if_wpi.c revision 1.40
1/*  $NetBSD: if_wpi.c,v 1.40 2008/11/07 00:20:07 dyoung Exp $    */
2
3/*-
4 * Copyright (c) 2006, 2007
5 *	Damien Bergamini <damien.bergamini@free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20#include <sys/cdefs.h>
21__KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.40 2008/11/07 00:20:07 dyoung Exp $");
22
23/*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27#include "bpfilter.h"
28
29#include <sys/param.h>
30#include <sys/sockio.h>
31#include <sys/sysctl.h>
32#include <sys/mbuf.h>
33#include <sys/kernel.h>
34#include <sys/socket.h>
35#include <sys/systm.h>
36#include <sys/malloc.h>
37#include <sys/mutex.h>
38#include <sys/conf.h>
39#include <sys/kauth.h>
40#include <sys/callout.h>
41
42#include <sys/bus.h>
43#include <machine/endian.h>
44#include <sys/intr.h>
45
46#include <dev/pci/pcireg.h>
47#include <dev/pci/pcivar.h>
48#include <dev/pci/pcidevs.h>
49
50#if NBPFILTER > 0
51#include <net/bpf.h>
52#endif
53#include <net/if.h>
54#include <net/if_arp.h>
55#include <net/if_dl.h>
56#include <net/if_ether.h>
57#include <net/if_media.h>
58#include <net/if_types.h>
59
60#include <net80211/ieee80211_var.h>
61#include <net80211/ieee80211_amrr.h>
62#include <net80211/ieee80211_radiotap.h>
63
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/in_var.h>
67#include <netinet/ip.h>
68
69#include <dev/firmload.h>
70
71#include <dev/pci/if_wpireg.h>
72#include <dev/pci/if_wpivar.h>
73
74#ifdef WPI_DEBUG
75#define DPRINTF(x)	if (wpi_debug > 0) printf x
76#define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
77int wpi_debug = 1;
78#else
79#define DPRINTF(x)
80#define DPRINTFN(n, x)
81#endif
82
83/*
84 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
85 */
86static const struct ieee80211_rateset wpi_rateset_11a =
87	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
88
89static const struct ieee80211_rateset wpi_rateset_11b =
90	{ 4, { 2, 4, 11, 22 } };
91
92static const struct ieee80211_rateset wpi_rateset_11g =
93	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
94
95static int  wpi_match(device_t, struct cfdata *, void *);
96static void wpi_attach(device_t, device_t, void *);
97static int  wpi_detach(device_t , int);
98static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
99	void **, bus_size_t, bus_size_t, int);
100static void wpi_dma_contig_free(struct wpi_dma_info *);
101static int  wpi_alloc_shared(struct wpi_softc *);
102static void wpi_free_shared(struct wpi_softc *);
103static int  wpi_alloc_fwmem(struct wpi_softc *);
104static void wpi_free_fwmem(struct wpi_softc *);
105static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
106static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
107static int  wpi_alloc_rpool(struct wpi_softc *);
108static void wpi_free_rpool(struct wpi_softc *);
109static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
110static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
111static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
112static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
113	int);
114static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
115static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
116static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
117static void wpi_newassoc(struct ieee80211_node *, int);
118static int  wpi_media_change(struct ifnet *);
119static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
120static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
121static void wpi_mem_lock(struct wpi_softc *);
122static void wpi_mem_unlock(struct wpi_softc *);
123static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
124static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
125static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
126								   const uint32_t *, int);
127static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
128static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
129static int  wpi_load_firmware(struct wpi_softc *);
130static void wpi_calib_timeout(void *);
131static void wpi_iter_func(void *, struct ieee80211_node *);
132static void wpi_power_calibration(struct wpi_softc *, int);
133static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
134	struct wpi_rx_data *);
135static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
136static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
137static void wpi_notif_intr(struct wpi_softc *);
138static int  wpi_intr(void *);
139static void wpi_read_eeprom(struct wpi_softc *);
140static void wpi_read_eeprom_channels(struct wpi_softc *, int);
141static void wpi_read_eeprom_group(struct wpi_softc *, int);
142static uint8_t wpi_plcp_signal(int);
143static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
144	struct ieee80211_node *, int);
145static void wpi_start(struct ifnet *);
146static void wpi_watchdog(struct ifnet *);
147static int  wpi_ioctl(struct ifnet *, u_long, void *);
148static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
149static int  wpi_wme_update(struct ieee80211com *);
150static int  wpi_mrr_setup(struct wpi_softc *);
151static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
152static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
153static int  wpi_set_txpower(struct wpi_softc *,
154			    struct ieee80211_channel *, int);
155static int  wpi_get_power_index(struct wpi_softc *,
156		struct wpi_power_group *, struct ieee80211_channel *, int);
157static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
158static int  wpi_auth(struct wpi_softc *);
159static int  wpi_scan(struct wpi_softc *, uint16_t);
160static int  wpi_config(struct wpi_softc *);
161static void wpi_stop_master(struct wpi_softc *);
162static int  wpi_power_up(struct wpi_softc *);
163static int  wpi_reset(struct wpi_softc *);
164static void wpi_hw_config(struct wpi_softc *);
165static int  wpi_init(struct ifnet *);
166static void wpi_stop(struct ifnet *, int);
167static bool wpi_resume(device_t PMF_FN_PROTO);
168static int	wpi_getrfkill(struct wpi_softc *);
169static void wpi_sysctlattach(struct wpi_softc *);
170
171CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
172	wpi_detach, NULL);
173
174static int
175wpi_match(device_t parent, struct cfdata *match __unused, void *aux)
176{
177	struct pci_attach_args *pa = aux;
178
179	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
180		return 0;
181
182	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
183	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
184		return 1;
185
186	return 0;
187}
188
189/* Base Address Register */
190#define WPI_PCI_BAR0	0x10
191
192static void
193wpi_attach(device_t parent __unused, device_t self, void *aux)
194{
195	struct wpi_softc *sc = device_private(self);
196	struct ieee80211com *ic = &sc->sc_ic;
197	struct ifnet *ifp = &sc->sc_ec.ec_if;
198	struct pci_attach_args *pa = aux;
199	const char *intrstr;
200	char devinfo[256];
201	bus_space_tag_t memt;
202	bus_space_handle_t memh;
203	pci_intr_handle_t ih;
204	pcireg_t data;
205	int error, ac, revision;
206
207	sc->sc_dev = self;
208	sc->sc_pct = pa->pa_pc;
209	sc->sc_pcitag = pa->pa_tag;
210
211	callout_init(&sc->calib_to, 0);
212	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
213
214	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
215	revision = PCI_REVISION(pa->pa_class);
216	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
217
218	/* enable bus-mastering */
219	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
220	data |= PCI_COMMAND_MASTER_ENABLE;
221	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
222
223	/* map the register window */
224	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
225		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
226	if (error != 0) {
227		aprint_error_dev(self, "could not map memory space\n");
228		return;
229	}
230
231	sc->sc_st = memt;
232	sc->sc_sh = memh;
233	sc->sc_dmat = pa->pa_dmat;
234
235	if (pci_intr_map(pa, &ih) != 0) {
236		aprint_error_dev(self, "could not map interrupt\n");
237		return;
238	}
239
240	intrstr = pci_intr_string(sc->sc_pct, ih);
241	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
242	if (sc->sc_ih == NULL) {
243		aprint_error_dev(self, "could not establish interrupt");
244		if (intrstr != NULL)
245			aprint_error(" at %s", intrstr);
246		aprint_error("\n");
247		return;
248	}
249	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
250
251	if (wpi_reset(sc) != 0) {
252		aprint_error_dev(self, "could not reset adapter\n");
253		return;
254	}
255
256 	/*
257	 * Allocate DMA memory for firmware transfers.
258	 */
259	if ((error = wpi_alloc_fwmem(sc)) != 0)
260		return;
261
262	/*
263	 * Allocate shared page and Tx/Rx rings.
