if_wpi.c revision 1.46
1/*  $NetBSD: if_wpi.c,v 1.46 2010/02/24 22:38:01 dyoung Exp $    */
2
3/*-
4 * Copyright (c) 2006, 2007
5 *	Damien Bergamini <damien.bergamini@free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20#include <sys/cdefs.h>
21__KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.46 2010/02/24 22:38:01 dyoung Exp $");
22
23/*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27
28#include <sys/param.h>
29#include <sys/sockio.h>
30#include <sys/sysctl.h>
31#include <sys/mbuf.h>
32#include <sys/kernel.h>
33#include <sys/socket.h>
34#include <sys/systm.h>
35#include <sys/malloc.h>
36#include <sys/mutex.h>
37#include <sys/once.h>
38#include <sys/conf.h>
39#include <sys/kauth.h>
40#include <sys/callout.h>
41
42#include <sys/bus.h>
43#include <machine/endian.h>
44#include <sys/intr.h>
45
46#include <dev/pci/pcireg.h>
47#include <dev/pci/pcivar.h>
48#include <dev/pci/pcidevs.h>
49
50#include <net/bpf.h>
51#include <net/if.h>
52#include <net/if_arp.h>
53#include <net/if_dl.h>
54#include <net/if_ether.h>
55#include <net/if_media.h>
56#include <net/if_types.h>
57
58#include <net80211/ieee80211_var.h>
59#include <net80211/ieee80211_amrr.h>
60#include <net80211/ieee80211_radiotap.h>
61
62#include <netinet/in.h>
63#include <netinet/in_systm.h>
64#include <netinet/in_var.h>
65#include <netinet/ip.h>
66
67#include <dev/firmload.h>
68
69#include <dev/pci/if_wpireg.h>
70#include <dev/pci/if_wpivar.h>
71
72#ifdef WPI_DEBUG
73#define DPRINTF(x)	if (wpi_debug > 0) printf x
74#define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
75int wpi_debug = 1;
76#else
77#define DPRINTF(x)
78#define DPRINTFN(n, x)
79#endif
80
81/*
82 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
83 */
84static const struct ieee80211_rateset wpi_rateset_11a =
85	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
86
87static const struct ieee80211_rateset wpi_rateset_11b =
88	{ 4, { 2, 4, 11, 22 } };
89
90static const struct ieee80211_rateset wpi_rateset_11g =
91	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
92
93static once_t wpi_firmware_init;
94static kmutex_t wpi_firmware_mutex;
95static size_t wpi_firmware_users;
96static uint8_t *wpi_firmware_image;
97static size_t wpi_firmware_size;
98
99static int  wpi_match(device_t, cfdata_t, void *);
100static void wpi_attach(device_t, device_t, void *);
101static int  wpi_detach(device_t , int);
102static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
103	void **, bus_size_t, bus_size_t, int);
104static void wpi_dma_contig_free(struct wpi_dma_info *);
105static int  wpi_alloc_shared(struct wpi_softc *);
106static void wpi_free_shared(struct wpi_softc *);
107static int  wpi_alloc_fwmem(struct wpi_softc *);
108static void wpi_free_fwmem(struct wpi_softc *);
109static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
110static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
111static int  wpi_alloc_rpool(struct wpi_softc *);
112static void wpi_free_rpool(struct wpi_softc *);
113static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
114static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
115static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
116static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
117	int);
118static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
119static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
120static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
121static void wpi_newassoc(struct ieee80211_node *, int);
122static int  wpi_media_change(struct ifnet *);
123static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
124static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
125static void wpi_mem_lock(struct wpi_softc *);
126static void wpi_mem_unlock(struct wpi_softc *);
127static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
128static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
129static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
130								   const uint32_t *, int);
131static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
132static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
133static int  wpi_load_firmware(struct wpi_softc *);
134static void wpi_calib_timeout(void *);
135static void wpi_iter_func(void *, struct ieee80211_node *);
136static void wpi_power_calibration(struct wpi_softc *, int);
137static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
138	struct wpi_rx_data *);
139static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
140static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
141static void wpi_notif_intr(struct wpi_softc *);
142static int  wpi_intr(void *);
143static void wpi_read_eeprom(struct wpi_softc *);
144static void wpi_read_eeprom_channels(struct wpi_softc *, int);
145static void wpi_read_eeprom_group(struct wpi_softc *, int);
146static uint8_t wpi_plcp_signal(int);
147static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
148	struct ieee80211_node *, int);
149static void wpi_start(struct ifnet *);
150static void wpi_watchdog(struct ifnet *);
151static int  wpi_ioctl(struct ifnet *, u_long, void *);
152static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
153static int  wpi_wme_update(struct ieee80211com *);
154static int  wpi_mrr_setup(struct wpi_softc *);
155static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
156static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
157static int  wpi_set_txpower(struct wpi_softc *,
158			    struct ieee80211_channel *, int);
159static int  wpi_get_power_index(struct wpi_softc *,
160		struct wpi_power_group *, struct ieee80211_channel *, int);
161static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
162static int  wpi_auth(struct wpi_softc *);
163static int  wpi_scan(struct wpi_softc *, uint16_t);
164static int  wpi_config(struct wpi_softc *);
165static void wpi_stop_master(struct wpi_softc *);
166static int  wpi_power_up(struct wpi_softc *);
167static int  wpi_reset(struct wpi_softc *);
168static void wpi_hw_config(struct wpi_softc *);
169static int  wpi_init(struct ifnet *);
170static void wpi_stop(struct ifnet *, int);
171static bool wpi_resume(device_t, const pmf_qual_t *);
172static int	wpi_getrfkill(struct wpi_softc *);
173static void wpi_sysctlattach(struct wpi_softc *);
174
175CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
176	wpi_detach, NULL);
177
178static int
179wpi_match(device_t parent, cfdata_t match __unused, void *aux)
180{
181	struct pci_attach_args *pa = aux;
182
183	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
184		return 0;
185
186	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
187	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
188		return 1;
189
190	return 0;
191}
192
193/* Base Address Register */
194#define WPI_PCI_BAR0	0x10
195
196static int
197wpi_attach_once(void)
198{
199	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
200	return 0;
201}
202
203static void
204wpi_attach(device_t parent __unused, device_t self, void *aux)
205{
206	struct wpi_softc *sc = device_private(self);
207	struct ieee80211com *ic = &sc->sc_ic;
208	struct ifnet *ifp = &sc->sc_ec.ec_if;
209	struct pci_attach_args *pa = aux;
210	const char *intrstr;
211	char devinfo[256];
212	bus_space_tag_t memt;
213	bus_space_handle_t memh;
214	pci_intr_handle_t ih;
215	pcireg_t data;
216	int error, ac, revision;
217
218	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
219	sc->fw_used = false;
220
221	sc->sc_dev = self;
222	sc->sc_pct = pa->pa_pc;
223	sc->sc_pcitag = pa->pa_tag;
224
225	callout_init(&sc->calib_to, 0);
226	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
227
228	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
229	revision = PCI_REVISION(pa->pa_class);
230	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
231
232	/* enable bus-mastering */
233	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
234	data |= PCI_COMMAND_MASTER_ENABLE;
235	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
236
237	/* map the register window */
238	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
239		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
240	if (error != 0) {
241		aprint_error_dev(self, "could not map memory space\n");
242		return;
243	}
244
245	sc->sc_st = memt;
246	sc->sc_sh = memh;
247	sc->sc_dmat = pa->pa_dmat;
248
249	if (pci_intr_map(pa, &ih) != 0) {
250		aprint_error_dev(self, "could not map interrupt\n");
251		return;
252	}
253
254	intrstr = pci_intr_string(sc->sc_pct, ih);
255	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
256	if (sc->sc_ih == NULL) {
257		aprint_error_dev(self, "could not establish interrupt");
258		if (intrstr != NULL)
259			aprint_error(" at %s", intrstr);
260		aprint_error("\n");
261		return;
262	}
263	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
264
265	if (wpi_reset(sc) != 0) {
266		aprint_error_dev(self, "could not reset adapter\n");
267		return;
268	}
269
270 	/*
271	 * Allocate DMA memory for firmware transfers.
272	 */
273	if ((error = wpi_alloc_fwmem(sc)) != 0)
274		return;
275
276	/*
277	 * Allocate shared page and Tx/Rx rings.
278	 */
279	if ((error = wpi_alloc_shared(sc)) != 0) {
280		aprint_error_dev(self, "could not allocate shared area\n");
281		goto fail1;
282	}
283
284	if ((error = wpi_alloc_rpool(sc)) != 0) {
285		aprint_error_dev(self, "could not allocate Rx buffers\n");
286		goto fail2;
287	}
288
289	for (ac = 0; ac < 4; ac++) {
290		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
291		if (error != 0) {
292			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
293			goto fail3;
294		}
295	}
296
297	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
298	if (error != 0) {
299		aprint_error_dev(self, "could not allocate command ring\n");
300		goto fail3;
301	}
302
303	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
304		aprint_error_dev(self, "could not allocate Rx ring\n");
305		goto fail4;
306	}
307
308	ic->ic_ifp = ifp;
309	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
310	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
311	ic->ic_state = IEEE80211_S_INIT;
312
313	/* set device capabilities */
314	ic->ic_caps =
315		IEEE80211_C_IBSS |       /* IBSS mode support */
316		IEEE80211_C_WPA |        /* 802.11i */
317		IEEE80211_C_MONITOR |    /* monitor mode supported */
318		IEEE80211_C_TXPMGT |     /* tx power management */
319		IEEE80211_C_SHSLOT |     /* short slot time supported */
320		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
321		IEEE80211_C_WME;         /* 802.11e */
322
323	/* read supported channels and MAC address from EEPROM */
324	wpi_read_eeprom(sc);
325
326	/* set supported .11a, .11b, .11g rates */
327	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
328	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
329	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
330
331	ic->ic_ibss_chan = &ic->ic_channels[0];
332
333	ifp->if_softc = sc;
334	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
335	ifp->if_init = wpi_init;
336	ifp->if_stop = wpi_stop;
337	ifp->if_ioctl = wpi_ioctl;
338	ifp->if_start = wpi_start;
339	ifp->if_watchdog = wpi_watchdog;
340	IFQ_SET_READY(&ifp->if_snd);
341	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
342
343	if_attach(ifp);
344	ieee80211_ifattach(ic);
345	/* override default methods */
346	ic->ic_node_alloc = wpi_node_alloc;
347	ic->ic_newassoc = wpi_newassoc;
348	ic->ic_wme.wme_update = wpi_wme_update;
349
350	/* override state transition machine */
351	sc->sc_newstate = ic->ic_newstate;
352	ic->ic_newstate = wpi_newstate;
353	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
354
355	sc->amrr.amrr_min_success_threshold = 1;
356	sc->amrr.amrr_max_success_threshold = 15;
357
358	wpi_sysctlattach(sc);
359
360	if (pmf_device_register(self, NULL, wpi_resume))
361		pmf_class_network_register(self, ifp);
362	else
363		aprint_error_dev(self, "couldn't establish power handler\n");
364
365	bpf_ops->bpf_attach(ifp, DLT_IEEE802_11_RADIO,
366	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
367	    &sc->sc_drvbpf);
368
369	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
370	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
371	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
372
373	sc->sc_txtap_len = sizeof sc->sc_txtapu;
374	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
375	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
376
377	ieee80211_announce(ic);
378
379	return;
380
381fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
382fail3:  while (--ac >= 0)
383			wpi_free_tx_ring(sc, &sc->txq[ac]);
384	wpi_free_rpool(sc);
385fail2:	wpi_free_shared(sc);
386fail1:	wpi_free_fwmem(sc);
387}
388
389static int
390wpi_detach(device_t self, int flags __unused)
391{
392	struct wpi_softc *sc = device_private(self);
393	struct ifnet *ifp = sc->sc_ic.ic_ifp;
394	int ac;
395
396	wpi_stop(ifp, 1);
397
398	if (ifp != NULL)
399		bpf_ops->bpf_detach(ifp);
400	ieee80211_ifdetach(&sc->sc_ic);
401	if (ifp != NULL)
402		if_detach(ifp);
403
404	for (ac = 0; ac < 4; ac++)
405		wpi_free_tx_ring(sc, &sc->txq[ac]);
406	wpi_free_tx_ring(sc, &sc->cmdq);
407	wpi_free_rx_ring(sc, &sc->rxq);
408	wpi_free_rpool(sc);
409	wpi_free_shared(sc);
410
411	if (sc->sc_ih != NULL) {
412		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
413		sc->sc_ih = NULL;
414	}
415
416	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
417
418	if (sc->fw_used) {
419		mutex_enter(&wpi_firmware_mutex);
420		if (--wpi_firmware_users == 0)
421			firmware_free(wpi_firmware_image, wpi_firmware_size);
422		mutex_exit(&wpi_firmware_mutex);
423	}
424
425	return 0;
426}
427
428static int
429wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
430	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
431{
432	int nsegs, error;
433
434	dma->tag = tag;
435	dma->size = size;
436
437	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
438	if (error != 0)
439		goto fail;
440
441	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
442	    flags);
443	if (error != 0)
444		goto fail;
445
446	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
447	if (error != 0)
448		goto fail;
449
450	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
451	if (error != 0)
452		goto fail;
453
454	memset(dma->vaddr, 0, size);
455
456	dma->paddr = dma->map->dm_segs[0].ds_addr;
457	if (kvap != NULL)
458		*kvap = dma->vaddr;
459
460	return 0;
461
462fail:   wpi_dma_contig_free(dma);
463	return error;
464}
465
466static void
467wpi_dma_contig_free(struct wpi_dma_info *dma)
468{
469	if (dma->map != NULL) {
470		if (dma->vaddr != NULL) {
471			bus_dmamap_unload(dma->tag, dma->map);
472			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
473			bus_dmamem_free(dma->tag, &dma->seg, 1);
474			dma->vaddr = NULL;
475		}
476		bus_dmamap_destroy(dma->tag, dma->map);
477		dma->map = NULL;
478	}
479}
480
481/*
482 * Allocate a shared page between host and NIC.
