			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
471			bus_dmamem_free(dma->tag, &dma->seg, 1);
472			dma->vaddr = NULL;
473		}
474		bus_dmamap_destroy(dma->tag, dma->map);
475		dma->map = NULL;
476	}
477}
478
479/*
480 * Allocate a shared page between host and NIC.
481 */
482static int
483wpi_alloc_shared(struct wpi_softc *sc)
484{
485	int error;
486	/* must be aligned on a 4K-page boundary */
487	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
488			(void **)&sc->shared, sizeof (struct wpi_shared),
489			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
490	if (error != 0)
491		aprint_error_dev(sc->sc_dev,
492				"could not allocate shared area DMA memory\n");
493
494	return error;
495}
496
497static void
498wpi_free_shared(struct wpi_softc *sc)
499{
500	wpi_dma_contig_free(&sc->shared_dma);
501}
502
503/*
504 * Allocate DMA-safe memory for firmware transfer.
505 */
506static int
507wpi_alloc_fwmem(struct wpi_softc *sc)
508{
509	int error;
510	/* allocate enough contiguous space to store text and data */
511	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
512	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
513	    BUS_DMA_NOWAIT);
514
515	if (error != 0)
516		aprint_error_dev(sc->sc_dev,
517			"could not allocate firmware transfer area"
518			"DMA memory\n");
519	return error;
520}
521
522static void
523wpi_free_fwmem(struct wpi_softc *sc)
524{
525	wpi_dma_contig_free(&sc->fw_dma);
526}
527
528
529static struct wpi_rbuf *
530wpi_alloc_rbuf(struct wpi_softc *sc)
531{
532	struct wpi_rbuf *rbuf;
533
534	mutex_enter(&sc->rxq.freelist_mtx);
535	rbuf = SLIST_FIRST(&sc->rxq.freelist);
536	if (rbuf != NULL) {
537		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
538		sc->rxq.nb_free_entries --;
539	}
540	mutex_exit(&sc->rxq.freelist_mtx);
541
542	return rbuf;
543}
544
545/*
546 * This is called automatically by the network stack when the mbuf to which our
547 * Rx buffer is attached is freed.
548 */
549static void
550wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
551{
552	struct wpi_rbuf *rbuf = arg;
553	struct wpi_softc *sc = rbuf->sc;
554
555	/* put the buffer back in the free list */
556
557	mutex_enter(&sc->rxq.freelist_mtx);
558	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
559	mutex_exit(&sc->rxq.freelist_mtx);
560	/* No need to protect this with a mutex, see wpi_rx_intr */
561	sc->rxq.nb_free_entries ++;
562
563	if (__predict_true(m != NULL))
564		pool_cache_put(mb_cache, m);
565}
566
567static int
568wpi_alloc_rpool(struct wpi_softc *sc)
569{
570	struct wpi_rx_ring *ring = &sc->rxq;
571	struct wpi_rbuf *rbuf;
572	int i, error;
573
574	/* allocate a big chunk of DMA'able memory.. */
575	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
576	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
577	if (error != 0) {
578		aprint_normal_dev(sc->sc_dev,
579						  "could not allocate Rx buffers DMA memory\n");
580		return error;
581	}
582
583	/* ..and split it into 3KB chunks */
584	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
585	SLIST_INIT(&ring->freelist);
586	for (i = 0; i < WPI_RBUF_COUNT; i++) {
587		rbuf = &ring->rbuf[i];
588		rbuf->sc = sc;	/* backpointer for callbacks */
589		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
590		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
591
592		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
593	}
594
595	ring->nb_free_entries = WPI_RBUF_COUNT;
596	return 0;
597}
598
599static void
600wpi_free_rpool(struct wpi_softc *sc)
601{
602	wpi_dma_contig_free(&sc->rxq.buf_dma);
603}
604
605static int
606wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
607{
608	struct wpi_rx_data *data;
609	struct wpi_rbuf *rbuf;
610	int i, error;
611
612	ring->cur = 0;
613
614	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
615		(void **)&ring->desc,
616		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
617		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
618	if (error != 0) {
619		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
620		goto fail;
621	}
622
623	/*
624	 * Setup Rx buffers.
625	 */
626	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
627		data = &ring->data[i];
628
629		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
630		if (data->m == NULL) {
631			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
632			error = ENOMEM;
633			goto fail;
634		}
635		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
636			m_freem(data->m);
637			data->m = NULL;
638			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
639			error = ENOMEM;
640			goto fail;
641		}
642		/* attach Rx buffer to mbuf */
643		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
644		    rbuf);
645		data->m->m_flags |= M_EXT_RW;
646
647		ring->desc[i] = htole32(rbuf->paddr);
648	}
649
650	return 0;
651
652fail:	wpi_free_rx_ring(sc, ring);
653	return error;
654}
655
656static void
657wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
658{
659	int ntries;
660
661	wpi_mem_lock(sc);
662
663	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
664	for (ntries = 0; ntries < 100; ntries++) {
665		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
666			break;
667		DELAY(10);
668	}
669#ifdef WPI_DEBUG
670	if (ntries == 100 && wpi_debug > 0)
671		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
672#endif
673	wpi_mem_unlock(sc);
674
675	ring->cur = 0;
676}
677
678static void
679wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
680{
681	int i;
682
683	wpi_dma_contig_free(&ring->desc_dma);
684
685	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
686		if (ring->data[i].m != NULL)
687			m_freem(ring->data[i].m);
688	}
689}
690
691static int
692wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
693	int qid)
694{
695	struct wpi_tx_data *data;
696	int i, error;
697
698	ring->qid = qid;
699	ring->count = count;
700	ring->queued = 0;
701	ring->cur = 0;
702
703	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
704		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
705		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
706	if (error != 0) {
707		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
708		goto fail;
709	}
710
711	/* update shared page with ring's base address */
712	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
713
714	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
715		(void **)&ring->cmd,
716		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
717	if (error != 0) {
718		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
719		goto fail;
720	}
721
722	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
723		M_NOWAIT);
724	if (ring->data == NULL) {
725		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
726		goto fail;
727	}
728
729	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
730
731	for (i = 0; i < count; i++) {
732		data = &ring->data[i];
733
734		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
735			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
736			&data->map);
737		if (error != 0) {
738			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
739			goto fail;
740		}
741	}
742
743	return 0;
744
745fail:	wpi_free_tx_ring(sc, ring);
746	return error;
747}
748
749static void
750wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
751{
752	struct wpi_tx_data *data;
753	int i, ntries;
754
755	wpi_mem_lock(sc);
756
757	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
758	for (ntries = 0; ntries < 100; ntries++) {
759		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
760			break;
761		DELAY(10);
762	}
763#ifdef WPI_DEBUG
764	if (ntries == 100 && wpi_debug > 0) {
765		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
766									   ring->qid);
767	}
768#endif
769	wpi_mem_unlock(sc);
770
771	for (i = 0; i < ring->count; i++) {
772		data = &ring->data[i];
773
774		if (data->m != NULL) {
775			bus_dmamap_unload(sc->sc_dmat, data->map);
776			m_freem(data->m);
777			data->m = NULL;
778		}
779	}
780
781	ring->queued = 0;
782	ring->cur = 0;
783}
784
785static void
786wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
787{
788	struct wpi_tx_data *data;
789	int i;
790
791	wpi_dma_contig_free(&ring->desc_dma);
792	wpi_dma_contig_free(&ring->cmd_dma);
793
794	if (ring->data != NULL) {
795		for (i = 0; i < ring->count; i++) {
796			data = &ring->data[i];
797
798			if (data->m != NULL) {
799				bus_dmamap_unload(sc->sc_dmat, data->map);
800				m_freem(data->m);
801			}
802		}
803		free(ring->data, M_DEVBUF);
804	}
805}
806
807/*ARGUSED*/
808static struct ieee80211_node *
809wpi_node_alloc(struct ieee80211_node_table *nt __unused)
810{
811	struct wpi_node *wn;
812
813	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
814
815	return (struct ieee80211_node *)wn;
816}
817
818static void
819wpi_newassoc(struct ieee80211_node *ni, int isnew)
820{
821	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
822	int i;
823
824	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
825
826	/* set rate to some reasonable initial value */
827	for (i = ni->ni_rates.rs_nrates - 1;
828	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
829	     i--);
830	ni->ni_txrate = i;
831}
832
833static int
834wpi_media_change(struct ifnet *ifp)
835{
836	int error;
837
838	error = ieee80211_media_change(ifp);
839	if (error != ENETRESET)
840		return error;
841
842	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
843		wpi_init(ifp);
844
845	return 0;
846}
847
848static int
849wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
850{
851	struct ifnet *ifp = ic->ic_ifp;
852	struct wpi_softc *sc = ifp->if_softc;
853	struct ieee80211_node *ni;
854	int error;
855
856	callout_stop(&sc->calib_to);
857
858	switch (nstate) {
859	case IEEE80211_S_SCAN:
860
861		if (sc->is_scanning)
862			break;
863
864		sc->is_scanning = true;
865		ieee80211_node_table_reset(&ic->ic_scan);
866		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
867
868		/* make the link LED blink while we're scanning */
869		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
870
871		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
872			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
873			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
874			return error;
875		}
876
877		ic->ic_state = nstate;
878		return 0;
879
880	case IEEE80211_S_ASSOC:
881		if (ic->ic_state != IEEE80211_S_RUN)
882			break;
883		/* FALLTHROUGH */
884	case IEEE80211_S_AUTH:
885		sc->config.associd = 0;
886		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
887		if ((error = wpi_auth(sc)) != 0) {
888			aprint_error_dev(sc->sc_dev,
889							"could not send authentication request\n");
890			return error;
891		}
892		break;
893
894	case IEEE80211_S_RUN:
895		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
896			/* link LED blinks while monitoring */
897			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
898			break;
899		}
900
901		ni = ic->ic_bss;
902
903		if (ic->ic_opmode != IEEE80211_M_STA) {
904			(void) wpi_auth(sc);    /* XXX */
905			wpi_setup_beacon(sc, ni);
906		}
907
908		wpi_enable_tsf(sc, ni);
909
910		/* update adapter's configuration */
911		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
912		/* short preamble/slot time are negotiated when associating */
913		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
914			WPI_CONFIG_SHSLOT);
915		if (ic->ic_flags & IEEE80211_F_SHSLOT)
916			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
917		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
918			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
919		sc->config.filter |= htole32(WPI_FILTER_BSS);
920		if (ic->ic_opmode != IEEE80211_M_STA)
921			sc->config.filter |= htole32(WPI_FILTER_BEACON);
922
923/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
924
925		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
926			sc->config.flags));
927		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
928			sizeof (struct wpi_config), 1);
929		if (error != 0) {
930			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
931			return error;
932		}
933
934		/* configuration has changed, set Tx power accordingly */
935		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
936			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
937			return error;
938		}
939
940		if (ic->ic_opmode == IEEE80211_M_STA) {
941			/* fake a join to init the tx rate */
942			wpi_newassoc(ni, 1);
943		}
944
945		/* start periodic calibration timer */
946		sc->calib_cnt = 0;
947		callout_schedule(&sc->calib_to, hz/2);
948
949		/* link LED always on while associated */
950		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
951		break;
952
953	case IEEE80211_S_INIT:
954		sc->is_scanning = false;
955		break;
956	}
957
958	return sc->sc_newstate(ic, nstate, arg);
959}
960
961/*
962 * XXX: Hack to set the current channel to the value advertised in beacons or
963 * probe responses. Only used during AP detection.
