if_wpi.c revision 1.5
1/*  $NetBSD: if_wpi.c,v 1.5 2006/10/31 21:53:41 joerg Exp $    */
2
3/*-
4 * Copyright (c) 2006
5 *	Damien Bergamini <damien.bergamini@free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20#include <sys/cdefs.h>
21__KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.5 2006/10/31 21:53:41 joerg Exp $");
22
23/*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27#include "bpfilter.h"
28
29#include <sys/param.h>
30#include <sys/sockio.h>
31#include <sys/sysctl.h>
32#include <sys/mbuf.h>
33#include <sys/kernel.h>
34#include <sys/socket.h>
35#include <sys/systm.h>
36#include <sys/malloc.h>
37#include <sys/conf.h>
38#include <sys/kauth.h>
39
40#include <machine/bus.h>
41#include <machine/endian.h>
42#include <machine/intr.h>
43
44#include <dev/pci/pcireg.h>
45#include <dev/pci/pcivar.h>
46#include <dev/pci/pcidevs.h>
47
48#if NBPFILTER > 0
49#include <net/bpf.h>
50#endif
51#include <net/if.h>
52#include <net/if_arp.h>
53#include <net/if_dl.h>
54#include <net/if_ether.h>
55#include <net/if_media.h>
56#include <net/if_types.h>
57
58#include <net80211/ieee80211_var.h>
59#include <net80211/ieee80211_amrr.h>
60#include <net80211/ieee80211_radiotap.h>
61
62#include <netinet/in.h>
63#include <netinet/in_systm.h>
64#include <netinet/in_var.h>
65#include <netinet/ip.h>
66
67#include <dev/firmload.h>
68
69#include <dev/pci/if_wpireg.h>
70#include <dev/pci/if_wpivar.h>
71
72#ifdef WPI_DEBUG
73#define DPRINTF(x)	if (wpi_debug > 0) printf x
74#define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
75int wpi_debug = 1;
76#else
77#define DPRINTF(x)
78#define DPRINTFN(n, x)
79#endif
80
81/*
82 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
83 */
84static const struct ieee80211_rateset wpi_rateset_11a =
85	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
86
87static const struct ieee80211_rateset wpi_rateset_11b =
88	{ 4, { 2, 4, 11, 22 } };
89
90static const struct ieee80211_rateset wpi_rateset_11g =
91	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
92
93static const uint8_t wpi_ridx_to_plcp[] = {
94	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,	/* OFDM R1-R4 */
95	10, 20, 55, 110	/* CCK */
96};
97
98static int  wpi_match(struct device *, struct cfdata *, void *);
99static void wpi_attach(struct device *, struct device *, void *);
100static int  wpi_detach(struct device*, int);
101static void wpi_power(int, void *);
102static int  wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
103	void **, bus_size_t, bus_size_t, int);
104static void wpi_dma_contig_free(struct wpi_softc *, struct wpi_dma_info *);
105static int  wpi_alloc_shared(struct wpi_softc *);
106static void wpi_free_shared(struct wpi_softc *);
107static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
108static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
109static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
110static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
111	int);
112static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
113static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
114static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
115static int  wpi_media_change(struct ifnet *);
116static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
117static void wpi_mem_lock(struct wpi_softc *);
118static void wpi_mem_unlock(struct wpi_softc *);
119static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
120static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
121static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
122	const uint32_t *, int);
123static uint16_t wpi_read_prom_word(struct wpi_softc *, uint32_t);
124static int  wpi_load_firmware(struct wpi_softc *, uint32_t, const char *,
125	int);
126static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
127	struct wpi_rx_data *);
128static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
129static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
130static void wpi_notif_intr(struct wpi_softc *);
131static int  wpi_intr(void *);
132static uint8_t wpi_plcp_signal(int);
133static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
134	struct ieee80211_node *, int);
135static void wpi_start(struct ifnet *);
136static void wpi_watchdog(struct ifnet *);
137static int  wpi_ioctl(struct ifnet *, u_long, caddr_t);
138static void wpi_read_eeprom(struct wpi_softc *);
139static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
140static int  wpi_wme_update(struct ieee80211com *);
141static int  wpi_mrr_setup(struct wpi_softc *);
142static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
143static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
144static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
145static int  wpi_auth(struct wpi_softc *);
146static int  wpi_scan(struct wpi_softc *, uint16_t);
147static int  wpi_config(struct wpi_softc *);
148static void wpi_stop_master(struct wpi_softc *);
149static int  wpi_power_up(struct wpi_softc *);
150static int  wpi_reset(struct wpi_softc *);
151static void wpi_hw_config(struct wpi_softc *);
152static int  wpi_init(struct ifnet *);
153static void wpi_stop(struct ifnet *, int);
154
155/* rate control algorithm: should be moved to net80211 */
156static void wpi_iter_func(void *, struct ieee80211_node *);
157static void wpi_amrr_timeout(void *);
158static void wpi_newassoc(struct ieee80211_node *,
159	int);
160
161CFATTACH_DECL(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
162	wpi_detach, NULL);
163
164static int
165wpi_match(struct device *parent __unused, struct cfdata *match __unused,
166    void *aux)
167{
168	struct pci_attach_args *pa = aux;
169
170	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
171		return 0;
172
173	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
174		PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
175		return 1;
176
177	return 0;
178}
179
180/* Base Address Register */
181#define WPI_PCI_BAR0	0x10
182
183static void
184wpi_attach(struct device *parent __unused, struct device *self, void *aux)
185{
186	struct wpi_softc *sc = (struct wpi_softc *)self;
187	struct ieee80211com *ic = &sc->sc_ic;
188	struct ifnet *ifp = &sc->sc_ec.ec_if;
189	struct pci_attach_args *pa = aux;
190	const char *intrstr;
191	char devinfo[256];
192	bus_space_tag_t memt;
193	bus_space_handle_t memh;
194	bus_addr_t base;
195	pci_intr_handle_t ih;
196	pcireg_t data;
197	int error, ac, revision, i;
198
199	sc->sc_pct = pa->pa_pc;
200	sc->sc_pcitag = pa->pa_tag;
201
202	callout_init(&sc->amrr_ch);
203
204	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
205	revision = PCI_REVISION(pa->pa_class);
206	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
207
208	/* clear device specific PCI configuration register 0x41 */
209	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
210	data &= ~0x0000ff00;
211	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
212
213	/* enable bus-mastering */
214	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
215	data |= PCI_COMMAND_MASTER_ENABLE;
216	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
217
218	/* map the register window */
219	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
220		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz);
221	if (error != 0) {
222		aprint_error("%s: could not map memory space\n",
223			sc->sc_dev.dv_xname);
224		return;
225	}
226
227	sc->sc_st = memt;
228	sc->sc_sh = memh;
229	sc->sc_dmat = pa->pa_dmat;
230
231	if (pci_intr_map(pa, &ih) != 0) {
232		aprint_error("%s: could not map interrupt\n",
233			sc->sc_dev.dv_xname);
234		return;
235	}
236
237	intrstr = pci_intr_string(sc->sc_pct, ih);
238	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
239	if (sc->sc_ih == NULL) {
240		aprint_error("%s: could not establish interrupt",
241			sc->sc_dev.dv_xname);
242		if (intrstr != NULL)
243			aprint_error(" at %s", intrstr);
244		aprint_error("\n");
245		return;
246	}
247	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
248
249	if (wpi_reset(sc) != 0) {
250		aprint_error("%s: could not reset adapter\n",
251			sc->sc_dev.dv_xname);
252		return;
253	}
254
255	/*
256	 * Allocate shared page and Tx/Rx rings.
257	 */
258	if ((error = wpi_alloc_shared(sc)) != 0) {
259		aprint_error("%s: could not allocate shared area\n",
260			sc->sc_dev.dv_xname);
261		return;
262	}
263
264	for (ac = 0; ac < 4; ac++) {
265		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
266		if (error != 0) {
267			aprint_error("%s: could not allocate Tx ring %d\n",
268					sc->sc_dev.dv_xname, ac);
269			goto fail1;
270		}
271	}
272
273	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
274	if (error != 0) {
275		aprint_error("%s: could not allocate command ring\n",
276			sc->sc_dev.dv_xname);
277		goto fail1;
278	}
279
280	error = wpi_alloc_tx_ring(sc, &sc->svcq, WPI_SVC_RING_COUNT, 5);
281	if (error != 0) {
282		aprint_error("%s: could not allocate service ring\n",
283			sc->sc_dev.dv_xname);
284		goto fail2;
285	}
286
287	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
288		aprint_error("%s: could not allocate Rx ring\n",
289			sc->sc_dev.dv_xname);
290		goto fail3;
291	}
292
293
294	ic->ic_ifp = ifp;
295	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
296	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
297	ic->ic_state = IEEE80211_S_INIT;
298
299	/* set device capabilities */
300	ic->ic_caps =
301		IEEE80211_C_IBSS |       /* IBSS mode support */
302		IEEE80211_C_WPA |        /* 802.11i */
303		IEEE80211_C_MONITOR |    /* monitor mode supported */
304		IEEE80211_C_TXPMGT |     /* tx power management */
305		IEEE80211_C_SHSLOT |     /* short slot time supported */
306		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
307		IEEE80211_C_WME;         /* 802.11e */
308
309	wpi_read_eeprom(sc);
310	aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname,
311		ether_sprintf(ic->ic_myaddr));
312
313		/* set supported .11a rates */
314		ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
315
316		/* set supported .11a channels */
317		for (i = 36; i <= 64; i += 4) {
318			ic->ic_channels[i].ic_freq =
319				ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
320			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
321		}
322		for (i = 100; i <= 140; i += 4) {
323			ic->ic_channels[i].ic_freq =
324				ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
325			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
326		}
327		for (i = 149; i <= 165; i += 4) {
328			ic->ic_channels[i].ic_freq =
329				ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
330			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
331		}
332
333	/* set supported .11b and .11g rates */
334	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
335	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
336
337	/* set supported .11b and .11g channels (1 through 14) */
338	for (i = 1; i <= 14; i++) {
339		ic->ic_channels[i].ic_freq =
340			ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
341		ic->ic_channels[i].ic_flags =
342			IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
343			IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