483 */
484static int
485wpi_alloc_shared(struct wpi_softc *sc)
486{
487	int error;
488	/* must be aligned on a 4K-page boundary */
489	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
490			(void **)&sc->shared, sizeof (struct wpi_shared),
491			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
492	if (error != 0)
493		aprint_error_dev(sc->sc_dev,
494				"could not allocate shared area DMA memory\n");
495
496	return error;
497}
498
499static void
500wpi_free_shared(struct wpi_softc *sc)
501{
502	wpi_dma_contig_free(&sc->shared_dma);
503}
504
505/*
506 * Allocate DMA-safe memory for firmware transfer.
507 */
508static int
509wpi_alloc_fwmem(struct wpi_softc *sc)
510{
511	int error;
512	/* allocate enough contiguous space to store text and data */
513	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
514	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
515	    BUS_DMA_NOWAIT);
516
517	if (error != 0)
518		aprint_error_dev(sc->sc_dev,
519			"could not allocate firmware transfer area"
520			"DMA memory\n");
521	return error;
522}
523
524static void
525wpi_free_fwmem(struct wpi_softc *sc)
526{
527	wpi_dma_contig_free(&sc->fw_dma);
528}
529
530
531static struct wpi_rbuf *
532wpi_alloc_rbuf(struct wpi_softc *sc)
533{
534	struct wpi_rbuf *rbuf;
535
536	mutex_enter(&sc->rxq.freelist_mtx);
537	rbuf = SLIST_FIRST(&sc->rxq.freelist);
538	if (rbuf != NULL) {
539		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
540		sc->rxq.nb_free_entries --;
541	}
542	mutex_exit(&sc->rxq.freelist_mtx);
543
544	return rbuf;
545}
546
547/*
548 * This is called automatically by the network stack when the mbuf to which our
549 * Rx buffer is attached is freed.
550 */
551static void
552wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
553{
554	struct wpi_rbuf *rbuf = arg;
555	struct wpi_softc *sc = rbuf->sc;
556
557	/* put the buffer back in the free list */
558
559	mutex_enter(&sc->rxq.freelist_mtx);
560	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
561	mutex_exit(&sc->rxq.freelist_mtx);
562	/* No need to protect this with a mutex, see wpi_rx_intr */
563	sc->rxq.nb_free_entries ++;
564
565	if (__predict_true(m != NULL))
566		pool_cache_put(mb_cache, m);
567}
568
569static int
570wpi_alloc_rpool(struct wpi_softc *sc)
571{
572	struct wpi_rx_ring *ring = &sc->rxq;
573	struct wpi_rbuf *rbuf;
574	int i, error;
575
576	/* allocate a big chunk of DMA'able memory.. */
577	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
578	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
579	if (error != 0) {
580		aprint_normal_dev(sc->sc_dev,
581						  "could not allocate Rx buffers DMA memory\n");
582		return error;
583	}
584
585	/* ..and split it into 3KB chunks */
586	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
587	SLIST_INIT(&ring->freelist);
588	for (i = 0; i < WPI_RBUF_COUNT; i++) {
589		rbuf = &ring->rbuf[i];
590		rbuf->sc = sc;	/* backpointer for callbacks */
591		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
592		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
593
594		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
595	}
596
597	ring->nb_free_entries = WPI_RBUF_COUNT;
598	return 0;
599}
600
601static void
602wpi_free_rpool(struct wpi_softc *sc)
603{
604	wpi_dma_contig_free(&sc->rxq.buf_dma);
605}
606
607static int
608wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
609{
610	struct wpi_rx_data *data;
611	struct wpi_rbuf *rbuf;
612	int i, error;
613
614	ring->cur = 0;
615
616	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
617		(void **)&ring->desc,
618		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
619		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
620	if (error != 0) {
621		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
622		goto fail;
623	}
624
625	/*
626	 * Setup Rx buffers.
627	 */
628	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
629		data = &ring->data[i];
630
631		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
632		if (data->m == NULL) {
633			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
634			error = ENOMEM;
635			goto fail;
636		}
637		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
638			m_freem(data->m);
639			data->m = NULL;
640			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
641			error = ENOMEM;
642			goto fail;
643		}
644		/* attach Rx buffer to mbuf */
645		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
646		    rbuf);
647		data->m->m_flags |= M_EXT_RW;
648
649		ring->desc[i] = htole32(rbuf->paddr);
650	}
651
652	return 0;
653
654fail:	wpi_free_rx_ring(sc, ring);
655	return error;
656}
657
658static void
659wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
660{
661	int ntries;
662
663	wpi_mem_lock(sc);
664
665	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
666	for (ntries = 0; ntries < 100; ntries++) {
667		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
668			break;
669		DELAY(10);
670	}
671#ifdef WPI_DEBUG
672	if (ntries == 100 && wpi_debug > 0)
673		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
674#endif
675	wpi_mem_unlock(sc);
676
677	ring->cur = 0;
678}
679
680static void
681wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
682{
683	int i;
684
685	wpi_dma_contig_free(&ring->desc_dma);
686
687	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
688		if (ring->data[i].m != NULL)
689			m_freem(ring->data[i].m);
690	}
691}
692
693static int
694wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
695	int qid)
696{
697	struct wpi_tx_data *data;
698	int i, error;
699
700	ring->qid = qid;
701	ring->count = count;
702	ring->queued = 0;
703	ring->cur = 0;
704
705	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
706		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
707		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
708	if (error != 0) {
709		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
710		goto fail;
711	}
712
713	/* update shared page with ring's base address */
714	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
715
716	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
717		(void **)&ring->cmd,
718		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
719	if (error != 0) {
720		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
721		goto fail;
722	}
723
724	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
725		M_NOWAIT);
726	if (ring->data == NULL) {
727		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
728		goto fail;
729	}
730
731	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
732
733	for (i = 0; i < count; i++) {
734		data = &ring->data[i];
735
736		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
737			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
738			&data->map);
739		if (error != 0) {
740			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
741			goto fail;
742		}
743	}
744
745	return 0;
746
747fail:	wpi_free_tx_ring(sc, ring);
748	return error;
749}
750
751static void
752wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
753{
754	struct wpi_tx_data *data;
755	int i, ntries;
756
757	wpi_mem_lock(sc);
758
759	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
760	for (ntries = 0; ntries < 100; ntries++) {
761		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
762			break;
763		DELAY(10);
764	}
765#ifdef WPI_DEBUG
766	if (ntries == 100 && wpi_debug > 0) {
767		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
768									   ring->qid);
769	}
770#endif
771	wpi_mem_unlock(sc);
772
773	for (i = 0; i < ring->count; i++) {
774		data = &ring->data[i];
775
776		if (data->m != NULL) {
777			bus_dmamap_unload(sc->sc_dmat, data->map);
778			m_freem(data->m);
779			data->m = NULL;
780		}
781	}
782
783	ring->queued = 0;
784	ring->cur = 0;
785}
786
787static void
788wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
789{
790	struct wpi_tx_data *data;
791	int i;
792
793	wpi_dma_contig_free(&ring->desc_dma);
794	wpi_dma_contig_free(&ring->cmd_dma);
795
796	if (ring->data != NULL) {
797		for (i = 0; i < ring->count; i++) {
798			data = &ring->data[i];
799
800			if (data->m != NULL) {
801				bus_dmamap_unload(sc->sc_dmat, data->map);
802				m_freem(data->m);
803			}
804		}
805		free(ring->data, M_DEVBUF);
806	}
807}
808
809/*ARGUSED*/
810static struct ieee80211_node *
811wpi_node_alloc(struct ieee80211_node_table *nt __unused)
812{
813	struct wpi_node *wn;
814
815	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
816
817	return (struct ieee80211_node *)wn;
818}
819
820static void
821wpi_newassoc(struct ieee80211_node *ni, int isnew)
822{
823	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
824	int i;
825
826	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
827
828	/* set rate to some reasonable initial value */
829	for (i = ni->ni_rates.rs_nrates - 1;
830	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
831	     i--);
832	ni->ni_txrate = i;
833}
834
835static int
836wpi_media_change(struct ifnet *ifp)
837{
838	int error;
839
840	error = ieee80211_media_change(ifp);
841	if (error != ENETRESET)
842		return error;
843
844	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
845		wpi_init(ifp);
846
847	return 0;
848}
849
850static int
851wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
852{
853	struct ifnet *ifp = ic->ic_ifp;
854	struct wpi_softc *sc = ifp->if_softc;
855	struct ieee80211_node *ni;
856	int error;
857
858	callout_stop(&sc->calib_to);
859
860	switch (nstate) {
861	case IEEE80211_S_SCAN:
862
863		if (sc->is_scanning)
864			break;
865
866		sc->is_scanning = true;
867		ieee80211_node_table_reset(&ic->ic_scan);
868		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
869
870		/* make the link LED blink while we're scanning */
871		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
872
873		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
874			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
875			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
876			return error;
877		}
878
879		ic->ic_state = nstate;
880		return 0;
881
882	case IEEE80211_S_ASSOC:
883		if (ic->ic_state != IEEE80211_S_RUN)
884			break;
885		/* FALLTHROUGH */
886	case IEEE80211_S_AUTH:
887		sc->config.associd = 0;
888		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
889		if ((error = wpi_auth(sc)) != 0) {
890			aprint_error_dev(sc->sc_dev,
891							"could not send authentication request\n");
892			return error;
893		}
894		break;
895
896	case IEEE80211_S_RUN:
897		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
898			/* link LED blinks while monitoring */
899			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
900			break;
901		}
902
903		ni = ic->ic_bss;
904
905		if (ic->ic_opmode != IEEE80211_M_STA) {
906			(void) wpi_auth(sc);    /* XXX */
907			wpi_setup_beacon(sc, ni);
908		}
909
910		wpi_enable_tsf(sc, ni);
911
912		/* update adapter's configuration */
913		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
914		/* short preamble/slot time are negotiated when associating */
915		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
916			WPI_CONFIG_SHSLOT);
917		if (ic->ic_flags & IEEE80211_F_SHSLOT)
918			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
919		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
920			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
921		sc->config.filter |= htole32(WPI_FILTER_BSS);
922		if (ic->ic_opmode != IEEE80211_M_STA)
923			sc->config.filter |= htole32(WPI_FILTER_BEACON);
924
925/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
926
927		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
928			sc->config.flags));
929		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
930			sizeof (struct wpi_config), 1);
931		if (error != 0) {
932			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
933			return error;
934		}
935
936		/* configuration has changed, set Tx power accordingly */
937		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
938			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
939			return error;
940		}
941
942		if (ic->ic_opmode == IEEE80211_M_STA) {
943			/* fake a join to init the tx rate */
944			wpi_newassoc(ni, 1);
945		}
946
947		/* start periodic calibration timer */
948		sc->calib_cnt = 0;
949		callout_schedule(&sc->calib_to, hz/2);
950
951		/* link LED always on while associated */
952		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
953		break;
954
955	case IEEE80211_S_INIT:
956		sc->is_scanning = false;
957		break;
958	}
959
960	return sc->sc_newstate(ic, nstate, arg);
961}
962
963/*
964 * XXX: Hack to set the current channel to the value advertised in beacons or
965 * probe responses. Only used during AP detection.
