if_wpi.c revision 1.41
1/*  $NetBSD: if_wpi.c,v 1.41 2008/11/12 18:23:08 joerg Exp $    */
2
3/*-
4 * Copyright (c) 2006, 2007
5 *	Damien Bergamini <damien.bergamini@free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20#include <sys/cdefs.h>
21__KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.41 2008/11/12 18:23:08 joerg Exp $");
22
23/*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27#include "bpfilter.h"
28
29#include <sys/param.h>
30#include <sys/sockio.h>
31#include <sys/sysctl.h>
32#include <sys/mbuf.h>
33#include <sys/kernel.h>
34#include <sys/socket.h>
35#include <sys/systm.h>
36#include <sys/malloc.h>
37#include <sys/mutex.h>
38#include <sys/once.h>
39#include <sys/conf.h>
40#include <sys/kauth.h>
41#include <sys/callout.h>
42
43#include <sys/bus.h>
44#include <machine/endian.h>
45#include <sys/intr.h>
46
47#include <dev/pci/pcireg.h>
48#include <dev/pci/pcivar.h>
49#include <dev/pci/pcidevs.h>
50
51#if NBPFILTER > 0
52#include <net/bpf.h>
53#endif
54#include <net/if.h>
55#include <net/if_arp.h>
56#include <net/if_dl.h>
57#include <net/if_ether.h>
58#include <net/if_media.h>
59#include <net/if_types.h>
60
61#include <net80211/ieee80211_var.h>
62#include <net80211/ieee80211_amrr.h>
63#include <net80211/ieee80211_radiotap.h>
64
65#include <netinet/in.h>
66#include <netinet/in_systm.h>
67#include <netinet/in_var.h>
68#include <netinet/ip.h>
69
70#include <dev/firmload.h>
71
72#include <dev/pci/if_wpireg.h>
73#include <dev/pci/if_wpivar.h>
74
75#ifdef WPI_DEBUG
76#define DPRINTF(x)	if (wpi_debug > 0) printf x
77#define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
78int wpi_debug = 1;
79#else
80#define DPRINTF(x)
81#define DPRINTFN(n, x)
82#endif
83
84/*
85 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
86 */
87static const struct ieee80211_rateset wpi_rateset_11a =
88	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
89
90static const struct ieee80211_rateset wpi_rateset_11b =
91	{ 4, { 2, 4, 11, 22 } };
92
93static const struct ieee80211_rateset wpi_rateset_11g =
94	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
95
96static once_t wpi_firmware_init;
97static kmutex_t wpi_firmware_mutex;
98static size_t wpi_firmware_users;
99static uint8_t *wpi_firmware_image;
100static size_t wpi_firmware_size;
101
102static int  wpi_match(device_t, struct cfdata *, void *);
103static void wpi_attach(device_t, device_t, void *);
104static int  wpi_detach(device_t , int);
105static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
106	void **, bus_size_t, bus_size_t, int);
107static void wpi_dma_contig_free(struct wpi_dma_info *);
108static int  wpi_alloc_shared(struct wpi_softc *);
109static void wpi_free_shared(struct wpi_softc *);
110static int  wpi_alloc_fwmem(struct wpi_softc *);
111static void wpi_free_fwmem(struct wpi_softc *);
112static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
113static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
114static int  wpi_alloc_rpool(struct wpi_softc *);
115static void wpi_free_rpool(struct wpi_softc *);
116static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
117static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
118static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
119static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
120	int);
121static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
122static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
123static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
124static void wpi_newassoc(struct ieee80211_node *, int);
125static int  wpi_media_change(struct ifnet *);
126static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
127static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
128static void wpi_mem_lock(struct wpi_softc *);
129static void wpi_mem_unlock(struct wpi_softc *);
130static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
131static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
132static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
133								   const uint32_t *, int);
134static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
135static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
136static int  wpi_load_firmware(struct wpi_softc *);
137static void wpi_calib_timeout(void *);
138static void wpi_iter_func(void *, struct ieee80211_node *);
139static void wpi_power_calibration(struct wpi_softc *, int);
140static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
141	struct wpi_rx_data *);
142static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
143static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
144static void wpi_notif_intr(struct wpi_softc *);
145static int  wpi_intr(void *);
146static void wpi_read_eeprom(struct wpi_softc *);
147static void wpi_read_eeprom_channels(struct wpi_softc *, int);
148static void wpi_read_eeprom_group(struct wpi_softc *, int);
149static uint8_t wpi_plcp_signal(int);
150static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
151	struct ieee80211_node *, int);
152static void wpi_start(struct ifnet *);
153static void wpi_watchdog(struct ifnet *);
154static int  wpi_ioctl(struct ifnet *, u_long, void *);
155static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
156static int  wpi_wme_update(struct ieee80211com *);
157static int  wpi_mrr_setup(struct wpi_softc *);
158static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
159static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
160static int  wpi_set_txpower(struct wpi_softc *,
161			    struct ieee80211_channel *, int);
162static int  wpi_get_power_index(struct wpi_softc *,
163		struct wpi_power_group *, struct ieee80211_channel *, int);
164static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
165static int  wpi_auth(struct wpi_softc *);
166static int  wpi_scan(struct wpi_softc *, uint16_t);
167static int  wpi_config(struct wpi_softc *);
168static void wpi_stop_master(struct wpi_softc *);
169static int  wpi_power_up(struct wpi_softc *);
170static int  wpi_reset(struct wpi_softc *);
171static void wpi_hw_config(struct wpi_softc *);
172static int  wpi_init(struct ifnet *);
173static void wpi_stop(struct ifnet *, int);
174static bool wpi_resume(device_t PMF_FN_PROTO);
175static int	wpi_getrfkill(struct wpi_softc *);
176static void wpi_sysctlattach(struct wpi_softc *);
177
178CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
179	wpi_detach, NULL);
180
181static int
182wpi_match(device_t parent, struct cfdata *match __unused, void *aux)
183{
184	struct pci_attach_args *pa = aux;
185
186	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
187		return 0;
188
189	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
190	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
191		return 1;
192
193	return 0;
194}
195
196/* Base Address Register */
197#define WPI_PCI_BAR0	0x10
198
199static int
200wpi_attach_once(void)
201{
202	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
203	return 0;
204}
205
206static void
207wpi_attach(device_t parent __unused, device_t self, void *aux)
208{
209	struct wpi_softc *sc = device_private(self);
210	struct ieee80211com *ic = &sc->sc_ic;
211	struct ifnet *ifp = &sc->sc_ec.ec_if;
212	struct pci_attach_args *pa = aux;
213	const char *intrstr;
214	char devinfo[256];
215	bus_space_tag_t memt;
216	bus_space_handle_t memh;
217	pci_intr_handle_t ih;
218	pcireg_t data;
219	int error, ac, revision;
220
221	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
222	sc->fw_used = false;
223
224	sc->sc_dev = self;
225	sc->sc_pct = pa->pa_pc;
226	sc->sc_pcitag = pa->pa_tag;
227
228	callout_init(&sc->calib_to, 0);
229	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
230
231	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
232	revision = PCI_REVISION(pa->pa_class);
233	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
234
235	/* enable bus-mastering */
236	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
237	data |= PCI_COMMAND_MASTER_ENABLE;
238	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
239
240	/* map the register window */
241	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
242		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
243	if (error != 0) {
244		aprint_error_dev(self, "could not map memory space\n");
245		return;
246	}
247
248	sc->sc_st = memt;
249	sc->sc_sh = memh;
250	sc->sc_dmat = pa->pa_dmat;
251
252	if (pci_intr_map(pa, &ih) != 0) {
253		aprint_error_dev(self, "could not map interrupt\n");
254		return;
255	}
256
257	intrstr = pci_intr_string(sc->sc_pct, ih);
258	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
259	if (sc->sc_ih == NULL) {
260		aprint_error_dev(self, "could not establish interrupt");
261		if (intrstr != NULL)
262			aprint_error(" at %s", intrstr);
263		aprint_error("\n");
264		return;
265	}
266	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
267
268	if (wpi_reset(sc) != 0) {
269		aprint_error_dev(self, "could not reset adapter\n");
270		return;
271	}
272
273 	/*
274	 * Allocate DMA memory for firmware transfers.
275	 */
276	if ((error = wpi_alloc_fwmem(sc)) != 0)
277		return;
278
279	/*
280	 * Allocate shared page and Tx/Rx rings.
281	 */
282	if ((error = wpi_alloc_shared(sc)) != 0) {
283		aprint_error_dev(self, "could not allocate shared area\n");
284		goto fail1;
285	}
286
287	if ((error = wpi_alloc_rpool(sc)) != 0) {
288		aprint_error_dev(self, "could not allocate Rx buffers\n");
289		goto fail2;
290	}
291
292	for (ac = 0; ac < 4; ac++) {
293		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
294		if (error != 0) {
295			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
296			goto fail3;
297		}
298	}
299
300	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
301	if (error != 0) {
302		aprint_error_dev(self, "could not allocate command ring\n");
303		goto fail3;
304	}
305
306	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
307		aprint_error_dev(self, "could not allocate Rx ring\n");
308		goto fail4;
309	}
310
311	ic->ic_ifp = ifp;
312	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
313	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
314	ic->ic_state = IEEE80211_S_INIT;
315
316	/* set device capabilities */
317	ic->ic_caps =
318		IEEE80211_C_IBSS |       /* IBSS mode support */
319		IEEE80211_C_WPA |        /* 802.11i */
320		IEEE80211_C_MONITOR |    /* monitor mode supported */
321		IEEE80211_C_TXPMGT |     /* tx power management */
322		IEEE80211_C_SHSLOT |     /* short slot time supported */
323		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
324		IEEE80211_C_WME;         /* 802.11e */
325
326	/* read supported channels and MAC address from EEPROM */
327	wpi_read_eeprom(sc);
328
329	/* set supported .11a, .11b, .11g rates */
330	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
331	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
332	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
333
334	ic->ic_ibss_chan = &ic->ic_channels[0];
335
336	ifp->if_softc = sc;
337	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
338	ifp->if_init = wpi_init;
339	ifp->if_stop = wpi_stop;
340	ifp->if_ioctl = wpi_ioctl;
341	ifp->if_start = wpi_start;
342	ifp->if_watchdog = wpi_watchdog;
343	IFQ_SET_READY(&ifp->if_snd);
344	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
345
346	if_attach(ifp);
347	ieee80211_ifattach(ic);
348	/* override default methods */
349	ic->ic_node_alloc = wpi_node_alloc;
350	ic->ic_newassoc = wpi_newassoc;
351	ic->ic_wme.wme_update = wpi_wme_update;
352
353	/* override state transition machine */
354	sc->sc_newstate = ic->ic_newstate;
355	ic->ic_newstate = wpi_newstate;
356	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
357
358	sc->amrr.amrr_min_success_threshold = 1;
359	sc->amrr.amrr_max_success_threshold = 15;
360
361	wpi_sysctlattach(sc);
362
363	if (!pmf_device_register(self, NULL, wpi_resume))
364		aprint_error_dev(self, "couldn't establish power handler\n");
365	else
366		pmf_class_network_register(self, ifp);
367
368#if NBPFILTER > 0
369	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
370		sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
371		&sc->sc_drvbpf);
372
373	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
374	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
375	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
376
377	sc->sc_txtap_len = sizeof sc->sc_txtapu;
378	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
379	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
380#endif
381
382	ieee80211_announce(ic);
383
384	return;
385
386fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
387fail3:  while (--ac >= 0)
388			wpi_free_tx_ring(sc, &sc->txq[ac]);
389	wpi_free_rpool(sc);
390fail2:	wpi_free_shared(sc);
391fail1:	wpi_free_fwmem(sc);
392}
393
394static int
395wpi_detach(device_t self, int flags __unused)
396{
397	struct wpi_softc *sc = device_private(self);
398	struct ifnet *ifp = sc->sc_ic.ic_ifp;
399	int ac;
400
401	wpi_stop(ifp, 1);
402
403#if NBPFILTER > 0
404	if (ifp != NULL)
405		bpfdetach(ifp);
406#endif
407	ieee80211_ifdetach(&sc->sc_ic);
408	if (ifp != NULL)
409		if_detach(ifp);
410
411	for (ac = 0; ac < 4; ac++)
412		wpi_free_tx_ring(sc, &sc->txq[ac]);
413	wpi_free_tx_ring(sc, &sc->cmdq);
414	wpi_free_rx_ring(sc, &sc->rxq);
415	wpi_free_rpool(sc);
416	wpi_free_shared(sc);
417
418	if (sc->sc_ih != NULL) {
419		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
420		sc->sc_ih = NULL;
421	}
422
423	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
424
425	if (sc->fw_used) {
426		mutex_enter(&wpi_firmware_mutex);
427		if (--wpi_firmware_users == 0)
428			firmware_free(wpi_firmware_image, wpi_firmware_size);
429		mutex_exit(&wpi_firmware_mutex);
430	}
431
432	return 0;
433}
434
435static int
436wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
437	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
438{
439	int nsegs, error;
440
441	dma->tag = tag;
442	dma->size = size;
443
444	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
445	if (error != 0)
446		goto fail;
447
448	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
449	    flags);
450	if (error != 0)
451		goto fail;
452
453	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
454	if (error != 0)
455		goto fail;
456
457	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
458	if (error != 0)
459		goto fail;
460
461	memset(dma->vaddr, 0, size);
462
463	dma->paddr = dma->map->dm_segs[0].ds_addr;
464	if (kvap != NULL)
465		*kvap = dma->vaddr;
466
467	return 0;
468
469fail:   wpi_dma_contig_free(dma);
470	return error;
471}
472
473static void
474wpi_dma_contig_free(struct wpi_dma_info *dma)
475{
476	if (dma->map != NULL) {
477		if (dma->vaddr != NULL) {
478			bus_dmamap_unload(dma->tag, dma->map);
479			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
480			bus_dmamem_free(dma->tag, &dma->seg, 1);
481			dma->vaddr = NULL;
482		}
483		bus_dmamap_destroy(dma->tag, dma->map);
484		dma->map = NULL;
485	}
486}
487
488/*
489 * Allocate a shared page between host and NIC.