344	}
345
346	ic->ic_ibss_chan = &ic->ic_channels[0];
347
348	ifp->if_softc = sc;
349	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
350	ifp->if_init = wpi_init;
351	ifp->if_stop = wpi_stop;
352	ifp->if_ioctl = wpi_ioctl;
353	ifp->if_start = wpi_start;
354	ifp->if_watchdog = wpi_watchdog;
355	IFQ_SET_READY(&ifp->if_snd);
356	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
357
358	if_attach(ifp);
359	ieee80211_ifattach(ic);
360	/* override default methods */
361	ic->ic_node_alloc = wpi_node_alloc;
362	ic->ic_newassoc = wpi_newassoc;
363	ic->ic_wme.wme_update = wpi_wme_update;
364
365	/* override state transition machine */
366	sc->sc_newstate = ic->ic_newstate;
367	ic->ic_newstate = wpi_newstate;
368	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
369
370	sc->amrr.amrr_min_success_threshold = 1;
371	sc->amrr.amrr_max_success_threshold = 15;
372
373	/* set powerhook */
374	sc->powerhook = powerhook_establish(sc->sc_dev.dv_xname, wpi_power, sc);
375
376#if NBPFILTER > 0
377	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
378		sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
379		&sc->sc_drvbpf);
380
381	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
382	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
383	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
384
385	sc->sc_txtap_len = sizeof sc->sc_txtapu;
386	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
387	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
388#endif
389
390	ieee80211_announce(ic);
391
392	return;
393
394fail3:  wpi_free_tx_ring(sc, &sc->svcq);
395fail2:  wpi_free_tx_ring(sc, &sc->cmdq);
396fail1:  while (--ac >= 0)
397			wpi_free_tx_ring(sc, &sc->txq[ac]);
398		wpi_free_shared(sc);
399}
400
401static int
402wpi_detach(struct device* self, int flags __unused)
403{
404	struct wpi_softc *sc = (struct wpi_softc *)self;
405	struct ifnet *ifp = &sc->sc_ec.ec_if;
406	int ac;
407
408	wpi_stop(ifp, 1);
409
410#if NBPFILTER > 0
411	if (ifp != NULL)
412		bpfdetach(ifp);
413#endif
414	ieee80211_ifdetach(&sc->sc_ic);
415	if (ifp != NULL)
416		if_detach(ifp);
417
418	for (ac = 0; ac < 4; ac++)
419		wpi_free_tx_ring(sc, &sc->txq[ac]);
420	wpi_free_tx_ring(sc, &sc->cmdq);
421	wpi_free_tx_ring(sc, &sc->svcq);
422	wpi_free_rx_ring(sc, &sc->rxq);
423	wpi_free_shared(sc);
424
425	if (sc->sc_ih != NULL) {
426		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
427		sc->sc_ih = NULL;
428	}
429
430	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
431
432	return 0;
433}
434
435static void
436wpi_power(int why, void *arg)
437{
438	struct wpi_softc *sc = arg;
439	struct ifnet *ifp;
440	pcireg_t data;
441	int s;
442
443	if (why != PWR_RESUME)
444		return;
445
446	/* clear device specific PCI configuration register 0x41 */
447	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
448	data &= ~0x0000ff00;
449	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
450
451	s = splnet();
452	ifp = sc->sc_ic.ic_ifp;
453	if (ifp->if_flags & IFF_UP) {
454		ifp->if_init(ifp);
455		if (ifp->if_flags & IFF_RUNNING)
456			ifp->if_start(ifp);
457	}
458	splx(s);
459}
460
461static int
462wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
463	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
464{
465	int nsegs, error;
466
467	dma->size = size;
468
469	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
470		flags, &dma->map);
471	if (error != 0) {
472		aprint_error("%s: could not create DMA map\n",
473			sc->sc_dev.dv_xname);
474		goto fail;
475	}
476
477	error = bus_dmamem_alloc(sc->sc_dmat, size, alignment, 0, &dma->seg,
478		1, &nsegs, flags);
479	if (error != 0) {
480		aprint_error("%s: could not allocate DMA memory\n",
481			sc->sc_dev.dv_xname);
482		goto fail;
483	}
484
485	error = bus_dmamem_map(sc->sc_dmat, &dma->seg, 1, size,
486			&dma->vaddr, flags);
487	if (error != 0) {
488		aprint_error("%s: could not map DMA memory\n",
489			sc->sc_dev.dv_xname);
490		goto fail;
491	}
492
493	error = bus_dmamap_load(sc->sc_dmat, dma->map, dma->vaddr,
494		size, NULL, flags);
495	if (error != 0) {
496		aprint_error("%s: could not load DMA memory\n",
497			sc->sc_dev.dv_xname);
498		goto fail;
499	}
500
501	memset(dma->vaddr, 0, size);
502
503	dma->paddr = dma->map->dm_segs[0].ds_addr;
504	*kvap = dma->vaddr;
505
506	return 0;
507
508fail:   wpi_dma_contig_free(sc, dma);
509	return error;
510}
511
512static void
513wpi_dma_contig_free(struct wpi_softc *sc, struct wpi_dma_info *dma)
514{
515	if (dma->map != NULL) {
516		if (dma->vaddr != NULL) {
517			bus_dmamap_unload(sc->sc_dmat, dma->map);
518			bus_dmamem_unmap(sc->sc_dmat, dma->vaddr, dma->size);
519			bus_dmamem_free(sc->sc_dmat, &dma->seg, 1);
520			dma->vaddr = NULL;
521		}
522		bus_dmamap_destroy(sc->sc_dmat, dma->map);
523		dma->map = NULL;
524	}
525}
526
527/*
528 * Allocate a shared page between host and NIC.
529 */
530static int
531wpi_alloc_shared(struct wpi_softc *sc)
532{
533	int error;
534	/* must be aligned on a 4K-page boundary */
535	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
536			(void **)&sc->shared, sizeof (struct wpi_shared), PAGE_SIZE,
537			BUS_DMA_NOWAIT);
538	if (error != 0)
539		aprint_error("%s: could not allocate shared area DMA memory\n",
540			sc->sc_dev.dv_xname);
541
542	return error;
543}
544
545static void
546wpi_free_shared(struct wpi_softc *sc)
547{
548	wpi_dma_contig_free(sc, &sc->shared_dma);
549}
550
551static int
552wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
553{
554	struct wpi_rx_data *data;
555	int i, error;
556
557	ring->cur = 0;
558
559	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
560		(void **)&ring->desc,
561		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
562		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
563	if (error != 0) {
564		aprint_error("%s: could not allocate rx ring DMA memory\n",
565			sc->sc_dev.dv_xname);
566		goto fail;
567	}
568
569	/*
570	 * Allocate Rx buffers.
571	 */
572	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
573		data = &ring->data[i];
574
575		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
576			0, BUS_DMA_NOWAIT, &data->map);
577		if (error != 0) {
578			aprint_error("%s: could not create rx buf DMA map\n",
579				sc->sc_dev.dv_xname);
580			goto fail;
581		}
582
583		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
584		if (data->m == NULL) {
585			aprint_error("%s: could not allocate rx mbuf\n",
586				sc->sc_dev.dv_xname);
587			error = ENOMEM;
588			goto fail;
589		}
590
591		MCLGET(data->m, M_DONTWAIT);
592		if (!(data->m->m_flags & M_EXT)) {
593			m_freem(data->m);
594			data->m = NULL;
595			aprint_error("%s: could not allocate rx mbuf cluster\n",
596				sc->sc_dev.dv_xname);
597			error = ENOMEM;
598			goto fail;
599		}
600
601		error = bus_dmamap_load(sc->sc_dmat, data->map,
602			mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT |
603			BUS_DMA_READ);
604		if (error != 0) {
605			aprint_error("%s: could not load rx buf DMA map\n",
606				sc->sc_dev.dv_xname);
607			goto fail;
608		}
609
610		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr);
611	}
612
613	return 0;
614
615fail:	wpi_free_rx_ring(sc, ring);
616	return error;
617}
618
619static void
620wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
621{
622	int ntries;
623
624	wpi_mem_lock(sc);
625
626	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
627	for (ntries = 0; ntries < 100; ntries++) {
628		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
629			break;
630		DELAY(10);
631	}
632#ifdef WPI_DEBUG
633	if (ntries == 100 && wpi_debug > 0)
634		aprint_error("%s: timeout resetting Rx ring\n",
635			sc->sc_dev.dv_xname);
636#endif
637	wpi_mem_unlock(sc);
638
639	ring->cur = 0;
640}
641
642static void
643wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
644{
645	struct wpi_rx_data *data;
646	int i;
647
648	wpi_dma_contig_free(sc, &ring->desc_dma);
649
650	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
651		data = &ring->data[i];
652
653		if (data->m != NULL) {
654			bus_dmamap_unload(sc->sc_dmat, data->map);
655			m_freem(data->m);
656		}
657		bus_dmamap_destroy(sc->sc_dmat, data->map);
658	}
659}
660
661static int
662wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
663	int qid)
664{
665	struct wpi_tx_data *data;
666	int i, error;
667
668	ring->qid = qid;
669	ring->count = count;
670	ring->queued = 0;
671	ring->cur = 0;
672
673	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
674		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
675		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
676	if (error != 0) {
677		aprint_error("%s: could not allocate tx ring DMA memory\n",
678			sc->sc_dev.dv_xname);
679		goto fail;
680	}
681
682	/* update shared page with ring's base address */
683	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
684
685	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
686		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
687	if (error != 0) {
688		aprint_error("%s: could not allocate tx cmd DMA memory\n",
689			sc->sc_dev.dv_xname);
690		goto fail;
691	}
692
693	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
694		M_NOWAIT);
695	if (ring->data == NULL) {
696		aprint_error("%s: could not allocate tx data slots\n",
697			sc->sc_dev.dv_xname);
698		goto fail;
699	}
700
701	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
702
703	for (i = 0; i < count; i++) {
704		data = &ring->data[i];
705
706		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
707			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
708			&data->map);
709		if (error != 0) {
710			aprint_error("%s: could not create tx buf DMA map\n",
711				sc->sc_dev.dv_xname);
712			goto fail;
713		}
714	}
715
716	return 0;
717
718fail:	wpi_free_tx_ring(sc, ring);
719	return error;
720}
721
722static void
723wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
724{
725	struct wpi_tx_data *data;
726	int i, ntries;
727
728	wpi_mem_lock(sc);
729
730	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
731	for (ntries = 0; ntries < 100; ntries++) {
732		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
733			break;
734		DELAY(10);
735	}
736#ifdef WPI_DEBUG
737	if (ntries == 100 && wpi_debug > 0) {
738		aprint_error("%s: timeout resetting Tx ring %d\n",
739			sc->sc_dev.dv_xname, ring->qid);
740	}
741#endif
742	wpi_mem_unlock(sc);
743
744	for (i = 0; i < ring->count; i++) {
745		data = &ring->data[i];
746
747		if (data->m != NULL) {
748			bus_dmamap_unload(sc->sc_dmat, data->map);
749			m_freem(data->m);
750			data->m = NULL;
751		}
752	}
753
754	ring->queued = 0;
755	ring->cur = 0;
756}
757
758static void
759wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
760{
761	struct wpi_tx_data *data;
762	int i;
763
764	wpi_dma_contig_free(sc, &ring->desc_dma);
765	wpi_dma_contig_free(sc, &ring->cmd_dma);
766
767	if (ring->data != NULL) {
768		for (i = 0; i < ring->count; i++) {
769			data = &ring->data[i];
770
771			if (data->m != NULL) {
772				bus_dmamap_unload(sc->sc_dmat, data->map);
773				m_freem(data->m);
774			}
775		}
776		free(ring->data, M_DEVBUF);
777	}
778}
779
780/*ARGUSED*/
781static struct ieee80211_node *