964 * XXX: Duplicated from if_iwi.c
965 */
966static void
967wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
968{
969	struct ieee80211_frame *wh;
970	uint8_t subtype;
971	uint8_t *frm, *efrm;
972
973	wh = mtod(m, struct ieee80211_frame *);
974
975	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
976		return;
977
978	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
979
980	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
981	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
982		return;
983
984	frm = (uint8_t *)(wh + 1);
985	efrm = mtod(m, uint8_t *) + m->m_len;
986
987	frm += 12;	/* skip tstamp, bintval and capinfo fields */
988	while (frm < efrm) {
989		if (*frm == IEEE80211_ELEMID_DSPARMS)
990#if IEEE80211_CHAN_MAX < 255
991		if (frm[2] <= IEEE80211_CHAN_MAX)
992#endif
993			ic->ic_curchan = &ic->ic_channels[frm[2]];
994
995		frm += frm[1] + 2;
996	}
997}
998
999/*
1000 * Grab exclusive access to NIC memory.
1001 */
1002static void
1003wpi_mem_lock(struct wpi_softc *sc)
1004{
1005	uint32_t tmp;
1006	int ntries;
1007
1008	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1009	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1010
1011	/* spin until we actually get the lock */
1012	for (ntries = 0; ntries < 1000; ntries++) {
1013		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1014			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1015			break;
1016		DELAY(10);
1017	}
1018	if (ntries == 1000)
1019		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1020}
1021
1022/*
1023 * Release lock on NIC memory.
1024 */
1025static void
1026wpi_mem_unlock(struct wpi_softc *sc)
1027{
1028	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1029	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1030}
1031
1032static uint32_t
1033wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1034{
1035	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1036	return WPI_READ(sc, WPI_READ_MEM_DATA);
1037}
1038
1039static void
1040wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1041{
1042	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1043	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1044}
1045
1046static void
1047wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1048						const uint32_t *data, int wlen)
1049{
1050	for (; wlen > 0; wlen--, data++, addr += 4)
1051		wpi_mem_write(sc, addr, *data);
1052}
1053
1054
1055/*
1056 * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1057 * instead of using the traditional bit-bang method.
1058 */
1059static int
1060wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1061{
1062	uint8_t *out = data;
1063	uint32_t val;
1064	int ntries;
1065
1066	wpi_mem_lock(sc);
1067	for (; len > 0; len -= 2, addr++) {
1068		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1069
1070		for (ntries = 0; ntries < 10; ntries++) {
1071			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1072			    WPI_EEPROM_READY)
1073				break;
1074			DELAY(5);
1075		}
1076		if (ntries == 10) {
1077			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1078			return ETIMEDOUT;
1079		}
1080		*out++ = val >> 16;
1081		if (len > 1)
1082			*out++ = val >> 24;
1083	}
1084	wpi_mem_unlock(sc);
1085
1086	return 0;
1087}
1088
1089/*
1090 * The firmware boot code is small and is intended to be copied directly into
1091 * the NIC internal memory.
1092 */
1093int
1094wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1095{
1096	int ntries;
1097
1098	size /= sizeof (uint32_t);
1099
1100	wpi_mem_lock(sc);
1101
1102	/* copy microcode image into NIC memory */
1103	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1104	    (const uint32_t *)ucode, size);
1105
1106	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1107	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1108	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1109
1110	/* run microcode */
1111	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1112
1113	/* wait for transfer to complete */
1114	for (ntries = 0; ntries < 1000; ntries++) {
1115		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1116			break;
1117		DELAY(10);
1118	}
1119	if (ntries == 1000) {
1120		wpi_mem_unlock(sc);
1121		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1122		return ETIMEDOUT;
1123	}
1124	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1125
1126	wpi_mem_unlock(sc);
1127
1128	return 0;
1129}
1130
1131static int
1132wpi_cache_firmware(struct wpi_softc *sc)
1133{
1134	firmware_handle_t fw;
1135	int error;
1136
1137	if (sc->fw_used)
1138		return 0;
1139
1140	mutex_enter(&wpi_firmware_mutex);
1141	if (wpi_firmware_users++) {
1142		mutex_exit(&wpi_firmware_mutex);
1143		return 0;
1144	}
1145
1146	/* load firmware image from disk */
1147	if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw)) != 0) {
1148		aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1149		goto fail1;
1150	}
1151
1152	wpi_firmware_size = firmware_get_size(fw);
1153
1154	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1155	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1156	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1157	    WPI_FW_BOOT_TEXT_MAXSZ) {
1158		aprint_error_dev(sc->sc_dev, "invalid firmware file\n");
1159		error = EFBIG;
1160		goto fail1;
1161	}
1162
1163	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1164		aprint_error_dev(sc->sc_dev,
1165		    "truncated firmware header: %zu bytes\n",
1166		    wpi_firmware_size);
1167		error = EINVAL;
1168		goto fail2;
1169	}
1170
1171	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1172	if (wpi_firmware_image == NULL) {
1173		aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1174		error = ENOMEM;
1175		goto fail1;
1176	}
1177
1178	if ((error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size)) != 0) {
1179		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1180		goto fail2;
1181	}
1182
1183	sc->fw_used = true;
1184	firmware_close(fw);
1185	mutex_exit(&wpi_firmware_mutex);
1186
1187	return 0;
1188
1189fail2:
1190	firmware_free(wpi_firmware_image, wpi_firmware_size);
1191fail1:
1192	firmware_close(fw);
1193	if (--wpi_firmware_users == 0)
1194		firmware_free(wpi_firmware_image, wpi_firmware_size);
1195	mutex_exit(&wpi_firmware_mutex);
1196	return error;
1197}
1198
1199static int
1200wpi_load_firmware(struct wpi_softc *sc)
1201{
1202	struct wpi_dma_info *dma = &sc->fw_dma;
1203	struct wpi_firmware_hdr hdr;
1204	const uint8_t *init_text, *init_data, *main_text, *main_data;
1205	const uint8_t *boot_text;
1206	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1207	uint32_t boot_textsz;
1208	int error;
1209
1210	if ((error = wpi_cache_firmware(sc)) != 0)
1211		return error;
1212
1213	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1214
1215	main_textsz = le32toh(hdr.main_textsz);
1216	main_datasz = le32toh(hdr.main_datasz);
1217	init_textsz = le32toh(hdr.init_textsz);
1218	init_datasz = le32toh(hdr.init_datasz);
1219	boot_textsz = le32toh(hdr.boot_textsz);
1220
1221	/* sanity-check firmware segments sizes */
1222	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1223	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1224	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1225	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1226	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1227	    (boot_textsz & 3) != 0) {
1228		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1229		error = EINVAL;
1230		goto free_firmware;
1231	}
1232
1233	/* check that all firmware segments are present */
1234	if (wpi_firmware_size <
1235	    sizeof (struct wpi_firmware_hdr) + main_textsz +
1236	    main_datasz + init_textsz + init_datasz + boot_textsz) {
1237		aprint_error_dev(sc->sc_dev,
1238		    "firmware file too short: %zu bytes\n", wpi_firmware_size);
1239		error = EINVAL;
1240		goto free_firmware;
1241	}
1242
1243	/* get pointers to firmware segments */
1244	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1245	main_data = main_text + main_textsz;
1246	init_text = main_data + main_datasz;
1247	init_data = init_text + init_textsz;
1248	boot_text = init_data + init_datasz;
1249
1250	/* copy initialization images into pre-allocated DMA-safe memory */
1251	memcpy(dma->vaddr, init_data, init_datasz);
1252	memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1253
1254	/* tell adapter where to find initialization images */
1255	wpi_mem_lock(sc);
1256	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1257	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1258	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1259	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1260	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1261	wpi_mem_unlock(sc);
1262
1263	/* load firmware boot code */
1264	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1265		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1266		return error;
1267	}
1268
1269	/* now press "execute" ;-) */
1270	WPI_WRITE(sc, WPI_RESET, 0);
1271
1272	/* ..and wait at most one second for adapter to initialize */
1273	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1274		/* this isn't what was supposed to happen.. */
1275		aprint_error_dev(sc->sc_dev,
1276		    "timeout waiting for adapter to initialize\n");
1277	}
1278
1279	/* copy runtime images into pre-allocated DMA-safe memory */
1280	memcpy(dma->vaddr, main_data, main_datasz);
1281	memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1282
1283	/* tell adapter where to find runtime images */
1284	wpi_mem_lock(sc);
1285	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1286	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1287	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1288	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1289	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1290	wpi_mem_unlock(sc);
1291
1292	/* wait at most one second for second alive notification */
1293	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1294		/* this isn't what was supposed to happen.. */
1295		aprint_error_dev(sc->sc_dev,
1296		    "timeout waiting for adapter to initialize\n");
1297	}
1298
1299	return error;
1300
1301free_firmware:
1302	mutex_enter(&wpi_firmware_mutex);
1303	sc->fw_used = false;
1304	--wpi_firmware_users;
1305	mutex_exit(&wpi_firmware_mutex);
1306	return error;
1307}
1308
1309static void
1310wpi_calib_timeout(void *arg)
1311{
1312	struct wpi_softc *sc = arg;
1313	struct ieee80211com *ic = &sc->sc_ic;
1314	int temp, s;
1315
1316	/* automatic rate control triggered every 500ms */
1317	if (ic->ic_fixed_rate == -1) {
1318		s = splnet();
1319		if (ic->ic_opmode == IEEE80211_M_STA)
1320			wpi_iter_func(sc, ic->ic_bss);
1321		else
1322                	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1323		splx(s);
1324	}
1325
1326	/* update sensor data */
1327	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1328
1329	/* automatic power calibration every 60s */
1330	if (++sc->calib_cnt >= 120) {
1331		wpi_power_calibration(sc, temp);
1332		sc->calib_cnt = 0;
1333	}
1334
1335	callout_schedule(&sc->calib_to, hz/2);
1336}
1337
1338static void
1339wpi_iter_func(void *arg, struct ieee80211_node *ni)
1340{
1341	struct wpi_softc *sc = arg;
1342	struct wpi_node *wn = (struct wpi_node *)ni;
1343
1344	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1345}
1346
1347/*
1348 * This function is called periodically (every 60 seconds) to adjust output
1349 * power to temperature changes.