490 */
491static int
492wpi_alloc_shared(struct wpi_softc *sc)
493{
494	int error;
495	/* must be aligned on a 4K-page boundary */
496	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
497			(void **)&sc->shared, sizeof (struct wpi_shared),
498			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
499	if (error != 0)
500		aprint_error_dev(sc->sc_dev,
501				"could not allocate shared area DMA memory\n");
502
503	return error;
504}
505
506static void
507wpi_free_shared(struct wpi_softc *sc)
508{
509	wpi_dma_contig_free(&sc->shared_dma);
510}
511
512/*
513 * Allocate DMA-safe memory for firmware transfer.
514 */
515static int
516wpi_alloc_fwmem(struct wpi_softc *sc)
517{
518	int error;
519	/* allocate enough contiguous space to store text and data */
520	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
521	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
522	    BUS_DMA_NOWAIT);
523
524	if (error != 0)
525		aprint_error_dev(sc->sc_dev,
526			"could not allocate firmware transfer area"
527			"DMA memory\n");
528	return error;
529}
530
531static void
532wpi_free_fwmem(struct wpi_softc *sc)
533{
534	wpi_dma_contig_free(&sc->fw_dma);
535}
536
537
538static struct wpi_rbuf *
539wpi_alloc_rbuf(struct wpi_softc *sc)
540{
541	struct wpi_rbuf *rbuf;
542
543	mutex_enter(&sc->rxq.freelist_mtx);
544	rbuf = SLIST_FIRST(&sc->rxq.freelist);
545	if (rbuf != NULL) {
546		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
547		sc->rxq.nb_free_entries --;
548	}
549	mutex_exit(&sc->rxq.freelist_mtx);
550
551	return rbuf;
552}
553
554/*
555 * This is called automatically by the network stack when the mbuf to which our
556 * Rx buffer is attached is freed.
557 */
558static void
559wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
560{
561	struct wpi_rbuf *rbuf = arg;
562	struct wpi_softc *sc = rbuf->sc;
563
564	/* put the buffer back in the free list */
565
566	mutex_enter(&sc->rxq.freelist_mtx);
567	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
568	mutex_exit(&sc->rxq.freelist_mtx);
569	/* No need to protect this with a mutex, see wpi_rx_intr */
570	sc->rxq.nb_free_entries ++;
571
572	if (__predict_true(m != NULL))
573		pool_cache_put(mb_cache, m);
574}
575
576static int
577wpi_alloc_rpool(struct wpi_softc *sc)
578{
579	struct wpi_rx_ring *ring = &sc->rxq;
580	struct wpi_rbuf *rbuf;
581	int i, error;
582
583	/* allocate a big chunk of DMA'able memory.. */
584	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
585	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
586	if (error != 0) {
587		aprint_normal_dev(sc->sc_dev,
588						  "could not allocate Rx buffers DMA memory\n");
589		return error;
590	}
591
592	/* ..and split it into 3KB chunks */
593	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
594	SLIST_INIT(&ring->freelist);
595	for (i = 0; i < WPI_RBUF_COUNT; i++) {
596		rbuf = &ring->rbuf[i];
597		rbuf->sc = sc;	/* backpointer for callbacks */
598		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
599		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
600
601		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
602	}
603
604	ring->nb_free_entries = WPI_RBUF_COUNT;
605	return 0;
606}
607
608static void
609wpi_free_rpool(struct wpi_softc *sc)
610{
611	wpi_dma_contig_free(&sc->rxq.buf_dma);
612}
613
614static int
615wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
616{
617	struct wpi_rx_data *data;
618	struct wpi_rbuf *rbuf;
619	int i, error;
620
621	ring->cur = 0;
622
623	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
624		(void **)&ring->desc,
625		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
626		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
627	if (error != 0) {
628		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
629		goto fail;
630	}
631
632	/*
633	 * Setup Rx buffers.
634	 */
635	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
636		data = &ring->data[i];
637
638		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
639		if (data->m == NULL) {
640			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
641			error = ENOMEM;
642			goto fail;
643		}
644		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
645			m_freem(data->m);
646			data->m = NULL;
647			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
648			error = ENOMEM;
649			goto fail;
650		}
651		/* attach Rx buffer to mbuf */
652		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
653		    rbuf);
654		data->m->m_flags |= M_EXT_RW;
655
656		ring->desc[i] = htole32(rbuf->paddr);
657	}
658
659	return 0;
660
661fail:	wpi_free_rx_ring(sc, ring);
662	return error;
663}
664
665static void
666wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
667{
668	int ntries;
669
670	wpi_mem_lock(sc);
671
672	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
673	for (ntries = 0; ntries < 100; ntries++) {
674		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
675			break;
676		DELAY(10);
677	}
678#ifdef WPI_DEBUG
679	if (ntries == 100 && wpi_debug > 0)
680		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
681#endif
682	wpi_mem_unlock(sc);
683
684	ring->cur = 0;
685}
686
687static void
688wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
689{
690	int i;
691
692	wpi_dma_contig_free(&ring->desc_dma);
693
694	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
695		if (ring->data[i].m != NULL)
696			m_freem(ring->data[i].m);
697	}
698}
699
700static int
701wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
702	int qid)
703{
704	struct wpi_tx_data *data;
705	int i, error;
706
707	ring->qid = qid;
708	ring->count = count;
709	ring->queued = 0;
710	ring->cur = 0;
711
712	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
713		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
714		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
715	if (error != 0) {
716		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
717		goto fail;
718	}
719
720	/* update shared page with ring's base address */
721	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
722
723	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
724		(void **)&ring->cmd,
725		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
726	if (error != 0) {
727		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
728		goto fail;
729	}
730
731	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
732		M_NOWAIT);
733	if (ring->data == NULL) {
734		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
735		goto fail;
736	}
737
738	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
739
740	for (i = 0; i < count; i++) {
741		data = &ring->data[i];
742
743		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
744			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
745			&data->map);
746		if (error != 0) {
747			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
748			goto fail;
749		}
750	}
751
752	return 0;
753
754fail:	wpi_free_tx_ring(sc, ring);
755	return error;
756}
757
758static void
759wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
760{
761	struct wpi_tx_data *data;
762	int i, ntries;
763
764	wpi_mem_lock(sc);
765
766	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
767	for (ntries = 0; ntries < 100; ntries++) {
768		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
769			break;
770		DELAY(10);
771	}
772#ifdef WPI_DEBUG
773	if (ntries == 100 && wpi_debug > 0) {
774		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
775									   ring->qid);
776	}
777#endif
778	wpi_mem_unlock(sc);
779
780	for (i = 0; i < ring->count; i++) {
781		data = &ring->data[i];
782
783		if (data->m != NULL) {
784			bus_dmamap_unload(sc->sc_dmat, data->map);
785			m_freem(data->m);
786			data->m = NULL;
787		}
788	}
789
790	ring->queued = 0;
791	ring->cur = 0;
792}
793
794static void
795wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
796{
797	struct wpi_tx_data *data;
798	int i;
799
800	wpi_dma_contig_free(&ring->desc_dma);
801	wpi_dma_contig_free(&ring->cmd_dma);
802
803	if (ring->data != NULL) {
804		for (i = 0; i < ring->count; i++) {
805			data = &ring->data[i];
806
807			if (data->m != NULL) {
808				bus_dmamap_unload(sc->sc_dmat, data->map);
809				m_freem(data->m);
810			}
811		}
812		free(ring->data, M_DEVBUF);
813	}
814}
815
816/*ARGUSED*/
817static struct ieee80211_node *
818wpi_node_alloc(struct ieee80211_node_table *nt __unused)
819{
820	struct wpi_node *wn;
821
822	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
823
824	return (struct ieee80211_node *)wn;
825}
826
827static void
828wpi_newassoc(struct ieee80211_node *ni, int isnew)
829{
830	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
831	int i;
832
833	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
834
835	/* set rate to some reasonable initial value */
836	for (i = ni->ni_rates.rs_nrates - 1;
837	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
838	     i--);
839	ni->ni_txrate = i;
840}
841
842static int
843wpi_media_change(struct ifnet *ifp)
844{
845	int error;
846
847	error = ieee80211_media_change(ifp);
848	if (error != ENETRESET)
849		return error;
850
851	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
852		wpi_init(ifp);
853
854	return 0;
855}
856
857static int
858wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
859{
860	struct ifnet *ifp = ic->ic_ifp;
861	struct wpi_softc *sc = ifp->if_softc;
862	struct ieee80211_node *ni;
863	int error;
864
865	callout_stop(&sc->calib_to);
866
867	switch (nstate) {
868	case IEEE80211_S_SCAN:
869
870		if (sc->is_scanning)
871			break;
872
873		sc->is_scanning = true;
874		ieee80211_node_table_reset(&ic->ic_scan);
875		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
876
877		/* make the link LED blink while we're scanning */
878		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
879
880		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
881			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
882			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
883			return error;
884		}
885
886		ic->ic_state = nstate;
887		return 0;
888
889	case IEEE80211_S_ASSOC:
890		if (ic->ic_state != IEEE80211_S_RUN)
891			break;
892		/* FALLTHROUGH */
893	case IEEE80211_S_AUTH:
894		sc->config.associd = 0;
895		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
896		if ((error = wpi_auth(sc)) != 0) {
897			aprint_error_dev(sc->sc_dev,
898							"could not send authentication request\n");
899			return error;
900		}
901		break;
902
903	case IEEE80211_S_RUN:
904		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
905			/* link LED blinks while monitoring */
906			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
907			break;
908		}
909
910		ni = ic->ic_bss;
911
912		if (ic->ic_opmode != IEEE80211_M_STA) {
913			(void) wpi_auth(sc);    /* XXX */
914			wpi_setup_beacon(sc, ni);
915		}
916
917		wpi_enable_tsf(sc, ni);
918
919		/* update adapter's configuration */
920		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
921		/* short preamble/slot time are negotiated when associating */
922		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
923			WPI_CONFIG_SHSLOT);
924		if (ic->ic_flags & IEEE80211_F_SHSLOT)
925			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
926		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
927			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
928		sc->config.filter |= htole32(WPI_FILTER_BSS);
929		if (ic->ic_opmode != IEEE80211_M_STA)
930			sc->config.filter |= htole32(WPI_FILTER_BEACON);
931
932/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
933
934		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
935			sc->config.flags));
936		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
937			sizeof (struct wpi_config), 1);
938		if (error != 0) {
939			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
940			return error;
941		}
942
943		/* configuration has changed, set Tx power accordingly */
944		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
945			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
946			return error;
947		}
948
949		if (ic->ic_opmode == IEEE80211_M_STA) {
950			/* fake a join to init the tx rate */
951			wpi_newassoc(ni, 1);
952		}
953
954		/* start periodic calibration timer */
955		sc->calib_cnt = 0;
956		callout_schedule(&sc->calib_to, hz/2);
957
958		/* link LED always on while associated */
959		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
960		break;
961
962	case IEEE80211_S_INIT:
963		sc->is_scanning = false;
964		break;
965	}
966
967	return sc->sc_newstate(ic, nstate, arg);
968}
969
970/*
971 * XXX: Hack to set the current channel to the value advertised in beacons or
972 * probe responses. Only used during AP detection.