782wpi_node_alloc(struct ieee80211_node_table *ic __unused)
783{
784	struct wpi_node *wn;
785
786	wn = malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT);
787
788	if (wn != NULL)
789		memset(wn, 0, sizeof (struct wpi_node));
790	return (struct ieee80211_node *)wn;
791}
792
793static int
794wpi_media_change(struct ifnet *ifp)
795{
796	int error;
797
798	error = ieee80211_media_change(ifp);
799	if (error != ENETRESET)
800		return error;
801
802	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
803		wpi_init(ifp);
804
805	return 0;
806}
807
808static int
809wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
810{
811	struct ifnet *ifp = ic->ic_ifp;
812	struct wpi_softc *sc = ifp->if_softc;
813	int error;
814
815	callout_stop(&sc->amrr_ch);
816
817	switch (nstate) {
818	case IEEE80211_S_SCAN:
819		ieee80211_node_table_reset(&ic->ic_scan);
820		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
821
822		/* make the link LED blink while we're scanning */
823		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
824
825		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
826			aprint_error("%s: could not initiate scan\n",
827				sc->sc_dev.dv_xname);
828			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
829			return error;
830		}
831
832		ic->ic_state = nstate;
833		return 0;
834
835	case IEEE80211_S_AUTH:
836		sc->config.state &= ~htole16(WPI_STATE_ASSOCIATED);
837		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
838		if ((error = wpi_auth(sc)) != 0) {
839			aprint_error("%s: could not send authentication request\n",
840				sc->sc_dev.dv_xname);
841			return error;
842		}
843		break;
844
845	case IEEE80211_S_RUN:
846		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
847			/* link LED blinks while monitoring */
848			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
849			break;
850		}
851
852		if (ic->ic_opmode != IEEE80211_M_STA) {
853			(void) wpi_auth(sc);    /* XXX */
854			wpi_setup_beacon(sc, ic->ic_bss);
855		}
856
857		wpi_enable_tsf(sc, ic->ic_bss);
858
859		/* update adapter's configuration */
860		sc->config.state = htole16(WPI_STATE_ASSOCIATED);
861		/* short preamble/slot time are negotiated when associating */
862		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
863			WPI_CONFIG_SHSLOT);
864		if (ic->ic_flags & IEEE80211_F_SHSLOT)
865			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
866		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
867			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
868		sc->config.filter |= htole32(WPI_FILTER_BSS);
869		if (ic->ic_opmode != IEEE80211_M_STA)
870			sc->config.filter |= htole32(WPI_FILTER_BEACON);
871
872/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
873
874		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
875			sc->config.flags));
876		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
877			sizeof (struct wpi_config), 1);
878		if (error != 0) {
879			aprint_error("%s: could not update configuration\n",
880				sc->sc_dev.dv_xname);
881			return error;
882		}
883
884		if (ic->ic_opmode == IEEE80211_M_STA) {
885			/* fake a join to init the tx rate */
886			wpi_newassoc(ic->ic_bss, 1);
887		}
888
889		/* enable automatic rate adaptation in STA mode */
890		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
891			callout_reset(&sc->amrr_ch, hz, wpi_amrr_timeout, sc);
892
893		/* link LED always on while associated */
894		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
895		break;
896
897	case IEEE80211_S_ASSOC:
898	case IEEE80211_S_INIT:
899		break;
900	}
901
902	return sc->sc_newstate(ic, nstate, arg);
903}
904
905/*
906 * Grab exclusive access to NIC memory.
907 */
908static void
909wpi_mem_lock(struct wpi_softc *sc)
910{
911	uint32_t tmp;
912	int ntries;
913
914	tmp = WPI_READ(sc, WPI_GPIO_CTL);
915	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
916
917	/* spin until we actually get the lock */
918	for (ntries = 0; ntries < 1000; ntries++) {
919		if ((WPI_READ(sc, WPI_GPIO_CTL) &
920			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
921			break;
922		DELAY(10);
923	}
924	if (ntries == 1000)
925		aprint_error("%s: could not lock memory\n", sc->sc_dev.dv_xname);
926}
927
928/*
929 * Release lock on NIC memory.
930 */
931static void
932wpi_mem_unlock(struct wpi_softc *sc)
933{
934	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
935	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
936}
937
938static uint32_t
939wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
940{
941	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
942	return WPI_READ(sc, WPI_READ_MEM_DATA);
943}
944
945static void
946wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
947{
948	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
949	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
950}
951
952static void
953wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
954	const uint32_t *data, int wlen)
955{
956	for (; wlen > 0; wlen--, data++, addr += 4)
957		wpi_mem_write(sc, addr, *data);
958}
959
960/*
961 * Read 16 bits from the EEPROM.  We access EEPROM through the MAC instead of
962 * using the traditional bit-bang method.
963 */
964static uint16_t
965wpi_read_prom_word(struct wpi_softc *sc, uint32_t addr)
966{
967	int ntries;
968	uint32_t val;
969
970	WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
971
972	wpi_mem_lock(sc);
973	for (ntries = 0; ntries < 10; ntries++) {
974		if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
975			break;
976		DELAY(10);
977	}
978	wpi_mem_unlock(sc);
979
980	if (ntries == 10) {
981		aprint_error("%s: could not read EEPROM\n", sc->sc_dev.dv_xname);
982		return 0xdead;
983	}
984	return val >> 16;
985}
986
987/*
988 * The firmware boot code is small and is intended to be copied directly into
989 * the NIC internal memory.
990 */
991static int
992wpi_load_microcode(struct wpi_softc *sc, const char *ucode, int size)
993{
994	/* check that microcode size is a multiple of 4 */
995	if (size & 3)
996		return EINVAL;
997
998	size /= sizeof (uint32_t);
999
1000	wpi_mem_lock(sc);
1001
1002	/* copy microcode image into NIC memory */
1003	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, (const uint32_t *)ucode,
1004		size);
1005
1006	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1007	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1008	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1009
1010	/* run microcode */
1011	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1012
1013	wpi_mem_unlock(sc);
1014
1015	return 0;
1016}
1017
1018/*
1019 * The firmware text and data segments are transferred to the NIC using DMA.
1020 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1021 * where to find it.  Once the NIC has copied the firmware into its internal
1022 * memory, we can free our local copy in the driver.
1023 */
1024static int
1025wpi_load_firmware(struct wpi_softc *sc, uint32_t target, const char *fw,
1026	int size)
1027{
1028	bus_dmamap_t map;
1029	bus_dma_segment_t seg;
1030	caddr_t virtaddr;
1031	struct wpi_tx_desc desc;
1032	int i, ntries, nsegs, error;
1033
1034	/*
1035	 * Allocate DMA-safe memory to store the firmware.
1036	 */
1037	error = bus_dmamap_create(sc->sc_dmat, size, WPI_MAX_SCATTER,
1038		WPI_MAX_SEG_LEN, 0, BUS_DMA_NOWAIT, &map);
1039	if (error != 0) {
1040		aprint_error("%s: could not create firmware DMA map\n",
1041			sc->sc_dev.dv_xname);
1042		goto fail1;
1043	}
1044
1045	error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
1046		&nsegs, BUS_DMA_NOWAIT);
1047	if (error != 0) {
1048		aprint_error("%s: could not allocate firmware DMA memory\n",
1049			sc->sc_dev.dv_xname);
1050		goto fail2;
1051	}
1052
1053	error = bus_dmamem_map(sc->sc_dmat, &seg, nsegs, size, &virtaddr,
1054		BUS_DMA_NOWAIT);
1055	if (error != 0) {
1056		aprint_error("%s: could not map firmware DMA memory\n",
1057			sc->sc_dev.dv_xname);
1058		goto fail3;
1059	}
1060
1061	error = bus_dmamap_load(sc->sc_dmat, map, virtaddr, size, NULL,
1062		BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1063	if (error != 0) {
1064		aprint_error("%s: could not load firmware DMA map\n",
1065			sc->sc_dev.dv_xname);
1066		goto fail4;
1067	}
1068
1069	/* copy firmware image to DMA-safe memory */
1070	bcopy(fw, virtaddr, size);
1071
1072	/* make sure the adapter will get up-to-date values */
1073	bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_PREWRITE);
1074
1075	bzero(&desc, sizeof desc);
1076	desc.flags = htole32(WPI_PAD32(size) << 28 | map->dm_nsegs << 24);
1077	for (i = 0; i < map->dm_nsegs; i++) {
1078		desc.segs[i].addr = htole32(map->dm_segs[i].ds_addr);
1079		desc.segs[i].len  = htole32(map->dm_segs[i].ds_len);
1080	}
1081
1082	wpi_mem_lock(sc);
1083
1084	/* tell adapter where to copy image in its internal memory */
1085	WPI_WRITE(sc, WPI_FW_TARGET, target);
1086
1087	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0);
1088
1089	/* copy firmware descriptor into NIC memory */
1090	WPI_WRITE_REGION_4(sc, WPI_TX_DESC(6), (uint32_t *)&desc,
1091		sizeof desc / sizeof (uint32_t));
1092
1093	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0xfffff);
1094	WPI_WRITE(sc, WPI_TX_STATE(6), 0x4001);
1095	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0x80000001);
1096
1097	/* wait while the adapter is busy copying the firmware */
1098	for (ntries = 0; ntries < 100; ntries++) {
1099		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(6))
1100			break;
1101		DELAY(1000);
1102	}
1103	if (ntries == 100) {
1104		aprint_error("%s: timeout transferring firmware\n",
1105			sc->sc_dev.dv_xname);
1106		error = ETIMEDOUT;
1107	}
1108
1109	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0);
1110
1111	wpi_mem_unlock(sc);
1112
1113	bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_POSTWRITE);
1114	bus_dmamap_unload(sc->sc_dmat, map);
1115fail4:	bus_dmamem_unmap(sc->sc_dmat, virtaddr, size);
1116fail3:	bus_dmamem_free(sc->sc_dmat, &seg, 1);
1117fail2:	bus_dmamap_destroy(sc->sc_dmat, map);
1118fail1:	return error;
1119}
1120
1121static void
1122wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1123	struct wpi_rx_data *data)
1124{
1125	struct ieee80211com *ic = &sc->sc_ic;
1126	struct ifnet *ifp = ic->ic_ifp;
1127	struct wpi_rx_ring *ring = &sc->rxq;
1128	struct wpi_rx_stat *stat;
1129	struct wpi_rx_head *head;
1130	struct wpi_rx_tail *tail;
1131	struct ieee80211_frame *wh;
1132	struct ieee80211_node *ni;
1133	struct mbuf *m, *mnew;
1134	int error;
1135
1136	stat = (struct wpi_rx_stat *)(desc + 1);
1137
1138	if (stat->len > WPI_STAT_MAXLEN) {
1139		aprint_error("%s: invalid rx statistic header\n",
1140			sc->sc_dev.dv_xname);
1141		ifp->if_ierrors++;
1142		return;
1143	}
1144
1145	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1146	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1147
1148	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1149		"chan=%d tstamp=%llu\n", ring->cur, le32toh(desc->len),
1150		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1151		le64toh(tail->tstamp)));
1152
1153	/*
1154	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1155	 * to radiotap in monitor mode).