1350 */
1351void
1352wpi_power_calibration(struct wpi_softc *sc, int temp)
1353{
1354	/* sanity-check read value */
1355	if (temp < -260 || temp > 25) {
1356		/* this can't be correct, ignore */
1357		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1358		return;
1359	}
1360
1361	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1362
1363	/* adjust Tx power if need be */
1364	if (abs(temp - sc->temp) <= 6)
1365		return;
1366
1367	sc->temp = temp;
1368
1369	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1370		/* just warn, too bad for the automatic calibration... */
1371		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1372	}
1373}
1374
1375static void
1376wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1377	struct wpi_rx_data *data)
1378{
1379	struct ieee80211com *ic = &sc->sc_ic;
1380	struct ifnet *ifp = ic->ic_ifp;
1381	struct wpi_rx_ring *ring = &sc->rxq;
1382	struct wpi_rx_stat *stat;
1383	struct wpi_rx_head *head;
1384	struct wpi_rx_tail *tail;
1385	struct wpi_rbuf *rbuf;
1386	struct ieee80211_frame *wh;
1387	struct ieee80211_node *ni;
1388	struct mbuf *m, *mnew;
1389	int data_off ;
1390
1391	stat = (struct wpi_rx_stat *)(desc + 1);
1392
1393	if (stat->len > WPI_STAT_MAXLEN) {
1394		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1395		ifp->if_ierrors++;
1396		return;
1397	}
1398
1399	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1400	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1401
1402	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1403		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1404		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1405		le64toh(tail->tstamp)));
1406
1407	/*
1408	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1409	 * to radiotap in monitor mode).
1410	 */
1411	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1412		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1413		ifp->if_ierrors++;
1414		return;
1415	}
1416
1417	/* Compute where are the useful datas */
1418	data_off = (char*)(head + 1) - mtod(data->m, char*);
1419
1420	/*
1421	 * If the number of free entry is too low
1422	 * just dup the data->m socket and reuse the same rbuf entry
1423	 * Note that thi test is not protected by a mutex because the
1424	 * only path that causes nb_free_entries to decrease is through
1425	 * this interrupt routine, which is not re-entrent.
1426	 * What may not be obvious is that the safe path is if that test
1427	 * evaluates as true, so nb_free_entries can grow any time.
1428	 */
1429	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1430
1431		/* Prepare the mbuf for the m_dup */
1432		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1433		data->m->m_data = (char*) data->m->m_data + data_off;
1434
1435		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1436
1437		/* Restore the m_data pointer for future use */
1438		data->m->m_data = (char*) data->m->m_data - data_off;
1439
1440		if (m == NULL) {
1441			ifp->if_ierrors++;
1442			return;
1443		}
1444	} else {
1445
1446		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1447		if (mnew == NULL) {
1448			ifp->if_ierrors++;
1449			return;
1450		}
1451
1452		rbuf = wpi_alloc_rbuf(sc);
1453		KASSERT(rbuf != NULL);
1454
1455 		/* attach Rx buffer to mbuf */
1456		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1457		 	rbuf);
1458		mnew->m_flags |= M_EXT_RW;
1459
1460		m = data->m;
1461		data->m = mnew;
1462
1463		/* update Rx descriptor */
1464		ring->desc[ring->cur] = htole32(rbuf->paddr);
1465
1466		m->m_data = (char*)m->m_data + data_off;
1467		m->m_pkthdr.len = m->m_len = le16toh(head->len);
1468	}
1469
1470	/* finalize mbuf */
1471	m->m_pkthdr.rcvif = ifp;
1472
1473	if (ic->ic_state == IEEE80211_S_SCAN)
1474		wpi_fix_channel(ic, m);
1475
1476	if (sc->sc_drvbpf != NULL) {
1477		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1478
1479		tap->wr_flags = 0;
1480		tap->wr_chan_freq =
1481			htole16(ic->ic_channels[head->chan].ic_freq);
1482		tap->wr_chan_flags =
1483			htole16(ic->ic_channels[head->chan].ic_flags);
1484		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1485		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1486		tap->wr_tsft = tail->tstamp;
1487		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1488		switch (head->rate) {
1489		/* CCK rates */
1490		case  10: tap->wr_rate =   2; break;
1491		case  20: tap->wr_rate =   4; break;
1492		case  55: tap->wr_rate =  11; break;
1493		case 110: tap->wr_rate =  22; break;
1494		/* OFDM rates */
1495		case 0xd: tap->wr_rate =  12; break;
1496		case 0xf: tap->wr_rate =  18; break;
1497		case 0x5: tap->wr_rate =  24; break;
1498		case 0x7: tap->wr_rate =  36; break;
1499		case 0x9: tap->wr_rate =  48; break;
1500		case 0xb: tap->wr_rate =  72; break;
1501		case 0x1: tap->wr_rate =  96; break;
1502		case 0x3: tap->wr_rate = 108; break;
1503		/* unknown rate: should not happen */
1504		default:  tap->wr_rate =   0;
1505		}
1506		if (le16toh(head->flags) & 0x4)
1507			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1508
1509		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1510	}
1511
1512	/* grab a reference to the source node */
1513	wh = mtod(m, struct ieee80211_frame *);
1514	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1515
1516	/* send the frame to the 802.11 layer */
1517	ieee80211_input(ic, m, ni, stat->rssi, 0);
1518
1519	/* release node reference */
1520	ieee80211_free_node(ni);
1521}
1522
1523static void
1524wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1525{
1526	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1527	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1528	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1529	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1530	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1531
1532	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1533		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1534		stat->nkill, stat->rate, le32toh(stat->duration),
1535		le32toh(stat->status)));
1536
1537	/*
1538	 * Update rate control statistics for the node.
1539	 * XXX we should not count mgmt frames since they're always sent at
1540	 * the lowest available bit-rate.