973 * XXX: Duplicated from if_iwi.c
974 */
975static void
976wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
977{
978	struct ieee80211_frame *wh;
979	uint8_t subtype;
980	uint8_t *frm, *efrm;
981
982	wh = mtod(m, struct ieee80211_frame *);
983
984	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
985		return;
986
987	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
988
989	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
990	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
991		return;
992
993	frm = (uint8_t *)(wh + 1);
994	efrm = mtod(m, uint8_t *) + m->m_len;
995
996	frm += 12;	/* skip tstamp, bintval and capinfo fields */
997	while (frm < efrm) {
998		if (*frm == IEEE80211_ELEMID_DSPARMS)
999#if IEEE80211_CHAN_MAX < 255
1000		if (frm[2] <= IEEE80211_CHAN_MAX)
1001#endif
1002			ic->ic_curchan = &ic->ic_channels[frm[2]];
1003
1004		frm += frm[1] + 2;
1005	}
1006}
1007
1008/*
1009 * Grab exclusive access to NIC memory.
1010 */
1011static void
1012wpi_mem_lock(struct wpi_softc *sc)
1013{
1014	uint32_t tmp;
1015	int ntries;
1016
1017	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1018	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1019
1020	/* spin until we actually get the lock */
1021	for (ntries = 0; ntries < 1000; ntries++) {
1022		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1023			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1024			break;
1025		DELAY(10);
1026	}
1027	if (ntries == 1000)
1028		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1029}
1030
1031/*
1032 * Release lock on NIC memory.
1033 */
1034static void
1035wpi_mem_unlock(struct wpi_softc *sc)
1036{
1037	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1038	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1039}
1040
1041static uint32_t
1042wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1043{
1044	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1045	return WPI_READ(sc, WPI_READ_MEM_DATA);
1046}
1047
1048static void
1049wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1050{
1051	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1052	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1053}
1054
1055static void
1056wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1057						const uint32_t *data, int wlen)
1058{
1059	for (; wlen > 0; wlen--, data++, addr += 4)
1060		wpi_mem_write(sc, addr, *data);
1061}
1062
1063
1064/*
1065 * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1066 * instead of using the traditional bit-bang method.
1067 */
1068static int
1069wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1070{
1071	uint8_t *out = data;
1072	uint32_t val;
1073	int ntries;
1074
1075	wpi_mem_lock(sc);
1076	for (; len > 0; len -= 2, addr++) {
1077		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1078
1079		for (ntries = 0; ntries < 10; ntries++) {
1080			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1081			    WPI_EEPROM_READY)
1082				break;
1083			DELAY(5);
1084		}
1085		if (ntries == 10) {
1086			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1087			return ETIMEDOUT;
1088		}
1089		*out++ = val >> 16;
1090		if (len > 1)
1091			*out++ = val >> 24;
1092	}
1093	wpi_mem_unlock(sc);
1094
1095	return 0;
1096}
1097
1098/*
1099 * The firmware boot code is small and is intended to be copied directly into
1100 * the NIC internal memory.
1101 */
1102int
1103wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1104{
1105	int ntries;
1106
1107	size /= sizeof (uint32_t);
1108
1109	wpi_mem_lock(sc);
1110
1111	/* copy microcode image into NIC memory */
1112	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1113	    (const uint32_t *)ucode, size);
1114
1115	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1116	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1117	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1118
1119	/* run microcode */
1120	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1121
1122	/* wait for transfer to complete */
1123	for (ntries = 0; ntries < 1000; ntries++) {
1124		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1125			break;
1126		DELAY(10);
1127	}
1128	if (ntries == 1000) {
1129		wpi_mem_unlock(sc);
1130		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1131		return ETIMEDOUT;
1132	}
1133	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1134
1135	wpi_mem_unlock(sc);
1136
1137	return 0;
1138}
1139
1140static int
1141wpi_cache_firmware(struct wpi_softc *sc)
1142{
1143	firmware_handle_t fw;
1144	int error;
1145
1146	if (sc->fw_used)
1147		return 0;
1148
1149	mutex_enter(&wpi_firmware_mutex);
1150	if (wpi_firmware_users++) {
1151		mutex_exit(&wpi_firmware_mutex);
1152		return 0;
1153	}
1154
1155	/* load firmware image from disk */
1156	if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1157		aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1158		goto fail1;
1159	}
1160
1161	wpi_firmware_size = firmware_get_size(fw);
1162
1163	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1164	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1165	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1166	    WPI_FW_BOOT_TEXT_MAXSZ) {
1167		aprint_error_dev(sc->sc_dev, "invalid firmware file\n");
1168		error = EFBIG;
1169		goto fail1;
1170	}
1171
1172	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1173		aprint_error_dev(sc->sc_dev,
1174		    "truncated firmware header: %zu bytes\n",
1175		    wpi_firmware_size);
1176		error = EINVAL;
1177		goto fail2;
1178	}
1179
1180	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1181	if (wpi_firmware_image == NULL) {
1182		aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1183		error = ENOMEM;
1184		goto fail1;
1185	}
1186
1187	if ((error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size)) != 0) {
1188		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1189		goto fail2;
1190	}
1191
1192	sc->fw_used = true;
1193	firmware_close(fw);
1194	mutex_exit(&wpi_firmware_mutex);
1195
1196	return 0;
1197
1198fail2:
1199	firmware_free(wpi_firmware_image, wpi_firmware_size);
1200fail1:
1201	firmware_close(fw);
1202	if (--wpi_firmware_users == 0)
1203		firmware_free(wpi_firmware_image, wpi_firmware_size);
1204	mutex_exit(&wpi_firmware_mutex);
1205	return error;
1206}
1207
1208static int
1209wpi_load_firmware(struct wpi_softc *sc)
1210{
1211	struct wpi_dma_info *dma = &sc->fw_dma;
1212	struct wpi_firmware_hdr hdr;
1213	const uint8_t *init_text, *init_data, *main_text, *main_data;
1214	const uint8_t *boot_text;
1215	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1216	uint32_t boot_textsz;
1217	int error;
1218
1219	if ((error = wpi_cache_firmware(sc)) != 0)
1220		return error;
1221
1222	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1223
1224	main_textsz = le32toh(hdr.main_textsz);
1225	main_datasz = le32toh(hdr.main_datasz);
1226	init_textsz = le32toh(hdr.init_textsz);
1227	init_datasz = le32toh(hdr.init_datasz);
1228	boot_textsz = le32toh(hdr.boot_textsz);
1229
1230	/* sanity-check firmware segments sizes */
1231	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1232	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1233	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1234	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1235	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1236	    (boot_textsz & 3) != 0) {
1237		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1238		error = EINVAL;
1239		goto free_firmware;
1240	}
1241
1242	/* check that all firmware segments are present */
1243	if (wpi_firmware_size <
1244	    sizeof (struct wpi_firmware_hdr) + main_textsz +
1245	    main_datasz + init_textsz + init_datasz + boot_textsz) {
1246		aprint_error_dev(sc->sc_dev,
1247		    "firmware file too short: %zu bytes\n", wpi_firmware_size);
1248		error = EINVAL;
1249		goto free_firmware;
1250	}
1251
1252	/* get pointers to firmware segments */
1253	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1254	main_data = main_text + main_textsz;
1255	init_text = main_data + main_datasz;
1256	init_data = init_text + init_textsz;
1257	boot_text = init_data + init_datasz;
1258
1259	/* copy initialization images into pre-allocated DMA-safe memory */
1260	memcpy(dma->vaddr, init_data, init_datasz);
1261	memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1262
1263	/* tell adapter where to find initialization images */
1264	wpi_mem_lock(sc);
1265	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1266	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1267	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1268	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1269	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1270	wpi_mem_unlock(sc);
1271
1272	/* load firmware boot code */
1273	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1274		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1275		return error;
1276	}
1277
1278	/* now press "execute" ;-) */
1279	WPI_WRITE(sc, WPI_RESET, 0);
1280
1281	/* ..and wait at most one second for adapter to initialize */
1282	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1283		/* this isn't what was supposed to happen.. */
1284		aprint_error_dev(sc->sc_dev,
1285		    "timeout waiting for adapter to initialize\n");
1286	}
1287
1288	/* copy runtime images into pre-allocated DMA-safe memory */
1289	memcpy(dma->vaddr, main_data, main_datasz);
1290	memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1291
1292	/* tell adapter where to find runtime images */
1293	wpi_mem_lock(sc);
1294	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1295	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1296	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1297	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1298	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1299	wpi_mem_unlock(sc);
1300
1301	/* wait at most one second for second alive notification */
1302	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1303		/* this isn't what was supposed to happen.. */
1304		aprint_error_dev(sc->sc_dev,
1305		    "timeout waiting for adapter to initialize\n");
1306	}
1307
1308	return error;
1309
1310free_firmware:
1311	mutex_enter(&wpi_firmware_mutex);
1312	sc->fw_used = false;
1313	--wpi_firmware_users;
1314	mutex_exit(&wpi_firmware_mutex);
1315	return error;
1316}
1317
1318static void
1319wpi_calib_timeout(void *arg)
1320{
1321	struct wpi_softc *sc = arg;
1322	struct ieee80211com *ic = &sc->sc_ic;
1323	int temp, s;
1324
1325	/* automatic rate control triggered every 500ms */
1326	if (ic->ic_fixed_rate == -1) {
1327		s = splnet();
1328		if (ic->ic_opmode == IEEE80211_M_STA)
1329			wpi_iter_func(sc, ic->ic_bss);
1330		else
1331                	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1332		splx(s);
1333	}
1334
1335	/* update sensor data */
1336	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1337
1338	/* automatic power calibration every 60s */
1339	if (++sc->calib_cnt >= 120) {
1340		wpi_power_calibration(sc, temp);
1341		sc->calib_cnt = 0;
1342	}
1343
1344	callout_schedule(&sc->calib_to, hz/2);
1345}
1346
1347static void
1348wpi_iter_func(void *arg, struct ieee80211_node *ni)
1349{
1350	struct wpi_softc *sc = arg;
1351	struct wpi_node *wn = (struct wpi_node *)ni;
1352
1353	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1354}
1355
1356/*
1357 * This function is called periodically (every 60 seconds) to adjust output
1358 * power to temperature changes.