1156	 */
1157	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1158		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1159		ifp->if_ierrors++;
1160		return;
1161	}
1162
1163
1164	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1165	if (mnew == NULL) {
1166		ifp->if_ierrors++;
1167		return;
1168	}
1169
1170	MCLGET(mnew, M_DONTWAIT);
1171	if (!(mnew->m_flags & M_EXT)) {
1172		m_freem(mnew);
1173		ifp->if_ierrors++;
1174		return;
1175	}
1176
1177	bus_dmamap_unload(sc->sc_dmat, data->map);
1178
1179	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(mnew, void *),
1180		MCLBYTES, NULL, BUS_DMA_NOWAIT);
1181	if (error != 0) {
1182		m_freem(mnew);
1183
1184		/* try to reload the old mbuf */
1185		error = bus_dmamap_load(sc->sc_dmat, data->map,
1186			mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1187		if (error != 0) {
1188			/* very unlikely that it will fail... */
1189			panic("%s: could not load old rx mbuf",
1190				sc->sc_dev.dv_xname);
1191		}
1192		ifp->if_ierrors++;
1193		return;
1194	}
1195
1196	m = data->m;
1197	data->m = mnew;
1198
1199	/* update Rx descriptor */
1200	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr);
1201
1202	/* finalize mbuf */
1203	m->m_pkthdr.rcvif = ifp;
1204	m->m_data = (caddr_t)(head + 1);
1205	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1206
1207#if NBPFILTER > 0
1208	if (sc->sc_drvbpf != NULL) {
1209		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1210
1211		tap->wr_flags = 0;
1212		tap->wr_chan_freq =
1213			htole16(ic->ic_channels[head->chan].ic_freq);
1214		tap->wr_chan_flags =
1215			htole16(ic->ic_channels[head->chan].ic_flags);
1216		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1217		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1218		tap->wr_tsft = tail->tstamp;
1219		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1220		switch (head->rate) {
1221		/* CCK rates */
1222		case  10: tap->wr_rate =   2; break;
1223		case  20: tap->wr_rate =   4; break;
1224		case  55: tap->wr_rate =  11; break;
1225		case 110: tap->wr_rate =  22; break;
1226		/* OFDM rates */
1227		case 0xd: tap->wr_rate =  12; break;
1228		case 0xf: tap->wr_rate =  18; break;
1229		case 0x5: tap->wr_rate =  24; break;
1230		case 0x7: tap->wr_rate =  36; break;
1231		case 0x9: tap->wr_rate =  48; break;
1232		case 0xb: tap->wr_rate =  72; break;
1233		case 0x1: tap->wr_rate =  96; break;
1234		case 0x3: tap->wr_rate = 108; break;
1235		/* unknown rate: should not happen */
1236		default:  tap->wr_rate =   0;
1237		}
1238		if (le16toh(head->flags) & 0x4)
1239			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1240
1241		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1242	}
1243#endif
1244
1245	/* grab a reference to the source node */
1246	wh = mtod(m, struct ieee80211_frame *);
1247	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1248
1249	/* send the frame to the 802.11 layer */
1250	ieee80211_input(ic, m, ni, stat->rssi, 0);
1251
1252	/* release node reference */
1253	ieee80211_free_node(ni);
1254}
1255
1256static void
1257wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1258{
1259	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1260	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1261	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1262	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1263	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1264
1265	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1266		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1267		stat->nkill, stat->rate, le32toh(stat->duration),
1268		le32toh(stat->status)));
1269
1270	/*
1271	 * Update rate control statistics for the node.
1272	 * XXX we should not count mgmt frames since they're always sent at
1273	 * the lowest available bit-rate.
1274	 */
1275	wn->amn.amn_txcnt++;
1276	if (stat->ntries > 0) {
1277		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1278		wn->amn.amn_retrycnt++;
1279	}
1280
1281	if ((le32toh(stat->status) & 0xff) != 1)
1282		ifp->if_oerrors++;
1283	else
1284		ifp->if_opackets++;
1285
1286	bus_dmamap_unload(sc->sc_dmat, txdata->map);
1287	m_freem(txdata->m);
1288	txdata->m = NULL;
1289	ieee80211_free_node(txdata->ni);
1290	txdata->ni = NULL;
1291
1292	ring->queued--;
1293
1294	sc->sc_tx_timer = 0;
1295	ifp->if_flags &= ~IFF_OACTIVE;
1296	wpi_start(ifp);
1297}
1298
1299static void
1300wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1301{
1302	struct wpi_tx_ring *ring = &sc->cmdq;
1303	struct wpi_tx_data *data;
1304
1305	if ((desc->qid & 7) != 4)
1306		return;	/* not a command ack */
1307
1308	data = &ring->data[desc->idx];
1309
1310	/* if the command was mapped in a mbuf, free it */
1311	if (data->m != NULL) {
1312		bus_dmamap_unload(sc->sc_dmat, data->map);
1313		m_freem(data->m);
1314		data->m = NULL;
1315	}
1316
1317	wakeup(&ring->cmd[desc->idx]);
1318}
1319
1320static void
1321wpi_notif_intr(struct wpi_softc *sc)
1322{
1323	struct ieee80211com *ic = &sc->sc_ic;
1324	struct wpi_rx_desc *desc;
1325	struct wpi_rx_data *data;
1326	uint32_t hw;
1327
1328	hw = le32toh(sc->shared->next);
1329	while (sc->rxq.cur != hw) {
1330		data = &sc->rxq.data[sc->rxq.cur];
1331
1332		desc = mtod(data->m, struct wpi_rx_desc *);
1333
1334		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1335			"len=%d\n", desc->qid, desc->idx, desc->flags,
1336			desc->type, le32toh(desc->len)));
1337
1338		if (!(desc->qid & 0x80))	/* reply to a command */
1339			wpi_cmd_intr(sc, desc);
1340
1341		switch (desc->type) {
1342		case WPI_RX_DONE:
1343			/* a 802.11 frame was received */
1344			wpi_rx_intr(sc, desc, data);
1345			break;
1346
1347		case WPI_TX_DONE:
1348			/* a 802.11 frame has been transmitted */
1349			wpi_tx_intr(sc, desc);
1350			break;
1351
1352		case WPI_UC_READY:
1353		{
1354			struct wpi_ucode_info *uc =
1355				(struct wpi_ucode_info *)(desc + 1);
1356
1357			/* the microcontroller is ready */
1358			DPRINTF(("microcode alive notification version %x "
1359				"alive %x\n", le32toh(uc->version),
1360				le32toh(uc->valid)));
1361
1362			if (le32toh(uc->valid) != 1) {
1363				aprint_error("%s: microcontroller "
1364					"initialization failed\n",
1365					sc->sc_dev.dv_xname);
1366			}
1367			break;
1368		}
1369		case WPI_STATE_CHANGED:
1370		{
1371			uint32_t *status = (uint32_t *)(desc + 1);
1372
1373			/* enabled/disabled notification */
1374			DPRINTF(("state changed to %x\n", le32toh(*status)));
1375
1376			if (le32toh(*status) & 1) {
1377				/* the radio button has to be pushed */
1378				aprint_error("%s: Radio transmitter is off\n",
1379					sc->sc_dev.dv_xname);
1380			}
1381			break;
1382		}
1383		case WPI_START_SCAN:
1384		{
1385			struct wpi_start_scan *scan =
1386				(struct wpi_start_scan *)(desc + 1);
1387
1388			DPRINTFN(2, ("scanning channel %d status %x\n",
1389				scan->chan, le32toh(scan->status)));
1390
1391			/* fix current channel */
1392			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1393			break;
1394		}
1395		case WPI_STOP_SCAN:
1396		{
1397			struct wpi_stop_scan *scan =
1398				(struct wpi_stop_scan *)(desc + 1);
1399
1400			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1401				scan->nchan, scan->status, scan->chan));
1402
1403			if (scan->status == 1 && scan->chan <= 14) {
1404				/*
1405				 * We just finished scanning 802.11g channels,
1406				 * start scanning 802.11a ones.
1407				 */
1408				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1409					break;
1410			}
1411			ieee80211_end_scan(ic);
1412			break;
1413		}
1414		}
1415
1416		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1417	}
1418
1419	/* tell the firmware what we have processed */
1420	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1421	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1422}
1423
1424static int
1425wpi_intr(void *arg)
1426{
1427	struct wpi_softc *sc = arg;
1428	uint32_t r;
1429
1430	r = WPI_READ(sc, WPI_INTR);
1431	if (r == 0 || r == 0xffffffff)
1432		return 0;	/* not for us */
1433
1434	DPRINTFN(5, ("interrupt reg %x\n", r));
1435
1436	/* disable interrupts */
1437	WPI_WRITE(sc, WPI_MASK, 0);
1438	/* ack interrupts */
1439	WPI_WRITE(sc, WPI_INTR, r);
1440
1441	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1442		/* SYSTEM FAILURE, SYSTEM FAILURE */
1443		aprint_error("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
1444		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1445		wpi_stop(&sc->sc_ec.ec_if, 1);
1446		return 1;
1447	}
1448
1449	if (r & WPI_RX_INTR)
1450		wpi_notif_intr(sc);
1451
1452	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1453		wakeup(sc);
1454
1455	/* re-enable interrupts */
1456	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1457
1458	return 1;
1459}
1460
1461static uint8_t
1462wpi_plcp_signal(int rate)
1463{
1464	switch (rate) {
1465	/* CCK rates (returned values are device-dependent) */
1466	case 2:		return 10;
1467	case 4:		return 20;
1468	case 11:	return 55;
1469	case 22:	return 110;
1470
1471	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1472	/* R1-R4, (u)ral is R4-R1 */
1473	case 12:	return 0xd;
1474	case 18:	return 0xf;
1475	case 24:	return 0x5;
1476	case 36:	return 0x7;
1477	case 48:	return 0x9;
1478	case 72:	return 0xb;
1479	case 96:	return 0x1;
1480	case 108:	return 0x3;
1481
1482	/* unsupported rates (should not get there) */
1483	default:	return 0;
1484	}
1485}
1486
1487/* quickly determine if a given rate is CCK or OFDM */
1488#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1489
1490static int
1491wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1492	int ac)
1493{
1494	struct ieee80211com *ic = &sc->sc_ic;
1495	struct wpi_tx_ring *ring = &sc->txq[ac];
1496	struct wpi_tx_desc *desc;
1497	struct wpi_tx_data *data;
1498	struct wpi_tx_cmd *cmd;
1499	struct wpi_cmd_data *tx;
1500	struct ieee80211_frame *wh;
1501	struct ieee80211_key *k;
1502	const struct chanAccParams *cap;
1503	struct mbuf *mnew;
1504	int i, error, rate, hdrlen, noack = 0;
1505
1506	desc = &ring->desc[ring->cur];
1507	data = &ring->data[ring->cur];
1508
1509	wh = mtod(m0, struct ieee80211_frame *);
1510
1511	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1512		hdrlen = sizeof (struct ieee80211_qosframe);
1513		cap = &ic->ic_wme.wme_chanParams;
1514		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1515	} else
1516		hdrlen = sizeof (struct ieee80211_frame);
1517
1518	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1519		k = ieee80211_crypto_encap(ic, ni, m0);
1520		if (k == NULL) {
1521			m_freem(m0);
1522			return ENOBUFS;
1523		}
1524
1525		/* packet header may have moved, reset our local pointer */
1526		wh = mtod(m0, struct ieee80211_frame *);
1527	}
1528
1529	/* pickup a rate */
1530	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1531		IEEE80211_FC0_TYPE_MGT) {
1532		/* mgmt frames are sent at the lowest available bit-rate */
1533		rate = ni->ni_rates.rs_rates[0];
1534	} else {
1535		if (ic->ic_fixed_rate != -1) {
1536			rate = ic->ic_sup_rates[ic->ic_curmode].