264	 */
265	if ((error = wpi_alloc_shared(sc)) != 0) {
266		aprint_error_dev(self, "could not allocate shared area\n");
267		goto fail1;
268	}
269
270	if ((error = wpi_alloc_rpool(sc)) != 0) {
271		aprint_error_dev(self, "could not allocate Rx buffers\n");
272		goto fail2;
273	}
274
275	for (ac = 0; ac < 4; ac++) {
276		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
277		if (error != 0) {
278			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
279			goto fail3;
280		}
281	}
282
283	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
284	if (error != 0) {
285		aprint_error_dev(self, "could not allocate command ring\n");
286		goto fail3;
287	}
288
289	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
290		aprint_error_dev(self, "could not allocate Rx ring\n");
291		goto fail4;
292	}
293
294	ic->ic_ifp = ifp;
295	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
296	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
297	ic->ic_state = IEEE80211_S_INIT;
298
299	/* set device capabilities */
300	ic->ic_caps =
301		IEEE80211_C_IBSS |       /* IBSS mode support */
302		IEEE80211_C_WPA |        /* 802.11i */
303		IEEE80211_C_MONITOR |    /* monitor mode supported */
304		IEEE80211_C_TXPMGT |     /* tx power management */
305		IEEE80211_C_SHSLOT |     /* short slot time supported */
306		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
307		IEEE80211_C_WME;         /* 802.11e */
308
309	/* read supported channels and MAC address from EEPROM */
310	wpi_read_eeprom(sc);
311
312	/* set supported .11a, .11b, .11g rates */
313	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
314	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
315	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
316
317	ic->ic_ibss_chan = &ic->ic_channels[0];
318
319	ifp->if_softc = sc;
320	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
321	ifp->if_init = wpi_init;
322	ifp->if_stop = wpi_stop;
323	ifp->if_ioctl = wpi_ioctl;
324	ifp->if_start = wpi_start;
325	ifp->if_watchdog = wpi_watchdog;
326	IFQ_SET_READY(&ifp->if_snd);
327	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
328
329	if_attach(ifp);
330	ieee80211_ifattach(ic);
331	/* override default methods */
332	ic->ic_node_alloc = wpi_node_alloc;
333	ic->ic_newassoc = wpi_newassoc;
334	ic->ic_wme.wme_update = wpi_wme_update;
335
336	/* override state transition machine */
337	sc->sc_newstate = ic->ic_newstate;
338	ic->ic_newstate = wpi_newstate;
339	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
340
341	sc->amrr.amrr_min_success_threshold = 1;
342	sc->amrr.amrr_max_success_threshold = 15;
343
344	wpi_sysctlattach(sc);
345
346	if (!pmf_device_register(self, NULL, wpi_resume))
347		aprint_error_dev(self, "couldn't establish power handler\n");
348	else
349		pmf_class_network_register(self, ifp);
350
351#if NBPFILTER > 0
352	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
353		sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
354		&sc->sc_drvbpf);
355
356	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
357	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
358	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
359
360	sc->sc_txtap_len = sizeof sc->sc_txtapu;
361	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
362	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
363#endif
364
365	ieee80211_announce(ic);
366
367	return;
368
369fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
370fail3:  while (--ac >= 0)
371			wpi_free_tx_ring(sc, &sc->txq[ac]);
372	wpi_free_rpool(sc);
373fail2:	wpi_free_shared(sc);
374fail1:	wpi_free_fwmem(sc);
375}
376
377static int
378wpi_detach(device_t self, int flags __unused)
379{
380	struct wpi_softc *sc = device_private(self);
381	struct ifnet *ifp = sc->sc_ic.ic_ifp;
382	int ac;
383
384	wpi_stop(ifp, 1);
385
386#if NBPFILTER > 0
387	if (ifp != NULL)
388		bpfdetach(ifp);
389#endif
390	ieee80211_ifdetach(&sc->sc_ic);
391	if (ifp != NULL)
392		if_detach(ifp);
393
394	for (ac = 0; ac < 4; ac++)
395		wpi_free_tx_ring(sc, &sc->txq[ac]);
396	wpi_free_tx_ring(sc, &sc->cmdq);
397	wpi_free_rx_ring(sc, &sc->rxq);
398	wpi_free_rpool(sc);
399	wpi_free_shared(sc);
400
401	if (sc->sc_ih != NULL) {
402		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
403		sc->sc_ih = NULL;
404	}
405
406	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
407
408	return 0;
409}
410
411static int
412wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
413	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
414{
415	int nsegs, error;
416
417	dma->tag = tag;
418	dma->size = size;
419
420	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
421	if (error != 0)
422		goto fail;
423
424	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
425	    flags);
426	if (error != 0)
427		goto fail;
428
429	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
430	if (error != 0)
431		goto fail;
432
433	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
434	if (error != 0)
435		goto fail;
436
437	memset(dma->vaddr, 0, size);
438
439	dma->paddr = dma->map->dm_segs[0].ds_addr;
440	if (kvap != NULL)
441		*kvap = dma->vaddr;
442
443	return 0;
444
445fail:   wpi_dma_contig_free(dma);
446	return error;
447}
448
449static void
450wpi_dma_contig_free(struct wpi_dma_info *dma)
451{
452	if (dma->map != NULL) {
453		if (dma->vaddr != NULL) {
454			bus_dmamap_unload(dma->tag, dma->map);
455			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
456			bus_dmamem_free(dma->tag, &dma->seg, 1);
457			dma->vaddr = NULL;
458		}
459		bus_dmamap_destroy(dma->tag, dma->map);
460		dma->map = NULL;
461	}
462}
463
464/*
465 * Allocate a shared page between host and NIC.
466 */
467static int
468wpi_alloc_shared(struct wpi_softc *sc)
469{
470	int error;
471	/* must be aligned on a 4K-page boundary */
472	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
473			(void **)&sc->shared, sizeof (struct wpi_shared),
474			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
475	if (error != 0)
476		aprint_error_dev(sc->sc_dev,
477				"could not allocate shared area DMA memory\n");
478
479	return error;
480}
481
482static void
483wpi_free_shared(struct wpi_softc *sc)
484{
485	wpi_dma_contig_free(&sc->shared_dma);
486}
487
488/*
489 * Allocate DMA-safe memory for firmware transfer.
490 */
491static int
492wpi_alloc_fwmem(struct wpi_softc *sc)
493{
494	int error;
495	/* allocate enough contiguous space to store text and data */
496	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
497	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
498	    BUS_DMA_NOWAIT);
499
500	if (error != 0)
501		aprint_error_dev(sc->sc_dev,
502			"could not allocate firmware transfer area"
503			"DMA memory\n");
504	return error;
505}
506
507static void
508wpi_free_fwmem(struct wpi_softc *sc)
509{
510	wpi_dma_contig_free(&sc->fw_dma);
511}
512
513
514static struct wpi_rbuf *
515wpi_alloc_rbuf(struct wpi_softc *sc)
516{
517	struct wpi_rbuf *rbuf;
518
519	mutex_enter(&sc->rxq.freelist_mtx);
520	rbuf = SLIST_FIRST(&sc->rxq.freelist);
521	if (rbuf != NULL) {
522		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
523		sc->rxq.nb_free_entries --;
524	}
525	mutex_exit(&sc->rxq.freelist_mtx);
526
527	return rbuf;
528}
529
530/*
531 * This is called automatically by the network stack when the mbuf to which our
532 * Rx buffer is attached is freed.
533 */
534static void
535wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
536{
537	struct wpi_rbuf *rbuf = arg;
538	struct wpi_softc *sc = rbuf->sc;
539
540	/* put the buffer back in the free list */
541
542	mutex_enter(&sc->rxq.freelist_mtx);
543	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
544	mutex_exit(&sc->rxq.freelist_mtx);
545	/* No need to protect this with a mutex, see wpi_rx_intr */
546	sc->rxq.nb_free_entries ++;
547
548	if (__predict_true(m != NULL))
549		pool_cache_put(mb_cache, m);
550}
551
552static int
553wpi_alloc_rpool(struct wpi_softc *sc)
554{
555	struct wpi_rx_ring *ring = &sc->rxq;
556	struct wpi_rbuf *rbuf;
557	int i, error;
558
559	/* allocate a big chunk of DMA'able memory.. */
560	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
561	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
562	if (error != 0) {
563		aprint_normal_dev(sc->sc_dev,
564						  "could not allocate Rx buffers DMA memory\n");
565		return error;
566	}
567
568	/* ..and split it into 3KB chunks */
569	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
570	SLIST_INIT(&ring->freelist);
571	for (i = 0; i < WPI_RBUF_COUNT; i++) {
572		rbuf = &ring->rbuf[i];
573		rbuf->sc = sc;	/* backpointer for callbacks */
574		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
575		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
576
577		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
578	}
579
580	ring->nb_free_entries = WPI_RBUF_COUNT;
581	return 0;
582}
583
584static void
585wpi_free_rpool(struct wpi_softc *sc)
586{
587	wpi_dma_contig_free(&sc->rxq.buf_dma);
588}
589
590static int
591wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
592{
593	struct wpi_rx_data *data;
594	struct wpi_rbuf *rbuf;
595	int i, error;
596
597	ring->cur = 0;
598
599	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
600		(void **)&ring->desc,
601		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
602		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
603	if (error != 0) {
604		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
605		goto fail;
606	}
607
608	/*
609	 * Setup Rx buffers.