1359 */
1360void
1361wpi_power_calibration(struct wpi_softc *sc, int temp)
1362{
1363	/* sanity-check read value */
1364	if (temp < -260 || temp > 25) {
1365		/* this can't be correct, ignore */
1366		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1367		return;
1368	}
1369
1370	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1371
1372	/* adjust Tx power if need be */
1373	if (abs(temp - sc->temp) <= 6)
1374		return;
1375
1376	sc->temp = temp;
1377
1378	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1379		/* just warn, too bad for the automatic calibration... */
1380		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1381	}
1382}
1383
1384static void
1385wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1386	struct wpi_rx_data *data)
1387{
1388	struct ieee80211com *ic = &sc->sc_ic;
1389	struct ifnet *ifp = ic->ic_ifp;
1390	struct wpi_rx_ring *ring = &sc->rxq;
1391	struct wpi_rx_stat *stat;
1392	struct wpi_rx_head *head;
1393	struct wpi_rx_tail *tail;
1394	struct wpi_rbuf *rbuf;
1395	struct ieee80211_frame *wh;
1396	struct ieee80211_node *ni;
1397	struct mbuf *m, *mnew;
1398	int data_off ;
1399
1400	stat = (struct wpi_rx_stat *)(desc + 1);
1401
1402	if (stat->len > WPI_STAT_MAXLEN) {
1403		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1404		ifp->if_ierrors++;
1405		return;
1406	}
1407
1408	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1409	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1410
1411	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1412		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1413		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1414		le64toh(tail->tstamp)));
1415
1416	/*
1417	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1418	 * to radiotap in monitor mode).
1419	 */
1420	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1421		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1422		ifp->if_ierrors++;
1423		return;
1424	}
1425
1426	/* Compute where are the useful datas */
1427	data_off = (char*)(head + 1) - mtod(data->m, char*);
1428
1429	/*
1430	 * If the number of free entry is too low
1431	 * just dup the data->m socket and reuse the same rbuf entry
1432	 * Note that thi test is not protected by a mutex because the
1433	 * only path that causes nb_free_entries to decrease is through
1434	 * this interrupt routine, which is not re-entrent.
1435	 * What may not be obvious is that the safe path is if that test
1436	 * evaluates as true, so nb_free_entries can grow any time.
1437	 */
1438	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1439
1440		/* Prepare the mbuf for the m_dup */
1441		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1442		data->m->m_data = (char*) data->m->m_data + data_off;
1443
1444		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1445
1446		/* Restore the m_data pointer for future use */
1447		data->m->m_data = (char*) data->m->m_data - data_off;
1448
1449		if (m == NULL) {
1450			ifp->if_ierrors++;
1451			return;
1452		}
1453	} else {
1454
1455		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1456		if (mnew == NULL) {
1457			ifp->if_ierrors++;
1458			return;
1459		}
1460
1461		rbuf = wpi_alloc_rbuf(sc);
1462		KASSERT(rbuf != NULL);
1463
1464 		/* attach Rx buffer to mbuf */
1465		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1466		 	rbuf);
1467		mnew->m_flags |= M_EXT_RW;
1468
1469		m = data->m;
1470		data->m = mnew;
1471
1472		/* update Rx descriptor */
1473		ring->desc[ring->cur] = htole32(rbuf->paddr);
1474
1475		m->m_data = (char*)m->m_data + data_off;
1476		m->m_pkthdr.len = m->m_len = le16toh(head->len);
1477	}
1478
1479	/* finalize mbuf */
1480	m->m_pkthdr.rcvif = ifp;
1481
1482	if (ic->ic_state == IEEE80211_S_SCAN)
1483		wpi_fix_channel(ic, m);
1484
1485#if NBPFILTER > 0
1486	if (sc->sc_drvbpf != NULL) {
1487		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1488
1489		tap->wr_flags = 0;
1490		tap->wr_chan_freq =
1491			htole16(ic->ic_channels[head->chan].ic_freq);
1492		tap->wr_chan_flags =
1493			htole16(ic->ic_channels[head->chan].ic_flags);
1494		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1495		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1496		tap->wr_tsft = tail->tstamp;
1497		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1498		switch (head->rate) {
1499		/* CCK rates */
1500		case  10: tap->wr_rate =   2; break;
1501		case  20: tap->wr_rate =   4; break;
1502		case  55: tap->wr_rate =  11; break;
1503		case 110: tap->wr_rate =  22; break;
1504		/* OFDM rates */
1505		case 0xd: tap->wr_rate =  12; break;
1506		case 0xf: tap->wr_rate =  18; break;
1507		case 0x5: tap->wr_rate =  24; break;
1508		case 0x7: tap->wr_rate =  36; break;
1509		case 0x9: tap->wr_rate =  48; break;
1510		case 0xb: tap->wr_rate =  72; break;
1511		case 0x1: tap->wr_rate =  96; break;
1512		case 0x3: tap->wr_rate = 108; break;
1513		/* unknown rate: should not happen */
1514		default:  tap->wr_rate =   0;
1515		}
1516		if (le16toh(head->flags) & 0x4)
1517			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1518
1519		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1520	}
1521#endif
1522
1523	/* grab a reference to the source node */
1524	wh = mtod(m, struct ieee80211_frame *);
1525	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1526
1527	/* send the frame to the 802.11 layer */
1528	ieee80211_input(ic, m, ni, stat->rssi, 0);
1529
1530	/* release node reference */
1531	ieee80211_free_node(ni);
1532}
1533
1534static void
1535wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1536{
1537	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1538	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1539	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1540	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1541	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1542
1543	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1544		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1545		stat->nkill, stat->rate, le32toh(stat->duration),
1546		le32toh(stat->status)));
1547
1548	/*
1549	 * Update rate control statistics for the node.
1550	 * XXX we should not count mgmt frames since they're always sent at
1551	 * the lowest available bit-rate.
1552	 */
1553	wn->amn.amn_txcnt++;
1554	if (stat->ntries > 0) {
1555		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1556		wn->amn.amn_retrycnt++;
1557	}
1558
1559	if ((le32toh(stat->status) & 0xff) != 1)
1560		ifp->if_oerrors++;
1561	else
1562		ifp->if_opackets++;
1563
1564	bus_dmamap_unload(sc->sc_dmat, txdata->map);
1565	m_freem(txdata->m);
1566	txdata->m = NULL;
1567	ieee80211_free_node(txdata->ni);
1568	txdata->ni = NULL;
1569
1570	ring->queued--;
1571
1572	sc->sc_tx_timer = 0;
1573	ifp->if_flags &= ~IFF_OACTIVE;
1574	wpi_start(ifp);
1575}
1576
1577static void
1578wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1579{
1580	struct wpi_tx_ring *ring = &sc->cmdq;
1581	struct wpi_tx_data *data;
1582
1583	if ((desc->qid & 7) != 4)
1584		return;	/* not a command ack */
1585
1586	data = &ring->data[desc->idx];
1587
1588	/* if the command was mapped in a mbuf, free it */
1589	if (data->m != NULL) {
1590		bus_dmamap_unload(sc->sc_dmat, data->map);
1591		m_freem(data->m);
1592		data->m = NULL;
1593	}
1594
1595	wakeup(&ring->cmd[desc->idx]);
1596}
1597
1598static void
1599wpi_notif_intr(struct wpi_softc *sc)
1600{
1601	struct ieee80211com *ic = &sc->sc_ic;
1602	struct ifnet *ifp =  ic->ic_ifp;
1603	struct wpi_rx_desc *desc;
1604	struct wpi_rx_data *data;
1605	uint32_t hw;
1606
1607	hw = le32toh(sc->shared->next);
1608	while (sc->rxq.cur != hw) {
1609		data = &sc->rxq.data[sc->rxq.cur];
1610
1611		desc = mtod(data->m, struct wpi_rx_desc *);
1612
1613		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1614			"len=%d\n", desc->qid, desc->idx, desc->flags,
1615			desc->type, le32toh(desc->len)));
1616
1617		if (!(desc->qid & 0x80))	/* reply to a command */
1618			wpi_cmd_intr(sc, desc);
1619
1620		switch (desc->type) {
1621		case WPI_RX_DONE:
1622			/* a 802.11 frame was received */
1623			wpi_rx_intr(sc, desc, data);
1624			break;
1625
1626		case WPI_TX_DONE:
1627			/* a 802.11 frame has been transmitted */
1628			wpi_tx_intr(sc, desc);
1629			break;
1630
1631		case WPI_UC_READY:
1632		{
1633			struct wpi_ucode_info *uc =
1634				(struct wpi_ucode_info *)(desc + 1);
1635
1636			/* the microcontroller is ready */
1637			DPRINTF(("microcode alive notification version %x "
1638				"alive %x\n", le32toh(uc->version),
1639				le32toh(uc->valid)));
1640
1641			if (le32toh(uc->valid) != 1) {
1642				aprint_error_dev(sc->sc_dev,
1643					"microcontroller initialization failed\n");
1644			}
1645			break;
1646		}
1647		case WPI_STATE_CHANGED:
1648		{
1649			uint32_t *status = (uint32_t *)(desc + 1);
1650
1651			/* enabled/disabled notification */
1652			DPRINTF(("state changed to %x\n", le32toh(*status)));
1653
1654			if (le32toh(*status) & 1) {
1655				/* the radio button has to be pushed */
1656				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1657				/* turn the interface down */
1658				ifp->if_flags &= ~IFF_UP;
1659				wpi_stop(ifp, 1);
1660				return;	/* no further processing */
1661			}
1662			break;
1663		}
1664		case WPI_START_SCAN:
1665		{
1666			struct wpi_start_scan *scan =
1667				(struct wpi_start_scan *)(desc + 1);
1668
1669			DPRINTFN(2, ("scanning channel %d status %x\n",
1670				scan->chan, le32toh(scan->status)));
1671
1672			/* fix current channel */
1673			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1674			break;
1675		}
1676		case WPI_STOP_SCAN:
1677		{
1678			struct wpi_stop_scan *scan =
1679				(struct wpi_stop_scan *)(desc + 1);
1680
1681			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1682				scan->nchan, scan->status, scan->chan));
1683
1684			if (scan->status == 1 && scan->chan <= 14) {
1685				/*
1686				 * We just finished scanning 802.11g channels,
1687				 * start scanning 802.11a ones.