1537				rs_rates[ic->ic_fixed_rate];
1538		} else
1539			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1540	}
1541	rate &= IEEE80211_RATE_VAL;
1542
1543
1544#if NBPFILTER > 0
1545	if (sc->sc_drvbpf != NULL) {
1546		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1547
1548		tap->wt_flags = 0;
1549		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1550		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1551		tap->wt_rate = rate;
1552		tap->wt_hwqueue = ac;
1553		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1554			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1555
1556		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1557	}
1558#endif
1559
1560	cmd = &ring->cmd[ring->cur];
1561	cmd->code = WPI_CMD_TX_DATA;
1562	cmd->flags = 0;
1563	cmd->qid = ring->qid;
1564	cmd->idx = ring->cur;
1565
1566	tx = (struct wpi_cmd_data *)cmd->data;
1567	tx->flags = 0;
1568
1569	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1570		tx->id = WPI_ID_BSS;
1571		tx->flags |= htole32(WPI_TX_NEED_ACK);
1572		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >
1573		    ic->ic_rtsthreshold || (WPI_RATE_IS_OFDM(rate) &&
1574		    (ic->ic_flags & IEEE80211_F_USEPROT)))
1575			tx->flags |= htole32(WPI_TX_NEED_RTS |
1576				WPI_TX_FULL_TXOP);
1577	} else
1578		tx->id = WPI_ID_BROADCAST;
1579
1580	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1581
1582	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1583		IEEE80211_FC0_TYPE_MGT) {
1584		/* tell h/w to set timestamp in probe responses */
1585		if ((wh->i_fc[0] &
1586		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1587		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1588			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1589
1590		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1591			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1592			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1593			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1594			tx->timeout = htole16(3);
1595		else
1596			tx->timeout = htole16(2);
1597	} else
1598		tx->timeout = htole16(0);
1599
1600	tx->rate = wpi_plcp_signal(rate);
1601
1602	/* be very persistant at sending frames out */
1603	tx->rts_ntries = 7;
1604	tx->data_ntries = 15;
1605
1606	tx->ofdm_mask = 0xff;
1607	tx->cck_mask = 0xf;
1608	tx->lifetime = htole32(0xffffffff);
1609
1610	tx->len = htole16(m0->m_pkthdr.len);
1611
1612	/* save and trim IEEE802.11 header */
1613	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1614	m_adj(m0, hdrlen);
1615
1616	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1617		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1618	if (error != 0 && error != EFBIG) {
1619		aprint_error("%s: could not map mbuf (error %d)\n",
1620			sc->sc_dev.dv_xname, error);
1621		m_freem(m0);
1622		return error;
1623	}
1624	if (error != 0) {
1625		/* too many fragments, linearize */
1626		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1627		if (mnew == NULL) {
1628			m_freem(m0);
1629			return ENOMEM;
1630		}
1631
1632		M_COPY_PKTHDR(mnew, m0);
1633		if (m0->m_pkthdr.len > MHLEN) {
1634			MCLGET(mnew, M_DONTWAIT);
1635			if (!(mnew->m_flags & M_EXT)) {
1636				m_freem(m0);
1637				m_freem(mnew);
1638				return ENOMEM;
1639			}
1640		}
1641
1642		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t));
1643		m_freem(m0);
1644		mnew->m_len = mnew->m_pkthdr.len;
1645		m0 = mnew;
1646
1647		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1648			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1649		if (error != 0) {
1650			aprint_error("%s: could not map mbuf (error %d)\n",
1651				sc->sc_dev.dv_xname, error);
1652			m_freem(m0);
1653			return error;
1654		}
1655	}
1656
1657	data->m = m0;
1658	data->ni = ni;
1659
1660	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1661		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1662
1663	/* first scatter/gather segment is used by the tx data command */
1664	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1665		(1 + data->map->dm_nsegs) << 24);
1666	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1667		ring->cur * sizeof (struct wpi_tx_cmd));
1668	/*XXX The next line might be wrong. I don't use hdrlen*/
1669	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1670
1671	for (i = 1; i <= data->map->dm_nsegs; i++) {
1672		desc->segs[i].addr =
1673			htole32(data->map->dm_segs[i - 1].ds_addr);
1674		desc->segs[i].len  =
1675			htole32(data->map->dm_segs[i - 1].ds_len);
1676	}
1677
1678	ring->queued++;
1679
1680	/* kick ring */
1681	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1682	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1683
1684	return 0;
1685}
1686
1687static void
1688wpi_start(struct ifnet *ifp)
1689{
1690	struct wpi_softc *sc = ifp->if_softc;
1691	struct ieee80211com *ic = &sc->sc_ic;
1692	struct ieee80211_node *ni;
1693	struct ether_header *eh;
1694	struct mbuf *m0;
1695	int ac;
1696
1697	/*
1698	 * net80211 may still try to send management frames even if the
1699	 * IFF_RUNNING flag is not set...
1700	 */
1701	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1702		return;
1703
1704	for (;;) {
1705		IF_POLL(&ic->ic_mgtq, m0);
1706		if (m0 != NULL) {
1707			IF_DEQUEUE(&ic->ic_mgtq, m0);
1708
1709			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1710			m0->m_pkthdr.rcvif = NULL;
1711
1712			/* management frames go into ring 0 */
1713			if (sc->txq[0].queued > sc->txq[0].count - 8) {
1714				ifp->if_oerrors++;
1715				continue;
1716			}
1717#if NBPFILTER > 0
1718			if (ic->ic_rawbpf != NULL)
1719				bpf_mtap(ic->ic_rawbpf, m0);
1720#endif
1721			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1722				ifp->if_oerrors++;
1723				break;
1724			}
1725		} else {
1726			if (ic->ic_state != IEEE80211_S_RUN)
1727				break;
1728			IF_DEQUEUE(&ifp->if_snd, m0);
1729			if (m0 == NULL)
1730				break;
1731
1732			if (m0->m_len < sizeof (*eh) &&
1733			    (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
1734				ifp->if_oerrors++;
1735				continue;
1736			}
1737			eh = mtod(m0, struct ether_header *);
1738			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1739			if (ni == NULL) {
1740				m_freem(m0);
1741				ifp->if_oerrors++;
1742				continue;
1743			}
1744
1745			/* classify mbuf so we can find which tx ring to use */
1746			if (ieee80211_classify(ic, m0, ni) != 0) {
1747				m_freem(m0);
1748				ieee80211_free_node(ni);
1749				ifp->if_oerrors++;
1750				continue;
1751			}
1752
1753			/* no QoS encapsulation for EAPOL frames */
1754			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1755			    M_WME_GETAC(m0) : WME_AC_BE;
1756
1757			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1758				/* there is no place left in this ring */
1759				IF_PREPEND(&ifp->if_snd, m0);
1760				ifp->if_flags |= IFF_OACTIVE;
1761				break;
1762			}
1763#if NBPFILTER > 0
1764			if (ifp->if_bpf != NULL)
1765				bpf_mtap(ifp->if_bpf, m0);
1766#endif
1767			m0 = ieee80211_encap(ic, m0, ni);
1768			if (m0 == NULL) {
1769				ieee80211_free_node(ni);
1770				ifp->if_oerrors++;
1771				continue;
1772			}
1773#if NBPFILTER > 0
1774			if (ic->ic_rawbpf != NULL)
1775				bpf_mtap(ic->ic_rawbpf, m0);
1776#endif
1777			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
1778				ieee80211_free_node(ni);
1779				ifp->if_oerrors++;
1780				break;
1781			}
1782		}
1783
1784		sc->sc_tx_timer = 5;
1785		ifp->if_timer = 1;
1786	}
1787}
1788
1789static void
1790wpi_watchdog(struct ifnet *ifp)
1791{
1792	struct wpi_softc *sc = ifp->if_softc;
1793
1794	ifp->if_timer = 0;
1795
1796	if (sc->sc_tx_timer > 0) {
1797		if (--sc->sc_tx_timer == 0) {
1798			aprint_error("%s: device timeout\n",
1799				sc->sc_dev.dv_xname);
1800			ifp->if_oerrors++;
1801			ifp->if_flags &= ~IFF_UP;
1802			wpi_stop(ifp, 1);
1803			return;
1804		}
1805		ifp->if_timer = 1;
1806	}
1807
1808	ieee80211_watchdog(&sc->sc_ic);
1809}
1810
1811static int
1812wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1813{
1814#define IS_RUNNING(ifp) \
1815	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1816
1817	struct wpi_softc *sc = ifp->if_softc;
1818	struct ieee80211com *ic = &sc->sc_ic;
1819	struct ifreq *ifr = (struct ifreq *)data;
1820	int s, error = 0;
1821
1822	s = splnet();
1823
1824	switch (cmd) {
1825	case SIOCSIFFLAGS:
1826		if (ifp->if_flags & IFF_UP) {
1827			if (!(ifp->if_flags & IFF_RUNNING))
1828				wpi_init(ifp);
1829		} else {
1830			if (ifp->if_flags & IFF_RUNNING)
1831				wpi_stop(ifp, 1);
1832		}
1833		break;
1834
1835	case SIOCADDMULTI:
1836	case SIOCDELMULTI:
1837		error = (cmd == SIOCADDMULTI) ?