610	 */
611	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
612		data = &ring->data[i];
613
614		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
615		if (data->m == NULL) {
616			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
617			error = ENOMEM;
618			goto fail;
619		}
620		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
621			m_freem(data->m);
622			data->m = NULL;
623			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
624			error = ENOMEM;
625			goto fail;
626		}
627		/* attach Rx buffer to mbuf */
628		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
629		    rbuf);
630		data->m->m_flags |= M_EXT_RW;
631
632		ring->desc[i] = htole32(rbuf->paddr);
633	}
634
635	return 0;
636
637fail:	wpi_free_rx_ring(sc, ring);
638	return error;
639}
640
641static void
642wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
643{
644	int ntries;
645
646	wpi_mem_lock(sc);
647
648	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
649	for (ntries = 0; ntries < 100; ntries++) {
650		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
651			break;
652		DELAY(10);
653	}
654#ifdef WPI_DEBUG
655	if (ntries == 100 && wpi_debug > 0)
656		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
657#endif
658	wpi_mem_unlock(sc);
659
660	ring->cur = 0;
661}
662
663static void
664wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
665{
666	int i;
667
668	wpi_dma_contig_free(&ring->desc_dma);
669
670	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
671		if (ring->data[i].m != NULL)
672			m_freem(ring->data[i].m);
673	}
674}
675
676static int
677wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
678	int qid)
679{
680	struct wpi_tx_data *data;
681	int i, error;
682
683	ring->qid = qid;
684	ring->count = count;
685	ring->queued = 0;
686	ring->cur = 0;
687
688	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
689		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
690		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
691	if (error != 0) {
692		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
693		goto fail;
694	}
695
696	/* update shared page with ring's base address */
697	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
698
699	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
700		(void **)&ring->cmd,
701		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
702	if (error != 0) {
703		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
704		goto fail;
705	}
706
707	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
708		M_NOWAIT);
709	if (ring->data == NULL) {
710		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
711		goto fail;
712	}
713
714	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
715
716	for (i = 0; i < count; i++) {
717		data = &ring->data[i];
718
719		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
720			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
721			&data->map);
722		if (error != 0) {
723			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
724			goto fail;
725		}
726	}
727
728	return 0;
729
730fail:	wpi_free_tx_ring(sc, ring);
731	return error;
732}
733
734static void
735wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
736{
737	struct wpi_tx_data *data;
738	int i, ntries;
739
740	wpi_mem_lock(sc);
741
742	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
743	for (ntries = 0; ntries < 100; ntries++) {
744		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
745			break;
746		DELAY(10);
747	}
748#ifdef WPI_DEBUG
749	if (ntries == 100 && wpi_debug > 0) {
750		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
751									   ring->qid);
752	}
753#endif
754	wpi_mem_unlock(sc);
755
756	for (i = 0; i < ring->count; i++) {
757		data = &ring->data[i];
758
759		if (data->m != NULL) {
760			bus_dmamap_unload(sc->sc_dmat, data->map);
761			m_freem(data->m);
762			data->m = NULL;
763		}
764	}
765
766	ring->queued = 0;
767	ring->cur = 0;
768}
769
770static void
771wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
772{
773	struct wpi_tx_data *data;
774	int i;
775
776	wpi_dma_contig_free(&ring->desc_dma);
777	wpi_dma_contig_free(&ring->cmd_dma);
778
779	if (ring->data != NULL) {
780		for (i = 0; i < ring->count; i++) {
781			data = &ring->data[i];
782
783			if (data->m != NULL) {
784				bus_dmamap_unload(sc->sc_dmat, data->map);
785				m_freem(data->m);
786			}
787		}
788		free(ring->data, M_DEVBUF);
789	}
790}
791
792/*ARGUSED*/
793static struct ieee80211_node *
794wpi_node_alloc(struct ieee80211_node_table *nt __unused)
795{
796	struct wpi_node *wn;
797
798	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
799
800	return (struct ieee80211_node *)wn;
801}
802
803static void
804wpi_newassoc(struct ieee80211_node *ni, int isnew)
805{
806	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
807	int i;
808
809	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
810
811	/* set rate to some reasonable initial value */
812	for (i = ni->ni_rates.rs_nrates - 1;
813	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
814	     i--);
815	ni->ni_txrate = i;
816}
817
818static int
819wpi_media_change(struct ifnet *ifp)
820{
821	int error;
822
823	error = ieee80211_media_change(ifp);
824	if (error != ENETRESET)
825		return error;
826
827	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
828		wpi_init(ifp);
829
830	return 0;
831}
832
833static int
834wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
835{
836	struct ifnet *ifp = ic->ic_ifp;
837	struct wpi_softc *sc = ifp->if_softc;
838	struct ieee80211_node *ni;
839	int error;
840
841	callout_stop(&sc->calib_to);
842
843	switch (nstate) {
844	case IEEE80211_S_SCAN:
845
846		if (sc->is_scanning)
847			break;
848
849		sc->is_scanning = true;
850		ieee80211_node_table_reset(&ic->ic_scan);
851		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
852
853		/* make the link LED blink while we're scanning */
854		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
855
856		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
857			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
858			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
859			return error;
860		}
861
862		ic->ic_state = nstate;
863		return 0;
864
865	case IEEE80211_S_ASSOC:
866		if (ic->ic_state != IEEE80211_S_RUN)
867			break;
868		/* FALLTHROUGH */
869	case IEEE80211_S_AUTH:
870		sc->config.associd = 0;
871		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
872		if ((error = wpi_auth(sc)) != 0) {
873			aprint_error_dev(sc->sc_dev,
874							"could not send authentication request\n");
875			return error;
876		}
877		break;
878
879	case IEEE80211_S_RUN:
880		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
881			/* link LED blinks while monitoring */
882			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
883			break;
884		}
885
886		ni = ic->ic_bss;
887
888		if (ic->ic_opmode != IEEE80211_M_STA) {
889			(void) wpi_auth(sc);    /* XXX */
890			wpi_setup_beacon(sc, ni);
891		}
892
893		wpi_enable_tsf(sc, ni);
894
895		/* update adapter's configuration */
896		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
897		/* short preamble/slot time are negotiated when associating */
898		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
899			WPI_CONFIG_SHSLOT);
900		if (ic->ic_flags & IEEE80211_F_SHSLOT)
901			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
902		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
903			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
904		sc->config.filter |= htole32(WPI_FILTER_BSS);
905		if (ic->ic_opmode != IEEE80211_M_STA)
906			sc->config.filter |= htole32(WPI_FILTER_BEACON);
907
908/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
909
910		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
911			sc->config.flags));
912		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
913			sizeof (struct wpi_config), 1);
914		if (error != 0) {
915			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
916			return error;
917		}
918
919		/* configuration has changed, set Tx power accordingly */
920		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
921			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
922			return error;
923		}
924
925		if (ic->ic_opmode == IEEE80211_M_STA) {
926			/* fake a join to init the tx rate */
927			wpi_newassoc(ni, 1);
928		}
929
930		/* start periodic calibration timer */
931		sc->calib_cnt = 0;
932		callout_schedule(&sc->calib_to, hz/2);
933
934		/* link LED always on while associated */
935		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
936		break;
937
938	case IEEE80211_S_INIT:
939		sc->is_scanning = false;
940		break;
941	}
942
943	return sc->sc_newstate(ic, nstate, arg);
944}
945
946/*
947 * XXX: Hack to set the current channel to the value advertised in beacons or
948 * probe responses. Only used during AP detection.
949 * XXX: Duplicated from if_iwi.c
950 */
951static void
952wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
953{
954	struct ieee80211_frame *wh;
955	uint8_t subtype;
956	uint8_t *frm, *efrm;
957
958	wh = mtod(m, struct ieee80211_frame *);
959
960	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
961		return;
962
963	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
964
965	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
966	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
967		return;
968
969	frm = (uint8_t *)(wh + 1);
970	efrm = mtod(m, uint8_t *) + m->m_len;
971
972	frm += 12;	/* skip tstamp, bintval and capinfo fields */
973	while (frm < efrm) {
974		if (*frm == IEEE80211_ELEMID_DSPARMS)
975#if IEEE80211_CHAN_MAX < 255
976		if (frm[2] <= IEEE80211_CHAN_MAX)
977#endif
978			ic->ic_curchan = &ic->ic_channels[frm[2]];
979
980		frm += frm[1] + 2;
981	}
982}
983
984/*
985 * Grab exclusive access to NIC memory.
986 */
987static void
988wpi_mem_lock(struct wpi_softc *sc)
989{
990	uint32_t tmp;
991	int ntries;
992
993	tmp = WPI_READ(sc, WPI_GPIO_CTL);
994	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
995
996	/* spin until we actually get the lock */
997	for (ntries = 0; ntries < 1000; ntries++) {
998		if ((WPI_READ(sc, WPI_GPIO_CTL) &
999			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1000			break;
1001		DELAY(10);
1002	}
1003	if (ntries == 1000)
1004		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1005}
1006
1007/*
1008 * Release lock on NIC memory.