966 * XXX: Duplicated from if_iwi.c
967 */
968static void
969wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
970{
971	struct ieee80211_frame *wh;
972	uint8_t subtype;
973	uint8_t *frm, *efrm;
974
975	wh = mtod(m, struct ieee80211_frame *);
976
977	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
978		return;
979
980	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
981
982	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
983	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
984		return;
985
986	frm = (uint8_t *)(wh + 1);
987	efrm = mtod(m, uint8_t *) + m->m_len;
988
989	frm += 12;	/* skip tstamp, bintval and capinfo fields */
990	while (frm < efrm) {
991		if (*frm == IEEE80211_ELEMID_DSPARMS)
992#if IEEE80211_CHAN_MAX < 255
993		if (frm[2] <= IEEE80211_CHAN_MAX)
994#endif
995			ic->ic_curchan = &ic->ic_channels[frm[2]];
996
997		frm += frm[1] + 2;
998	}
999}
1000
1001/*
1002 * Grab exclusive access to NIC memory.
1003 */
1004static void
1005wpi_mem_lock(struct wpi_softc *sc)
1006{
1007	uint32_t tmp;
1008	int ntries;
1009
1010	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1011	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1012
1013	/* spin until we actually get the lock */
1014	for (ntries = 0; ntries < 1000; ntries++) {
1015		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1016			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1017			break;
1018		DELAY(10);
1019	}
1020	if (ntries == 1000)
1021		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1022}
1023
1024/*
1025 * Release lock on NIC memory.
1026 */
1027static void
1028wpi_mem_unlock(struct wpi_softc *sc)
1029{
1030	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1031	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1032}
1033
1034static uint32_t
1035wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1036{
1037	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1038	return WPI_READ(sc, WPI_READ_MEM_DATA);
1039}
1040
1041static void
1042wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1043{
1044	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1045	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1046}
1047
1048static void
1049wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1050						const uint32_t *data, int wlen)
1051{
1052	for (; wlen > 0; wlen--, data++, addr += 4)
1053		wpi_mem_write(sc, addr, *data);
1054}
1055
1056
1057/*
1058 * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1059 * instead of using the traditional bit-bang method.
1060 */
1061static int
1062wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1063{
1064	uint8_t *out = data;
1065	uint32_t val;
1066	int ntries;
1067
1068	wpi_mem_lock(sc);
1069	for (; len > 0; len -= 2, addr++) {
1070		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1071
1072		for (ntries = 0; ntries < 10; ntries++) {
1073			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1074			    WPI_EEPROM_READY)
1075				break;
1076			DELAY(5);
1077		}
1078		if (ntries == 10) {
1079			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1080			return ETIMEDOUT;
1081		}
1082		*out++ = val >> 16;
1083		if (len > 1)
1084			*out++ = val >> 24;
1085	}
1086	wpi_mem_unlock(sc);
1087
1088	return 0;
1089}
1090
1091/*
1092 * The firmware boot code is small and is intended to be copied directly into
1093 * the NIC internal memory.
1094 */
1095int
1096wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1097{
1098	int ntries;
1099
1100	size /= sizeof (uint32_t);
1101
1102	wpi_mem_lock(sc);
1103
1104	/* copy microcode image into NIC memory */
1105	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1106	    (const uint32_t *)ucode, size);
1107
1108	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1109	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1110	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1111
1112	/* run microcode */
1113	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1114
1115	/* wait for transfer to complete */
1116	for (ntries = 0; ntries < 1000; ntries++) {
1117		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1118			break;
1119		DELAY(10);
1120	}
1121	if (ntries == 1000) {
1122		wpi_mem_unlock(sc);
1123		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1124		return ETIMEDOUT;
1125	}
1126	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1127
1128	wpi_mem_unlock(sc);
1129
1130	return 0;
1131}
1132
1133static int
1134wpi_cache_firmware(struct wpi_softc *sc)
1135{
1136	firmware_handle_t fw;
1137	int error;
1138
1139	if (sc->fw_used)
1140		return 0;
1141
1142	mutex_enter(&wpi_firmware_mutex);
1143	if (wpi_firmware_users++) {
1144		mutex_exit(&wpi_firmware_mutex);
1145		return 0;
1146	}
1147
1148	/* load firmware image from disk */
1149	if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1150		aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1151		goto fail1;
1152	}
1153
1154	wpi_firmware_size = firmware_get_size(fw);
1155
1156	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1157	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1158	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1159	    WPI_FW_BOOT_TEXT_MAXSZ) {
1160		aprint_error_dev(sc->sc_dev, "invalid firmware file\n");
1161		error = EFBIG;
1162		goto fail1;
1163	}
1164
1165	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1166		aprint_error_dev(sc->sc_dev,
1167		    "truncated firmware header: %zu bytes\n",
1168		    wpi_firmware_size);
1169		error = EINVAL;
1170		goto fail2;
1171	}
1172
1173	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1174	if (wpi_firmware_image == NULL) {
1175		aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1176		error = ENOMEM;
1177		goto fail1;
1178	}
1179
1180	if ((error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size)) != 0) {
1181		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1182		goto fail2;
1183	}
1184
1185	sc->fw_used = true;
1186	firmware_close(fw);
1187	mutex_exit(&wpi_firmware_mutex);
1188
1189	return 0;
1190
1191fail2:
1192	firmware_free(wpi_firmware_image, wpi_firmware_size);
1193fail1:
1194	firmware_close(fw);
1195	if (--wpi_firmware_users == 0)
1196		firmware_free(wpi_firmware_image, wpi_firmware_size);
1197	mutex_exit(&wpi_firmware_mutex);
1198	return error;
1199}
1200
1201static int
1202wpi_load_firmware(struct wpi_softc *sc)
1203{
1204	struct wpi_dma_info *dma = &sc->fw_dma;
1205	struct wpi_firmware_hdr hdr;
1206	const uint8_t *init_text, *init_data, *main_text, *main_data;
1207	const uint8_t *boot_text;
1208	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1209	uint32_t boot_textsz;
1210	int error;
1211
1212	if ((error = wpi_cache_firmware(sc)) != 0)
1213		return error;
1214
1215	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1216
1217	main_textsz = le32toh(hdr.main_textsz);
1218	main_datasz = le32toh(hdr.main_datasz);
1219	init_textsz = le32toh(hdr.init_textsz);
1220	init_datasz = le32toh(hdr.init_datasz);
1221	boot_textsz = le32toh(hdr.boot_textsz);
1222
1223	/* sanity-check firmware segments sizes */
1224	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1225	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1226	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1227	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1228	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1229	    (boot_textsz & 3) != 0) {
1230		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1231		error = EINVAL;
1232		goto free_firmware;
1233	}
1234
1235	/* check that all firmware segments are present */
1236	if (wpi_firmware_size <
1237	    sizeof (struct wpi_firmware_hdr) + main_textsz +
1238	    main_datasz + init_textsz + init_datasz + boot_textsz) {
1239		aprint_error_dev(sc->sc_dev,
1240		    "firmware file too short: %zu bytes\n", wpi_firmware_size);
1241		error = EINVAL;
1242		goto free_firmware;
1243	}
1244
1245	/* get pointers to firmware segments */
1246	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1247	main_data = main_text + main_textsz;
1248	init_text = main_data + main_datasz;
1249	init_data = init_text + init_textsz;
1250	boot_text = init_data + init_datasz;
1251
1252	/* copy initialization images into pre-allocated DMA-safe memory */
1253	memcpy(dma->vaddr, init_data, init_datasz);
1254	memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1255
1256	/* tell adapter where to find initialization images */
1257	wpi_mem_lock(sc);
1258	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1259	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1260	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1261	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1262	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1263	wpi_mem_unlock(sc);
1264
1265	/* load firmware boot code */
1266	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1267		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1268		return error;
1269	}
1270
1271	/* now press "execute" ;-) */
1272	WPI_WRITE(sc, WPI_RESET, 0);
1273
1274	/* ..and wait at most one second for adapter to initialize */
1275	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1276		/* this isn't what was supposed to happen.. */
1277		aprint_error_dev(sc->sc_dev,
1278		    "timeout waiting for adapter to initialize\n");
1279	}
1280
1281	/* copy runtime images into pre-allocated DMA-safe memory */
1282	memcpy(dma->vaddr, main_data, main_datasz);
1283	memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1284
1285	/* tell adapter where to find runtime images */
1286	wpi_mem_lock(sc);
1287	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1288	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1289	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1290	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1291	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1292	wpi_mem_unlock(sc);
1293
1294	/* wait at most one second for second alive notification */
1295	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1296		/* this isn't what was supposed to happen.. */
1297		aprint_error_dev(sc->sc_dev,
1298		    "timeout waiting for adapter to initialize\n");
1299	}
1300
1301	return error;
1302
1303free_firmware:
1304	mutex_enter(&wpi_firmware_mutex);
1305	sc->fw_used = false;
1306	--wpi_firmware_users;
1307	mutex_exit(&wpi_firmware_mutex);
1308	return error;
1309}
1310
1311static void
1312wpi_calib_timeout(void *arg)
1313{
1314	struct wpi_softc *sc = arg;
1315	struct ieee80211com *ic = &sc->sc_ic;
1316	int temp, s;
1317
1318	/* automatic rate control triggered every 500ms */
1319	if (ic->ic_fixed_rate == -1) {
1320		s = splnet();
1321		if (ic->ic_opmode == IEEE80211_M_STA)
1322			wpi_iter_func(sc, ic->ic_bss);
1323		else
1324                	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1325		splx(s);
1326	}
1327
1328	/* update sensor data */
1329	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1330
1331	/* automatic power calibration every 60s */
1332	if (++sc->calib_cnt >= 120) {
1333		wpi_power_calibration(sc, temp);
1334		sc->calib_cnt = 0;
1335	}
1336
1337	callout_schedule(&sc->calib_to, hz/2);
1338}
1339
1340static void
1341wpi_iter_func(void *arg, struct ieee80211_node *ni)
1342{
1343	struct wpi_softc *sc = arg;
1344	struct wpi_node *wn = (struct wpi_node *)ni;
1345
1346	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1347}
1348
1349/*
1350 * This function is called periodically (every 60 seconds) to adjust output
1351 * power to temperature changes.