1541	 */
1542	wn->amn.amn_txcnt++;
1543	if (stat->ntries > 0) {
1544		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1545		wn->amn.amn_retrycnt++;
1546	}
1547
1548	if ((le32toh(stat->status) & 0xff) != 1)
1549		ifp->if_oerrors++;
1550	else
1551		ifp->if_opackets++;
1552
1553	bus_dmamap_unload(sc->sc_dmat, txdata->map);
1554	m_freem(txdata->m);
1555	txdata->m = NULL;
1556	ieee80211_free_node(txdata->ni);
1557	txdata->ni = NULL;
1558
1559	ring->queued--;
1560
1561	sc->sc_tx_timer = 0;
1562	ifp->if_flags &= ~IFF_OACTIVE;
1563	wpi_start(ifp);
1564}
1565
1566static void
1567wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1568{
1569	struct wpi_tx_ring *ring = &sc->cmdq;
1570	struct wpi_tx_data *data;
1571
1572	if ((desc->qid & 7) != 4)
1573		return;	/* not a command ack */
1574
1575	data = &ring->data[desc->idx];
1576
1577	/* if the command was mapped in a mbuf, free it */
1578	if (data->m != NULL) {
1579		bus_dmamap_unload(sc->sc_dmat, data->map);
1580		m_freem(data->m);
1581		data->m = NULL;
1582	}
1583
1584	wakeup(&ring->cmd[desc->idx]);
1585}
1586
1587static void
1588wpi_notif_intr(struct wpi_softc *sc)
1589{
1590	struct ieee80211com *ic = &sc->sc_ic;
1591	struct ifnet *ifp =  ic->ic_ifp;
1592	struct wpi_rx_desc *desc;
1593	struct wpi_rx_data *data;
1594	uint32_t hw;
1595
1596	hw = le32toh(sc->shared->next);
1597	while (sc->rxq.cur != hw) {
1598		data = &sc->rxq.data[sc->rxq.cur];
1599
1600		desc = mtod(data->m, struct wpi_rx_desc *);
1601
1602		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1603			"len=%d\n", desc->qid, desc->idx, desc->flags,
1604			desc->type, le32toh(desc->len)));
1605
1606		if (!(desc->qid & 0x80))	/* reply to a command */
1607			wpi_cmd_intr(sc, desc);
1608
1609		switch (desc->type) {
1610		case WPI_RX_DONE:
1611			/* a 802.11 frame was received */
1612			wpi_rx_intr(sc, desc, data);
1613			break;
1614
1615		case WPI_TX_DONE:
1616			/* a 802.11 frame has been transmitted */
1617			wpi_tx_intr(sc, desc);
1618			break;
1619
1620		case WPI_UC_READY:
1621		{
1622			struct wpi_ucode_info *uc =
1623				(struct wpi_ucode_info *)(desc + 1);
1624
1625			/* the microcontroller is ready */
1626			DPRINTF(("microcode alive notification version %x "
1627				"alive %x\n", le32toh(uc->version),
1628				le32toh(uc->valid)));
1629
1630			if (le32toh(uc->valid) != 1) {
1631				aprint_error_dev(sc->sc_dev,
1632					"microcontroller initialization failed\n");
1633			}
1634			break;
1635		}
1636		case WPI_STATE_CHANGED:
1637		{
1638			uint32_t *status = (uint32_t *)(desc + 1);
1639
1640			/* enabled/disabled notification */
1641			DPRINTF(("state changed to %x\n", le32toh(*status)));
1642
1643			if (le32toh(*status) & 1) {
1644				/* the radio button has to be pushed */
1645				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1646				/* turn the interface down */
1647				ifp->if_flags &= ~IFF_UP;
1648				wpi_stop(ifp, 1);
1649				return;	/* no further processing */
1650			}
1651			break;
1652		}
1653		case WPI_START_SCAN:
1654		{
1655			struct wpi_start_scan *scan =
1656				(struct wpi_start_scan *)(desc + 1);
1657
1658			DPRINTFN(2, ("scanning channel %d status %x\n",
1659				scan->chan, le32toh(scan->status)));
1660
1661			/* fix current channel */
1662			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1663			break;
1664		}
1665		case WPI_STOP_SCAN:
1666		{
1667			struct wpi_stop_scan *scan =
1668				(struct wpi_stop_scan *)(desc + 1);
1669
1670			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1671				scan->nchan, scan->status, scan->chan));
1672
1673			if (scan->status == 1 && scan->chan <= 14) {
1674				/*
1675				 * We just finished scanning 802.11g channels,
1676				 * start scanning 802.11a ones.
1677				 */
1678				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1679					break;
1680			}
1681			sc->is_scanning = false;
1682			ieee80211_end_scan(ic);
1683			break;
1684		}
1685		}
1686
1687		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1688	}
1689
1690	/* tell the firmware what we have processed */
1691	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1692	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1693}
1694
1695static int
1696wpi_intr(void *arg)
1697{
1698	struct wpi_softc *sc = arg;
1699	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1700	uint32_t r;
1701
1702	r = WPI_READ(sc, WPI_INTR);
1703	if (r == 0 || r == 0xffffffff)
1704		return 0;	/* not for us */
1705
1706	DPRINTFN(5, ("interrupt reg %x\n", r));
1707
1708	/* disable interrupts */
1709	WPI_WRITE(sc, WPI_MASK, 0);
1710	/* ack interrupts */
1711	WPI_WRITE(sc, WPI_INTR, r);
1712
1713	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1714		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1715		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1716		wpi_stop(sc->sc_ic.ic_ifp, 1);
1717		return 1;
1718	}
1719
1720	if (r & WPI_RX_INTR)
1721		wpi_notif_intr(sc);
1722
1723	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1724		wakeup(sc);
1725
1726	/* re-enable interrupts */
1727	if (ifp->if_flags & IFF_UP)
1728		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1729
1730	return 1;
1731}
1732
1733static uint8_t
1734wpi_plcp_signal(int rate)
1735{
1736	switch (rate) {
1737	/* CCK rates (returned values are device-dependent) */
1738	case 2:		return 10;
1739	case 4:		return 20;
1740	case 11:	return 55;
1741	case 22:	return 110;
1742
1743	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1744	/* R1-R4, (u)ral is R4-R1 */
1745	case 12:	return 0xd;
1746	case 18:	return 0xf;
1747	case 24:	return 0x5;
1748	case 36:	return 0x7;
1749	case 48:	return 0x9;
1750	case 72:	return 0xb;
1751	case 96:	return 0x1;
1752	case 108:	return 0x3;
1753
1754	/* unsupported rates (should not get there) */
1755	default:	return 0;
1756	}
1757}
1758
1759/* quickly determine if a given rate is CCK or OFDM */
1760#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1761
1762static int
1763wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1764	int ac)
1765{
1766	struct ieee80211com *ic = &sc->sc_ic;
1767	struct wpi_tx_ring *ring = &sc->txq[ac];
1768	struct wpi_tx_desc *desc;
1769	struct wpi_tx_data *data;
1770	struct wpi_tx_cmd *cmd;
1771	struct wpi_cmd_data *tx;
1772	struct ieee80211_frame *wh;
1773	struct ieee80211_key *k;
1774	const struct chanAccParams *cap;
1775	struct mbuf *mnew;
1776	int i, error, rate, hdrlen, noack = 0;
1777
1778	desc = &ring->desc[ring->cur];
1779	data = &ring->data[ring->cur];
1780
1781	wh = mtod(m0, struct ieee80211_frame *);
1782
1783	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1784		cap = &ic->ic_wme.wme_chanParams;
1785		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1786	}
1787
1788	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1789		k = ieee80211_crypto_encap(ic, ni, m0);
1790		if (k == NULL) {
1791			m_freem(m0);
1792			return ENOBUFS;
1793		}
1794
1795		/* packet header may have moved, reset our local pointer */
1796		wh = mtod(m0, struct ieee80211_frame *);
1797	}
1798
1799	hdrlen = ieee80211_anyhdrsize(wh);
1800
1801	/* pickup a rate */
1802	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1803		IEEE80211_FC0_TYPE_MGT) {
1804		/* mgmt frames are sent at the lowest available bit-rate */
1805		rate = ni->ni_rates.rs_rates[0];
1806	} else {
1807		if (ic->ic_fixed_rate != -1) {
1808			rate = ic->ic_sup_rates[ic->ic_curmode].
1809				rs_rates[ic->ic_fixed_rate];
1810		} else
1811			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1812	}
1813	rate &= IEEE80211_RATE_VAL;
1814
1815
1816	if (sc->sc_drvbpf != NULL) {
1817		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1818
1819		tap->wt_flags = 0;
1820		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1821		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1822		tap->wt_rate = rate;
1823		tap->wt_hwqueue = ac;
1824		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1825			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1826
1827		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1828	}
1829
1830	cmd = &ring->cmd[ring->cur];
1831	cmd->code = WPI_CMD_TX_DATA;
1832	cmd->flags = 0;
1833	cmd->qid = ring->qid;
1834	cmd->idx = ring->cur;
1835
1836	tx = (struct wpi_cmd_data *)cmd->data;
1837	tx->flags = 0;
1838
1839	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1840		tx->flags |= htole32(WPI_TX_NEED_ACK);
1841	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1842		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1843
1844	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1845
1846	/* retrieve destination node's id */
1847	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1848		WPI_ID_BSS;
1849
1850	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1851		IEEE80211_FC0_TYPE_MGT) {
1852		/* tell h/w to set timestamp in probe responses */
1853		if ((wh->i_fc[0] &
1854		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1855		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1856			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1857
1858		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1859			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1860			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1861			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1862			tx->timeout = htole16(3);
1863		else
1864			tx->timeout = htole16(2);
1865	} else
1866		tx->timeout = htole16(0);
1867
1868	tx->rate = wpi_plcp_signal(rate);
1869
1870	/* be very persistant at sending frames out */
1871	tx->rts_ntries = 7;
1872	tx->data_ntries = 15;
1873
1874	tx->ofdm_mask = 0xff;
1875	tx->cck_mask = 0xf;
1876	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1877
1878	tx->len = htole16(m0->m_pkthdr.len);
1879
1880	/* save and trim IEEE802.11 header */
1881	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1882	m_adj(m0, hdrlen);
1883
1884	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1885		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1886	if (error != 0 && error != EFBIG) {
1887		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1888		m_freem(m0);
1889		return error;
1890	}
1891	if (error != 0) {
1892		/* too many fragments, linearize */
1893		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1894		if (mnew == NULL) {
1895			m_freem(m0);
1896			return ENOMEM;
1897		}
1898
1899		M_COPY_PKTHDR(mnew, m0);
1900		if (m0->m_pkthdr.len > MHLEN) {
1901			MCLGET(mnew, M_DONTWAIT);
1902			if (!(mnew->m_flags & M_EXT)) {
1903				m_freem(m0);
1904				m_freem(mnew);
1905				return ENOMEM;
1906			}
1907		}
1908
1909		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1910		m_freem(m0);
1911		mnew->m_len = mnew->m_pkthdr.len;
1912		m0 = mnew;
1913
1914		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1915			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1916		if (error != 0) {
1917			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1918							 error);
1919			m_freem(m0);
1920			return error;
1921		}
1922	}
1923
1924	data->m = m0;
1925	data->ni = ni;
1926
1927	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1928		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1929
1930	/* first scatter/gather segment is used by the tx data command */
1931	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1932		(1 + data->map->dm_nsegs) << 24);
1933	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1934		ring->cur * sizeof (struct wpi_tx_cmd));
1935	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
1936						 ((hdrlen + 3) & ~3));
1937
1938	for (i = 1; i <= data->map->dm_nsegs; i++) {
1939		desc->segs[i].addr =
1940			htole32(data->map->dm_segs[i - 1].ds_addr);
1941		desc->segs[i].len  =
1942			htole32(data->map->dm_segs[i - 1].ds_len);
1943	}
1944
1945	ring->queued++;
1946
1947	/* kick ring */
1948	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1949	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1950
1951	return 0;
1952}
1953
1954static void
1955wpi_start(struct ifnet *ifp)
1956{
1957	struct wpi_softc *sc = ifp->if_softc;
1958	struct ieee80211com *ic = &sc->sc_ic;
1959	struct ieee80211_node *ni;
1960	struct ether_header *eh;
1961	struct mbuf *m0;
1962	int ac;
1963
1964	/*
1965	 * net80211 may still try to send management frames even if the
1966	 * IFF_RUNNING flag is not set...