1009 */
1010static void
1011wpi_mem_unlock(struct wpi_softc *sc)
1012{
1013	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1014	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1015}
1016
1017static uint32_t
1018wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1019{
1020	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1021	return WPI_READ(sc, WPI_READ_MEM_DATA);
1022}
1023
1024static void
1025wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1026{
1027	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1028	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1029}
1030
1031static void
1032wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1033						const uint32_t *data, int wlen)
1034{
1035	for (; wlen > 0; wlen--, data++, addr += 4)
1036		wpi_mem_write(sc, addr, *data);
1037}
1038
1039
1040/*
1041 * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1042 * instead of using the traditional bit-bang method.
1043 */
1044static int
1045wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1046{
1047	uint8_t *out = data;
1048	uint32_t val;
1049	int ntries;
1050
1051	wpi_mem_lock(sc);
1052	for (; len > 0; len -= 2, addr++) {
1053		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1054
1055		for (ntries = 0; ntries < 10; ntries++) {
1056			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1057			    WPI_EEPROM_READY)
1058				break;
1059			DELAY(5);
1060		}
1061		if (ntries == 10) {
1062			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1063			return ETIMEDOUT;
1064		}
1065		*out++ = val >> 16;
1066		if (len > 1)
1067			*out++ = val >> 24;
1068	}
1069	wpi_mem_unlock(sc);
1070
1071	return 0;
1072}
1073
1074/*
1075 * The firmware boot code is small and is intended to be copied directly into
1076 * the NIC internal memory.
1077 */
1078int
1079wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1080{
1081	int ntries;
1082
1083	size /= sizeof (uint32_t);
1084
1085	wpi_mem_lock(sc);
1086
1087	/* copy microcode image into NIC memory */
1088	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1089	    (const uint32_t *)ucode, size);
1090
1091	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1092	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1093	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1094
1095	/* run microcode */
1096	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1097
1098	/* wait for transfer to complete */
1099	for (ntries = 0; ntries < 1000; ntries++) {
1100		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1101			break;
1102		DELAY(10);
1103	}
1104	if (ntries == 1000) {
1105		wpi_mem_unlock(sc);
1106		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1107		return ETIMEDOUT;
1108	}
1109	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1110
1111	wpi_mem_unlock(sc);
1112
1113	return 0;
1114}
1115
1116static int
1117wpi_load_firmware(struct wpi_softc *sc)
1118{
1119	struct wpi_dma_info *dma = &sc->fw_dma;
1120	struct wpi_firmware_hdr hdr;
1121	const uint8_t *init_text, *init_data, *main_text, *main_data;
1122	const uint8_t *boot_text;
1123	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1124	uint32_t boot_textsz;
1125	firmware_handle_t fw;
1126	u_char *dfw;
1127	size_t size;
1128	int error;
1129
1130	/* load firmware image from disk */
1131	if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1132		aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1133		goto fail1;
1134	}
1135
1136	size = firmware_get_size(fw);
1137
1138	/* extract firmware header information */
1139	if (size < sizeof (struct wpi_firmware_hdr)) {
1140		aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n",
1141		    			 size);
1142		error = EINVAL;
1143		goto fail2;
1144	}
1145
1146	if ((error = firmware_read(fw, 0, &hdr,
1147		sizeof (struct wpi_firmware_hdr))) != 0) {
1148		aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
1149		goto fail2;
1150	}
1151
1152	main_textsz = le32toh(hdr.main_textsz);
1153	main_datasz = le32toh(hdr.main_datasz);
1154	init_textsz = le32toh(hdr.init_textsz);
1155	init_datasz = le32toh(hdr.init_datasz);
1156	boot_textsz = le32toh(hdr.boot_textsz);
1157
1158	/* sanity-check firmware segments sizes */
1159	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1160	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1161	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1162	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1163	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1164	    (boot_textsz & 3) != 0) {
1165		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1166		error = EINVAL;
1167		goto fail2;
1168	}
1169
1170	/* check that all firmware segments are present */
1171	if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
1172		main_datasz + init_textsz + init_datasz + boot_textsz) {
1173		aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n",
1174		    			 size);
1175		error = EINVAL;
1176		goto fail2;
1177	}
1178
1179	dfw = firmware_malloc(size);
1180	if (dfw == NULL) {
1181		aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1182		error = ENOMEM;
1183		goto fail2;
1184	}
1185
1186	if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
1187		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1188		goto fail2;
1189	}
1190
1191	/* get pointers to firmware segments */
1192	main_text = dfw + sizeof (struct wpi_firmware_hdr);
1193	main_data = main_text + main_textsz;
1194	init_text = main_data + main_datasz;
1195	init_data = init_text + init_textsz;
1196	boot_text = init_data + init_datasz;
1197
1198	/* copy initialization images into pre-allocated DMA-safe memory */
1199	memcpy(dma->vaddr, init_data, init_datasz);
1200	memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1201
1202	/* tell adapter where to find initialization images */
1203	wpi_mem_lock(sc);
1204	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1205	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1206	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1207	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1208	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1209	wpi_mem_unlock(sc);
1210
1211	/* load firmware boot code */
1212	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1213		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1214		goto fail3;
1215	}
1216
1217	/* now press "execute" ;-) */
1218	WPI_WRITE(sc, WPI_RESET, 0);
1219
1220	/* ..and wait at most one second for adapter to initialize */
1221	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1222		/* this isn't what was supposed to happen.. */
1223		aprint_error_dev(sc->sc_dev,
1224					"timeout waiting for adapter to initialize\n");
1225	}
1226
1227	/* copy runtime images into pre-allocated DMA-safe memory */
1228	memcpy(dma->vaddr, main_data, main_datasz);
1229	memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1230
1231	/* tell adapter where to find runtime images */
1232	wpi_mem_lock(sc);
1233	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1234	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1235	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1236	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1237	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1238	wpi_mem_unlock(sc);
1239
1240	/* wait at most one second for second alive notification */
1241	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1242		/* this isn't what was supposed to happen.. */
1243		aprint_error_dev(sc->sc_dev,
1244						"timeout waiting for adapter to initialize\n");
1245	}
1246
1247
1248fail3: 	firmware_free(dfw,size);
1249fail2:	firmware_close(fw);
1250fail1:	return error;
1251}
1252
1253static void
1254wpi_calib_timeout(void *arg)
1255{
1256	struct wpi_softc *sc = arg;
1257	struct ieee80211com *ic = &sc->sc_ic;
1258	int temp, s;
1259
1260	/* automatic rate control triggered every 500ms */
1261	if (ic->ic_fixed_rate == -1) {
1262		s = splnet();
1263		if (ic->ic_opmode == IEEE80211_M_STA)
1264			wpi_iter_func(sc, ic->ic_bss);
1265		else
1266                	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1267		splx(s);
1268	}
1269
1270	/* update sensor data */
1271	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1272
1273	/* automatic power calibration every 60s */
1274	if (++sc->calib_cnt >= 120) {
1275		wpi_power_calibration(sc, temp);
1276		sc->calib_cnt = 0;
1277	}
1278
1279	callout_schedule(&sc->calib_to, hz/2);
1280}
1281
1282static void
1283wpi_iter_func(void *arg, struct ieee80211_node *ni)
1284{
1285	struct wpi_softc *sc = arg;
1286	struct wpi_node *wn = (struct wpi_node *)ni;
1287
1288	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1289}
1290
1291/*
1292 * This function is called periodically (every 60 seconds) to adjust output
1293 * power to temperature changes.
1294 */
1295void
1296wpi_power_calibration(struct wpi_softc *sc, int temp)
1297{
1298	/* sanity-check read value */
1299	if (temp < -260 || temp > 25) {
1300		/* this can't be correct, ignore */
1301		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1302		return;
1303	}
1304
1305	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1306
1307	/* adjust Tx power if need be */
1308	if (abs(temp - sc->temp) <= 6)
1309		return;
1310
1311	sc->temp = temp;
1312
1313	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1314		/* just warn, too bad for the automatic calibration... */
1315		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1316	}
1317}
1318
1319static void
1320wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1321	struct wpi_rx_data *data)
1322{
1323	struct ieee80211com *ic = &sc->sc_ic;
1324	struct ifnet *ifp = ic->ic_ifp;
1325	struct wpi_rx_ring *ring = &sc->rxq;
1326	struct wpi_rx_stat *stat;
1327	struct wpi_rx_head *head;
1328	struct wpi_rx_tail *tail;
1329	struct wpi_rbuf *rbuf;
1330	struct ieee80211_frame *wh;
1331	struct ieee80211_node *ni;
1332	struct mbuf *m, *mnew;
1333	int data_off ;
1334
1335	stat = (struct wpi_rx_stat *)(desc + 1);
1336
1337	if (stat->len > WPI_STAT_MAXLEN) {
1338		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1339		ifp->if_ierrors++;
1340		return;
1341	}
1342
1343	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1344	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1345
1346	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1347		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1348		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1349		le64toh(tail->tstamp)));
1350
1351	/*
1352	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1353	 * to radiotap in monitor mode).