1352 */
1353void
1354wpi_power_calibration(struct wpi_softc *sc, int temp)
1355{
1356	/* sanity-check read value */
1357	if (temp < -260 || temp > 25) {
1358		/* this can't be correct, ignore */
1359		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1360		return;
1361	}
1362
1363	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1364
1365	/* adjust Tx power if need be */
1366	if (abs(temp - sc->temp) <= 6)
1367		return;
1368
1369	sc->temp = temp;
1370
1371	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1372		/* just warn, too bad for the automatic calibration... */
1373		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1374	}
1375}
1376
1377static void
1378wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1379	struct wpi_rx_data *data)
1380{
1381	struct ieee80211com *ic = &sc->sc_ic;
1382	struct ifnet *ifp = ic->ic_ifp;
1383	struct wpi_rx_ring *ring = &sc->rxq;
1384	struct wpi_rx_stat *stat;
1385	struct wpi_rx_head *head;
1386	struct wpi_rx_tail *tail;
1387	struct wpi_rbuf *rbuf;
1388	struct ieee80211_frame *wh;
1389	struct ieee80211_node *ni;
1390	struct mbuf *m, *mnew;
1391	int data_off ;
1392
1393	stat = (struct wpi_rx_stat *)(desc + 1);
1394
1395	if (stat->len > WPI_STAT_MAXLEN) {
1396		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1397		ifp->if_ierrors++;
1398		return;
1399	}
1400
1401	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1402	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1403
1404	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1405		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1406		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1407		le64toh(tail->tstamp)));
1408
1409	/*
1410	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1411	 * to radiotap in monitor mode).
1412	 */
1413	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1414		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1415		ifp->if_ierrors++;
1416		return;
1417	}
1418
1419	/* Compute where are the useful datas */
1420	data_off = (char*)(head + 1) - mtod(data->m, char*);
1421
1422	/*
1423	 * If the number of free entry is too low
1424	 * just dup the data->m socket and reuse the same rbuf entry
1425	 * Note that thi test is not protected by a mutex because the
1426	 * only path that causes nb_free_entries to decrease is through
1427	 * this interrupt routine, which is not re-entrent.
1428	 * What may not be obvious is that the safe path is if that test
1429	 * evaluates as true, so nb_free_entries can grow any time.
1430	 */
1431	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1432
1433		/* Prepare the mbuf for the m_dup */
1434		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1435		data->m->m_data = (char*) data->m->m_data + data_off;
1436
1437		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1438
1439		/* Restore the m_data pointer for future use */
1440		data->m->m_data = (char*) data->m->m_data - data_off;
1441
1442		if (m == NULL) {
1443			ifp->if_ierrors++;
1444			return;
1445		}
1446	} else {
1447
1448		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1449		if (mnew == NULL) {
1450			ifp->if_ierrors++;
1451			return;
1452		}
1453
1454		rbuf = wpi_alloc_rbuf(sc);
1455		KASSERT(rbuf != NULL);
1456
1457 		/* attach Rx buffer to mbuf */
1458		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1459		 	rbuf);
1460		mnew->m_flags |= M_EXT_RW;
1461
1462		m = data->m;
1463		data->m = mnew;
1464
1465		/* update Rx descriptor */
1466		ring->desc[ring->cur] = htole32(rbuf->paddr);
1467
1468		m->m_data = (char*)m->m_data + data_off;
1469		m->m_pkthdr.len = m->m_len = le16toh(head->len);
1470	}
1471
1472	/* finalize mbuf */
1473	m->m_pkthdr.rcvif = ifp;
1474
1475	if (ic->ic_state == IEEE80211_S_SCAN)
1476		wpi_fix_channel(ic, m);
1477
1478	if (sc->sc_drvbpf != NULL) {
1479		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1480
1481		tap->wr_flags = 0;
1482		tap->wr_chan_freq =
1483			htole16(ic->ic_channels[head->chan].ic_freq);
1484		tap->wr_chan_flags =
1485			htole16(ic->ic_channels[head->chan].ic_flags);
1486		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1487		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1488		tap->wr_tsft = tail->tstamp;
1489		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1490		switch (head->rate) {
1491		/* CCK rates */
1492		case  10: tap->wr_rate =   2; break;
1493		case  20: tap->wr_rate =   4; break;
1494		case  55: tap->wr_rate =  11; break;
1495		case 110: tap->wr_rate =  22; break;
1496		/* OFDM rates */
1497		case 0xd: tap->wr_rate =  12; break;
1498		case 0xf: tap->wr_rate =  18; break;
1499		case 0x5: tap->wr_rate =  24; break;
1500		case 0x7: tap->wr_rate =  36; break;
1501		case 0x9: tap->wr_rate =  48; break;
1502		case 0xb: tap->wr_rate =  72; break;
1503		case 0x1: tap->wr_rate =  96; break;
1504		case 0x3: tap->wr_rate = 108; break;
1505		/* unknown rate: should not happen */
1506		default:  tap->wr_rate =   0;
1507		}
1508		if (le16toh(head->flags) & 0x4)
1509			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1510
1511		bpf_ops->bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1512	}
1513
1514	/* grab a reference to the source node */
1515	wh = mtod(m, struct ieee80211_frame *);
1516	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1517
1518	/* send the frame to the 802.11 layer */
1519	ieee80211_input(ic, m, ni, stat->rssi, 0);
1520
1521	/* release node reference */
1522	ieee80211_free_node(ni);
1523}
1524
1525static void
1526wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1527{
1528	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1529	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1530	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1531	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1532	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1533
1534	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1535		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1536		stat->nkill, stat->rate, le32toh(stat->duration),
1537		le32toh(stat->status)));
1538
1539	/*
1540	 * Update rate control statistics for the node.
1541	 * XXX we should not count mgmt frames since they're always sent at
1542	 * the lowest available bit-rate.
1543	 */
1544	wn->amn.amn_txcnt++;
1545	if (stat->ntries > 0) {
1546		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1547		wn->amn.amn_retrycnt++;
1548	}
1549
1550	if ((le32toh(stat->status) & 0xff) != 1)
1551		ifp->if_oerrors++;
1552	else
1553		ifp->if_opackets++;
1554
1555	bus_dmamap_unload(sc->sc_dmat, txdata->map);
1556	m_freem(txdata->m);
1557	txdata->m = NULL;
1558	ieee80211_free_node(txdata->ni);
1559	txdata->ni = NULL;
1560
1561	ring->queued--;
1562
1563	sc->sc_tx_timer = 0;
1564	ifp->if_flags &= ~IFF_OACTIVE;
1565	wpi_start(ifp);
1566}
1567
1568static void
1569wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1570{
1571	struct wpi_tx_ring *ring = &sc->cmdq;
1572	struct wpi_tx_data *data;
1573
1574	if ((desc->qid & 7) != 4)
1575		return;	/* not a command ack */
1576
1577	data = &ring->data[desc->idx];
1578
1579	/* if the command was mapped in a mbuf, free it */
1580	if (data->m != NULL) {
1581		bus_dmamap_unload(sc->sc_dmat, data->map);
1582		m_freem(data->m);
1583		data->m = NULL;
1584	}
1585
1586	wakeup(&ring->cmd[desc->idx]);
1587}
1588
1589static void
1590wpi_notif_intr(struct wpi_softc *sc)
1591{
1592	struct ieee80211com *ic = &sc->sc_ic;
1593	struct ifnet *ifp =  ic->ic_ifp;
1594	struct wpi_rx_desc *desc;
1595	struct wpi_rx_data *data;
1596	uint32_t hw;
1597
1598	hw = le32toh(sc->shared->next);
1599	while (sc->rxq.cur != hw) {
1600		data = &sc->rxq.data[sc->rxq.cur];
1601
1602		desc = mtod(data->m, struct wpi_rx_desc *);
1603
1604		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1605			"len=%d\n", desc->qid, desc->idx, desc->flags,
1606			desc->type, le32toh(desc->len)));
1607
1608		if (!(desc->qid & 0x80))	/* reply to a command */
1609			wpi_cmd_intr(sc, desc);
1610
1611		switch (desc->type) {
1612		case WPI_RX_DONE:
1613			/* a 802.11 frame was received */
1614			wpi_rx_intr(sc, desc, data);
1615			break;
1616
1617		case WPI_TX_DONE:
1618			/* a 802.11 frame has been transmitted */
1619			wpi_tx_intr(sc, desc);
1620			break;
1621
1622		case WPI_UC_READY:
1623		{
1624			struct wpi_ucode_info *uc =
1625				(struct wpi_ucode_info *)(desc + 1);
1626
1627			/* the microcontroller is ready */
1628			DPRINTF(("microcode alive notification version %x "
1629				"alive %x\n", le32toh(uc->version),
1630				le32toh(uc->valid)));
1631
1632			if (le32toh(uc->valid) != 1) {
1633				aprint_error_dev(sc->sc_dev,
1634					"microcontroller initialization failed\n");
1635			}
1636			break;
1637		}
1638		case WPI_STATE_CHANGED:
1639		{
1640			uint32_t *status = (uint32_t *)(desc + 1);
1641
1642			/* enabled/disabled notification */
1643			DPRINTF(("state changed to %x\n", le32toh(*status)));
1644
1645			if (le32toh(*status) & 1) {
1646				/* the radio button has to be pushed */
1647				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1648				/* turn the interface down */
1649				ifp->if_flags &= ~IFF_UP;
1650				wpi_stop(ifp, 1);
1651				return;	/* no further processing */
1652			}
1653			break;
1654		}
1655		case WPI_START_SCAN:
1656		{
1657			struct wpi_start_scan *scan =
1658				(struct wpi_start_scan *)(desc + 1);
1659
1660			DPRINTFN(2, ("scanning channel %d status %x\n",
1661				scan->chan, le32toh(scan->status)));
1662
1663			/* fix current channel */
1664			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1665			break;
1666		}
1667		case WPI_STOP_SCAN:
1668		{
1669			struct wpi_stop_scan *scan =
1670				(struct wpi_stop_scan *)(desc + 1);
1671
1672			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1673				scan->nchan, scan->status, scan->chan));
1674
1675			if (scan->status == 1 && scan->chan <= 14) {
1676				/*
1677				 * We just finished scanning 802.11g channels,
1678				 * start scanning 802.11a ones.