1688				 */
1689				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1690					break;
1691			}
1692			sc->is_scanning = false;
1693			ieee80211_end_scan(ic);
1694			break;
1695		}
1696		}
1697
1698		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1699	}
1700
1701	/* tell the firmware what we have processed */
1702	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1703	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1704}
1705
1706static int
1707wpi_intr(void *arg)
1708{
1709	struct wpi_softc *sc = arg;
1710	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1711	uint32_t r;
1712
1713	r = WPI_READ(sc, WPI_INTR);
1714	if (r == 0 || r == 0xffffffff)
1715		return 0;	/* not for us */
1716
1717	DPRINTFN(5, ("interrupt reg %x\n", r));
1718
1719	/* disable interrupts */
1720	WPI_WRITE(sc, WPI_MASK, 0);
1721	/* ack interrupts */
1722	WPI_WRITE(sc, WPI_INTR, r);
1723
1724	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1725		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1726		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1727		wpi_stop(sc->sc_ic.ic_ifp, 1);
1728		return 1;
1729	}
1730
1731	if (r & WPI_RX_INTR)
1732		wpi_notif_intr(sc);
1733
1734	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1735		wakeup(sc);
1736
1737	/* re-enable interrupts */
1738	if (ifp->if_flags & IFF_UP)
1739		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1740
1741	return 1;
1742}
1743
1744static uint8_t
1745wpi_plcp_signal(int rate)
1746{
1747	switch (rate) {
1748	/* CCK rates (returned values are device-dependent) */
1749	case 2:		return 10;
1750	case 4:		return 20;
1751	case 11:	return 55;
1752	case 22:	return 110;
1753
1754	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1755	/* R1-R4, (u)ral is R4-R1 */
1756	case 12:	return 0xd;
1757	case 18:	return 0xf;
1758	case 24:	return 0x5;
1759	case 36:	return 0x7;
1760	case 48:	return 0x9;
1761	case 72:	return 0xb;
1762	case 96:	return 0x1;
1763	case 108:	return 0x3;
1764
1765	/* unsupported rates (should not get there) */
1766	default:	return 0;
1767	}
1768}
1769
1770/* quickly determine if a given rate is CCK or OFDM */
1771#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1772
1773static int
1774wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1775	int ac)
1776{
1777	struct ieee80211com *ic = &sc->sc_ic;
1778	struct wpi_tx_ring *ring = &sc->txq[ac];
1779	struct wpi_tx_desc *desc;
1780	struct wpi_tx_data *data;
1781	struct wpi_tx_cmd *cmd;
1782	struct wpi_cmd_data *tx;
1783	struct ieee80211_frame *wh;
1784	struct ieee80211_key *k;
1785	const struct chanAccParams *cap;
1786	struct mbuf *mnew;
1787	int i, error, rate, hdrlen, noack = 0;
1788
1789	desc = &ring->desc[ring->cur];
1790	data = &ring->data[ring->cur];
1791
1792	wh = mtod(m0, struct ieee80211_frame *);
1793
1794	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1795		cap = &ic->ic_wme.wme_chanParams;
1796		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1797	}
1798
1799	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1800		k = ieee80211_crypto_encap(ic, ni, m0);
1801		if (k == NULL) {
1802			m_freem(m0);
1803			return ENOBUFS;
1804		}
1805
1806		/* packet header may have moved, reset our local pointer */
1807		wh = mtod(m0, struct ieee80211_frame *);
1808	}
1809
1810	hdrlen = ieee80211_anyhdrsize(wh);
1811
1812	/* pickup a rate */
1813	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1814		IEEE80211_FC0_TYPE_MGT) {
1815		/* mgmt frames are sent at the lowest available bit-rate */
1816		rate = ni->ni_rates.rs_rates[0];
1817	} else {
1818		if (ic->ic_fixed_rate != -1) {
1819			rate = ic->ic_sup_rates[ic->ic_curmode].
1820				rs_rates[ic->ic_fixed_rate];
1821		} else
1822			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1823	}
1824	rate &= IEEE80211_RATE_VAL;
1825
1826
1827#if NBPFILTER > 0
1828	if (sc->sc_drvbpf != NULL) {
1829		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1830
1831		tap->wt_flags = 0;
1832		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1833		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1834		tap->wt_rate = rate;
1835		tap->wt_hwqueue = ac;
1836		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1837			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1838
1839		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1840	}
1841#endif
1842
1843	cmd = &ring->cmd[ring->cur];
1844	cmd->code = WPI_CMD_TX_DATA;
1845	cmd->flags = 0;
1846	cmd->qid = ring->qid;
1847	cmd->idx = ring->cur;
1848
1849	tx = (struct wpi_cmd_data *)cmd->data;
1850	tx->flags = 0;
1851
1852	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1853		tx->flags |= htole32(WPI_TX_NEED_ACK);
1854	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1855		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1856
1857	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1858
1859	/* retrieve destination node's id */
1860	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1861		WPI_ID_BSS;
1862
1863	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1864		IEEE80211_FC0_TYPE_MGT) {
1865		/* tell h/w to set timestamp in probe responses */
1866		if ((wh->i_fc[0] &
1867		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1868		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1869			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1870
1871		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1872			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1873			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1874			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1875			tx->timeout = htole16(3);
1876		else
1877			tx->timeout = htole16(2);
1878	} else
1879		tx->timeout = htole16(0);
1880
1881	tx->rate = wpi_plcp_signal(rate);
1882
1883	/* be very persistant at sending frames out */
1884	tx->rts_ntries = 7;
1885	tx->data_ntries = 15;
1886
1887	tx->ofdm_mask = 0xff;
1888	tx->cck_mask = 0xf;
1889	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1890
1891	tx->len = htole16(m0->m_pkthdr.len);
1892
1893	/* save and trim IEEE802.11 header */
1894	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1895	m_adj(m0, hdrlen);
1896
1897	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1898		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1899	if (error != 0 && error != EFBIG) {
1900		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1901		m_freem(m0);
1902		return error;
1903	}
1904	if (error != 0) {
1905		/* too many fragments, linearize */
1906		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1907		if (mnew == NULL) {
1908			m_freem(m0);
1909			return ENOMEM;
1910		}
1911
1912		M_COPY_PKTHDR(mnew, m0);
1913		if (m0->m_pkthdr.len > MHLEN) {
1914			MCLGET(mnew, M_DONTWAIT);
1915			if (!(mnew->m_flags & M_EXT)) {
1916				m_freem(m0);
1917				m_freem(mnew);
1918				return ENOMEM;
1919			}
1920		}
1921
1922		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1923		m_freem(m0);
1924		mnew->m_len = mnew->m_pkthdr.len;
1925		m0 = mnew;
1926
1927		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1928			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1929		if (error != 0) {
1930			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1931							 error);
1932			m_freem(m0);
1933			return error;
1934		}
1935	}
1936
1937	data->m = m0;
1938	data->ni = ni;
1939
1940	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1941		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1942
1943	/* first scatter/gather segment is used by the tx data command */
1944	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1945		(1 + data->map->dm_nsegs) << 24);
1946	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1947		ring->cur * sizeof (struct wpi_tx_cmd));
1948	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
1949						 ((hdrlen + 3) & ~3));
1950
1951	for (i = 1; i <= data->map->dm_nsegs; i++) {
1952		desc->segs[i].addr =
1953			htole32(data->map->dm_segs[i - 1].ds_addr);
1954		desc->segs[i].len  =
1955			htole32(data->map->dm_segs[i - 1].ds_len);
1956	}
1957
1958	ring->queued++;
1959
1960	/* kick ring */
1961	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1962	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1963
1964	return 0;
1965}
1966
1967static void
1968wpi_start(struct ifnet *ifp)
1969{
1970	struct wpi_softc *sc = ifp->if_softc;
1971	struct ieee80211com *ic = &sc->sc_ic;
1972	struct ieee80211_node *ni;
1973	struct ether_header *eh;
1974	struct mbuf *m0;
1975	int ac;
1976
1977	/*
1978	 * net80211 may still try to send management frames even if the
1979	 * IFF_RUNNING flag is not set...
1980	 */
1981	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1982		return;
1983
1984	for (;;) {
1985		IF_DEQUEUE(&ic->ic_mgtq, m0);
1986		if (m0 != NULL) {
1987
1988			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1989			m0->m_pkthdr.rcvif = NULL;
1990
1991			/* management frames go into ring 0 */
1992			if (sc->txq[0].queued > sc->txq[0].count - 8) {
1993				ifp->if_oerrors++;
1994				continue;
1995			}
1996#if NBPFILTER > 0
1997			if (ic->ic_rawbpf != NULL)
1998				bpf_mtap(ic->ic_rawbpf, m0);
1999#endif
2000			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2001				ifp->if_oerrors++;
2002				break;
2003			}
2004		} else {
2005			if (ic->ic_state != IEEE80211_S_RUN)
2006				break;
2007			IFQ_POLL(&ifp->if_snd, m0);
2008			if (m0 == NULL)
2009				break;
2010
2011			if (m0->m_len < sizeof (*eh) &&
2012			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2013				ifp->if_oerrors++;
2014				continue;
2015			}
2016			eh = mtod(m0, struct ether_header *);
2017			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2018			if (ni == NULL) {
2019				m_freem(m0);
2020				ifp->if_oerrors++;
2021				continue;
2022			}
2023
2024			/* classify mbuf so we can find which tx ring to use */
2025			if (ieee80211_classify(ic, m0, ni) != 0) {
2026				m_freem(m0);
2027				ieee80211_free_node(ni);
2028				ifp->if_oerrors++;
2029				continue;
2030			}
2031
2032			/* no QoS encapsulation for EAPOL frames */
2033			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2034			    M_WME_GETAC(m0) : WME_AC_BE;
2035
2036			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2037				/* there is no place left in this ring */
2038				ifp->if_flags |= IFF_OACTIVE;
2039				break;
2040			}
2041			IFQ_DEQUEUE(&ifp->if_snd, m0);
2042#if NBPFILTER > 0
2043			if (ifp->if_bpf != NULL)
2044				bpf_mtap(ifp->if_bpf, m0);
2045#endif
2046			m0 = ieee80211_encap(ic, m0, ni);
2047			if (m0 == NULL) {
2048				ieee80211_free_node(ni);
2049				ifp->if_oerrors++;
2050				continue;
2051			}
2052#if NBPFILTER > 0
2053			if (ic->ic_rawbpf != NULL)
2054				bpf_mtap(ic->ic_rawbpf, m0);
2055#endif
2056			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2057				ieee80211_free_node(ni);
2058				ifp->if_oerrors++;
2059				break;
2060			}
2061		}
2062
2063		sc->sc_tx_timer = 5;
2064		ifp->if_timer = 1;
2065	}
2066}
2067
2068static void
2069wpi_watchdog(struct ifnet *ifp)
2070{
2071	struct wpi_softc *sc = ifp->if_softc;
2072
2073	ifp->if_timer = 0;
2074
2075	if (sc->sc_tx_timer > 0) {
2076		if (--sc->sc_tx_timer == 0) {
2077			aprint_error_dev(sc->sc_dev, "device timeout\n");
2078			ifp->if_oerrors++;
2079			ifp->if_flags &= ~IFF_UP;
2080			wpi_stop(ifp, 1);
2081			return;
2082		}
2083		ifp->if_timer = 1;
2084	}
2085
2086	ieee80211_watchdog(&sc->sc_ic);
2087}
2088
2089static int
2090wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2091{
2092#define IS_RUNNING(ifp) \
2093	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2094
2095	struct wpi_softc *sc = ifp->if_softc;
2096	struct ieee80211com *ic = &sc->sc_ic;
2097	int s, error = 0;
2098
2099	s = splnet();
2100
2101	switch (cmd) {
2102	case SIOCSIFFLAGS:
2103		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2104			break;
2105		if (ifp->if_flags & IFF_UP) {
2106			if (!(ifp->if_flags & IFF_RUNNING))
2107				wpi_init(ifp);
2108		} else {
2109			if (ifp->if_flags & IFF_RUNNING)
2110				wpi_stop(ifp, 1);
2111		}
2112		break;
2113
2114	case SIOCADDMULTI:
2115	case SIOCDELMULTI:
2116		/* XXX no h/w multicast filter? --dyoung */
2117		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2118			/* setup multicast filter, etc */
2119			error = 0;
2120		}
2121		break;
2122
2123	default:
2124		error = ieee80211_ioctl(ic, cmd, data);
2125	}
2126
2127	if (error == ENETRESET) {
2128		if (IS_RUNNING(ifp) &&
2129			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2130			wpi_init(ifp);
2131		error = 0;
2132	}
2133
2134	splx(s);
2135	return error;
2136
2137#undef IS_RUNNING
2138}
2139
2140/*
2141 * Extract various information from EEPROM.