1354	 */
1355	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1356		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1357		ifp->if_ierrors++;
1358		return;
1359	}
1360
1361	/* Compute where are the useful datas */
1362	data_off = (char*)(head + 1) - mtod(data->m, char*);
1363
1364	/*
1365	 * If the number of free entry is too low
1366	 * just dup the data->m socket and reuse the same rbuf entry
1367	 * Note that thi test is not protected by a mutex because the
1368	 * only path that causes nb_free_entries to decrease is through
1369	 * this interrupt routine, which is not re-entrent.
1370	 * What may not be obvious is that the safe path is if that test
1371	 * evaluates as true, so nb_free_entries can grow any time.
1372	 */
1373	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1374
1375		/* Prepare the mbuf for the m_dup */
1376		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1377		data->m->m_data = (char*) data->m->m_data + data_off;
1378
1379		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1380
1381		/* Restore the m_data pointer for future use */
1382		data->m->m_data = (char*) data->m->m_data - data_off;
1383
1384		if (m == NULL) {
1385			ifp->if_ierrors++;
1386			return;
1387		}
1388	} else {
1389
1390		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1391		if (mnew == NULL) {
1392			ifp->if_ierrors++;
1393			return;
1394		}
1395
1396		rbuf = wpi_alloc_rbuf(sc);
1397		KASSERT(rbuf != NULL);
1398
1399 		/* attach Rx buffer to mbuf */
1400		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1401		 	rbuf);
1402		mnew->m_flags |= M_EXT_RW;
1403
1404		m = data->m;
1405		data->m = mnew;
1406
1407		/* update Rx descriptor */
1408		ring->desc[ring->cur] = htole32(rbuf->paddr);
1409
1410		m->m_data = (char*)m->m_data + data_off;
1411		m->m_pkthdr.len = m->m_len = le16toh(head->len);
1412	}
1413
1414	/* finalize mbuf */
1415	m->m_pkthdr.rcvif = ifp;
1416
1417	if (ic->ic_state == IEEE80211_S_SCAN)
1418		wpi_fix_channel(ic, m);
1419
1420#if NBPFILTER > 0
1421	if (sc->sc_drvbpf != NULL) {
1422		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1423
1424		tap->wr_flags = 0;
1425		tap->wr_chan_freq =
1426			htole16(ic->ic_channels[head->chan].ic_freq);
1427		tap->wr_chan_flags =
1428			htole16(ic->ic_channels[head->chan].ic_flags);
1429		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1430		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1431		tap->wr_tsft = tail->tstamp;
1432		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1433		switch (head->rate) {
1434		/* CCK rates */
1435		case  10: tap->wr_rate =   2; break;
1436		case  20: tap->wr_rate =   4; break;
1437		case  55: tap->wr_rate =  11; break;
1438		case 110: tap->wr_rate =  22; break;
1439		/* OFDM rates */
1440		case 0xd: tap->wr_rate =  12; break;
1441		case 0xf: tap->wr_rate =  18; break;
1442		case 0x5: tap->wr_rate =  24; break;
1443		case 0x7: tap->wr_rate =  36; break;
1444		case 0x9: tap->wr_rate =  48; break;
1445		case 0xb: tap->wr_rate =  72; break;
1446		case 0x1: tap->wr_rate =  96; break;
1447		case 0x3: tap->wr_rate = 108; break;
1448		/* unknown rate: should not happen */
1449		default:  tap->wr_rate =   0;
1450		}
1451		if (le16toh(head->flags) & 0x4)
1452			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1453
1454		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1455	}
1456#endif
1457
1458	/* grab a reference to the source node */
1459	wh = mtod(m, struct ieee80211_frame *);
1460	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1461
1462	/* send the frame to the 802.11 layer */
1463	ieee80211_input(ic, m, ni, stat->rssi, 0);
1464
1465	/* release node reference */
1466	ieee80211_free_node(ni);
1467}
1468
1469static void
1470wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1471{
1472	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1473	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1474	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1475	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1476	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1477
1478	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1479		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1480		stat->nkill, stat->rate, le32toh(stat->duration),
1481		le32toh(stat->status)));
1482
1483	/*
1484	 * Update rate control statistics for the node.
1485	 * XXX we should not count mgmt frames since they're always sent at
1486	 * the lowest available bit-rate.
1487	 */
1488	wn->amn.amn_txcnt++;
1489	if (stat->ntries > 0) {
1490		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1491		wn->amn.amn_retrycnt++;
1492	}
1493
1494	if ((le32toh(stat->status) & 0xff) != 1)
1495		ifp->if_oerrors++;
1496	else
1497		ifp->if_opackets++;
1498
1499	bus_dmamap_unload(sc->sc_dmat, txdata->map);
1500	m_freem(txdata->m);
1501	txdata->m = NULL;
1502	ieee80211_free_node(txdata->ni);
1503	txdata->ni = NULL;
1504
1505	ring->queued--;
1506
1507	sc->sc_tx_timer = 0;
1508	ifp->if_flags &= ~IFF_OACTIVE;
1509	wpi_start(ifp);
1510}
1511
1512static void
1513wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1514{
1515	struct wpi_tx_ring *ring = &sc->cmdq;
1516	struct wpi_tx_data *data;
1517
1518	if ((desc->qid & 7) != 4)
1519		return;	/* not a command ack */
1520
1521	data = &ring->data[desc->idx];
1522
1523	/* if the command was mapped in a mbuf, free it */
1524	if (data->m != NULL) {
1525		bus_dmamap_unload(sc->sc_dmat, data->map);
1526		m_freem(data->m);
1527		data->m = NULL;
1528	}
1529
1530	wakeup(&ring->cmd[desc->idx]);
1531}
1532
1533static void
1534wpi_notif_intr(struct wpi_softc *sc)
1535{
1536	struct ieee80211com *ic = &sc->sc_ic;
1537	struct ifnet *ifp =  ic->ic_ifp;
1538	struct wpi_rx_desc *desc;
1539	struct wpi_rx_data *data;
1540	uint32_t hw;
1541
1542	hw = le32toh(sc->shared->next);
1543	while (sc->rxq.cur != hw) {
1544		data = &sc->rxq.data[sc->rxq.cur];
1545
1546		desc = mtod(data->m, struct wpi_rx_desc *);
1547
1548		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1549			"len=%d\n", desc->qid, desc->idx, desc->flags,
1550			desc->type, le32toh(desc->len)));
1551
1552		if (!(desc->qid & 0x80))	/* reply to a command */
1553			wpi_cmd_intr(sc, desc);
1554
1555		switch (desc->type) {
1556		case WPI_RX_DONE:
1557			/* a 802.11 frame was received */
1558			wpi_rx_intr(sc, desc, data);
1559			break;
1560
1561		case WPI_TX_DONE:
1562			/* a 802.11 frame has been transmitted */
1563			wpi_tx_intr(sc, desc);
1564			break;
1565
1566		case WPI_UC_READY:
1567		{
1568			struct wpi_ucode_info *uc =
1569				(struct wpi_ucode_info *)(desc + 1);
1570
1571			/* the microcontroller is ready */
1572			DPRINTF(("microcode alive notification version %x "
1573				"alive %x\n", le32toh(uc->version),
1574				le32toh(uc->valid)));
1575
1576			if (le32toh(uc->valid) != 1) {
1577				aprint_error_dev(sc->sc_dev,
1578					"microcontroller initialization failed\n");
1579			}
1580			break;
1581		}
1582		case WPI_STATE_CHANGED:
1583		{
1584			uint32_t *status = (uint32_t *)(desc + 1);
1585
1586			/* enabled/disabled notification */
1587			DPRINTF(("state changed to %x\n", le32toh(*status)));
1588
1589			if (le32toh(*status) & 1) {
1590				/* the radio button has to be pushed */
1591				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1592				/* turn the interface down */
1593				ifp->if_flags &= ~IFF_UP;
1594				wpi_stop(ifp, 1);
1595				return;	/* no further processing */
1596			}
1597			break;
1598		}
1599		case WPI_START_SCAN:
1600		{
1601			struct wpi_start_scan *scan =
1602				(struct wpi_start_scan *)(desc + 1);
1603
1604			DPRINTFN(2, ("scanning channel %d status %x\n",
1605				scan->chan, le32toh(scan->status)));
1606
1607			/* fix current channel */
1608			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1609			break;
1610		}
1611		case WPI_STOP_SCAN:
1612		{
1613			struct wpi_stop_scan *scan =
1614				(struct wpi_stop_scan *)(desc + 1);
1615
1616			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1617				scan->nchan, scan->status, scan->chan));
1618
1619			if (scan->status == 1 && scan->chan <= 14) {
1620				/*
1621				 * We just finished scanning 802.11g channels,
1622				 * start scanning 802.11a ones.