1967	 */
1968	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1969		return;
1970
1971	for (;;) {
1972		IF_DEQUEUE(&ic->ic_mgtq, m0);
1973		if (m0 != NULL) {
1974
1975			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1976			m0->m_pkthdr.rcvif = NULL;
1977
1978			/* management frames go into ring 0 */
1979			if (sc->txq[0].queued > sc->txq[0].count - 8) {
1980				ifp->if_oerrors++;
1981				continue;
1982			}
1983			bpf_mtap3(ic->ic_rawbpf, m0);
1984			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1985				ifp->if_oerrors++;
1986				break;
1987			}
1988		} else {
1989			if (ic->ic_state != IEEE80211_S_RUN)
1990				break;
1991			IFQ_POLL(&ifp->if_snd, m0);
1992			if (m0 == NULL)
1993				break;
1994
1995			if (m0->m_len < sizeof (*eh) &&
1996			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
1997				ifp->if_oerrors++;
1998				continue;
1999			}
2000			eh = mtod(m0, struct ether_header *);
2001			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2002			if (ni == NULL) {
2003				m_freem(m0);
2004				ifp->if_oerrors++;
2005				continue;
2006			}
2007
2008			/* classify mbuf so we can find which tx ring to use */
2009			if (ieee80211_classify(ic, m0, ni) != 0) {
2010				m_freem(m0);
2011				ieee80211_free_node(ni);
2012				ifp->if_oerrors++;
2013				continue;
2014			}
2015
2016			/* no QoS encapsulation for EAPOL frames */
2017			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2018			    M_WME_GETAC(m0) : WME_AC_BE;
2019
2020			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2021				/* there is no place left in this ring */
2022				ifp->if_flags |= IFF_OACTIVE;
2023				break;
2024			}
2025			IFQ_DEQUEUE(&ifp->if_snd, m0);
2026			bpf_mtap(ifp, m0);
2027			m0 = ieee80211_encap(ic, m0, ni);
2028			if (m0 == NULL) {
2029				ieee80211_free_node(ni);
2030				ifp->if_oerrors++;
2031				continue;
2032			}
2033			bpf_mtap3(ic->ic_rawbpf, m0);
2034			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2035				ieee80211_free_node(ni);
2036				ifp->if_oerrors++;
2037				break;
2038			}
2039		}
2040
2041		sc->sc_tx_timer = 5;
2042		ifp->if_timer = 1;
2043	}
2044}
2045
2046static void
2047wpi_watchdog(struct ifnet *ifp)
2048{
2049	struct wpi_softc *sc = ifp->if_softc;
2050
2051	ifp->if_timer = 0;
2052
2053	if (sc->sc_tx_timer > 0) {
2054		if (--sc->sc_tx_timer == 0) {
2055			aprint_error_dev(sc->sc_dev, "device timeout\n");
2056			ifp->if_oerrors++;
2057			ifp->if_flags &= ~IFF_UP;
2058			wpi_stop(ifp, 1);
2059			return;
2060		}
2061		ifp->if_timer = 1;
2062	}
2063
2064	ieee80211_watchdog(&sc->sc_ic);
2065}
2066
2067static int
2068wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2069{
2070#define IS_RUNNING(ifp) \
2071	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2072
2073	struct wpi_softc *sc = ifp->if_softc;
2074	struct ieee80211com *ic = &sc->sc_ic;
2075	int s, error = 0;
2076
2077	s = splnet();
2078
2079	switch (cmd) {
2080	case SIOCSIFFLAGS:
2081		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2082			break;
2083		if (ifp->if_flags & IFF_UP) {
2084			if (!(ifp->if_flags & IFF_RUNNING))
2085				wpi_init(ifp);
2086		} else {
2087			if (ifp->if_flags & IFF_RUNNING)
2088				wpi_stop(ifp, 1);
2089		}
2090		break;
2091
2092	case SIOCADDMULTI:
2093	case SIOCDELMULTI:
2094		/* XXX no h/w multicast filter? --dyoung */
2095		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2096			/* setup multicast filter, etc */
2097			error = 0;
2098		}
2099		break;
2100
2101	default:
2102		error = ieee80211_ioctl(ic, cmd, data);
2103	}
2104
2105	if (error == ENETRESET) {
2106		if (IS_RUNNING(ifp) &&
2107			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2108			wpi_init(ifp);
2109		error = 0;
2110	}
2111
2112	splx(s);
2113	return error;
2114
2115#undef IS_RUNNING
2116}
2117
2118/*
2119 * Extract various information from EEPROM.
2120 */
2121static void
2122wpi_read_eeprom(struct wpi_softc *sc)
2123{
2124	struct ieee80211com *ic = &sc->sc_ic;
2125	char domain[4];
2126	int i;
2127
2128	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2129	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2130	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2131
2132	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2133	    sc->type));
2134
2135	/* read and print regulatory domain */
2136	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2137	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2138
2139	/* read and print MAC address */
2140	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2141	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2142
2143	/* read the list of authorized channels */
2144	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2145		wpi_read_eeprom_channels(sc, i);
2146
2147	/* read the list of power groups */
2148	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2149		wpi_read_eeprom_group(sc, i);
2150}
2151
2152static void
2153wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2154{
2155	struct ieee80211com *ic = &sc->sc_ic;
2156	const struct wpi_chan_band *band = &wpi_bands[n];
2157	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2158	int chan, i;
2159
2160	wpi_read_prom_data(sc, band->addr, channels,
2161	    band->nchan * sizeof (struct wpi_eeprom_chan));
2162
2163	for (i = 0; i < band->nchan; i++) {
2164		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2165			continue;
2166
2167		chan = band->chan[i];
2168
2169		if (n == 0) {	/* 2GHz band */
2170			ic->ic_channels[chan].ic_freq =
2171			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2172			ic->ic_channels[chan].ic_flags =
2173			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2174			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2175
2176		} else {	/* 5GHz band */
2177			/*
2178			 * Some 3945abg adapters support channels 7, 8, 11
2179			 * and 12 in the 2GHz *and* 5GHz bands.
2180			 * Because of limitations in our net80211(9) stack,
2181			 * we can't support these channels in 5GHz band.
2182			 */
2183			if (chan <= 14)
2184				continue;
2185
2186			ic->ic_channels[chan].ic_freq =
2187			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2188			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2189		}
2190
2191		/* is active scan allowed on this channel? */
2192		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2193			ic->ic_channels[chan].ic_flags |=
2194			    IEEE80211_CHAN_PASSIVE;
2195		}
2196
2197		/* save maximum allowed power for this channel */
2198		sc->maxpwr[chan] = channels[i].maxpwr;
2199
2200		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2201		    chan, channels[i].flags, sc->maxpwr[chan]));
2202	}
2203}
2204
2205static void
2206wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2207{
2208	struct wpi_power_group *group = &sc->groups[n];
2209	struct wpi_eeprom_group rgroup;
2210	int i;
2211
2212	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2213	    sizeof rgroup);
2214
2215	/* save power group information */
2216	group->chan   = rgroup.chan;
2217	group->maxpwr = rgroup.maxpwr;
2218	/* temperature at which the samples were taken */
2219	group->temp   = (int16_t)le16toh(rgroup.temp);
2220
2221	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2222	    group->chan, group->maxpwr, group->temp));
2223
2224	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2225		group->samples[i].index = rgroup.samples[i].index;
2226		group->samples[i].power = rgroup.samples[i].power;
2227
2228		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2229		    group->samples[i].index, group->samples[i].power));
2230	}
2231}
2232
2233/*
2234 * Send a command to the firmware.