1679				 */
1680				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1681					break;
1682			}
1683			sc->is_scanning = false;
1684			ieee80211_end_scan(ic);
1685			break;
1686		}
1687		}
1688
1689		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1690	}
1691
1692	/* tell the firmware what we have processed */
1693	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1694	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1695}
1696
1697static int
1698wpi_intr(void *arg)
1699{
1700	struct wpi_softc *sc = arg;
1701	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1702	uint32_t r;
1703
1704	r = WPI_READ(sc, WPI_INTR);
1705	if (r == 0 || r == 0xffffffff)
1706		return 0;	/* not for us */
1707
1708	DPRINTFN(5, ("interrupt reg %x\n", r));
1709
1710	/* disable interrupts */
1711	WPI_WRITE(sc, WPI_MASK, 0);
1712	/* ack interrupts */
1713	WPI_WRITE(sc, WPI_INTR, r);
1714
1715	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1716		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1717		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1718		wpi_stop(sc->sc_ic.ic_ifp, 1);
1719		return 1;
1720	}
1721
1722	if (r & WPI_RX_INTR)
1723		wpi_notif_intr(sc);
1724
1725	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1726		wakeup(sc);
1727
1728	/* re-enable interrupts */
1729	if (ifp->if_flags & IFF_UP)
1730		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1731
1732	return 1;
1733}
1734
1735static uint8_t
1736wpi_plcp_signal(int rate)
1737{
1738	switch (rate) {
1739	/* CCK rates (returned values are device-dependent) */
1740	case 2:		return 10;
1741	case 4:		return 20;
1742	case 11:	return 55;
1743	case 22:	return 110;
1744
1745	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1746	/* R1-R4, (u)ral is R4-R1 */
1747	case 12:	return 0xd;
1748	case 18:	return 0xf;
1749	case 24:	return 0x5;
1750	case 36:	return 0x7;
1751	case 48:	return 0x9;
1752	case 72:	return 0xb;
1753	case 96:	return 0x1;
1754	case 108:	return 0x3;
1755
1756	/* unsupported rates (should not get there) */
1757	default:	return 0;
1758	}
1759}
1760
1761/* quickly determine if a given rate is CCK or OFDM */
1762#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1763
1764static int
1765wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1766	int ac)
1767{
1768	struct ieee80211com *ic = &sc->sc_ic;
1769	struct wpi_tx_ring *ring = &sc->txq[ac];
1770	struct wpi_tx_desc *desc;
1771	struct wpi_tx_data *data;
1772	struct wpi_tx_cmd *cmd;
1773	struct wpi_cmd_data *tx;
1774	struct ieee80211_frame *wh;
1775	struct ieee80211_key *k;
1776	const struct chanAccParams *cap;
1777	struct mbuf *mnew;
1778	int i, error, rate, hdrlen, noack = 0;
1779
1780	desc = &ring->desc[ring->cur];
1781	data = &ring->data[ring->cur];
1782
1783	wh = mtod(m0, struct ieee80211_frame *);
1784
1785	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1786		cap = &ic->ic_wme.wme_chanParams;
1787		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1788	}
1789
1790	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1791		k = ieee80211_crypto_encap(ic, ni, m0);
1792		if (k == NULL) {
1793			m_freem(m0);
1794			return ENOBUFS;
1795		}
1796
1797		/* packet header may have moved, reset our local pointer */
1798		wh = mtod(m0, struct ieee80211_frame *);
1799	}
1800
1801	hdrlen = ieee80211_anyhdrsize(wh);
1802
1803	/* pickup a rate */
1804	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1805		IEEE80211_FC0_TYPE_MGT) {
1806		/* mgmt frames are sent at the lowest available bit-rate */
1807		rate = ni->ni_rates.rs_rates[0];
1808	} else {
1809		if (ic->ic_fixed_rate != -1) {
1810			rate = ic->ic_sup_rates[ic->ic_curmode].
1811				rs_rates[ic->ic_fixed_rate];
1812		} else
1813			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1814	}
1815	rate &= IEEE80211_RATE_VAL;
1816
1817
1818	if (sc->sc_drvbpf != NULL) {
1819		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1820
1821		tap->wt_flags = 0;
1822		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1823		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1824		tap->wt_rate = rate;
1825		tap->wt_hwqueue = ac;
1826		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1827			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1828
1829		bpf_ops->bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1830	}
1831
1832	cmd = &ring->cmd[ring->cur];
1833	cmd->code = WPI_CMD_TX_DATA;
1834	cmd->flags = 0;
1835	cmd->qid = ring->qid;
1836	cmd->idx = ring->cur;
1837
1838	tx = (struct wpi_cmd_data *)cmd->data;
1839	tx->flags = 0;
1840
1841	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1842		tx->flags |= htole32(WPI_TX_NEED_ACK);
1843	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1844		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1845
1846	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1847
1848	/* retrieve destination node's id */
1849	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1850		WPI_ID_BSS;
1851
1852	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1853		IEEE80211_FC0_TYPE_MGT) {
1854		/* tell h/w to set timestamp in probe responses */
1855		if ((wh->i_fc[0] &
1856		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1857		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1858			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1859
1860		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1861			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1862			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1863			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1864			tx->timeout = htole16(3);
1865		else
1866			tx->timeout = htole16(2);
1867	} else
1868		tx->timeout = htole16(0);
1869
1870	tx->rate = wpi_plcp_signal(rate);
1871
1872	/* be very persistant at sending frames out */
1873	tx->rts_ntries = 7;
1874	tx->data_ntries = 15;
1875
1876	tx->ofdm_mask = 0xff;
1877	tx->cck_mask = 0xf;
1878	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1879
1880	tx->len = htole16(m0->m_pkthdr.len);
1881
1882	/* save and trim IEEE802.11 header */
1883	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1884	m_adj(m0, hdrlen);
1885
1886	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1887		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1888	if (error != 0 && error != EFBIG) {
1889		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1890		m_freem(m0);
1891		return error;
1892	}
1893	if (error != 0) {
1894		/* too many fragments, linearize */
1895		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1896		if (mnew == NULL) {
1897			m_freem(m0);
1898			return ENOMEM;
1899		}
1900
1901		M_COPY_PKTHDR(mnew, m0);
1902		if (m0->m_pkthdr.len > MHLEN) {
1903			MCLGET(mnew, M_DONTWAIT);
1904			if (!(mnew->m_flags & M_EXT)) {
1905				m_freem(m0);
1906				m_freem(mnew);
1907				return ENOMEM;
1908			}
1909		}
1910
1911		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1912		m_freem(m0);
1913		mnew->m_len = mnew->m_pkthdr.len;
1914		m0 = mnew;
1915
1916		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1917			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1918		if (error != 0) {
1919			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1920							 error);
1921			m_freem(m0);
1922			return error;
1923		}
1924	}
1925
1926	data->m = m0;
1927	data->ni = ni;
1928
1929	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1930		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1931
1932	/* first scatter/gather segment is used by the tx data command */
1933	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1934		(1 + data->map->dm_nsegs) << 24);
1935	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1936		ring->cur * sizeof (struct wpi_tx_cmd));
1937	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
1938						 ((hdrlen + 3) & ~3));
1939
1940	for (i = 1; i <= data->map->dm_nsegs; i++) {
1941		desc->segs[i].addr =
1942			htole32(data->map->dm_segs[i - 1].ds_addr);
1943		desc->segs[i].len  =
1944			htole32(data->map->dm_segs[i - 1].ds_len);
1945	}
1946
1947	ring->queued++;
1948
1949	/* kick ring */
1950	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1951	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1952
1953	return 0;
1954}
1955
1956static void
1957wpi_start(struct ifnet *ifp)
1958{
1959	struct wpi_softc *sc = ifp->if_softc;
1960	struct ieee80211com *ic = &sc->sc_ic;
1961	struct ieee80211_node *ni;
1962	struct ether_header *eh;
1963	struct mbuf *m0;
1964	int ac;
1965
1966	/*
1967	 * net80211 may still try to send management frames even if the
1968	 * IFF_RUNNING flag is not set...
1969	 */
1970	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1971		return;
1972
1973	for (;;) {
1974		IF_DEQUEUE(&ic->ic_mgtq, m0);
1975		if (m0 != NULL) {
1976
1977			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1978			m0->m_pkthdr.rcvif = NULL;
1979
1980			/* management frames go into ring 0 */
1981			if (sc->txq[0].queued > sc->txq[0].count - 8) {
1982				ifp->if_oerrors++;
1983				continue;
1984			}
1985			if (ic->ic_rawbpf != NULL)
1986				bpf_ops->bpf_mtap(ic->ic_rawbpf, m0);
1987			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1988				ifp->if_oerrors++;
1989				break;
1990			}
1991		} else {
1992			if (ic->ic_state != IEEE80211_S_RUN)
1993				break;
1994			IFQ_POLL(&ifp->if_snd, m0);
1995			if (m0 == NULL)
1996				break;
1997
1998			if (m0->m_len < sizeof (*eh) &&
1999			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2000				ifp->if_oerrors++;
2001				continue;
2002			}
2003			eh = mtod(m0, struct ether_header *);
2004			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2005			if (ni == NULL) {
2006				m_freem(m0);
2007				ifp->if_oerrors++;
2008				continue;
2009			}
2010
2011			/* classify mbuf so we can find which tx ring to use */
2012			if (ieee80211_classify(ic, m0, ni) != 0) {
2013				m_freem(m0);
2014				ieee80211_free_node(ni);
2015				ifp->if_oerrors++;
2016				continue;
2017			}
2018
2019			/* no QoS encapsulation for EAPOL frames */
2020			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2021			    M_WME_GETAC(m0) : WME_AC_BE;
2022
2023			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2024				/* there is no place left in this ring */
2025				ifp->if_flags |= IFF_OACTIVE;
2026				break;
2027			}
2028			IFQ_DEQUEUE(&ifp->if_snd, m0);
2029			if (ifp->if_bpf != NULL)
2030				bpf_ops->bpf_mtap(ifp->if_bpf, m0);
2031			m0 = ieee80211_encap(ic, m0, ni);
2032			if (m0 == NULL) {
2033				ieee80211_free_node(ni);
2034				ifp->if_oerrors++;
2035				continue;
2036			}
2037			if (ic->ic_rawbpf != NULL)
2038				bpf_ops->bpf_mtap(ic->ic_rawbpf, m0);
2039			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2040				ieee80211_free_node(ni);
2041				ifp->if_oerrors++;
2042				break;
2043			}
2044		}
2045
2046		sc->sc_tx_timer = 5;
2047		ifp->if_timer = 1;
2048	}
2049}
2050
2051static void
2052wpi_watchdog(struct ifnet *ifp)
2053{
2054	struct wpi_softc *sc = ifp->if_softc;
2055
2056	ifp->if_timer = 0;
2057
2058	if (sc->sc_tx_timer > 0) {
2059		if (--sc->sc_tx_timer == 0) {
2060			aprint_error_dev(sc->sc_dev, "device timeout\n");
2061			ifp->if_oerrors++;
2062			ifp->if_flags &= ~IFF_UP;
2063			wpi_stop(ifp, 1);
2064			return;
2065		}
2066		ifp->if_timer = 1;
2067	}
2068
2069	ieee80211_watchdog(&sc->sc_ic);
2070}
2071
2072static int
2073wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2074{
2075#define IS_RUNNING(ifp) \
2076	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2077
2078	struct wpi_softc *sc = ifp->if_softc;
2079	struct ieee80211com *ic = &sc->sc_ic;
2080	int s, error = 0;
2081
2082	s = splnet();
2083
2084	switch (cmd) {
2085	case SIOCSIFFLAGS:
2086		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2087			break;
2088		if (ifp->if_flags & IFF_UP) {
2089			if (!(ifp->if_flags & IFF_RUNNING))
2090				wpi_init(ifp);
2091		} else {
2092			if (ifp->if_flags & IFF_RUNNING)
2093				wpi_stop(ifp, 1);
2094		}
2095		break;
2096
2097	case SIOCADDMULTI:
2098	case SIOCDELMULTI:
2099		/* XXX no h/w multicast filter? --dyoung */
2100		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2101			/* setup multicast filter, etc */
2102			error = 0;
2103		}
2104		break;
2105
2106	default:
2107		error = ieee80211_ioctl(ic, cmd, data);
2108	}
2109
2110	if (error == ENETRESET) {
2111		if (IS_RUNNING(ifp) &&
2112			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2113			wpi_init(ifp);
2114		error = 0;
2115	}
2116
2117	splx(s);
2118	return error;
2119
2120#undef IS_RUNNING
2121}
2122
2123/*
2124 * Extract various information from EEPROM.