1623				 */
1624				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1625					break;
1626			}
1627			sc->is_scanning = false;
1628			ieee80211_end_scan(ic);
1629			break;
1630		}
1631		}
1632
1633		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1634	}
1635
1636	/* tell the firmware what we have processed */
1637	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1638	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1639}
1640
1641static int
1642wpi_intr(void *arg)
1643{
1644	struct wpi_softc *sc = arg;
1645	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1646	uint32_t r;
1647
1648	r = WPI_READ(sc, WPI_INTR);
1649	if (r == 0 || r == 0xffffffff)
1650		return 0;	/* not for us */
1651
1652	DPRINTFN(5, ("interrupt reg %x\n", r));
1653
1654	/* disable interrupts */
1655	WPI_WRITE(sc, WPI_MASK, 0);
1656	/* ack interrupts */
1657	WPI_WRITE(sc, WPI_INTR, r);
1658
1659	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1660		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1661		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1662		wpi_stop(sc->sc_ic.ic_ifp, 1);
1663		return 1;
1664	}
1665
1666	if (r & WPI_RX_INTR)
1667		wpi_notif_intr(sc);
1668
1669	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1670		wakeup(sc);
1671
1672	/* re-enable interrupts */
1673	if (ifp->if_flags & IFF_UP)
1674		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1675
1676	return 1;
1677}
1678
1679static uint8_t
1680wpi_plcp_signal(int rate)
1681{
1682	switch (rate) {
1683	/* CCK rates (returned values are device-dependent) */
1684	case 2:		return 10;
1685	case 4:		return 20;
1686	case 11:	return 55;
1687	case 22:	return 110;
1688
1689	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1690	/* R1-R4, (u)ral is R4-R1 */
1691	case 12:	return 0xd;
1692	case 18:	return 0xf;
1693	case 24:	return 0x5;
1694	case 36:	return 0x7;
1695	case 48:	return 0x9;
1696	case 72:	return 0xb;
1697	case 96:	return 0x1;
1698	case 108:	return 0x3;
1699
1700	/* unsupported rates (should not get there) */
1701	default:	return 0;
1702	}
1703}
1704
1705/* quickly determine if a given rate is CCK or OFDM */
1706#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1707
1708static int
1709wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1710	int ac)
1711{
1712	struct ieee80211com *ic = &sc->sc_ic;
1713	struct wpi_tx_ring *ring = &sc->txq[ac];
1714	struct wpi_tx_desc *desc;
1715	struct wpi_tx_data *data;
1716	struct wpi_tx_cmd *cmd;
1717	struct wpi_cmd_data *tx;
1718	struct ieee80211_frame *wh;
1719	struct ieee80211_key *k;
1720	const struct chanAccParams *cap;
1721	struct mbuf *mnew;
1722	int i, error, rate, hdrlen, noack = 0;
1723
1724	desc = &ring->desc[ring->cur];
1725	data = &ring->data[ring->cur];
1726
1727	wh = mtod(m0, struct ieee80211_frame *);
1728
1729	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1730		cap = &ic->ic_wme.wme_chanParams;
1731		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1732	}
1733
1734	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1735		k = ieee80211_crypto_encap(ic, ni, m0);
1736		if (k == NULL) {
1737			m_freem(m0);
1738			return ENOBUFS;
1739		}
1740
1741		/* packet header may have moved, reset our local pointer */
1742		wh = mtod(m0, struct ieee80211_frame *);
1743	}
1744
1745	hdrlen = ieee80211_anyhdrsize(wh);
1746
1747	/* pickup a rate */
1748	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1749		IEEE80211_FC0_TYPE_MGT) {
1750		/* mgmt frames are sent at the lowest available bit-rate */
1751		rate = ni->ni_rates.rs_rates[0];
1752	} else {
1753		if (ic->ic_fixed_rate != -1) {
1754			rate = ic->ic_sup_rates[ic->ic_curmode].
1755				rs_rates[ic->ic_fixed_rate];
1756		} else
1757			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1758	}
1759	rate &= IEEE80211_RATE_VAL;
1760
1761
1762#if NBPFILTER > 0
1763	if (sc->sc_drvbpf != NULL) {
1764		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1765
1766		tap->wt_flags = 0;
1767		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1768		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1769		tap->wt_rate = rate;
1770		tap->wt_hwqueue = ac;
1771		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1772			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1773
1774		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1775	}
1776#endif
1777
1778	cmd = &ring->cmd[ring->cur];
1779	cmd->code = WPI_CMD_TX_DATA;
1780	cmd->flags = 0;
1781	cmd->qid = ring->qid;
1782	cmd->idx = ring->cur;
1783
1784	tx = (struct wpi_cmd_data *)cmd->data;
1785	tx->flags = 0;
1786
1787	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1788		tx->flags |= htole32(WPI_TX_NEED_ACK);
1789	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1790		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1791
1792	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1793
1794	/* retrieve destination node's id */
1795	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1796		WPI_ID_BSS;
1797
1798	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1799		IEEE80211_FC0_TYPE_MGT) {
1800		/* tell h/w to set timestamp in probe responses */
1801		if ((wh->i_fc[0] &
1802		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1803		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1804			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1805
1806		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1807			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1808			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1809			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1810			tx->timeout = htole16(3);
1811		else
1812			tx->timeout = htole16(2);
1813	} else
1814		tx->timeout = htole16(0);
1815
1816	tx->rate = wpi_plcp_signal(rate);
1817
1818	/* be very persistant at sending frames out */
1819	tx->rts_ntries = 7;
1820	tx->data_ntries = 15;
1821
1822	tx->ofdm_mask = 0xff;
1823	tx->cck_mask = 0xf;
1824	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1825
1826	tx->len = htole16(m0->m_pkthdr.len);
1827
1828	/* save and trim IEEE802.11 header */
1829	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1830	m_adj(m0, hdrlen);
1831
1832	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1833		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1834	if (error != 0 && error != EFBIG) {
1835		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1836		m_freem(m0);
1837		return error;
1838	}
1839	if (error != 0) {
1840		/* too many fragments, linearize */
1841		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1842		if (mnew == NULL) {
1843			m_freem(m0);
1844			return ENOMEM;
1845		}
1846
1847		M_COPY_PKTHDR(mnew, m0);
1848		if (m0->m_pkthdr.len > MHLEN) {
1849			MCLGET(mnew, M_DONTWAIT);
1850			if (!(mnew->m_flags & M_EXT)) {
1851				m_freem(m0);
1852				m_freem(mnew);
1853				return ENOMEM;
1854			}
1855		}
1856
1857		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1858		m_freem(m0);
1859		mnew->m_len = mnew->m_pkthdr.len;
1860		m0 = mnew;
1861
1862		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1863			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1864		if (error != 0) {
1865			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1866							 error);
1867			m_freem(m0);
1868			return error;
1869		}
1870	}
1871
1872	data->m = m0;
1873	data->ni = ni;
1874
1875	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1876		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1877
1878	/* first scatter/gather segment is used by the tx data command */
1879	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1880		(1 + data->map->dm_nsegs) << 24);
1881	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1882		ring->cur * sizeof (struct wpi_tx_cmd));
1883	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
1884						 ((hdrlen + 3) & ~3));
1885
1886	for (i = 1; i <= data->map->dm_nsegs; i++) {
1887		desc->segs[i].addr =
1888			htole32(data->map->dm_segs[i - 1].ds_addr);
1889		desc->segs[i].len  =
1890			htole32(data->map->dm_segs[i - 1].ds_len);
1891	}
1892
1893	ring->queued++;
1894
1895	/* kick ring */
1896	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1897	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1898
1899	return 0;
1900}
1901
1902static void
1903wpi_start(struct ifnet *ifp)
1904{
1905	struct wpi_softc *sc = ifp->if_softc;
1906	struct ieee80211com *ic = &sc->sc_ic;
1907	struct ieee80211_node *ni;
1908	struct ether_header *eh;
1909	struct mbuf *m0;
1910	int ac;
1911
1912	/*
1913	 * net80211 may still try to send management frames even if the
1914	 * IFF_RUNNING flag is not set...