1838			ether_addmulti(ifr, &sc->sc_ec) :
1839			ether_delmulti(ifr, &sc->sc_ec);
1840		if (error == ENETRESET) {
1841			/* setup multicast filter, etc */
1842			error = 0;
1843		}
1844		break;
1845
1846	default:
1847		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
1848	}
1849
1850	if (error == ENETRESET) {
1851		if (IS_RUNNING(ifp) &&
1852			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1853			wpi_init(ifp);
1854		error = 0;
1855	}
1856
1857	splx(s);
1858	return error;
1859
1860#undef IS_RUNNING
1861}
1862
1863/*
1864 * Extract various information from EEPROM.
1865 */
1866static void
1867wpi_read_eeprom(struct wpi_softc *sc)
1868{
1869	struct ieee80211com *ic = &sc->sc_ic;
1870	uint16_t val;
1871	int i;
1872
1873	/* read MAC address */
1874	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 0);
1875	ic->ic_myaddr[0] = val & 0xff;
1876	ic->ic_myaddr[1] = val >> 8;
1877	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 1);
1878	ic->ic_myaddr[2] = val & 0xff;
1879	ic->ic_myaddr[3] = val >> 8;
1880	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 2);
1881	ic->ic_myaddr[4] = val & 0xff;
1882	ic->ic_myaddr[5] = val >> 8;
1883
1884	/* read power settings for 2.4GHz channels */
1885	for (i = 0; i < 14; i++) {
1886		sc->pwr1[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR1 + i);
1887		sc->pwr2[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR2 + i);
1888		DPRINTFN(2, ("channel %d pwr1 0x%04x pwr2 0x%04x\n", i + 1,
1889			sc->pwr1[i], sc->pwr2[i]));
1890	}
1891}
1892
1893/*
1894 * Send a command to the firmware.
1895 */
1896static int
1897wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
1898{
1899	struct wpi_tx_ring *ring = &sc->cmdq;
1900	struct wpi_tx_desc *desc;
1901	struct wpi_tx_cmd *cmd;
1902
1903	KASSERT(size <= sizeof cmd->data);
1904
1905	desc = &ring->desc[ring->cur];
1906	cmd = &ring->cmd[ring->cur];
1907
1908	cmd->code = code;
1909	cmd->flags = 0;
1910	cmd->qid = ring->qid;
1911	cmd->idx = ring->cur;
1912	memcpy(cmd->data, buf, size);
1913
1914	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
1915	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1916		ring->cur * sizeof (struct wpi_tx_cmd));
1917	desc->segs[0].len  = htole32(4 + size);
1918
1919	/* kick cmd ring */
1920	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
1921	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1922
1923	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
1924}
1925
1926static int
1927wpi_wme_update(struct ieee80211com *ic)
1928{
1929#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
1930#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1931	struct wpi_softc *sc = ic->ic_ifp->if_softc;
1932	const struct wmeParams *wmep;
1933	struct wpi_wme_setup wme;
1934	int ac;
1935
1936	/* don't override default WME values if WME is not actually enabled */
1937	if (!(ic->ic_flags & IEEE80211_F_WME))
1938		return 0;
1939
1940	wme.flags = 0;
1941	for (ac = 0; ac < WME_NUM_AC; ac++) {
1942		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1943		wme.ac[ac].aifsn = wmep->wmep_aifsn;
1944		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
1945		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
1946		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
1947
1948		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
1949		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
1950		    wme.ac[ac].cwmax, wme.ac[ac].txop));
1951	}
1952
1953	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
1954#undef WPI_USEC
1955#undef WPI_EXP2
1956}
1957
1958/*
1959 * Configure h/w multi-rate retries.
1960 */
1961static int
1962wpi_mrr_setup(struct wpi_softc *sc)
1963{
1964	struct ieee80211com *ic = &sc->sc_ic;
1965	struct wpi_mrr_setup mrr;
1966	int i, error;
1967
1968	/* CCK rates (not used with 802.11a) */
1969	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
1970		mrr.rates[i].flags = 0;
1971		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
1972		/* fallback to the immediate lower CCK rate (if any) */
1973		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
1974		/* try one time at this rate before falling back to "next" */
1975		mrr.rates[i].ntries = 1;
1976	}
1977
1978	/* OFDM rates (not used with 802.11b) */
1979	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
1980		mrr.rates[i].flags = 0;
1981		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
1982		/* fallback to the immediate lower rate (if any) */
1983		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
1984		mrr.rates[i].next = (i == WPI_OFDM6) ?
1985		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
1986			WPI_OFDM6 : WPI_CCK2) :
1987		    i - 1;
1988		/* try one time at this rate before falling back to "next" */
1989		mrr.rates[i].ntries = 1;
1990	}
1991
1992	/* setup MRR for control frames */
1993	mrr.which = htole32(WPI_MRR_CTL);
1994	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 1);
1995	if (error != 0) {
1996		aprint_error("%s: could not setup MRR for control frames\n",
1997			sc->sc_dev.dv_xname);
1998		return error;
1999	}
2000
2001	/* setup MRR for data frames */
2002	mrr.which = htole32(WPI_MRR_DATA);
2003	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 1);
2004	if (error != 0) {
2005		aprint_error("%s: could not setup MRR for data frames\n",
2006			sc->sc_dev.dv_xname);
2007		return error;
2008	}
2009
2010	return 0;
2011}
2012
2013static void
2014wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2015{
2016	struct wpi_cmd_led led;
2017
2018	led.which = which;
2019	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2020	led.off = off;
2021	led.on = on;
2022
2023	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2024}
2025
2026static void
2027wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2028{
2029	struct wpi_cmd_tsf tsf;
2030	uint64_t val, mod;
2031
2032	memset(&tsf, 0, sizeof tsf);
2033	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2034	tsf.bintval = htole16(ni->ni_intval);
2035	tsf.lintval = htole16(10);
2036
2037	/* compute remaining time until next beacon */
2038	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
2039	mod = le64toh(tsf.tstamp) % val;
2040	tsf.binitval = htole32((uint32_t)(val - mod));
2041
2042	DPRINTF(("TSF bintval=%u tstamp=%llu, init=%u\n",
2043	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2044
2045	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2046		aprint_error("%s: could not enable TSF\n", sc->sc_dev.dv_xname);
2047}
2048
2049/*
2050 * Build a beacon frame that the firmware will broadcast periodically in
2051 * IBSS or HostAP modes.
2052 */
2053static int
2054wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2055{
2056	struct ieee80211com *ic = &sc->sc_ic;
2057	struct wpi_tx_ring *ring = &sc->cmdq;
2058	struct wpi_tx_desc *desc;
2059	struct wpi_tx_data *data;
2060	struct wpi_tx_cmd *cmd;
2061	struct wpi_cmd_beacon *bcn;
2062	struct ieee80211_beacon_offsets bo;
2063	struct mbuf *m0;
2064	int error;
2065
2066	desc = &ring->desc[ring->cur];
2067	data = &ring->data[ring->cur];
2068
2069	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2070	if (m0 == NULL) {
2071		aprint_error("%s: could not allocate beacon frame\n",
2072			sc->sc_dev.dv_xname);
2073		return ENOMEM;
2074	}
2075
2076	cmd = &ring->cmd[ring->cur];
2077	cmd->code = WPI_CMD_SET_BEACON;
2078	cmd->flags = 0;
2079	cmd->qid = ring->qid;
2080	cmd->idx = ring->cur;
2081
2082	bcn = (struct wpi_cmd_beacon *)cmd->data;
2083	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2084	bcn->id = WPI_ID_BROADCAST;
2085	bcn->ofdm_mask = 0xff;
2086	bcn->cck_mask = 0x0f;
2087	bcn->lifetime = htole32(0xffffffff);
2088	bcn->len = htole16(m0->m_pkthdr.len);
2089	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2090		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2091	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2092
2093	/* save and trim IEEE802.11 header */
2094	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2095	m_adj(m0, sizeof (struct ieee80211_frame));
2096
2097	/* assume beacon frame is contiguous */
2098	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2099		BUS_DMA_READ | BUS_DMA_NOWAIT);
2100	if (error) {
2101		aprint_error("%s: could not map beacon\n", sc->sc_dev.dv_xname);
2102		m_freem(m0);
2103		return error;
2104	}
2105
2106	data->m = m0;
2107
2108	/* first scatter/gather segment is used by the beacon command */
2109	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2110	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2111		ring->cur * sizeof (struct wpi_tx_cmd));
2112	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2113	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2114	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2115
2116	/* kick cmd ring */
2117	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2118	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2119
2120	return 0;
2121}
2122
2123static int
2124wpi_auth(struct wpi_softc *sc)
2125{
2126	struct ieee80211com *ic = &sc->sc_ic;
2127	struct ieee80211_node *ni = ic->ic_bss;
2128	struct wpi_node_info node;
2129	int error;
2130
2131	/* update adapter's configuration */
2132	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2133	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2134	sc->config.flags = htole32(WPI_CONFIG_TSF);
2135	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2136		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2137		    WPI_CONFIG_24GHZ);
2138	}
2139	switch (ic->ic_curmode) {
2140	case IEEE80211_MODE_11A:
2141		sc->config.cck_mask  = 0;
2142		sc->config.ofdm_mask = 0x15;
2143		break;
2144	case IEEE80211_MODE_11B:
2145		sc->config.cck_mask  = 0x03;
2146		sc->config.ofdm_mask = 0;
2147		break;
2148	default:	/* assume 802.11b/g */
2149		sc->config.cck_mask  = 0x0f;
2150		sc->config.ofdm_mask = 0x15;
2151	}
2152
2153	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2154		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2155	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2156		sizeof (struct wpi_config), 1);
2157	if (error != 0) {
2158		aprint_error("%s: could not configure\n", sc->sc_dev.dv_xname);
2159		return error;
2160	}
2161
2162	/* add default node */
2163	memset(&node, 0, sizeof node);
2164	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2165	node.id = WPI_ID_BSS;
2166	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2167	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2168	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2169	if (error != 0) {
2170		aprint_error("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
2171		return error;
2172	}
2173
2174	error = wpi_mrr_setup(sc);
2175	if (error != 0) {
2176		aprint_error("%s: could not setup MRR\n", sc->sc_dev.dv_xname);
2177		return error;
2178	}
2179
2180	return 0;
2181}
2182
2183/*
2184 * Send a scan request to the firmware.  Since this command is huge, we map it
2185 * into a mbuf instead of using the pre-allocated set of commands.