2235 */
2236static int
2237wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2238{
2239	struct wpi_tx_ring *ring = &sc->cmdq;
2240	struct wpi_tx_desc *desc;
2241	struct wpi_tx_cmd *cmd;
2242
2243	KASSERT(size <= sizeof cmd->data);
2244
2245	desc = &ring->desc[ring->cur];
2246	cmd = &ring->cmd[ring->cur];
2247
2248	cmd->code = code;
2249	cmd->flags = 0;
2250	cmd->qid = ring->qid;
2251	cmd->idx = ring->cur;
2252	memcpy(cmd->data, buf, size);
2253
2254	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2255	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2256		ring->cur * sizeof (struct wpi_tx_cmd));
2257	desc->segs[0].len  = htole32(4 + size);
2258
2259	/* kick cmd ring */
2260	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2261	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2262
2263	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2264}
2265
2266static int
2267wpi_wme_update(struct ieee80211com *ic)
2268{
2269#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2270#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2271	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2272	const struct wmeParams *wmep;
2273	struct wpi_wme_setup wme;
2274	int ac;
2275
2276	/* don't override default WME values if WME is not actually enabled */
2277	if (!(ic->ic_flags & IEEE80211_F_WME))
2278		return 0;
2279
2280	wme.flags = 0;
2281	for (ac = 0; ac < WME_NUM_AC; ac++) {
2282		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2283		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2284		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2285		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2286		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2287
2288		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2289		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2290		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2291	}
2292
2293	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2294#undef WPI_USEC
2295#undef WPI_EXP2
2296}
2297
2298/*
2299 * Configure h/w multi-rate retries.
2300 */
2301static int
2302wpi_mrr_setup(struct wpi_softc *sc)
2303{
2304	struct ieee80211com *ic = &sc->sc_ic;
2305	struct wpi_mrr_setup mrr;
2306	int i, error;
2307
2308	/* CCK rates (not used with 802.11a) */
2309	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2310		mrr.rates[i].flags = 0;
2311		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2312		/* fallback to the immediate lower CCK rate (if any) */
2313		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2314		/* try one time at this rate before falling back to "next" */
2315		mrr.rates[i].ntries = 1;
2316	}
2317
2318	/* OFDM rates (not used with 802.11b) */
2319	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2320		mrr.rates[i].flags = 0;
2321		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2322		/* fallback to the immediate lower rate (if any) */
2323		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2324		mrr.rates[i].next = (i == WPI_OFDM6) ?
2325		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2326			WPI_OFDM6 : WPI_CCK2) :
2327		    i - 1;
2328		/* try one time at this rate before falling back to "next" */
2329		mrr.rates[i].ntries = 1;
2330	}
2331
2332	/* setup MRR for control frames */
2333	mrr.which = htole32(WPI_MRR_CTL);
2334	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2335	if (error != 0) {
2336		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2337		return error;
2338	}
2339
2340	/* setup MRR for data frames */
2341	mrr.which = htole32(WPI_MRR_DATA);
2342	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2343	if (error != 0) {
2344		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2345		return error;
2346	}
2347
2348	return 0;
2349}
2350
2351static void
2352wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2353{
2354	struct wpi_cmd_led led;
2355
2356	led.which = which;
2357	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2358	led.off = off;
2359	led.on = on;
2360
2361	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2362}
2363
2364static void
2365wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2366{
2367	struct wpi_cmd_tsf tsf;
2368	uint64_t val, mod;
2369
2370	memset(&tsf, 0, sizeof tsf);
2371	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2372	tsf.bintval = htole16(ni->ni_intval);
2373	tsf.lintval = htole16(10);
2374
2375	/* compute remaining time until next beacon */
2376	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
2377	mod = le64toh(tsf.tstamp) % val;
2378	tsf.binitval = htole32((uint32_t)(val - mod));
2379
2380	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2381	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2382
2383	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2384		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2385}
2386
2387/*
2388 * Update Tx power to match what is defined for channel `c'.
2389 */
2390static int
2391wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2392{
2393	struct ieee80211com *ic = &sc->sc_ic;
2394	struct wpi_power_group *group;
2395	struct wpi_cmd_txpower txpower;
2396	u_int chan;
2397	int i;
2398
2399	/* get channel number */
2400	chan = ieee80211_chan2ieee(ic, c);
2401
2402	/* find the power group to which this channel belongs */
2403	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2404		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2405			if (chan <= group->chan)
2406				break;
2407	} else
2408		group = &sc->groups[0];
2409
2410	memset(&txpower, 0, sizeof txpower);
2411	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2412	txpower.chan = htole16(chan);
2413
2414	/* set Tx power for all OFDM and CCK rates */
2415	for (i = 0; i <= 11 ; i++) {
2416		/* retrieve Tx power for this channel/rate combination */
2417		int idx = wpi_get_power_index(sc, group, c,
2418		    wpi_ridx_to_rate[i]);
2419
2420		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2421
2422		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2423			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2424			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2425		} else {
2426			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2427			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2428		}
2429		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2430		    wpi_ridx_to_rate[i], idx));
2431	}
2432
2433	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2434}
2435
2436/*
2437 * Determine Tx power index for a given channel/rate combination.
2438 * This takes into account the regulatory information from EEPROM and the
2439 * current temperature.
2440 */
2441static int
2442wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2443    struct ieee80211_channel *c, int rate)
2444{
2445/* fixed-point arithmetic division using a n-bit fractional part */
2446#define fdivround(a, b, n)	\
2447	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2448
2449/* linear interpolation */
2450#define interpolate(x, x1, y1, x2, y2, n)	\
2451	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2452
2453	struct ieee80211com *ic = &sc->sc_ic;
2454	struct wpi_power_sample *sample;
2455	int pwr, idx;
2456	u_int chan;
2457
2458	/* get channel number */
2459	chan = ieee80211_chan2ieee(ic, c);
2460
2461	/* default power is group's maximum power - 3dB */
2462	pwr = group->maxpwr / 2;
2463
2464	/* decrease power for highest OFDM rates to reduce distortion */
2465	switch (rate) {
2466	case 72:	/* 36Mb/s */
2467		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2468		break;
2469	case 96:	/* 48Mb/s */
2470		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2471		break;
2472	case 108:	/* 54Mb/s */
2473		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2474		break;
2475	}
2476
2477	/* never exceed channel's maximum allowed Tx power */
2478	pwr = min(pwr, sc->maxpwr[chan]);
2479
2480	/* retrieve power index into gain tables from samples */
2481	for (sample = group->samples; sample < &group->samples[3]; sample++)
2482		if (pwr > sample[1].power)
2483			break;
2484	/* fixed-point linear interpolation using a 19-bit fractional part */
2485	idx = interpolate(pwr, sample[0].power, sample[0].index,
2486	    sample[1].power, sample[1].index, 19);
2487
2488	/*
2489	 * Adjust power index based on current temperature:
2490	 * - if cooler than factory-calibrated: decrease output power
2491	 * - if warmer than factory-calibrated: increase output power
2492	 */
2493	idx -= (sc->temp - group->temp) * 11 / 100;
2494
2495	/* decrease power for CCK rates (-5dB) */
2496	if (!WPI_RATE_IS_OFDM(rate))
2497		idx += 10;
2498
2499	/* keep power index in a valid range */
2500	if (idx < 0)
2501		return 0;
2502	if (idx > WPI_MAX_PWR_INDEX)
2503		return WPI_MAX_PWR_INDEX;
2504	return idx;
2505
2506#undef interpolate
2507#undef fdivround
2508}
2509
2510/*
2511 * Build a beacon frame that the firmware will broadcast periodically in
2512 * IBSS or HostAP modes.