2125 */
2126static void
2127wpi_read_eeprom(struct wpi_softc *sc)
2128{
2129	struct ieee80211com *ic = &sc->sc_ic;
2130	char domain[4];
2131	int i;
2132
2133	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2134	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2135	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2136
2137	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2138	    sc->type));
2139
2140	/* read and print regulatory domain */
2141	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2142	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2143
2144	/* read and print MAC address */
2145	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2146	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2147
2148	/* read the list of authorized channels */
2149	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2150		wpi_read_eeprom_channels(sc, i);
2151
2152	/* read the list of power groups */
2153	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2154		wpi_read_eeprom_group(sc, i);
2155}
2156
2157static void
2158wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2159{
2160	struct ieee80211com *ic = &sc->sc_ic;
2161	const struct wpi_chan_band *band = &wpi_bands[n];
2162	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2163	int chan, i;
2164
2165	wpi_read_prom_data(sc, band->addr, channels,
2166	    band->nchan * sizeof (struct wpi_eeprom_chan));
2167
2168	for (i = 0; i < band->nchan; i++) {
2169		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2170			continue;
2171
2172		chan = band->chan[i];
2173
2174		if (n == 0) {	/* 2GHz band */
2175			ic->ic_channels[chan].ic_freq =
2176			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2177			ic->ic_channels[chan].ic_flags =
2178			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2179			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2180
2181		} else {	/* 5GHz band */
2182			/*
2183			 * Some 3945abg adapters support channels 7, 8, 11
2184			 * and 12 in the 2GHz *and* 5GHz bands.
2185			 * Because of limitations in our net80211(9) stack,
2186			 * we can't support these channels in 5GHz band.
2187			 */
2188			if (chan <= 14)
2189				continue;
2190
2191			ic->ic_channels[chan].ic_freq =
2192			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2193			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2194		}
2195
2196		/* is active scan allowed on this channel? */
2197		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2198			ic->ic_channels[chan].ic_flags |=
2199			    IEEE80211_CHAN_PASSIVE;
2200		}
2201
2202		/* save maximum allowed power for this channel */
2203		sc->maxpwr[chan] = channels[i].maxpwr;
2204
2205		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2206		    chan, channels[i].flags, sc->maxpwr[chan]));
2207	}
2208}
2209
2210static void
2211wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2212{
2213	struct wpi_power_group *group = &sc->groups[n];
2214	struct wpi_eeprom_group rgroup;
2215	int i;
2216
2217	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2218	    sizeof rgroup);
2219
2220	/* save power group information */
2221	group->chan   = rgroup.chan;
2222	group->maxpwr = rgroup.maxpwr;
2223	/* temperature at which the samples were taken */
2224	group->temp   = (int16_t)le16toh(rgroup.temp);
2225
2226	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2227	    group->chan, group->maxpwr, group->temp));
2228
2229	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2230		group->samples[i].index = rgroup.samples[i].index;
2231		group->samples[i].power = rgroup.samples[i].power;
2232
2233		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2234		    group->samples[i].index, group->samples[i].power));
2235	}
2236}
2237
2238/*
2239 * Send a command to the firmware.
2240 */
2241static int
2242wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2243{
2244	struct wpi_tx_ring *ring = &sc->cmdq;
2245	struct wpi_tx_desc *desc;
2246	struct wpi_tx_cmd *cmd;
2247
2248	KASSERT(size <= sizeof cmd->data);
2249
2250	desc = &ring->desc[ring->cur];
2251	cmd = &ring->cmd[ring->cur];
2252
2253	cmd->code = code;
2254	cmd->flags = 0;
2255	cmd->qid = ring->qid;
2256	cmd->idx = ring->cur;
2257	memcpy(cmd->data, buf, size);
2258
2259	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2260	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2261		ring->cur * sizeof (struct wpi_tx_cmd));
2262	desc->segs[0].len  = htole32(4 + size);
2263
2264	/* kick cmd ring */
2265	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2266	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2267
2268	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2269}
2270
2271static int
2272wpi_wme_update(struct ieee80211com *ic)
2273{
2274#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2275#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2276	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2277	const struct wmeParams *wmep;
2278	struct wpi_wme_setup wme;
2279	int ac;
2280
2281	/* don't override default WME values if WME is not actually enabled */
2282	if (!(ic->ic_flags & IEEE80211_F_WME))
2283		return 0;
2284
2285	wme.flags = 0;
2286	for (ac = 0; ac < WME_NUM_AC; ac++) {
2287		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2288		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2289		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2290		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2291		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2292
2293		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2294		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2295		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2296	}
2297
2298	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2299#undef WPI_USEC
2300#undef WPI_EXP2
2301}
2302
2303/*
2304 * Configure h/w multi-rate retries.
2305 */
2306static int
2307wpi_mrr_setup(struct wpi_softc *sc)
2308{
2309	struct ieee80211com *ic = &sc->sc_ic;
2310	struct wpi_mrr_setup mrr;
2311	int i, error;
2312
2313	/* CCK rates (not used with 802.11a) */
2314	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2315		mrr.rates[i].flags = 0;
2316		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2317		/* fallback to the immediate lower CCK rate (if any) */
2318		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2319		/* try one time at this rate before falling back to "next" */
2320		mrr.rates[i].ntries = 1;
2321	}
2322
2323	/* OFDM rates (not used with 802.11b) */
2324	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2325		mrr.rates[i].flags = 0;
2326		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2327		/* fallback to the immediate lower rate (if any) */
2328		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2329		mrr.rates[i].next = (i == WPI_OFDM6) ?
2330		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2331			WPI_OFDM6 : WPI_CCK2) :
2332		    i - 1;
2333		/* try one time at this rate before falling back to "next" */
2334		mrr.rates[i].ntries = 1;
2335	}
2336
2337	/* setup MRR for control frames */
2338	mrr.which = htole32(WPI_MRR_CTL);
2339	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2340	if (error != 0) {
2341		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2342		return error;
2343	}
2344
2345	/* setup MRR for data frames */
2346	mrr.which = htole32(WPI_MRR_DATA);
2347	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2348	if (error != 0) {
2349		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2350		return error;
2351	}
2352
2353	return 0;
2354}
2355
2356static void
2357wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2358{
2359	struct wpi_cmd_led led;
2360
2361	led.which = which;
2362	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2363	led.off = off;
2364	led.on = on;
2365
2366	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2367}
2368
2369static void
2370wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2371{
2372	struct wpi_cmd_tsf tsf;
2373	uint64_t val, mod;
2374
2375	memset(&tsf, 0, sizeof tsf);
2376	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2377	tsf.bintval = htole16(ni->ni_intval);
2378	tsf.lintval = htole16(10);
2379
2380	/* compute remaining time until next beacon */
2381	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
2382	mod = le64toh(tsf.tstamp) % val;
2383	tsf.binitval = htole32((uint32_t)(val - mod));
2384
2385	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2386	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2387
2388	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2389		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2390}
2391
2392/*
2393 * Update Tx power to match what is defined for channel `c'.
2394 */
2395static int
2396wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2397{
2398	struct ieee80211com *ic = &sc->sc_ic;
2399	struct wpi_power_group *group;
2400	struct wpi_cmd_txpower txpower;
2401	u_int chan;
2402	int i;
2403
2404	/* get channel number */
2405	chan = ieee80211_chan2ieee(ic, c);
2406
2407	/* find the power group to which this channel belongs */
2408	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2409		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2410			if (chan <= group->chan)
2411				break;
2412	} else
2413		group = &sc->groups[0];
2414
2415	memset(&txpower, 0, sizeof txpower);
2416	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2417	txpower.chan = htole16(chan);
2418
2419	/* set Tx power for all OFDM and CCK rates */
2420	for (i = 0; i <= 11 ; i++) {
2421		/* retrieve Tx power for this channel/rate combination */
2422		int idx = wpi_get_power_index(sc, group, c,
2423		    wpi_ridx_to_rate[i]);
2424
2425		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2426
2427		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2428			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2429			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2430		} else {
2431			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2432			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2433		}
2434		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2435		    wpi_ridx_to_rate[i], idx));
2436	}
2437
2438	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2439}
2440
2441/*
2442 * Determine Tx power index for a given channel/rate combination.
2443 * This takes into account the regulatory information from EEPROM and the
2444 * current temperature.