2142 */
2143static void
2144wpi_read_eeprom(struct wpi_softc *sc)
2145{
2146	struct ieee80211com *ic = &sc->sc_ic;
2147	char domain[4];
2148	int i;
2149
2150	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2151	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2152	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2153
2154	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2155	    sc->type));
2156
2157	/* read and print regulatory domain */
2158	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2159	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2160
2161	/* read and print MAC address */
2162	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2163	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2164
2165	/* read the list of authorized channels */
2166	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2167		wpi_read_eeprom_channels(sc, i);
2168
2169	/* read the list of power groups */
2170	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2171		wpi_read_eeprom_group(sc, i);
2172}
2173
2174static void
2175wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2176{
2177	struct ieee80211com *ic = &sc->sc_ic;
2178	const struct wpi_chan_band *band = &wpi_bands[n];
2179	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2180	int chan, i;
2181
2182	wpi_read_prom_data(sc, band->addr, channels,
2183	    band->nchan * sizeof (struct wpi_eeprom_chan));
2184
2185	for (i = 0; i < band->nchan; i++) {
2186		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2187			continue;
2188
2189		chan = band->chan[i];
2190
2191		if (n == 0) {	/* 2GHz band */
2192			ic->ic_channels[chan].ic_freq =
2193			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2194			ic->ic_channels[chan].ic_flags =
2195			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2196			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2197
2198		} else {	/* 5GHz band */
2199			/*
2200			 * Some 3945abg adapters support channels 7, 8, 11
2201			 * and 12 in the 2GHz *and* 5GHz bands.
2202			 * Because of limitations in our net80211(9) stack,
2203			 * we can't support these channels in 5GHz band.
2204			 */
2205			if (chan <= 14)
2206				continue;
2207
2208			ic->ic_channels[chan].ic_freq =
2209			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2210			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2211		}
2212
2213		/* is active scan allowed on this channel? */
2214		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2215			ic->ic_channels[chan].ic_flags |=
2216			    IEEE80211_CHAN_PASSIVE;
2217		}
2218
2219		/* save maximum allowed power for this channel */
2220		sc->maxpwr[chan] = channels[i].maxpwr;
2221
2222		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2223		    chan, channels[i].flags, sc->maxpwr[chan]));
2224	}
2225}
2226
2227static void
2228wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2229{
2230	struct wpi_power_group *group = &sc->groups[n];
2231	struct wpi_eeprom_group rgroup;
2232	int i;
2233
2234	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2235	    sizeof rgroup);
2236
2237	/* save power group information */
2238	group->chan   = rgroup.chan;
2239	group->maxpwr = rgroup.maxpwr;
2240	/* temperature at which the samples were taken */
2241	group->temp   = (int16_t)le16toh(rgroup.temp);
2242
2243	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2244	    group->chan, group->maxpwr, group->temp));
2245
2246	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2247		group->samples[i].index = rgroup.samples[i].index;
2248		group->samples[i].power = rgroup.samples[i].power;
2249
2250		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2251		    group->samples[i].index, group->samples[i].power));
2252	}
2253}
2254
2255/*
2256 * Send a command to the firmware.
2257 */
2258static int
2259wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2260{
2261	struct wpi_tx_ring *ring = &sc->cmdq;
2262	struct wpi_tx_desc *desc;
2263	struct wpi_tx_cmd *cmd;
2264
2265	KASSERT(size <= sizeof cmd->data);
2266
2267	desc = &ring->desc[ring->cur];
2268	cmd = &ring->cmd[ring->cur];
2269
2270	cmd->code = code;
2271	cmd->flags = 0;
2272	cmd->qid = ring->qid;
2273	cmd->idx = ring->cur;
2274	memcpy(cmd->data, buf, size);
2275
2276	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2277	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2278		ring->cur * sizeof (struct wpi_tx_cmd));
2279	desc->segs[0].len  = htole32(4 + size);
2280
2281	/* kick cmd ring */
2282	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2283	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2284
2285	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2286}
2287
2288static int
2289wpi_wme_update(struct ieee80211com *ic)
2290{
2291#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2292#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2293	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2294	const struct wmeParams *wmep;
2295	struct wpi_wme_setup wme;
2296	int ac;
2297
2298	/* don't override default WME values if WME is not actually enabled */
2299	if (!(ic->ic_flags & IEEE80211_F_WME))
2300		return 0;
2301
2302	wme.flags = 0;
2303	for (ac = 0; ac < WME_NUM_AC; ac++) {
2304		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2305		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2306		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2307		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2308		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2309
2310		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2311		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2312		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2313	}
2314
2315	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2316#undef WPI_USEC
2317#undef WPI_EXP2
2318}
2319
2320/*
2321 * Configure h/w multi-rate retries.
2322 */
2323static int
2324wpi_mrr_setup(struct wpi_softc *sc)
2325{
2326	struct ieee80211com *ic = &sc->sc_ic;
2327	struct wpi_mrr_setup mrr;
2328	int i, error;
2329
2330	/* CCK rates (not used with 802.11a) */
2331	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2332		mrr.rates[i].flags = 0;
2333		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2334		/* fallback to the immediate lower CCK rate (if any) */
2335		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2336		/* try one time at this rate before falling back to "next" */
2337		mrr.rates[i].ntries = 1;
2338	}
2339
2340	/* OFDM rates (not used with 802.11b) */
2341	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2342		mrr.rates[i].flags = 0;
2343		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2344		/* fallback to the immediate lower rate (if any) */
2345		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2346		mrr.rates[i].next = (i == WPI_OFDM6) ?
2347		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2348			WPI_OFDM6 : WPI_CCK2) :
2349		    i - 1;
2350		/* try one time at this rate before falling back to "next" */
2351		mrr.rates[i].ntries = 1;
2352	}
2353
2354	/* setup MRR for control frames */
2355	mrr.which = htole32(WPI_MRR_CTL);
2356	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2357	if (error != 0) {
2358		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2359		return error;
2360	}
2361
2362	/* setup MRR for data frames */
2363	mrr.which = htole32(WPI_MRR_DATA);
2364	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2365	if (error != 0) {
2366		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2367		return error;
2368	}
2369
2370	return 0;
2371}
2372
2373static void
2374wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2375{
2376	struct wpi_cmd_led led;
2377
2378	led.which = which;
2379	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2380	led.off = off;
2381	led.on = on;
2382
2383	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2384}
2385
2386static void
2387wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2388{
2389	struct wpi_cmd_tsf tsf;
2390	uint64_t val, mod;
2391
2392	memset(&tsf, 0, sizeof tsf);
2393	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2394	tsf.bintval = htole16(ni->ni_intval);
2395	tsf.lintval = htole16(10);
2396
2397	/* compute remaining time until next beacon */
2398	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
2399	mod = le64toh(tsf.tstamp) % val;
2400	tsf.binitval = htole32((uint32_t)(val - mod));
2401
2402	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2403	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2404
2405	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2406		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2407}
2408
2409/*
2410 * Update Tx power to match what is defined for channel `c'.
2411 */
2412static int
2413wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2414{
2415	struct ieee80211com *ic = &sc->sc_ic;
2416	struct wpi_power_group *group;
2417	struct wpi_cmd_txpower txpower;
2418	u_int chan;
2419	int i;
2420
2421	/* get channel number */
2422	chan = ieee80211_chan2ieee(ic, c);
2423
2424	/* find the power group to which this channel belongs */
2425	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2426		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2427			if (chan <= group->chan)
2428				break;
2429	} else
2430		group = &sc->groups[0];
2431
2432	memset(&txpower, 0, sizeof txpower);
2433	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2434	txpower.chan = htole16(chan);
2435
2436	/* set Tx power for all OFDM and CCK rates */
2437	for (i = 0; i <= 11 ; i++) {
2438		/* retrieve Tx power for this channel/rate combination */
2439		int idx = wpi_get_power_index(sc, group, c,
2440		    wpi_ridx_to_rate[i]);
2441
2442		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2443
2444		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2445			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2446			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2447		} else {
2448			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2449			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2450		}
2451		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2452		    wpi_ridx_to_rate[i], idx));
2453	}
2454
2455	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2456}
2457
2458/*
2459 * Determine Tx power index for a given channel/rate combination.
2460 * This takes into account the regulatory information from EEPROM and the
2461 * current temperature.