2186 */
2187static int
2188wpi_scan(struct wpi_softc *sc, uint16_t flags)
2189{
2190	struct ieee80211com *ic = &sc->sc_ic;
2191	struct wpi_tx_ring *ring = &sc->cmdq;
2192	struct wpi_tx_desc *desc;
2193	struct wpi_tx_data *data;
2194	struct wpi_tx_cmd *cmd;
2195	struct wpi_scan_hdr *hdr;
2196	struct wpi_scan_chan *chan;
2197	struct ieee80211_frame *wh;
2198	struct ieee80211_rateset *rs;
2199	struct ieee80211_channel *c;
2200	enum ieee80211_phymode mode;
2201	uint8_t *frm;
2202	int nrates, pktlen, error;
2203
2204	desc = &ring->desc[ring->cur];
2205	data = &ring->data[ring->cur];
2206
2207	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2208	if (data->m == NULL) {
2209		aprint_error("%s: could not allocate mbuf for scan command\n",
2210			sc->sc_dev.dv_xname);
2211		return ENOMEM;
2212	}
2213
2214	MCLGET(data->m, M_DONTWAIT);
2215	if (!(data->m->m_flags & M_EXT)) {
2216		m_freem(data->m);
2217		data->m = NULL;
2218		aprint_error("%s: could not allocate mbuf for scan command\n",
2219			sc->sc_dev.dv_xname);
2220		return ENOMEM;
2221	}
2222
2223	cmd = mtod(data->m, struct wpi_tx_cmd *);
2224	cmd->code = WPI_CMD_SCAN;
2225	cmd->flags = 0;
2226	cmd->qid = ring->qid;
2227	cmd->idx = ring->cur;
2228
2229	hdr = (struct wpi_scan_hdr *)cmd->data;
2230	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2231	hdr->first = 1;
2232	/*
2233	 * Move to the next channel if no packets are received within 5 msecs
2234	 * after sending the probe request (this helps to reduce the duration
2235	 * of active scans).
2236	 */
2237	hdr->quiet = htole16(5);        /* timeout in milliseconds */
2238	hdr->threshold = htole16(1);    /* min # of packets */
2239
2240	if (flags & IEEE80211_CHAN_A) {
2241		hdr->band = htole16(WPI_SCAN_5GHZ);
2242		/* send probe requests at 6Mbps */
2243		hdr->rate = wpi_plcp_signal(12);
2244	} else {
2245		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2246		/* send probe requests at 1Mbps */
2247		hdr->rate = wpi_plcp_signal(2);
2248	}
2249	hdr->id = WPI_ID_BROADCAST;
2250	hdr->mask = htole32(0xffffffff);
2251	hdr->magic1 = htole32(1 << 13);
2252
2253	hdr->esslen = ic->ic_des_esslen;
2254	memcpy(hdr->essid, ic->ic_des_essid, ic->ic_des_esslen);
2255
2256	/*
2257	 * Build a probe request frame.  Most of the following code is a
2258	 * copy & paste of what is done in net80211.
2259	 */
2260	wh = (struct ieee80211_frame *)(hdr + 1);
2261	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2262		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2263	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2264	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2265	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2266	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2267	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2268	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2269
2270	frm = (uint8_t *)(wh + 1);
2271
2272	/* add essid IE */
2273	*frm++ = IEEE80211_ELEMID_SSID;
2274	*frm++ = ic->ic_des_esslen;
2275	memcpy(frm, ic->ic_des_essid, ic->ic_des_esslen);
2276	frm += ic->ic_des_esslen;
2277
2278	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2279	rs = &ic->ic_sup_rates[mode];
2280
2281	/* add supported rates IE */
2282	*frm++ = IEEE80211_ELEMID_RATES;
2283	nrates = rs->rs_nrates;
2284	if (nrates > IEEE80211_RATE_SIZE)
2285		nrates = IEEE80211_RATE_SIZE;
2286	*frm++ = nrates;
2287	memcpy(frm, rs->rs_rates, nrates);
2288	frm += nrates;
2289
2290	/* add supported xrates IE */
2291	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2292		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2293		*frm++ = IEEE80211_ELEMID_XRATES;
2294		*frm++ = nrates;
2295		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2296		frm += nrates;
2297	}
2298
2299	/* add optionnal IE (usually an RSN IE) */
2300	if (ic->ic_opt_ie != NULL) {
2301		memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
2302		frm += ic->ic_opt_ie_len;
2303	}
2304
2305	/* setup length of probe request */
2306	hdr->pbrlen = htole16(frm - (uint8_t *)wh);
2307
2308	chan = (struct wpi_scan_chan *)frm;
2309	for (c  = &ic->ic_channels[1];
2310	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2311		if ((c->ic_flags & flags) != flags)
2312			continue;
2313
2314		chan->chan = ieee80211_chan2ieee(ic, c);
2315		chan->flags = (c->ic_flags & IEEE80211_CHAN_PASSIVE) ?
2316			0 : WPI_CHAN_ACTIVE;
2317		chan->magic = htole16(0x62ab);
2318		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2319			chan->active = htole16(10);
2320			chan->passive = htole16(110);
2321		} else {
2322			chan->active = htole16(20);
2323			chan->passive = htole16(120);
2324		}
2325		hdr->nchan++;
2326		chan++;
2327
2328		frm += sizeof (struct wpi_scan_chan);
2329	}
2330
2331	hdr->len = hdr->nchan * sizeof (struct wpi_scan_chan);
2332	pktlen = frm - mtod(data->m, uint8_t *);
2333
2334	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2335		NULL, BUS_DMA_NOWAIT);
2336	if (error) {
2337		aprint_error("%s: could not map scan command\n",
2338			sc->sc_dev.dv_xname);
2339		m_freem(data->m);
2340		data->m = NULL;
2341		return error;
2342	}
2343
2344	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2345	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2346	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2347
2348	/* kick cmd ring */
2349	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2350	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2351
2352	return 0;	/* will be notified async. of failure/success */
2353}
2354
2355static int
2356wpi_config(struct wpi_softc *sc)
2357{
2358	struct ieee80211com *ic = &sc->sc_ic;
2359	struct ifnet *ifp = ic->ic_ifp;
2360	struct wpi_txpower txpower;
2361	struct wpi_power power;
2362	struct wpi_bluetooth bluetooth;
2363	struct wpi_node_info node;
2364	int error;
2365
2366	/* set Tx power for 2.4GHz channels (values read from EEPROM) */
2367	memset(&txpower, 0, sizeof txpower);
2368	memcpy(txpower.pwr1, sc->pwr1, 14 * sizeof (uint16_t));
2369	memcpy(txpower.pwr2, sc->pwr2, 14 * sizeof (uint16_t));
2370	error = wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, 0);
2371	if (error != 0) {
2372		aprint_error("%s: could not set txpower\n",
2373			sc->sc_dev.dv_xname);
2374		return error;
2375	}
2376
2377	/* set power mode */
2378	memset(&power, 0, sizeof power);
2379	power.flags = htole32(0x8);	/* XXX */
2380	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2381	if (error != 0) {
2382		aprint_error("%s: could not set power mode\n",
2383			sc->sc_dev.dv_xname);
2384		return error;
2385	}
2386
2387	/* configure bluetooth coexistence */
2388	memset(&bluetooth, 0, sizeof bluetooth);
2389	bluetooth.flags = 3;
2390	bluetooth.lead = 0xaa;
2391	bluetooth.kill = 1;
2392	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2393		0);
2394	if (error != 0) {
2395		aprint_error(
2396			"%s: could not configure bluetooth coexistence\n",
2397			sc->sc_dev.dv_xname);
2398		return error;
2399	}
2400
2401	/* configure adapter */
2402	memset(&sc->config, 0, sizeof (struct wpi_config));
2403	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2404	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2405	/*set default channel*/
2406	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2407	sc->config.flags = htole32(WPI_CONFIG_TSF);
2408	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2409		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2410		    WPI_CONFIG_24GHZ);
2411	}
2412	sc->config.filter = 0;
2413	switch (ic->ic_opmode) {
2414	case IEEE80211_M_STA:
2415		sc->config.mode = WPI_MODE_STA;
2416		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2417		break;
2418	case IEEE80211_M_IBSS:
2419	case IEEE80211_M_AHDEMO:
2420		sc->config.mode = WPI_MODE_IBSS;
2421		break;
2422	case IEEE80211_M_HOSTAP:
2423		sc->config.mode = WPI_MODE_HOSTAP;
2424		break;
2425	case IEEE80211_M_MONITOR:
2426		sc->config.mode = WPI_MODE_MONITOR;
2427		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2428			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2429		break;
2430	}
2431	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2432	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2433	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2434		sizeof (struct wpi_config), 0);
2435	if (error != 0) {
2436		aprint_error("%s: configure command failed\n",
2437			sc->sc_dev.dv_xname);
2438		return error;
2439	}
2440
2441	/* add broadcast node */
2442	memset(&node, 0, sizeof node);
2443	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2444	node.id = WPI_ID_BROADCAST;
2445	node.rate = wpi_plcp_signal(2);
2446	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2447	if (error != 0) {
2448		aprint_error("%s: could not add broadcast node\n",
2449			sc->sc_dev.dv_xname);
2450		return error;
2451	}
2452
2453	return 0;
2454}
2455
2456static void
2457wpi_stop_master(struct wpi_softc *sc)
2458{
2459	uint32_t tmp;
2460	int ntries;
2461
2462	tmp = WPI_READ(sc, WPI_RESET);
2463	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2464
2465	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2466	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2467		return;	/* already asleep */
2468
2469	for (ntries = 0; ntries < 100; ntries++) {
2470		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2471			break;
2472		DELAY(10);
2473	}
2474	if (ntries == 100) {
2475		aprint_error("%s: timeout waiting for master\n",
2476			sc->sc_dev.dv_xname);
2477	}
2478}
2479
2480static int
2481wpi_power_up(struct wpi_softc *sc)
2482{
2483	uint32_t tmp;
2484	int ntries;
2485
2486	wpi_mem_lock(sc);
2487	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2488	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2489	wpi_mem_unlock(sc);
2490
2491	for (ntries = 0; ntries < 5000; ntries++) {
2492		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2493			break;
2494		DELAY(10);
2495	}
2496	if (ntries == 5000) {
2497		aprint_error("%s: timeout waiting for NIC to power up\n",
2498			sc->sc_dev.dv_xname);
2499		return ETIMEDOUT;
2500	}
2501	return 0;
2502}
2503
2504static int
2505wpi_reset(struct wpi_softc *sc)
2506{
2507	uint32_t tmp;
2508	int ntries;
2509
2510	/* clear any pending interrupts */
2511	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2512
2513	tmp = WPI_READ(sc, WPI_PLL_CTL);