2445 */
2446static int
2447wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2448    struct ieee80211_channel *c, int rate)
2449{
2450/* fixed-point arithmetic division using a n-bit fractional part */
2451#define fdivround(a, b, n)	\
2452	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2453
2454/* linear interpolation */
2455#define interpolate(x, x1, y1, x2, y2, n)	\
2456	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2457
2458	struct ieee80211com *ic = &sc->sc_ic;
2459	struct wpi_power_sample *sample;
2460	int pwr, idx;
2461	u_int chan;
2462
2463	/* get channel number */
2464	chan = ieee80211_chan2ieee(ic, c);
2465
2466	/* default power is group's maximum power - 3dB */
2467	pwr = group->maxpwr / 2;
2468
2469	/* decrease power for highest OFDM rates to reduce distortion */
2470	switch (rate) {
2471	case 72:	/* 36Mb/s */
2472		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2473		break;
2474	case 96:	/* 48Mb/s */
2475		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2476		break;
2477	case 108:	/* 54Mb/s */
2478		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2479		break;
2480	}
2481
2482	/* never exceed channel's maximum allowed Tx power */
2483	pwr = min(pwr, sc->maxpwr[chan]);
2484
2485	/* retrieve power index into gain tables from samples */
2486	for (sample = group->samples; sample < &group->samples[3]; sample++)
2487		if (pwr > sample[1].power)
2488			break;
2489	/* fixed-point linear interpolation using a 19-bit fractional part */
2490	idx = interpolate(pwr, sample[0].power, sample[0].index,
2491	    sample[1].power, sample[1].index, 19);
2492
2493	/*
2494	 * Adjust power index based on current temperature:
2495	 * - if cooler than factory-calibrated: decrease output power
2496	 * - if warmer than factory-calibrated: increase output power
2497	 */
2498	idx -= (sc->temp - group->temp) * 11 / 100;
2499
2500	/* decrease power for CCK rates (-5dB) */
2501	if (!WPI_RATE_IS_OFDM(rate))
2502		idx += 10;
2503
2504	/* keep power index in a valid range */
2505	if (idx < 0)
2506		return 0;
2507	if (idx > WPI_MAX_PWR_INDEX)
2508		return WPI_MAX_PWR_INDEX;
2509	return idx;
2510
2511#undef interpolate
2512#undef fdivround
2513}
2514
2515/*
2516 * Build a beacon frame that the firmware will broadcast periodically in
2517 * IBSS or HostAP modes.
2518 */
2519static int
2520wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2521{
2522	struct ieee80211com *ic = &sc->sc_ic;
2523	struct wpi_tx_ring *ring = &sc->cmdq;
2524	struct wpi_tx_desc *desc;
2525	struct wpi_tx_data *data;
2526	struct wpi_tx_cmd *cmd;
2527	struct wpi_cmd_beacon *bcn;
2528	struct ieee80211_beacon_offsets bo;
2529	struct mbuf *m0;
2530	int error;
2531
2532	desc = &ring->desc[ring->cur];
2533	data = &ring->data[ring->cur];
2534
2535	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2536	if (m0 == NULL) {
2537		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2538		return ENOMEM;
2539	}
2540
2541	cmd = &ring->cmd[ring->cur];
2542	cmd->code = WPI_CMD_SET_BEACON;
2543	cmd->flags = 0;
2544	cmd->qid = ring->qid;
2545	cmd->idx = ring->cur;
2546
2547	bcn = (struct wpi_cmd_beacon *)cmd->data;
2548	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2549	bcn->id = WPI_ID_BROADCAST;
2550	bcn->ofdm_mask = 0xff;
2551	bcn->cck_mask = 0x0f;
2552	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2553	bcn->len = htole16(m0->m_pkthdr.len);
2554	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2555		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2556	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2557
2558	/* save and trim IEEE802.11 header */
2559	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2560	m_adj(m0, sizeof (struct ieee80211_frame));
2561
2562	/* assume beacon frame is contiguous */
2563	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2564		BUS_DMA_READ | BUS_DMA_NOWAIT);
2565	if (error) {
2566		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2567		m_freem(m0);
2568		return error;
2569	}
2570
2571	data->m = m0;
2572
2573	/* first scatter/gather segment is used by the beacon command */
2574	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2575	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2576		ring->cur * sizeof (struct wpi_tx_cmd));
2577	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2578	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2579	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2580
2581	/* kick cmd ring */
2582	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2583	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2584
2585	return 0;
2586}
2587
2588static int
2589wpi_auth(struct wpi_softc *sc)
2590{
2591	struct ieee80211com *ic = &sc->sc_ic;
2592	struct ieee80211_node *ni = ic->ic_bss;
2593	struct wpi_node_info node;
2594	int error;
2595
2596	/* update adapter's configuration */
2597	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2598	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2599	sc->config.flags = htole32(WPI_CONFIG_TSF);
2600	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2601		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2602		    WPI_CONFIG_24GHZ);
2603	}
2604	switch (ic->ic_curmode) {
2605	case IEEE80211_MODE_11A:
2606		sc->config.cck_mask  = 0;
2607		sc->config.ofdm_mask = 0x15;
2608		break;
2609	case IEEE80211_MODE_11B:
2610		sc->config.cck_mask  = 0x03;
2611		sc->config.ofdm_mask = 0;
2612		break;
2613	default:	/* assume 802.11b/g */
2614		sc->config.cck_mask  = 0x0f;
2615		sc->config.ofdm_mask = 0x15;
2616	}
2617
2618	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2619		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2620	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2621		sizeof (struct wpi_config), 1);
2622	if (error != 0) {
2623		aprint_error_dev(sc->sc_dev, "could not configure\n");
2624		return error;
2625	}
2626
2627	/* configuration has changed, set Tx power accordingly */
2628	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2629		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2630		return error;
2631	}
2632
2633	/* add default node */
2634	memset(&node, 0, sizeof node);
2635	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2636	node.id = WPI_ID_BSS;
2637	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2638	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2639	node.action = htole32(WPI_ACTION_SET_RATE);
2640	node.antenna = WPI_ANTENNA_BOTH;
2641	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2642	if (error != 0) {
2643		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2644		return error;
2645	}
2646
2647	return 0;
2648}
2649
2650/*
2651 * Send a scan request to the firmware.  Since this command is huge, we map it
2652 * into a mbuf instead of using the pre-allocated set of commands.
2653 */
2654static int
2655wpi_scan(struct wpi_softc *sc, uint16_t flags)
2656{
2657	struct ieee80211com *ic = &sc->sc_ic;
2658	struct wpi_tx_ring *ring = &sc->cmdq;
2659	struct wpi_tx_desc *desc;
2660	struct wpi_tx_data *data;
2661	struct wpi_tx_cmd *cmd;
2662	struct wpi_scan_hdr *hdr;
2663	struct wpi_scan_chan *chan;
2664	struct ieee80211_frame *wh;
2665	struct ieee80211_rateset *rs;
2666	struct ieee80211_channel *c;
2667	enum ieee80211_phymode mode;
2668	uint8_t *frm;
2669	int nrates, pktlen, error;
2670
2671	desc = &ring->desc[ring->cur];
2672	data = &ring->data[ring->cur];
2673
2674	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2675	if (data->m == NULL) {
2676		aprint_error_dev(sc->sc_dev,
2677						"could not allocate mbuf for scan command\n");
2678		return ENOMEM;
2679	}
2680
2681	MCLGET(data->m, M_DONTWAIT);
2682	if (!(data->m->m_flags & M_EXT)) {
2683		m_freem(data->m);
2684		data->m = NULL;
2685		aprint_error_dev(sc->sc_dev,
2686						 "could not allocate mbuf for scan command\n");
2687		return ENOMEM;
2688	}
2689
2690	cmd = mtod(data->m, struct wpi_tx_cmd *);
2691	cmd->code = WPI_CMD_SCAN;
2692	cmd->flags = 0;
2693	cmd->qid = ring->qid;
2694	cmd->idx = ring->cur;
2695
2696	hdr = (struct wpi_scan_hdr *)cmd->data;
2697	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2698	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2699	hdr->id = WPI_ID_BROADCAST;
2700	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2701
2702	/*
2703	 * Move to the next channel if no packets are received within 5 msecs
2704	 * after sending the probe request (this helps to reduce the duration
2705	 * of active scans).
2706	 */
2707	hdr->quiet = htole16(5);        /* timeout in milliseconds */
2708	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2709
2710	if (flags & IEEE80211_CHAN_A) {
2711		hdr->crc_threshold = htole16(1);
2712		/* send probe requests at 6Mbps */
2713		hdr->rate = wpi_plcp_signal(12);
2714	} else {
2715		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2716		/* send probe requests at 1Mbps */
2717		hdr->rate = wpi_plcp_signal(2);
2718	}
2719
2720	/* for directed scans, firmware inserts the essid IE itself */
2721	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2722	hdr->essid[0].len = ic->ic_des_esslen;
2723	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2724
2725	/*
2726	 * Build a probe request frame.  Most of the following code is a
2727	 * copy & paste of what is done in net80211.