2462 */
2463static int
2464wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2465    struct ieee80211_channel *c, int rate)
2466{
2467/* fixed-point arithmetic division using a n-bit fractional part */
2468#define fdivround(a, b, n)	\
2469	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2470
2471/* linear interpolation */
2472#define interpolate(x, x1, y1, x2, y2, n)	\
2473	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2474
2475	struct ieee80211com *ic = &sc->sc_ic;
2476	struct wpi_power_sample *sample;
2477	int pwr, idx;
2478	u_int chan;
2479
2480	/* get channel number */
2481	chan = ieee80211_chan2ieee(ic, c);
2482
2483	/* default power is group's maximum power - 3dB */
2484	pwr = group->maxpwr / 2;
2485
2486	/* decrease power for highest OFDM rates to reduce distortion */
2487	switch (rate) {
2488	case 72:	/* 36Mb/s */
2489		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2490		break;
2491	case 96:	/* 48Mb/s */
2492		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2493		break;
2494	case 108:	/* 54Mb/s */
2495		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2496		break;
2497	}
2498
2499	/* never exceed channel's maximum allowed Tx power */
2500	pwr = min(pwr, sc->maxpwr[chan]);
2501
2502	/* retrieve power index into gain tables from samples */
2503	for (sample = group->samples; sample < &group->samples[3]; sample++)
2504		if (pwr > sample[1].power)
2505			break;
2506	/* fixed-point linear interpolation using a 19-bit fractional part */
2507	idx = interpolate(pwr, sample[0].power, sample[0].index,
2508	    sample[1].power, sample[1].index, 19);
2509
2510	/*
2511	 * Adjust power index based on current temperature:
2512	 * - if cooler than factory-calibrated: decrease output power
2513	 * - if warmer than factory-calibrated: increase output power
2514	 */
2515	idx -= (sc->temp - group->temp) * 11 / 100;
2516
2517	/* decrease power for CCK rates (-5dB) */
2518	if (!WPI_RATE_IS_OFDM(rate))
2519		idx += 10;
2520
2521	/* keep power index in a valid range */
2522	if (idx < 0)
2523		return 0;
2524	if (idx > WPI_MAX_PWR_INDEX)
2525		return WPI_MAX_PWR_INDEX;
2526	return idx;
2527
2528#undef interpolate
2529#undef fdivround
2530}
2531
2532/*
2533 * Build a beacon frame that the firmware will broadcast periodically in
2534 * IBSS or HostAP modes.
2535 */
2536static int
2537wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2538{
2539	struct ieee80211com *ic = &sc->sc_ic;
2540	struct wpi_tx_ring *ring = &sc->cmdq;
2541	struct wpi_tx_desc *desc;
2542	struct wpi_tx_data *data;
2543	struct wpi_tx_cmd *cmd;
2544	struct wpi_cmd_beacon *bcn;
2545	struct ieee80211_beacon_offsets bo;
2546	struct mbuf *m0;
2547	int error;
2548
2549	desc = &ring->desc[ring->cur];
2550	data = &ring->data[ring->cur];
2551
2552	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2553	if (m0 == NULL) {
2554		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2555		return ENOMEM;
2556	}
2557
2558	cmd = &ring->cmd[ring->cur];
2559	cmd->code = WPI_CMD_SET_BEACON;
2560	cmd->flags = 0;
2561	cmd->qid = ring->qid;
2562	cmd->idx = ring->cur;
2563
2564	bcn = (struct wpi_cmd_beacon *)cmd->data;
2565	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2566	bcn->id = WPI_ID_BROADCAST;
2567	bcn->ofdm_mask = 0xff;
2568	bcn->cck_mask = 0x0f;
2569	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2570	bcn->len = htole16(m0->m_pkthdr.len);
2571	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2572		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2573	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2574
2575	/* save and trim IEEE802.11 header */
2576	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2577	m_adj(m0, sizeof (struct ieee80211_frame));
2578
2579	/* assume beacon frame is contiguous */
2580	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2581		BUS_DMA_READ | BUS_DMA_NOWAIT);
2582	if (error) {
2583		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2584		m_freem(m0);
2585		return error;
2586	}
2587
2588	data->m = m0;
2589
2590	/* first scatter/gather segment is used by the beacon command */
2591	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2592	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2593		ring->cur * sizeof (struct wpi_tx_cmd));
2594	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2595	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2596	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2597
2598	/* kick cmd ring */
2599	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2600	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2601
2602	return 0;
2603}
2604
2605static int
2606wpi_auth(struct wpi_softc *sc)
2607{
2608	struct ieee80211com *ic = &sc->sc_ic;
2609	struct ieee80211_node *ni = ic->ic_bss;
2610	struct wpi_node_info node;
2611	int error;
2612
2613	/* update adapter's configuration */
2614	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2615	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2616	sc->config.flags = htole32(WPI_CONFIG_TSF);
2617	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2618		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2619		    WPI_CONFIG_24GHZ);
2620	}
2621	switch (ic->ic_curmode) {
2622	case IEEE80211_MODE_11A:
2623		sc->config.cck_mask  = 0;
2624		sc->config.ofdm_mask = 0x15;
2625		break;
2626	case IEEE80211_MODE_11B:
2627		sc->config.cck_mask  = 0x03;
2628		sc->config.ofdm_mask = 0;
2629		break;
2630	default:	/* assume 802.11b/g */
2631		sc->config.cck_mask  = 0x0f;
2632		sc->config.ofdm_mask = 0x15;
2633	}
2634
2635	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2636		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2637	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2638		sizeof (struct wpi_config), 1);
2639	if (error != 0) {
2640		aprint_error_dev(sc->sc_dev, "could not configure\n");
2641		return error;
2642	}
2643
2644	/* configuration has changed, set Tx power accordingly */
2645	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2646		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2647		return error;
2648	}
2649
2650	/* add default node */
2651	memset(&node, 0, sizeof node);
2652	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2653	node.id = WPI_ID_BSS;
2654	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2655	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2656	node.action = htole32(WPI_ACTION_SET_RATE);
2657	node.antenna = WPI_ANTENNA_BOTH;
2658	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2659	if (error != 0) {
2660		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2661		return error;
2662	}
2663
2664	return 0;
2665}
2666
2667/*
2668 * Send a scan request to the firmware.  Since this command is huge, we map it
2669 * into a mbuf instead of using the pre-allocated set of commands.
2670 */
2671static int
2672wpi_scan(struct wpi_softc *sc, uint16_t flags)
2673{
2674	struct ieee80211com *ic = &sc->sc_ic;
2675	struct wpi_tx_ring *ring = &sc->cmdq;
2676	struct wpi_tx_desc *desc;
2677	struct wpi_tx_data *data;
2678	struct wpi_tx_cmd *cmd;
2679	struct wpi_scan_hdr *hdr;
2680	struct wpi_scan_chan *chan;
2681	struct ieee80211_frame *wh;
2682	struct ieee80211_rateset *rs;
2683	struct ieee80211_channel *c;
2684	enum ieee80211_phymode mode;
2685	uint8_t *frm;
2686	int nrates, pktlen, error;
2687
2688	desc = &ring->desc[ring->cur];
2689	data = &ring->data[ring->cur];
2690
2691	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2692	if (data->m == NULL) {
2693		aprint_error_dev(sc->sc_dev,
2694						"could not allocate mbuf for scan command\n");
2695		return ENOMEM;
2696	}
2697
2698	MCLGET(data->m, M_DONTWAIT);
2699	if (!(data->m->m_flags & M_EXT)) {
2700		m_freem(data->m);
2701		data->m = NULL;
2702		aprint_error_dev(sc->sc_dev,
2703						 "could not allocate mbuf for scan command\n");
2704		return ENOMEM;
2705	}
2706
2707	cmd = mtod(data->m, struct wpi_tx_cmd *);
2708	cmd->code = WPI_CMD_SCAN;
2709	cmd->flags = 0;
2710	cmd->qid = ring->qid;
2711	cmd->idx = ring->cur;
2712
2713	hdr = (struct wpi_scan_hdr *)cmd->data;
2714	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2715	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2716	hdr->id = WPI_ID_BROADCAST;
2717	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2718
2719	/*
2720	 * Move to the next channel if no packets are received within 5 msecs
2721	 * after sending the probe request (this helps to reduce the duration
2722	 * of active scans).
2723	 */
2724	hdr->quiet = htole16(5);        /* timeout in milliseconds */
2725	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2726
2727	if (flags & IEEE80211_CHAN_A) {
2728		hdr->crc_threshold = htole16(1);
2729		/* send probe requests at 6Mbps */
2730		hdr->rate = wpi_plcp_signal(12);
2731	} else {
2732		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2733		/* send probe requests at 1Mbps */
2734		hdr->rate = wpi_plcp_signal(2);
2735	}
2736
2737	/* for directed scans, firmware inserts the essid IE itself */
2738	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2739	hdr->essid[0].len = ic->ic_des_esslen;
2740	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2741
2742	/*
2743	 * Build a probe request frame.  Most of the following code is a
2744	 * copy & paste of what is done in net80211.