2514	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2515
2516	tmp = WPI_READ(sc, WPI_CHICKEN);
2517	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2518
2519	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2520	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2521
2522	/* wait for clock stabilization */
2523	for (ntries = 0; ntries < 1000; ntries++) {
2524		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2525			break;
2526		DELAY(10);
2527	}
2528	if (ntries == 1000) {
2529		aprint_error("%s: timeout waiting for clock stabilization\n",
2530			sc->sc_dev.dv_xname);
2531		return ETIMEDOUT;
2532	}
2533
2534	/* initialize EEPROM */
2535	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2536	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2537		aprint_error("%s: EEPROM not found\n", sc->sc_dev.dv_xname);
2538		return EIO;
2539	}
2540	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2541
2542	return 0;
2543}
2544
2545static void
2546wpi_hw_config(struct wpi_softc *sc)
2547{
2548	uint16_t val;
2549	uint32_t rev, hw;
2550
2551	/* voodoo from the Linux "driver".. */
2552	hw = WPI_READ(sc, WPI_HWCONFIG);
2553
2554	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
2555	rev = PCI_REVISION(rev);
2556	if ((rev & 0xc0) == 0x40)
2557		hw |= WPI_HW_ALM_MB;
2558	else if (!(rev & 0x80))
2559		hw |= WPI_HW_ALM_MM;
2560
2561	val = wpi_read_prom_word(sc, WPI_EEPROM_CAPABILITIES);
2562	if ((val & 0xff) == 0x80)
2563		hw |= WPI_HW_SKU_MRC;
2564
2565	val = wpi_read_prom_word(sc, WPI_EEPROM_REVISION);
2566	hw &= ~WPI_HW_REV_D;
2567	if ((val & 0xf0) == 0xd0)
2568		hw |= WPI_HW_REV_D;
2569
2570	val = wpi_read_prom_word(sc, WPI_EEPROM_TYPE);
2571	if ((val & 0xff) > 1)
2572		hw |= WPI_HW_TYPE_B;
2573
2574	DPRINTF(("setting h/w config %x\n", hw));
2575	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2576}
2577
2578static int
2579wpi_init(struct ifnet *ifp)
2580{
2581	struct wpi_softc *sc = ifp->if_softc;
2582	struct ieee80211com *ic = &sc->sc_ic;
2583	struct wpi_firmware_hdr hdr;
2584	const char *boot, *text, *data;
2585	firmware_handle_t fw;
2586	u_char *dfw;
2587	off_t size;
2588	size_t wsize;
2589	uint32_t tmp;
2590	int qid, ntries, error;
2591
2592	(void)wpi_reset(sc);
2593
2594	wpi_mem_lock(sc);
2595	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
2596	DELAY(20);
2597	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
2598	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
2599	wpi_mem_unlock(sc);
2600
2601	(void)wpi_power_up(sc);
2602	wpi_hw_config(sc);
2603
2604	/* init Rx ring */
2605	wpi_mem_lock(sc);
2606	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
2607	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
2608	    offsetof(struct wpi_shared, next));
2609	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
2610	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
2611	wpi_mem_unlock(sc);
2612
2613	/* init Tx rings */
2614	wpi_mem_lock(sc);
2615	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
2616	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
2617	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
2618	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
2619	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
2620	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
2621	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
2622
2623	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
2624	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
2625
2626	for (qid = 0; qid < 6; qid++) {
2627		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
2628		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
2629		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
2630	}
2631	wpi_mem_unlock(sc);
2632
2633	/* clear "radio off" and "disable command" bits (reversed logic) */
2634	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2635	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2636
2637	/* clear any pending interrupts */
2638	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2639	/* enable interrupts */
2640	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
2641
2642	if ((error = firmware_open("if_wpi", "ipw3945.ucode", &fw)) != 0) {
2643		aprint_error("%s: could not read firmware file\n",
2644			sc->sc_dev.dv_xname);
2645		goto fail1;
2646	}
2647
2648	size = firmware_get_size(fw);
2649
2650	if (size < sizeof (struct wpi_firmware_hdr)) {
2651		aprint_error("%s: firmware file too short\n",
2652			sc->sc_dev.dv_xname);
2653		error = EINVAL;
2654		goto fail2;
2655	}
2656
2657	if ((error = firmware_read(fw, 0, &hdr,
2658		sizeof (struct wpi_firmware_hdr))) != 0) {
2659		aprint_error("%s: can't get firmware header\n",
2660			sc->sc_dev.dv_xname);
2661		goto fail2;
2662	}
2663
2664	wsize = sizeof (struct wpi_firmware_hdr) + le32toh(hdr.textsz) +
2665		le32toh(hdr.datasz) + le32toh(hdr.bootsz);
2666
2667	if (size < wsize) {
2668		aprint_error("%s: fw file too short: should be %d bytes\n",
2669			sc->sc_dev.dv_xname, wsize);
2670		error = EINVAL;
2671		goto fail2;
2672	}
2673
2674	dfw = firmware_malloc(size);
2675	if (dfw == NULL) {
2676		aprint_error("%s: not enough memory to stock firmware\n",
2677			sc->sc_dev.dv_xname);
2678		error = ENOMEM;
2679		goto fail2;
2680	}
2681
2682	if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
2683		aprint_error("%s: can't get firmware\n",
2684			sc->sc_dev.dv_xname);
2685		goto fail2;
2686	}
2687
2688	/* firmware image layout: |HDR|<--TEXT-->|<--DATA-->|<--BOOT-->| */
2689	text = dfw + sizeof (struct wpi_firmware_hdr);
2690	data = text + le32toh(hdr.textsz);
2691	boot = data + le32toh(hdr.datasz);
2692
2693	/* load firmware boot code into NIC */
2694	error = wpi_load_microcode(sc, boot, le32toh(hdr.bootsz));
2695	if (error != 0) {
2696		aprint_error("%s: could not load microcode\n", sc->sc_dev.dv_xname);
2697		goto fail3;
2698	}
2699
2700	/* load firmware .text segment into NIC */
2701	error = wpi_load_firmware(sc, WPI_FW_TEXT, text, le32toh(hdr.textsz));
2702	if (error != 0) {
2703		aprint_error("%s: could not load firmware\n",
2704			sc->sc_dev.dv_xname);
2705		goto fail3;
2706	}
2707
2708	/* load firmware .data segment into NIC */
2709	error = wpi_load_firmware(sc, WPI_FW_DATA, data, le32toh(hdr.datasz));
2710	if (error != 0) {
2711		aprint_error("%s: could not load firmware\n",
2712			sc->sc_dev.dv_xname);
2713		goto fail3;
2714	}
2715
2716	firmware_free(dfw, 0);
2717	firmware_close(fw);
2718
2719	/* now press "execute" ;-) */
2720	tmp = WPI_READ(sc, WPI_RESET);
2721	tmp &= ~(WPI_MASTER_DISABLED | WPI_STOP_MASTER | WPI_NEVO_RESET);
2722	WPI_WRITE(sc, WPI_RESET, tmp);
2723
2724	/* ..and wait at most one second for adapter to initialize */
2725	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
2726		/* this isn't what was supposed to happen.. */
2727		aprint_error("%s: timeout waiting for adapter to initialize\n",
2728			sc->sc_dev.dv_xname);
2729		goto fail1;
2730	}
2731
2732	/* wait for thermal sensors to calibrate */
2733	for (ntries = 0; ntries < 1000; ntries++) {
2734		if (WPI_READ(sc, WPI_TEMPERATURE) != 0)
2735			break;
2736		DELAY(10);
2737	}
2738	if (ntries == 1000) {
2739		aprint_error("%s: timeout waiting for thermal sensors calibration\n",
2740			sc->sc_dev.dv_xname);
2741		error = ETIMEDOUT;
2742		goto fail1;
2743	}
2744	DPRINTF(("temperature %d\n", (int)WPI_READ(sc, WPI_TEMPERATURE)));
2745
2746	if ((error = wpi_config(sc)) != 0) {
2747		aprint_error("%s: could not configure device\n",
2748			sc->sc_dev.dv_xname);
2749		goto fail1;
2750	}
2751
2752	ifp->if_flags &= ~IFF_OACTIVE;
2753	ifp->if_flags |= IFF_RUNNING;
2754
2755	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2756		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2757			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2758	}
2759	else
2760		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2761
2762	return 0;
2763
2764fail3:	firmware_free(dfw, 0);
2765fail2:	firmware_close(fw);
2766fail1:	wpi_stop(ifp, 1);
2767	return error;
2768}
2769
2770
2771static void
2772wpi_stop(struct ifnet *ifp, int disable __unused)
2773{
2774	struct wpi_softc *sc = ifp->if_softc;
2775	struct ieee80211com *ic = &sc->sc_ic;
2776	uint32_t tmp;
2777	int ac;
2778
2779	ifp->if_timer = sc->sc_tx_timer = 0;
2780	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2781
2782	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2783
2784	/* disable interrupts */
2785	WPI_WRITE(sc, WPI_MASK, 0);
2786	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
2787	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
2788	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
2789
2790	wpi_mem_lock(sc);
2791	wpi_mem_write(sc, WPI_MEM_MODE, 0);
2792	wpi_mem_unlock(sc);
2793
2794	/* reset all Tx rings */
2795	for (ac = 0; ac < 4; ac++)
2796		wpi_reset_tx_ring(sc, &sc->txq[ac]);
2797	wpi_reset_tx_ring(sc, &sc->cmdq);
2798	wpi_reset_tx_ring(sc, &sc->svcq);
2799
2800	/* reset Rx ring */
2801	wpi_reset_rx_ring(sc, &sc->rxq);
2802
2803	wpi_mem_lock(sc);
2804	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
2805	wpi_mem_unlock(sc);
2806
2807	DELAY(5);
2808
2809	wpi_stop_master(sc);
2810
2811	tmp = WPI_READ(sc, WPI_RESET);
2812	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
2813}
2814
2815static void
2816wpi_iter_func(void *arg, struct ieee80211_node *ni)
2817{
2818	struct wpi_softc *sc = arg;
2819	struct wpi_node *wn = (struct wpi_node *)ni;
2820
2821	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
2822}
2823
2824static void
2825wpi_amrr_timeout(void *arg)
2826{
2827	struct wpi_softc *sc = arg;
2828	struct ieee80211com *ic = &sc->sc_ic;
2829
2830	if (ic->ic_opmode == IEEE80211_M_STA)
2831		wpi_iter_func(sc, ic->ic_bss);
2832	else
2833		ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
2834
2835	callout_reset(&sc->amrr_ch, hz, wpi_amrr_timeout, sc);
2836}
2837
2838static void
2839wpi_newassoc(struct ieee80211_node *ni, int isnew)
2840{
2841	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2842	int i;
2843
2844	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
2845	/* set rate to some reasonable initial value */
2846	for (i = ni->ni_rates.rs_nrates - 1;
2847	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2848	     i--);
2849	ni->ni_txrate = i;
2850}
2851