1915	 */
1916	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1917		return;
1918
1919	for (;;) {
1920		IF_DEQUEUE(&ic->ic_mgtq, m0);
1921		if (m0 != NULL) {
1922
1923			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1924			m0->m_pkthdr.rcvif = NULL;
1925
1926			/* management frames go into ring 0 */
1927			if (sc->txq[0].queued > sc->txq[0].count - 8) {
1928				ifp->if_oerrors++;
1929				continue;
1930			}
1931#if NBPFILTER > 0
1932			if (ic->ic_rawbpf != NULL)
1933				bpf_mtap(ic->ic_rawbpf, m0);
1934#endif
1935			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1936				ifp->if_oerrors++;
1937				break;
1938			}
1939		} else {
1940			if (ic->ic_state != IEEE80211_S_RUN)
1941				break;
1942			IFQ_POLL(&ifp->if_snd, m0);
1943			if (m0 == NULL)
1944				break;
1945
1946			if (m0->m_len < sizeof (*eh) &&
1947			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
1948				ifp->if_oerrors++;
1949				continue;
1950			}
1951			eh = mtod(m0, struct ether_header *);
1952			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1953			if (ni == NULL) {
1954				m_freem(m0);
1955				ifp->if_oerrors++;
1956				continue;
1957			}
1958
1959			/* classify mbuf so we can find which tx ring to use */
1960			if (ieee80211_classify(ic, m0, ni) != 0) {
1961				m_freem(m0);
1962				ieee80211_free_node(ni);
1963				ifp->if_oerrors++;
1964				continue;
1965			}
1966
1967			/* no QoS encapsulation for EAPOL frames */
1968			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1969			    M_WME_GETAC(m0) : WME_AC_BE;
1970
1971			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1972				/* there is no place left in this ring */
1973				ifp->if_flags |= IFF_OACTIVE;
1974				break;
1975			}
1976			IFQ_DEQUEUE(&ifp->if_snd, m0);
1977#if NBPFILTER > 0
1978			if (ifp->if_bpf != NULL)
1979				bpf_mtap(ifp->if_bpf, m0);
1980#endif
1981			m0 = ieee80211_encap(ic, m0, ni);
1982			if (m0 == NULL) {
1983				ieee80211_free_node(ni);
1984				ifp->if_oerrors++;
1985				continue;
1986			}
1987#if NBPFILTER > 0
1988			if (ic->ic_rawbpf != NULL)
1989				bpf_mtap(ic->ic_rawbpf, m0);
1990#endif
1991			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
1992				ieee80211_free_node(ni);
1993				ifp->if_oerrors++;
1994				break;
1995			}
1996		}
1997
1998		sc->sc_tx_timer = 5;
1999		ifp->if_timer = 1;
2000	}
2001}
2002
2003static void
2004wpi_watchdog(struct ifnet *ifp)
2005{
2006	struct wpi_softc *sc = ifp->if_softc;
2007
2008	ifp->if_timer = 0;
2009
2010	if (sc->sc_tx_timer > 0) {
2011		if (--sc->sc_tx_timer == 0) {
2012			aprint_error_dev(sc->sc_dev, "device timeout\n");
2013			ifp->if_oerrors++;
2014			ifp->if_flags &= ~IFF_UP;
2015			wpi_stop(ifp, 1);
2016			return;
2017		}
2018		ifp->if_timer = 1;
2019	}
2020
2021	ieee80211_watchdog(&sc->sc_ic);
2022}
2023
2024static int
2025wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2026{
2027#define IS_RUNNING(ifp) \
2028	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2029
2030	struct wpi_softc *sc = ifp->if_softc;
2031	struct ieee80211com *ic = &sc->sc_ic;
2032	int s, error = 0;
2033
2034	s = splnet();
2035
2036	switch (cmd) {
2037	case SIOCSIFFLAGS:
2038		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2039			break;
2040		if (ifp->if_flags & IFF_UP) {
2041			if (!(ifp->if_flags & IFF_RUNNING))
2042				wpi_init(ifp);
2043		} else {
2044			if (ifp->if_flags & IFF_RUNNING)
2045				wpi_stop(ifp, 1);
2046		}
2047		break;
2048
2049	case SIOCADDMULTI:
2050	case SIOCDELMULTI:
2051		/* XXX no h/w multicast filter? --dyoung */
2052		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2053			/* setup multicast filter, etc */
2054			error = 0;
2055		}
2056		break;
2057
2058	default:
2059		error = ieee80211_ioctl(ic, cmd, data);
2060	}
2061
2062	if (error == ENETRESET) {
2063		if (IS_RUNNING(ifp) &&
2064			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2065			wpi_init(ifp);
2066		error = 0;
2067	}
2068
2069	splx(s);
2070	return error;
2071
2072#undef IS_RUNNING
2073}
2074
2075/*
2076 * Extract various information from EEPROM.
2077 */
2078static void
2079wpi_read_eeprom(struct wpi_softc *sc)
2080{
2081	struct ieee80211com *ic = &sc->sc_ic;
2082	char domain[4];
2083	int i;
2084
2085	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2086	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2087	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2088
2089	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2090	    sc->type));
2091
2092	/* read and print regulatory domain */
2093	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2094	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2095
2096	/* read and print MAC address */
2097	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2098	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2099
2100	/* read the list of authorized channels */
2101	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2102		wpi_read_eeprom_channels(sc, i);
2103
2104	/* read the list of power groups */
2105	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2106		wpi_read_eeprom_group(sc, i);
2107}
2108
2109static void
2110wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2111{
2112	struct ieee80211com *ic = &sc->sc_ic;
2113	const struct wpi_chan_band *band = &wpi_bands[n];
2114	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2115	int chan, i;
2116
2117	wpi_read_prom_data(sc, band->addr, channels,
2118	    band->nchan * sizeof (struct wpi_eeprom_chan));
2119
2120	for (i = 0; i < band->nchan; i++) {
2121		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2122			continue;
2123
2124		chan = band->chan[i];
2125
2126		if (n == 0) {	/* 2GHz band */
2127			ic->ic_channels[chan].ic_freq =
2128			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2129			ic->ic_channels[chan].ic_flags =
2130			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2131			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2132
2133		} else {	/* 5GHz band */
2134			/*
2135			 * Some 3945abg adapters support channels 7, 8, 11
2136			 * and 12 in the 2GHz *and* 5GHz bands.
2137			 * Because of limitations in our net80211(9) stack,
2138			 * we can't support these channels in 5GHz band.
2139			 */
2140			if (chan <= 14)
2141				continue;
2142
2143			ic->ic_channels[chan].ic_freq =
2144			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2145			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2146		}
2147
2148		/* is active scan allowed on this channel? */
2149		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2150			ic->ic_channels[chan].ic_flags |=
2151			    IEEE80211_CHAN_PASSIVE;
2152		}
2153
2154		/* save maximum allowed power for this channel */
2155		sc->maxpwr[chan] = channels[i].maxpwr;
2156
2157		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2158		    chan, channels[i].flags, sc->maxpwr[chan]));
2159	}
2160}
2161
2162static void
2163wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2164{
2165	struct wpi_power_group *group = &sc->groups[n];
2166	struct wpi_eeprom_group rgroup;
2167	int i;
2168
2169	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2170	    sizeof rgroup);
2171
2172	/* save power group information */
2173	group->chan   = rgroup.chan;
2174	group->maxpwr = rgroup.maxpwr;
2175	/* temperature at which the samples were taken */
2176	group->temp   = (int16_t)le16toh(rgroup.temp);
2177
2178	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2179	    group->chan, group->maxpwr, group->temp));
2180
2181	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2182		group->samples[i].index = rgroup.samples[i].index;
2183		group->samples[i].power = rgroup.samples[i].power;
2184
2185		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2186		    group->samples[i].index, group->samples[i].power));
2187	}
2188}
2189
2190/*
2191 * Send a command to the firmware.
2192 */
2193static int
2194wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2195{
2196	struct wpi_tx_ring *ring = &sc->cmdq;
2197	struct wpi_tx_desc *desc;
2198	struct wpi_tx_cmd *cmd;
2199
2200	KASSERT(size <= sizeof cmd->data);
2201
2202	desc = &ring->desc[ring->cur];
2203	cmd = &ring->cmd[ring->cur];
2204
2205	cmd->code = code;
2206	cmd->flags = 0;
2207	cmd->qid = ring->qid;
2208	cmd->idx = ring->cur;
2209	memcpy(cmd->data, buf, size);
2210
2211	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2212	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2213		ring->cur * sizeof (struct wpi_tx_cmd));
2214	desc->segs[0].len  = htole32(4 + size);
2215
2216	/* kick cmd ring */
2217	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2218	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2219
2220	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2221}
2222
2223static int
2224wpi_wme_update(struct ieee80211com *ic)
2225{
2226#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2227#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2228	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2229	const struct wmeParams *wmep;
2230	struct wpi_wme_setup wme;
2231	int ac;
2232
2233	/* don't override default WME values if WME is not actually enabled */
2234	if (!(ic->ic_flags & IEEE80211_F_WME))
2235		return 0;
2236
2237	wme.flags = 0;
2238	for (ac = 0; ac < WME_NUM_AC; ac++) {
2239		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2240		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2241		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2242		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2243		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2244
2245		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2246		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2247		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2248	}
2249
2250	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2251#undef WPI_USEC
2252#undef WPI_EXP2
2253}
2254
2255/*
2256 * Configure h/w multi-rate retries.