2728	 */
2729	wh = (struct ieee80211_frame *)(hdr + 1);
2730	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2731		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2732	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2733	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2734	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2735	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2736	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2737	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2738
2739	frm = (uint8_t *)(wh + 1);
2740
2741	/* add empty essid IE (firmware generates it for directed scans) */
2742	*frm++ = IEEE80211_ELEMID_SSID;
2743	*frm++ = 0;
2744
2745	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2746	rs = &ic->ic_sup_rates[mode];
2747
2748	/* add supported rates IE */
2749	*frm++ = IEEE80211_ELEMID_RATES;
2750	nrates = rs->rs_nrates;
2751	if (nrates > IEEE80211_RATE_SIZE)
2752		nrates = IEEE80211_RATE_SIZE;
2753	*frm++ = nrates;
2754	memcpy(frm, rs->rs_rates, nrates);
2755	frm += nrates;
2756
2757	/* add supported xrates IE */
2758	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2759		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2760		*frm++ = IEEE80211_ELEMID_XRATES;
2761		*frm++ = nrates;
2762		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2763		frm += nrates;
2764	}
2765
2766	/* setup length of probe request */
2767	hdr->paylen = htole16(frm - (uint8_t *)wh);
2768
2769	chan = (struct wpi_scan_chan *)frm;
2770	for (c  = &ic->ic_channels[1];
2771	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2772		if ((c->ic_flags & flags) != flags)
2773			continue;
2774
2775		chan->chan = ieee80211_chan2ieee(ic, c);
2776		chan->flags = 0;
2777		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2778			chan->flags |= WPI_CHAN_ACTIVE;
2779			if (ic->ic_des_esslen != 0)
2780				chan->flags |= WPI_CHAN_DIRECT;
2781		}
2782		chan->dsp_gain = 0x6e;
2783		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2784			chan->rf_gain = 0x3b;
2785			chan->active = htole16(10);
2786			chan->passive = htole16(110);
2787		} else {
2788			chan->rf_gain = 0x28;
2789			chan->active = htole16(20);
2790			chan->passive = htole16(120);
2791		}
2792		hdr->nchan++;
2793		chan++;
2794
2795		frm += sizeof (struct wpi_scan_chan);
2796	}
2797	hdr->len = htole16(frm - (uint8_t *)hdr);
2798	pktlen = frm - (uint8_t *)cmd;
2799
2800	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2801		NULL, BUS_DMA_NOWAIT);
2802	if (error) {
2803		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2804		m_freem(data->m);
2805		data->m = NULL;
2806		return error;
2807	}
2808
2809	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2810	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2811	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2812
2813	/* kick cmd ring */
2814	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2815	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2816
2817	return 0;	/* will be notified async. of failure/success */
2818}
2819
2820static int
2821wpi_config(struct wpi_softc *sc)
2822{
2823	struct ieee80211com *ic = &sc->sc_ic;
2824	struct ifnet *ifp = ic->ic_ifp;
2825	struct wpi_power power;
2826	struct wpi_bluetooth bluetooth;
2827	struct wpi_node_info node;
2828	int error;
2829
2830	memset(&power, 0, sizeof power);
2831	power.flags = htole32(WPI_POWER_CAM | 0x8);
2832	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2833	if (error != 0) {
2834		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2835		return error;
2836	}
2837
2838	/* configure bluetooth coexistence */
2839	memset(&bluetooth, 0, sizeof bluetooth);
2840	bluetooth.flags = 3;
2841	bluetooth.lead = 0xaa;
2842	bluetooth.kill = 1;
2843	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2844		0);
2845	if (error != 0) {
2846		aprint_error_dev(sc->sc_dev,
2847			"could not configure bluetooth coexistence\n");
2848		return error;
2849	}
2850
2851	/* configure adapter */
2852	memset(&sc->config, 0, sizeof (struct wpi_config));
2853	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2854	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2855	/*set default channel*/
2856	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2857	sc->config.flags = htole32(WPI_CONFIG_TSF);
2858	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2859		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2860		    WPI_CONFIG_24GHZ);
2861	}
2862	sc->config.filter = 0;
2863	switch (ic->ic_opmode) {
2864	case IEEE80211_M_STA:
2865		sc->config.mode = WPI_MODE_STA;
2866		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2867		break;
2868	case IEEE80211_M_IBSS:
2869	case IEEE80211_M_AHDEMO:
2870		sc->config.mode = WPI_MODE_IBSS;
2871		break;
2872	case IEEE80211_M_HOSTAP:
2873		sc->config.mode = WPI_MODE_HOSTAP;
2874		break;
2875	case IEEE80211_M_MONITOR:
2876		sc->config.mode = WPI_MODE_MONITOR;
2877		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2878			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2879		break;
2880	}
2881	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2882	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2883	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2884		sizeof (struct wpi_config), 0);
2885	if (error != 0) {
2886		aprint_error_dev(sc->sc_dev, "configure command failed\n");
2887		return error;
2888	}
2889
2890	/* configuration has changed, set Tx power accordingly */
2891	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2892		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2893		return error;
2894	}
2895
2896	/* add broadcast node */
2897	memset(&node, 0, sizeof node);
2898	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2899	node.id = WPI_ID_BROADCAST;
2900	node.rate = wpi_plcp_signal(2);
2901	node.action = htole32(WPI_ACTION_SET_RATE);
2902	node.antenna = WPI_ANTENNA_BOTH;
2903	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2904	if (error != 0) {
2905		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2906		return error;
2907	}
2908
2909	if ((error = wpi_mrr_setup(sc)) != 0) {
2910		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2911		return error;
2912	}
2913
2914	return 0;
2915}
2916
2917static void
2918wpi_stop_master(struct wpi_softc *sc)
2919{
2920	uint32_t tmp;
2921	int ntries;
2922
2923	tmp = WPI_READ(sc, WPI_RESET);
2924	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2925
2926	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2927	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2928		return;	/* already asleep */
2929
2930	for (ntries = 0; ntries < 100; ntries++) {
2931		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2932			break;
2933		DELAY(10);
2934	}
2935	if (ntries == 100) {
2936		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2937	}
2938}
2939
2940static int
2941wpi_power_up(struct wpi_softc *sc)
2942{
2943	uint32_t tmp;
2944	int ntries;
2945
2946	wpi_mem_lock(sc);
2947	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2948	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2949	wpi_mem_unlock(sc);
2950
2951	for (ntries = 0; ntries < 5000; ntries++) {
2952		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2953			break;
2954		DELAY(10);
2955	}
2956	if (ntries == 5000) {
2957		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2958		return ETIMEDOUT;
2959	}
2960	return 0;
2961}
2962
2963static int
2964wpi_reset(struct wpi_softc *sc)
2965{
2966	uint32_t tmp;
2967	int ntries;
2968
2969	/* clear any pending interrupts */
2970	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2971
2972	tmp = WPI_READ(sc, WPI_PLL_CTL);
2973	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2974
2975	tmp = WPI_READ(sc, WPI_CHICKEN);
2976	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2977
2978	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2979	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2980
2981	/* wait for clock stabilization */
2982	for (ntries = 0; ntries < 1000; ntries++) {
2983		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2984			break;
2985		DELAY(10);
2986	}
2987	if (ntries == 1000) {
2988		aprint_error_dev(sc->sc_dev,
2989						 "timeout waiting for clock stabilization\n");
2990		return ETIMEDOUT;
2991	}
2992
2993	/* initialize EEPROM */
2994	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2995	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2996		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
2997		return EIO;
2998	}
2999	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3000
3001	return 0;
3002}
3003
3004static void
3005wpi_hw_config(struct wpi_softc *sc)
3006{
3007	uint32_t rev, hw;
3008
3009	/* voodoo from the reference driver */
3010	hw = WPI_READ(sc, WPI_HWCONFIG);
3011
3012	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3013	rev = PCI_REVISION(rev);
3014	if ((rev & 0xc0) == 0x40)
3015		hw |= WPI_HW_ALM_MB;
3016	else if (!(rev & 0x80))
3017		hw |= WPI_HW_ALM_MM;
3018
3019	if (sc->cap == 0x80)
3020		hw |= WPI_HW_SKU_MRC;
3021
3022	hw &= ~WPI_HW_REV_D;
3023	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3024		hw |= WPI_HW_REV_D;
3025
3026	if (sc->type > 1)
3027		hw |= WPI_HW_TYPE_B;
3028
3029	DPRINTF(("setting h/w config %x\n", hw));
3030	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3031}
3032
3033static int
3034wpi_init(struct ifnet *ifp)
3035{
3036	struct wpi_softc *sc = ifp->if_softc;
3037	struct ieee80211com *ic = &sc->sc_ic;
3038	uint32_t tmp;
3039	int qid, ntries, error;
3040
3041	wpi_stop(ifp,1);
3042	(void)wpi_reset(sc);
3043
3044	wpi_mem_lock(sc);
3045	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3046	DELAY(20);
3047	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3048	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3049	wpi_mem_unlock(sc);
3050
3051	(void)wpi_power_up(sc);
3052	wpi_hw_config(sc);
3053
3054	/* init Rx ring */
3055	wpi_mem_lock(sc);
3056	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3057	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3058	    offsetof(struct wpi_shared, next));
3059	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3060	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3061	wpi_mem_unlock(sc);
3062
3063	/* init Tx rings */
3064	wpi_mem_lock(sc);
3065	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3066	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3067	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3068	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3069	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3070	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3071	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3072
3073	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3074	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3075
3076	for (qid = 0; qid < 6; qid++) {
3077		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3078		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3079		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3080	}
3081	wpi_mem_unlock(sc);
3082
3083	/* clear "radio off" and "disable command" bits (reversed logic) */
3084	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3085	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3086
3087	/* clear any pending interrupts */
3088	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3089	/* enable interrupts */
3090	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3091
3092	/* not sure why/if this is necessary... */
3093	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3094	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3095
3096	if ((error = wpi_load_firmware(sc)) != 0) {
3097		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3098		goto fail1;
3099	}
3100
3101	/* Check the status of the radio switch */
3102	if (wpi_getrfkill(sc)) {
3103		aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
3104		error = EBUSY;
3105		goto fail1;
3106	}
3107
3108	/* wait for thermal sensors to calibrate */
3109	for (ntries = 0; ntries < 1000; ntries++) {
3110		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3111			break;
3112		DELAY(10);
3113	}
3114	if (ntries == 1000) {
3115		aprint_error_dev(sc->sc_dev,
3116						 "timeout waiting for thermal sensors calibration\n");
3117		error = ETIMEDOUT;
3118		goto fail1;
3119	}
3120
3121	DPRINTF(("temperature %d\n", sc->temp));
3122
3123	if ((error = wpi_config(sc)) != 0) {
3124		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3125		goto fail1;
3126	}
3127
3128	ifp->if_flags &= ~IFF_OACTIVE;
3129	ifp->if_flags |= IFF_RUNNING;
3130
3131	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3132		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3133			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3134	}
3135	else
3136		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3137
3138	return 0;
3139
3140fail1:	wpi_stop(ifp, 1);
3141	return error;
3142}
3143
3144
3145static void
3146wpi_stop(struct ifnet *ifp, int disable)
3147{
3148	struct wpi_softc *sc = ifp->if_softc;
3149	struct ieee80211com *ic = &sc->sc_ic;
3150	uint32_t tmp;
3151	int ac;
3152
3153	ifp->if_timer = sc->sc_tx_timer = 0;
3154	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3155
3156	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3157
3158	/* disable interrupts */
3159	WPI_WRITE(sc, WPI_MASK, 0);
3160	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3161	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3162	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3163
3164	wpi_mem_lock(sc);
3165	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3166	wpi_mem_unlock(sc);
3167
3168	/* reset all Tx rings */
3169	for (ac = 0; ac < 4; ac++)
3170		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3171	wpi_reset_tx_ring(sc, &sc->cmdq);
3172
3173	/* reset Rx ring */
3174	wpi_reset_rx_ring(sc, &sc->rxq);
3175
3176	wpi_mem_lock(sc);
3177	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3178	wpi_mem_unlock(sc);
3179
3180	DELAY(5);
3181
3182	wpi_stop_master(sc);
3183
3184	tmp = WPI_READ(sc, WPI_RESET);
3185	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3186}
3187
3188static bool
3189wpi_resume(device_t dv, const pmf_qual_t *qual)
3190{
3191	struct wpi_softc *sc = device_private(dv);
3192
3193	(void)wpi_reset(sc);
3194
3195	return true;
3196}
3197
3198/*
3199 * Return whether or not the radio is enabled in hardware
3200 * (i.e. the rfkill switch is "off").
3201 */
3202static int
3203wpi_getrfkill(struct wpi_softc *sc)
3204{
3205	uint32_t tmp;
3206
3207	wpi_mem_lock(sc);
3208	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3209	wpi_mem_unlock(sc);
3210
3211	return !(tmp & 0x01);
3212}
3213
3214static int
3215wpi_sysctl_radio(SYSCTLFN_ARGS)
3216{
3217	struct sysctlnode node;
3218	struct wpi_softc *sc;
3219	int val, error;
3220
3221	node = *rnode;
3222	sc = (struct wpi_softc *)node.sysctl_data;
3223
3224	val = !wpi_getrfkill(sc);
3225
3226	node.sysctl_data = &val;
3227	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3228
3229	if (error || newp == NULL)
3230		return error;
3231
3232	return 0;
3233}
3234
3235static void
3236wpi_sysctlattach(struct wpi_softc *sc)
3237{
3238	int rc;
3239	const struct sysctlnode *rnode;
3240	const struct sysctlnode *cnode;
3241
3242	struct sysctllog **clog = &sc->sc_sysctllog;
3243
3244	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3245	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3246	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
3247		goto err;
3248
3249	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
3250	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3251	    SYSCTL_DESCR("wpi controls and statistics"),
3252	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
3253		goto err;
3254
3255	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3256	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3257	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3258	    wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3259		goto err;
3260
3261#ifdef WPI_DEBUG
3262	/* control debugging printfs */
3263	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3264	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3265	    "debug", SYSCTL_DESCR("Enable debugging output"),
3266	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3267		goto err;
3268#endif
3269
3270	return;
3271err:
3272	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3273}
3274