2745	 */
2746	wh = (struct ieee80211_frame *)(hdr + 1);
2747	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2748		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2749	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2750	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2751	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2752	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2753	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2754	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2755
2756	frm = (uint8_t *)(wh + 1);
2757
2758	/* add empty essid IE (firmware generates it for directed scans) */
2759	*frm++ = IEEE80211_ELEMID_SSID;
2760	*frm++ = 0;
2761
2762	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2763	rs = &ic->ic_sup_rates[mode];
2764
2765	/* add supported rates IE */
2766	*frm++ = IEEE80211_ELEMID_RATES;
2767	nrates = rs->rs_nrates;
2768	if (nrates > IEEE80211_RATE_SIZE)
2769		nrates = IEEE80211_RATE_SIZE;
2770	*frm++ = nrates;
2771	memcpy(frm, rs->rs_rates, nrates);
2772	frm += nrates;
2773
2774	/* add supported xrates IE */
2775	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2776		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2777		*frm++ = IEEE80211_ELEMID_XRATES;
2778		*frm++ = nrates;
2779		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2780		frm += nrates;
2781	}
2782
2783	/* setup length of probe request */
2784	hdr->paylen = htole16(frm - (uint8_t *)wh);
2785
2786	chan = (struct wpi_scan_chan *)frm;
2787	for (c  = &ic->ic_channels[1];
2788	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2789		if ((c->ic_flags & flags) != flags)
2790			continue;
2791
2792		chan->chan = ieee80211_chan2ieee(ic, c);
2793		chan->flags = 0;
2794		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2795			chan->flags |= WPI_CHAN_ACTIVE;
2796			if (ic->ic_des_esslen != 0)
2797				chan->flags |= WPI_CHAN_DIRECT;
2798		}
2799		chan->dsp_gain = 0x6e;
2800		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2801			chan->rf_gain = 0x3b;
2802			chan->active = htole16(10);
2803			chan->passive = htole16(110);
2804		} else {
2805			chan->rf_gain = 0x28;
2806			chan->active = htole16(20);
2807			chan->passive = htole16(120);
2808		}
2809		hdr->nchan++;
2810		chan++;
2811
2812		frm += sizeof (struct wpi_scan_chan);
2813	}
2814	hdr->len = htole16(frm - (uint8_t *)hdr);
2815	pktlen = frm - (uint8_t *)cmd;
2816
2817	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2818		NULL, BUS_DMA_NOWAIT);
2819	if (error) {
2820		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2821		m_freem(data->m);
2822		data->m = NULL;
2823		return error;
2824	}
2825
2826	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2827	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2828	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2829
2830	/* kick cmd ring */
2831	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2832	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2833
2834	return 0;	/* will be notified async. of failure/success */
2835}
2836
2837static int
2838wpi_config(struct wpi_softc *sc)
2839{
2840	struct ieee80211com *ic = &sc->sc_ic;
2841	struct ifnet *ifp = ic->ic_ifp;
2842	struct wpi_power power;
2843	struct wpi_bluetooth bluetooth;
2844	struct wpi_node_info node;
2845	int error;
2846
2847	memset(&power, 0, sizeof power);
2848	power.flags = htole32(WPI_POWER_CAM | 0x8);
2849	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2850	if (error != 0) {
2851		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2852		return error;
2853	}
2854
2855	/* configure bluetooth coexistence */
2856	memset(&bluetooth, 0, sizeof bluetooth);
2857	bluetooth.flags = 3;
2858	bluetooth.lead = 0xaa;
2859	bluetooth.kill = 1;
2860	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2861		0);
2862	if (error != 0) {
2863		aprint_error_dev(sc->sc_dev,
2864			"could not configure bluetooth coexistence\n");
2865		return error;
2866	}
2867
2868	/* configure adapter */
2869	memset(&sc->config, 0, sizeof (struct wpi_config));
2870	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2871	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2872	/*set default channel*/
2873	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2874	sc->config.flags = htole32(WPI_CONFIG_TSF);
2875	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2876		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2877		    WPI_CONFIG_24GHZ);
2878	}
2879	sc->config.filter = 0;
2880	switch (ic->ic_opmode) {
2881	case IEEE80211_M_STA:
2882		sc->config.mode = WPI_MODE_STA;
2883		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2884		break;
2885	case IEEE80211_M_IBSS:
2886	case IEEE80211_M_AHDEMO:
2887		sc->config.mode = WPI_MODE_IBSS;
2888		break;
2889	case IEEE80211_M_HOSTAP:
2890		sc->config.mode = WPI_MODE_HOSTAP;
2891		break;
2892	case IEEE80211_M_MONITOR:
2893		sc->config.mode = WPI_MODE_MONITOR;
2894		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2895			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2896		break;
2897	}
2898	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2899	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2900	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2901		sizeof (struct wpi_config), 0);
2902	if (error != 0) {
2903		aprint_error_dev(sc->sc_dev, "configure command failed\n");
2904		return error;
2905	}
2906
2907	/* configuration has changed, set Tx power accordingly */
2908	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2909		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2910		return error;
2911	}
2912
2913	/* add broadcast node */
2914	memset(&node, 0, sizeof node);
2915	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2916	node.id = WPI_ID_BROADCAST;
2917	node.rate = wpi_plcp_signal(2);
2918	node.action = htole32(WPI_ACTION_SET_RATE);
2919	node.antenna = WPI_ANTENNA_BOTH;
2920	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2921	if (error != 0) {
2922		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2923		return error;
2924	}
2925
2926	if ((error = wpi_mrr_setup(sc)) != 0) {
2927		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2928		return error;
2929	}
2930
2931	return 0;
2932}
2933
2934static void
2935wpi_stop_master(struct wpi_softc *sc)
2936{
2937	uint32_t tmp;
2938	int ntries;
2939
2940	tmp = WPI_READ(sc, WPI_RESET);
2941	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2942
2943	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2944	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2945		return;	/* already asleep */
2946
2947	for (ntries = 0; ntries < 100; ntries++) {
2948		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2949			break;
2950		DELAY(10);
2951	}
2952	if (ntries == 100) {
2953		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2954	}
2955}
2956
2957static int
2958wpi_power_up(struct wpi_softc *sc)
2959{
2960	uint32_t tmp;
2961	int ntries;
2962
2963	wpi_mem_lock(sc);
2964	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2965	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2966	wpi_mem_unlock(sc);
2967
2968	for (ntries = 0; ntries < 5000; ntries++) {
2969		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2970			break;
2971		DELAY(10);
2972	}
2973	if (ntries == 5000) {
2974		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2975		return ETIMEDOUT;
2976	}
2977	return 0;
2978}
2979
2980static int
2981wpi_reset(struct wpi_softc *sc)
2982{
2983	uint32_t tmp;
2984	int ntries;
2985
2986	/* clear any pending interrupts */
2987	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2988
2989	tmp = WPI_READ(sc, WPI_PLL_CTL);
2990	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2991
2992	tmp = WPI_READ(sc, WPI_CHICKEN);
2993	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2994
2995	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2996	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2997
2998	/* wait for clock stabilization */
2999	for (ntries = 0; ntries < 1000; ntries++) {
3000		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3001			break;
3002		DELAY(10);
3003	}
3004	if (ntries == 1000) {
3005		aprint_error_dev(sc->sc_dev,
3006						 "timeout waiting for clock stabilization\n");
3007		return ETIMEDOUT;
3008	}
3009
3010	/* initialize EEPROM */
3011	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3012	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3013		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3014		return EIO;
3015	}
3016	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3017
3018	return 0;
3019}
3020
3021static void
3022wpi_hw_config(struct wpi_softc *sc)
3023{
3024	uint32_t rev, hw;
3025
3026	/* voodoo from the reference driver */
3027	hw = WPI_READ(sc, WPI_HWCONFIG);
3028
3029	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3030	rev = PCI_REVISION(rev);
3031	if ((rev & 0xc0) == 0x40)
3032		hw |= WPI_HW_ALM_MB;
3033	else if (!(rev & 0x80))
3034		hw |= WPI_HW_ALM_MM;
3035
3036	if (sc->cap == 0x80)
3037		hw |= WPI_HW_SKU_MRC;
3038
3039	hw &= ~WPI_HW_REV_D;
3040	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3041		hw |= WPI_HW_REV_D;
3042
3043	if (sc->type > 1)
3044		hw |= WPI_HW_TYPE_B;
3045
3046	DPRINTF(("setting h/w config %x\n", hw));
3047	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3048}
3049
3050static int
3051wpi_init(struct ifnet *ifp)
3052{
3053	struct wpi_softc *sc = ifp->if_softc;
3054	struct ieee80211com *ic = &sc->sc_ic;
3055	uint32_t tmp;
3056	int qid, ntries, error;
3057
3058	wpi_stop(ifp,1);
3059	(void)wpi_reset(sc);
3060
3061	wpi_mem_lock(sc);
3062	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3063	DELAY(20);
3064	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3065	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3066	wpi_mem_unlock(sc);
3067
3068	(void)wpi_power_up(sc);
3069	wpi_hw_config(sc);
3070
3071	/* init Rx ring */
3072	wpi_mem_lock(sc);
3073	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3074	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3075	    offsetof(struct wpi_shared, next));
3076	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3077	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3078	wpi_mem_unlock(sc);
3079
3080	/* init Tx rings */
3081	wpi_mem_lock(sc);
3082	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3083	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3084	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3085	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3086	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3087	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3088	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3089
3090	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3091	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3092
3093	for (qid = 0; qid < 6; qid++) {
3094		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3095		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3096		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3097	}
3098	wpi_mem_unlock(sc);
3099
3100	/* clear "radio off" and "disable command" bits (reversed logic) */
3101	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3102	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3103
3104	/* clear any pending interrupts */
3105	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3106	/* enable interrupts */
3107	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3108
3109	/* not sure why/if this is necessary... */
3110	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3111	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3112
3113	if ((error = wpi_load_firmware(sc)) != 0) {
3114		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3115		goto fail1;
3116	}
3117
3118	/* Check the status of the radio switch */
3119	if (wpi_getrfkill(sc)) {
3120		aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
3121		error = EBUSY;
3122		goto fail1;
3123	}
3124
3125	/* wait for thermal sensors to calibrate */
3126	for (ntries = 0; ntries < 1000; ntries++) {
3127		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3128			break;
3129		DELAY(10);
3130	}
3131	if (ntries == 1000) {
3132		aprint_error_dev(sc->sc_dev,
3133						 "timeout waiting for thermal sensors calibration\n");
3134		error = ETIMEDOUT;
3135		goto fail1;
3136	}
3137
3138	DPRINTF(("temperature %d\n", sc->temp));
3139
3140	if ((error = wpi_config(sc)) != 0) {
3141		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3142		goto fail1;
3143	}
3144
3145	ifp->if_flags &= ~IFF_OACTIVE;
3146	ifp->if_flags |= IFF_RUNNING;
3147
3148	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3149		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3150			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3151	}
3152	else
3153		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3154
3155	return 0;
3156
3157fail1:	wpi_stop(ifp, 1);
3158	return error;
3159}
3160
3161
3162static void
3163wpi_stop(struct ifnet *ifp, int disable)
3164{
3165	struct wpi_softc *sc = ifp->if_softc;
3166	struct ieee80211com *ic = &sc->sc_ic;
3167	uint32_t tmp;
3168	int ac;
3169
3170	ifp->if_timer = sc->sc_tx_timer = 0;
3171	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3172
3173	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3174
3175	/* disable interrupts */
3176	WPI_WRITE(sc, WPI_MASK, 0);
3177	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3178	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3179	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3180
3181	wpi_mem_lock(sc);
3182	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3183	wpi_mem_unlock(sc);
3184
3185	/* reset all Tx rings */
3186	for (ac = 0; ac < 4; ac++)
3187		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3188	wpi_reset_tx_ring(sc, &sc->cmdq);
3189
3190	/* reset Rx ring */
3191	wpi_reset_rx_ring(sc, &sc->rxq);
3192
3193	wpi_mem_lock(sc);
3194	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3195	wpi_mem_unlock(sc);
3196
3197	DELAY(5);
3198
3199	wpi_stop_master(sc);
3200
3201	tmp = WPI_READ(sc, WPI_RESET);
3202	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3203}
3204
3205static bool
3206wpi_resume(device_t dv PMF_FN_ARGS)
3207{
3208	struct wpi_softc *sc = device_private(dv);
3209
3210	(void)wpi_reset(sc);
3211
3212	return true;
3213}
3214
3215/*
3216 * Return whether or not the radio is enabled in hardware
3217 * (i.e. the rfkill switch is "off").
3218 */
3219static int
3220wpi_getrfkill(struct wpi_softc *sc)
3221{
3222	uint32_t tmp;
3223
3224	wpi_mem_lock(sc);
3225	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3226	wpi_mem_unlock(sc);
3227
3228	return !(tmp & 0x01);
3229}
3230
3231static int
3232wpi_sysctl_radio(SYSCTLFN_ARGS)
3233{
3234	struct sysctlnode node;
3235	struct wpi_softc *sc;
3236	int val, error;
3237
3238	node = *rnode;
3239	sc = (struct wpi_softc *)node.sysctl_data;
3240
3241	val = !wpi_getrfkill(sc);
3242
3243	node.sysctl_data = &val;
3244	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3245
3246	if (error || newp == NULL)
3247		return error;
3248
3249	return 0;
3250}
3251
3252static void
3253wpi_sysctlattach(struct wpi_softc *sc)
3254{
3255	int rc;
3256	const struct sysctlnode *rnode;
3257	const struct sysctlnode *cnode;
3258
3259	struct sysctllog **clog = &sc->sc_sysctllog;
3260
3261	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3262	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3263	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
3264		goto err;
3265
3266	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
3267	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3268	    SYSCTL_DESCR("wpi controls and statistics"),
3269	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
3270		goto err;
3271
3272	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3273	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3274	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3275	    wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3276		goto err;
3277
3278#ifdef WPI_DEBUG
3279	/* control debugging printfs */
3280	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3281	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3282	    "debug", SYSCTL_DESCR("Enable debugging output"),
3283	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3284		goto err;
3285#endif
3286
3287	return;
3288err:
3289	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3290}
3291