2513 */
2514static int
2515wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2516{
2517	struct ieee80211com *ic = &sc->sc_ic;
2518	struct wpi_tx_ring *ring = &sc->cmdq;
2519	struct wpi_tx_desc *desc;
2520	struct wpi_tx_data *data;
2521	struct wpi_tx_cmd *cmd;
2522	struct wpi_cmd_beacon *bcn;
2523	struct ieee80211_beacon_offsets bo;
2524	struct mbuf *m0;
2525	int error;
2526
2527	desc = &ring->desc[ring->cur];
2528	data = &ring->data[ring->cur];
2529
2530	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2531	if (m0 == NULL) {
2532		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2533		return ENOMEM;
2534	}
2535
2536	cmd = &ring->cmd[ring->cur];
2537	cmd->code = WPI_CMD_SET_BEACON;
2538	cmd->flags = 0;
2539	cmd->qid = ring->qid;
2540	cmd->idx = ring->cur;
2541
2542	bcn = (struct wpi_cmd_beacon *)cmd->data;
2543	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2544	bcn->id = WPI_ID_BROADCAST;
2545	bcn->ofdm_mask = 0xff;
2546	bcn->cck_mask = 0x0f;
2547	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2548	bcn->len = htole16(m0->m_pkthdr.len);
2549	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2550		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2551	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2552
2553	/* save and trim IEEE802.11 header */
2554	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2555	m_adj(m0, sizeof (struct ieee80211_frame));
2556
2557	/* assume beacon frame is contiguous */
2558	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2559		BUS_DMA_READ | BUS_DMA_NOWAIT);
2560	if (error) {
2561		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2562		m_freem(m0);
2563		return error;
2564	}
2565
2566	data->m = m0;
2567
2568	/* first scatter/gather segment is used by the beacon command */
2569	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2570	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2571		ring->cur * sizeof (struct wpi_tx_cmd));
2572	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2573	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2574	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2575
2576	/* kick cmd ring */
2577	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2578	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2579
2580	return 0;
2581}
2582
2583static int
2584wpi_auth(struct wpi_softc *sc)
2585{
2586	struct ieee80211com *ic = &sc->sc_ic;
2587	struct ieee80211_node *ni = ic->ic_bss;
2588	struct wpi_node_info node;
2589	int error;
2590
2591	/* update adapter's configuration */
2592	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2593	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2594	sc->config.flags = htole32(WPI_CONFIG_TSF);
2595	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2596		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2597		    WPI_CONFIG_24GHZ);
2598	}
2599	switch (ic->ic_curmode) {
2600	case IEEE80211_MODE_11A:
2601		sc->config.cck_mask  = 0;
2602		sc->config.ofdm_mask = 0x15;
2603		break;
2604	case IEEE80211_MODE_11B:
2605		sc->config.cck_mask  = 0x03;
2606		sc->config.ofdm_mask = 0;
2607		break;
2608	default:	/* assume 802.11b/g */
2609		sc->config.cck_mask  = 0x0f;
2610		sc->config.ofdm_mask = 0x15;
2611	}
2612
2613	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2614		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2615	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2616		sizeof (struct wpi_config), 1);
2617	if (error != 0) {
2618		aprint_error_dev(sc->sc_dev, "could not configure\n");
2619		return error;
2620	}
2621
2622	/* configuration has changed, set Tx power accordingly */
2623	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2624		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2625		return error;
2626	}
2627
2628	/* add default node */
2629	memset(&node, 0, sizeof node);
2630	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2631	node.id = WPI_ID_BSS;
2632	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2633	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2634	node.action = htole32(WPI_ACTION_SET_RATE);
2635	node.antenna = WPI_ANTENNA_BOTH;
2636	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2637	if (error != 0) {
2638		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2639		return error;
2640	}
2641
2642	return 0;
2643}
2644
2645/*
2646 * Send a scan request to the firmware.  Since this command is huge, we map it
2647 * into a mbuf instead of using the pre-allocated set of commands.
2648 */
2649static int
2650wpi_scan(struct wpi_softc *sc, uint16_t flags)
2651{
2652	struct ieee80211com *ic = &sc->sc_ic;
2653	struct wpi_tx_ring *ring = &sc->cmdq;
2654	struct wpi_tx_desc *desc;
2655	struct wpi_tx_data *data;
2656	struct wpi_tx_cmd *cmd;
2657	struct wpi_scan_hdr *hdr;
2658	struct wpi_scan_chan *chan;
2659	struct ieee80211_frame *wh;
2660	struct ieee80211_rateset *rs;
2661	struct ieee80211_channel *c;
2662	enum ieee80211_phymode mode;
2663	uint8_t *frm;
2664	int nrates, pktlen, error;
2665
2666	desc = &ring->desc[ring->cur];
2667	data = &ring->data[ring->cur];
2668
2669	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2670	if (data->m == NULL) {
2671		aprint_error_dev(sc->sc_dev,
2672						"could not allocate mbuf for scan command\n");
2673		return ENOMEM;
2674	}
2675
2676	MCLGET(data->m, M_DONTWAIT);
2677	if (!(data->m->m_flags & M_EXT)) {
2678		m_freem(data->m);
2679		data->m = NULL;
2680		aprint_error_dev(sc->sc_dev,
2681						 "could not allocate mbuf for scan command\n");
2682		return ENOMEM;
2683	}
2684
2685	cmd = mtod(data->m, struct wpi_tx_cmd *);
2686	cmd->code = WPI_CMD_SCAN;
2687	cmd->flags = 0;
2688	cmd->qid = ring->qid;
2689	cmd->idx = ring->cur;
2690
2691	hdr = (struct wpi_scan_hdr *)cmd->data;
2692	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2693	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2694	hdr->id = WPI_ID_BROADCAST;
2695	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2696
2697	/*
2698	 * Move to the next channel if no packets are received within 5 msecs
2699	 * after sending the probe request (this helps to reduce the duration
2700	 * of active scans).
2701	 */
2702	hdr->quiet = htole16(5);        /* timeout in milliseconds */
2703	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2704
2705	if (flags & IEEE80211_CHAN_A) {
2706		hdr->crc_threshold = htole16(1);
2707		/* send probe requests at 6Mbps */
2708		hdr->rate = wpi_plcp_signal(12);
2709	} else {
2710		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2711		/* send probe requests at 1Mbps */
2712		hdr->rate = wpi_plcp_signal(2);
2713	}
2714
2715	/* for directed scans, firmware inserts the essid IE itself */
2716	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2717	hdr->essid[0].len = ic->ic_des_esslen;
2718	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2719
2720	/*
2721	 * Build a probe request frame.  Most of the following code is a
2722	 * copy & paste of what is done in net80211.
2723	 */
2724	wh = (struct ieee80211_frame *)(hdr + 1);
2725	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2726		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2727	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2728	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2729	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2730	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2731	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2732	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2733
2734	frm = (uint8_t *)(wh + 1);
2735
2736	/* add empty essid IE (firmware generates it for directed scans) */
2737	*frm++ = IEEE80211_ELEMID_SSID;
2738	*frm++ = 0;
2739
2740	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2741	rs = &ic->ic_sup_rates[mode];
2742
2743	/* add supported rates IE */
2744	*frm++ = IEEE80211_ELEMID_RATES;
2745	nrates = rs->rs_nrates;
2746	if (nrates > IEEE80211_RATE_SIZE)
2747		nrates = IEEE80211_RATE_SIZE;
2748	*frm++ = nrates;
2749	memcpy(frm, rs->rs_rates, nrates);
2750	frm += nrates;
2751
2752	/* add supported xrates IE */
2753	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2754		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2755		*frm++ = IEEE80211_ELEMID_XRATES;
2756		*frm++ = nrates;
2757		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2758		frm += nrates;
2759	}
2760
2761	/* setup length of probe request */
2762	hdr->paylen = htole16(frm - (uint8_t *)wh);
2763
2764	chan = (struct wpi_scan_chan *)frm;
2765	for (c  = &ic->ic_channels[1];
2766	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2767		if ((c->ic_flags & flags) != flags)
2768			continue;
2769
2770		chan->chan = ieee80211_chan2ieee(ic, c);
2771		chan->flags = 0;
2772		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2773			chan->flags |= WPI_CHAN_ACTIVE;
2774			if (ic->ic_des_esslen != 0)
2775				chan->flags |= WPI_CHAN_DIRECT;
2776		}
2777		chan->dsp_gain = 0x6e;
2778		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2779			chan->rf_gain = 0x3b;
2780			chan->active = htole16(10);
2781			chan->passive = htole16(110);
2782		} else {
2783			chan->rf_gain = 0x28;
2784			chan->active = htole16(20);
2785			chan->passive = htole16(120);
2786		}
2787		hdr->nchan++;
2788		chan++;
2789
2790		frm += sizeof (struct wpi_scan_chan);
2791	}
2792	hdr->len = htole16(frm - (uint8_t *)hdr);
2793	pktlen = frm - (uint8_t *)cmd;
2794
2795	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2796		NULL, BUS_DMA_NOWAIT);
2797	if (error) {
2798		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2799		m_freem(data->m);
2800		data->m = NULL;
2801		return error;
2802	}
2803
2804	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2805	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2806	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2807
2808	/* kick cmd ring */
2809	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2810	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2811
2812	return 0;	/* will be notified async. of failure/success */
2813}
2814
2815static int
2816wpi_config(struct wpi_softc *sc)
2817{
2818	struct ieee80211com *ic = &sc->sc_ic;
2819	struct ifnet *ifp = ic->ic_ifp;
2820	struct wpi_power power;
2821	struct wpi_bluetooth bluetooth;
2822	struct wpi_node_info node;
2823	int error;
2824
2825	memset(&power, 0, sizeof power);
2826	power.flags = htole32(WPI_POWER_CAM | 0x8);
2827	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2828	if (error != 0) {
2829		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2830		return error;
2831	}
2832
2833	/* configure bluetooth coexistence */
2834	memset(&bluetooth, 0, sizeof bluetooth);
2835	bluetooth.flags = 3;
2836	bluetooth.lead = 0xaa;
2837	bluetooth.kill = 1;
2838	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2839		0);
2840	if (error != 0) {
2841		aprint_error_dev(sc->sc_dev,
2842			"could not configure bluetooth coexistence\n");
2843		return error;
2844	}
2845
2846	/* configure adapter */
2847	memset(&sc->config, 0, sizeof (struct wpi_config));
2848	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2849	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2850	/*set default channel*/
2851	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2852	sc->config.flags = htole32(WPI_CONFIG_TSF);
2853	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2854		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2855		    WPI_CONFIG_24GHZ);
2856	}
2857	sc->config.filter = 0;
2858	switch (ic->ic_opmode) {
2859	case IEEE80211_M_STA:
2860		sc->config.mode = WPI_MODE_STA;
2861		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2862		break;
2863	case IEEE80211_M_IBSS:
2864	case IEEE80211_M_AHDEMO:
2865		sc->config.mode = WPI_MODE_IBSS;
2866		break;
2867	case IEEE80211_M_HOSTAP:
2868		sc->config.mode = WPI_MODE_HOSTAP;
2869		break;
2870	case IEEE80211_M_MONITOR:
2871		sc->config.mode = WPI_MODE_MONITOR;
2872		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2873			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2874		break;
2875	}
2876	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2877	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2878	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2879		sizeof (struct wpi_config), 0);
2880	if (error != 0) {
2881		aprint_error_dev(sc->sc_dev, "configure command failed\n");
2882		return error;
2883	}
2884
2885	/* configuration has changed, set Tx power accordingly */
2886	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2887		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2888		return error;
2889	}
2890
2891	/* add broadcast node */
2892	memset(&node, 0, sizeof node);
2893	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2894	node.id = WPI_ID_BROADCAST;
2895	node.rate = wpi_plcp_signal(2);
2896	node.action = htole32(WPI_ACTION_SET_RATE);
2897	node.antenna = WPI_ANTENNA_BOTH;
2898	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2899	if (error != 0) {
2900		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2901		return error;
2902	}
2903
2904	if ((error = wpi_mrr_setup(sc)) != 0) {
2905		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2906		return error;
2907	}
2908
2909	return 0;
2910}
2911
2912static void
2913wpi_stop_master(struct wpi_softc *sc)
2914{
2915	uint32_t tmp;
2916	int ntries;
2917
2918	tmp = WPI_READ(sc, WPI_RESET);
2919	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2920
2921	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2922	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2923		return;	/* already asleep */
2924
2925	for (ntries = 0; ntries < 100; ntries++) {
2926		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2927			break;
2928		DELAY(10);
2929	}
2930	if (ntries == 100) {
2931		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2932	}
2933}
2934
2935static int
2936wpi_power_up(struct wpi_softc *sc)
2937{
2938	uint32_t tmp;
2939	int ntries;
2940
2941	wpi_mem_lock(sc);
2942	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2943	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2944	wpi_mem_unlock(sc);
2945
2946	for (ntries = 0; ntries < 5000; ntries++) {
2947		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2948			break;
2949		DELAY(10);
2950	}
2951	if (ntries == 5000) {
2952		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2953		return ETIMEDOUT;
2954	}
2955	return 0;
2956}
2957
2958static int
2959wpi_reset(struct wpi_softc *sc)
2960{
2961	uint32_t tmp;
2962	int ntries;
2963
2964	/* clear any pending interrupts */
2965	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2966
2967	tmp = WPI_READ(sc, WPI_PLL_CTL);
2968	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2969
2970	tmp = WPI_READ(sc, WPI_CHICKEN);
2971	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2972
2973	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2974	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2975
2976	/* wait for clock stabilization */
2977	for (ntries = 0; ntries < 1000; ntries++) {
2978		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2979			break;
2980		DELAY(10);
2981	}
2982	if (ntries == 1000) {
2983		aprint_error_dev(sc->sc_dev,
2984						 "timeout waiting for clock stabilization\n");
2985		return ETIMEDOUT;
2986	}
2987
2988	/* initialize EEPROM */
2989	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2990	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2991		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
2992		return EIO;
2993	}
2994	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2995
2996	return 0;
2997}
2998
2999static void
3000wpi_hw_config(struct wpi_softc *sc)
3001{
3002	uint32_t rev, hw;
3003
3004	/* voodoo from the reference driver */
3005	hw = WPI_READ(sc, WPI_HWCONFIG);
3006
3007	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3008	rev = PCI_REVISION(rev);
3009	if ((rev & 0xc0) == 0x40)
3010		hw |= WPI_HW_ALM_MB;
3011	else if (!(rev & 0x80))
3012		hw |= WPI_HW_ALM_MM;
3013
3014	if (sc->cap == 0x80)
3015		hw |= WPI_HW_SKU_MRC;
3016
3017	hw &= ~WPI_HW_REV_D;
3018	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3019		hw |= WPI_HW_REV_D;
3020
3021	if (sc->type > 1)
3022		hw |= WPI_HW_TYPE_B;
3023
3024	DPRINTF(("setting h/w config %x\n", hw));
3025	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3026}
3027
3028static int
3029wpi_init(struct ifnet *ifp)
3030{
3031	struct wpi_softc *sc = ifp->if_softc;
3032	struct ieee80211com *ic = &sc->sc_ic;
3033	uint32_t tmp;
3034	int qid, ntries, error;
3035
3036	wpi_stop(ifp,1);
3037	(void)wpi_reset(sc);
3038
3039	wpi_mem_lock(sc);
3040	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3041	DELAY(20);
3042	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3043	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3044	wpi_mem_unlock(sc);
3045
3046	(void)wpi_power_up(sc);
3047	wpi_hw_config(sc);
3048
3049	/* init Rx ring */
3050	wpi_mem_lock(sc);
3051	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3052	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3053	    offsetof(struct wpi_shared, next));
3054	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3055	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3056	wpi_mem_unlock(sc);
3057
3058	/* init Tx rings */
3059	wpi_mem_lock(sc);
3060	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3061	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3062	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3063	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3064	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3065	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3066	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3067
3068	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3069	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3070
3071	for (qid = 0; qid < 6; qid++) {
3072		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3073		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3074		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3075	}
3076	wpi_mem_unlock(sc);
3077
3078	/* clear "radio off" and "disable command" bits (reversed logic) */
3079	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3080	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3081
3082	/* clear any pending interrupts */
3083	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3084	/* enable interrupts */
3085	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3086
3087	/* not sure why/if this is necessary... */
3088	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3089	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3090
3091	if ((error = wpi_load_firmware(sc)) != 0) {
3092		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3093		goto fail1;
3094	}
3095
3096	/* Check the status of the radio switch */
3097	if (wpi_getrfkill(sc)) {
3098		aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
3099		error = EBUSY;
3100		goto fail1;
3101	}
3102
3103	/* wait for thermal sensors to calibrate */
3104	for (ntries = 0; ntries < 1000; ntries++) {
3105		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3106			break;
3107		DELAY(10);
3108	}
3109	if (ntries == 1000) {
3110		aprint_error_dev(sc->sc_dev,
3111						 "timeout waiting for thermal sensors calibration\n");
3112		error = ETIMEDOUT;
3113		goto fail1;
3114	}
3115
3116	DPRINTF(("temperature %d\n", sc->temp));
3117
3118	if ((error = wpi_config(sc)) != 0) {
3119		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3120		goto fail1;
3121	}
3122
3123	ifp->if_flags &= ~IFF_OACTIVE;
3124	ifp->if_flags |= IFF_RUNNING;
3125
3126	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3127		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3128			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3129	}
3130	else
3131		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3132
3133	return 0;
3134
3135fail1:	wpi_stop(ifp, 1);
3136	return error;
3137}
3138
3139
3140static void
3141wpi_stop(struct ifnet *ifp, int disable)
3142{
3143	struct wpi_softc *sc = ifp->if_softc;
3144	struct ieee80211com *ic = &sc->sc_ic;
3145	uint32_t tmp;
3146	int ac;
3147
3148	ifp->if_timer = sc->sc_tx_timer = 0;
3149	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3150
3151	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3152
3153	/* disable interrupts */
3154	WPI_WRITE(sc, WPI_MASK, 0);
3155	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3156	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3157	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3158
3159	wpi_mem_lock(sc);
3160	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3161	wpi_mem_unlock(sc);
3162
3163	/* reset all Tx rings */
3164	for (ac = 0; ac < 4; ac++)
3165		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3166	wpi_reset_tx_ring(sc, &sc->cmdq);
3167
3168	/* reset Rx ring */
3169	wpi_reset_rx_ring(sc, &sc->rxq);
3170
3171	wpi_mem_lock(sc);
3172	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3173	wpi_mem_unlock(sc);
3174
3175	DELAY(5);
3176
3177	wpi_stop_master(sc);
3178
3179	tmp = WPI_READ(sc, WPI_RESET);
3180	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3181}
3182
3183static bool
3184wpi_resume(device_t dv, const pmf_qual_t *qual)
3185{
3186	struct wpi_softc *sc = device_private(dv);
3187
3188	(void)wpi_reset(sc);
3189
3190	return true;
3191}
3192
3193/*
3194 * Return whether or not the radio is enabled in hardware
3195 * (i.e. the rfkill switch is "off").
3196 */
3197static int
3198wpi_getrfkill(struct wpi_softc *sc)
3199{
3200	uint32_t tmp;
3201
3202	wpi_mem_lock(sc);
3203	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3204	wpi_mem_unlock(sc);
3205
3206	return !(tmp & 0x01);
3207}
3208
3209static int
3210wpi_sysctl_radio(SYSCTLFN_ARGS)
3211{
3212	struct sysctlnode node;
3213	struct wpi_softc *sc;
3214	int val, error;
3215
3216	node = *rnode;
3217	sc = (struct wpi_softc *)node.sysctl_data;
3218
3219	val = !wpi_getrfkill(sc);
3220
3221	node.sysctl_data = &val;
3222	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3223
3224	if (error || newp == NULL)
3225		return error;
3226
3227	return 0;
3228}
3229
3230static void
3231wpi_sysctlattach(struct wpi_softc *sc)
3232{
3233	int rc;
3234	const struct sysctlnode *rnode;
3235	const struct sysctlnode *cnode;
3236
3237	struct sysctllog **clog = &sc->sc_sysctllog;
3238
3239	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3240	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3241	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
3242		goto err;
3243
3244	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
3245	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3246	    SYSCTL_DESCR("wpi controls and statistics"),
3247	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
3248		goto err;
3249
3250	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3251	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3252	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3253	    wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3254		goto err;
3255
3256#ifdef WPI_DEBUG
3257	/* control debugging printfs */
3258	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3259	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3260	    "debug", SYSCTL_DESCR("Enable debugging output"),
3261	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3262		goto err;
3263#endif
3264
3265	return;
3266err:
3267	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3268}
3269