2257 */
2258static int
2259wpi_mrr_setup(struct wpi_softc *sc)
2260{
2261	struct ieee80211com *ic = &sc->sc_ic;
2262	struct wpi_mrr_setup mrr;
2263	int i, error;
2264
2265	/* CCK rates (not used with 802.11a) */
2266	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2267		mrr.rates[i].flags = 0;
2268		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2269		/* fallback to the immediate lower CCK rate (if any) */
2270		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2271		/* try one time at this rate before falling back to "next" */
2272		mrr.rates[i].ntries = 1;
2273	}
2274
2275	/* OFDM rates (not used with 802.11b) */
2276	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2277		mrr.rates[i].flags = 0;
2278		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2279		/* fallback to the immediate lower rate (if any) */
2280		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2281		mrr.rates[i].next = (i == WPI_OFDM6) ?
2282		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2283			WPI_OFDM6 : WPI_CCK2) :
2284		    i - 1;
2285		/* try one time at this rate before falling back to "next" */
2286		mrr.rates[i].ntries = 1;
2287	}
2288
2289	/* setup MRR for control frames */
2290	mrr.which = htole32(WPI_MRR_CTL);
2291	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2292	if (error != 0) {
2293		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2294		return error;
2295	}
2296
2297	/* setup MRR for data frames */
2298	mrr.which = htole32(WPI_MRR_DATA);
2299	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2300	if (error != 0) {
2301		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2302		return error;
2303	}
2304
2305	return 0;
2306}
2307
2308static void
2309wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2310{
2311	struct wpi_cmd_led led;
2312
2313	led.which = which;
2314	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2315	led.off = off;
2316	led.on = on;
2317
2318	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2319}
2320
2321static void
2322wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2323{
2324	struct wpi_cmd_tsf tsf;
2325	uint64_t val, mod;
2326
2327	memset(&tsf, 0, sizeof tsf);
2328	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2329	tsf.bintval = htole16(ni->ni_intval);
2330	tsf.lintval = htole16(10);
2331
2332	/* compute remaining time until next beacon */
2333	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
2334	mod = le64toh(tsf.tstamp) % val;
2335	tsf.binitval = htole32((uint32_t)(val - mod));
2336
2337	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2338	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2339
2340	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2341		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2342}
2343
2344/*
2345 * Update Tx power to match what is defined for channel `c'.
2346 */
2347static int
2348wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2349{
2350	struct ieee80211com *ic = &sc->sc_ic;
2351	struct wpi_power_group *group;
2352	struct wpi_cmd_txpower txpower;
2353	u_int chan;
2354	int i;
2355
2356	/* get channel number */
2357	chan = ieee80211_chan2ieee(ic, c);
2358
2359	/* find the power group to which this channel belongs */
2360	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2361		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2362			if (chan <= group->chan)
2363				break;
2364	} else
2365		group = &sc->groups[0];
2366
2367	memset(&txpower, 0, sizeof txpower);
2368	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2369	txpower.chan = htole16(chan);
2370
2371	/* set Tx power for all OFDM and CCK rates */
2372	for (i = 0; i <= 11 ; i++) {
2373		/* retrieve Tx power for this channel/rate combination */
2374		int idx = wpi_get_power_index(sc, group, c,
2375		    wpi_ridx_to_rate[i]);
2376
2377		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2378
2379		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2380			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2381			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2382		} else {
2383			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2384			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2385		}
2386		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2387		    wpi_ridx_to_rate[i], idx));
2388	}
2389
2390	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2391}
2392
2393/*
2394 * Determine Tx power index for a given channel/rate combination.
2395 * This takes into account the regulatory information from EEPROM and the
2396 * current temperature.
2397 */
2398static int
2399wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2400    struct ieee80211_channel *c, int rate)
2401{
2402/* fixed-point arithmetic division using a n-bit fractional part */
2403#define fdivround(a, b, n)	\
2404	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2405
2406/* linear interpolation */
2407#define interpolate(x, x1, y1, x2, y2, n)	\
2408	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2409
2410	struct ieee80211com *ic = &sc->sc_ic;
2411	struct wpi_power_sample *sample;
2412	int pwr, idx;
2413	u_int chan;
2414
2415	/* get channel number */
2416	chan = ieee80211_chan2ieee(ic, c);
2417
2418	/* default power is group's maximum power - 3dB */
2419	pwr = group->maxpwr / 2;
2420
2421	/* decrease power for highest OFDM rates to reduce distortion */
2422	switch (rate) {
2423	case 72:	/* 36Mb/s */
2424		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2425		break;
2426	case 96:	/* 48Mb/s */
2427		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2428		break;
2429	case 108:	/* 54Mb/s */
2430		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2431		break;
2432	}
2433
2434	/* never exceed channel's maximum allowed Tx power */
2435	pwr = min(pwr, sc->maxpwr[chan]);
2436
2437	/* retrieve power index into gain tables from samples */
2438	for (sample = group->samples; sample < &group->samples[3]; sample++)
2439		if (pwr > sample[1].power)
2440			break;
2441	/* fixed-point linear interpolation using a 19-bit fractional part */
2442	idx = interpolate(pwr, sample[0].power, sample[0].index,
2443	    sample[1].power, sample[1].index, 19);
2444
2445	/*
2446	 * Adjust power index based on current temperature:
2447	 * - if cooler than factory-calibrated: decrease output power
2448	 * - if warmer than factory-calibrated: increase output power
2449	 */
2450	idx -= (sc->temp - group->temp) * 11 / 100;
2451
2452	/* decrease power for CCK rates (-5dB) */
2453	if (!WPI_RATE_IS_OFDM(rate))
2454		idx += 10;
2455
2456	/* keep power index in a valid range */
2457	if (idx < 0)
2458		return 0;
2459	if (idx > WPI_MAX_PWR_INDEX)
2460		return WPI_MAX_PWR_INDEX;
2461	return idx;
2462
2463#undef interpolate
2464#undef fdivround
2465}
2466
2467/*
2468 * Build a beacon frame that the firmware will broadcast periodically in
2469 * IBSS or HostAP modes.
2470 */
2471static int
2472wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2473{
2474	struct ieee80211com *ic = &sc->sc_ic;
2475	struct wpi_tx_ring *ring = &sc->cmdq;
2476	struct wpi_tx_desc *desc;
2477	struct wpi_tx_data *data;
2478	struct wpi_tx_cmd *cmd;
2479	struct wpi_cmd_beacon *bcn;
2480	struct ieee80211_beacon_offsets bo;
2481	struct mbuf *m0;
2482	int error;
2483
2484	desc = &ring->desc[ring->cur];
2485	data = &ring->data[ring->cur];
2486
2487	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2488	if (m0 == NULL) {
2489		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2490		return ENOMEM;
2491	}
2492
2493	cmd = &ring->cmd[ring->cur];
2494	cmd->code = WPI_CMD_SET_BEACON;
2495	cmd->flags = 0;
2496	cmd->qid = ring->qid;
2497	cmd->idx = ring->cur;
2498
2499	bcn = (struct wpi_cmd_beacon *)cmd->data;
2500	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2501	bcn->id = WPI_ID_BROADCAST;
2502	bcn->ofdm_mask = 0xff;
2503	bcn->cck_mask = 0x0f;
2504	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2505	bcn->len = htole16(m0->m_pkthdr.len);
2506	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2507		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2508	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2509
2510	/* save and trim IEEE802.11 header */
2511	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2512	m_adj(m0, sizeof (struct ieee80211_frame));
2513
2514	/* assume beacon frame is contiguous */
2515	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2516		BUS_DMA_READ | BUS_DMA_NOWAIT);
2517	if (error) {
2518		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2519		m_freem(m0);
2520		return error;
2521	}
2522
2523	data->m = m0;
2524
2525	/* first scatter/gather segment is used by the beacon command */
2526	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2527	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2528		ring->cur * sizeof (struct wpi_tx_cmd));
2529	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2530	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2531	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2532
2533	/* kick cmd ring */
2534	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2535	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2536
2537	return 0;
2538}
2539
2540static int
2541wpi_auth(struct wpi_softc *sc)
2542{
2543	struct ieee80211com *ic = &sc->sc_ic;
2544	struct ieee80211_node *ni = ic->ic_bss;
2545	struct wpi_node_info node;
2546	int error;
2547
2548	/* update adapter's configuration */
2549	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2550	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2551	sc->config.flags = htole32(WPI_CONFIG_TSF);
2552	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2553		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2554		    WPI_CONFIG_24GHZ);
2555	}
2556	switch (ic->ic_curmode) {
2557	case IEEE80211_MODE_11A:
2558		sc->config.cck_mask  = 0;
2559		sc->config.ofdm_mask = 0x15;
2560		break;
2561	case IEEE80211_MODE_11B:
2562		sc->config.cck_mask  = 0x03;
2563		sc->config.ofdm_mask = 0;
2564		break;
2565	default:	/* assume 802.11b/g */
2566		sc->config.cck_mask  = 0x0f;
2567		sc->config.ofdm_mask = 0x15;
2568	}
2569
2570	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2571		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2572	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2573		sizeof (struct wpi_config), 1);
2574	if (error != 0) {
2575		aprint_error_dev(sc->sc_dev, "could not configure\n");
2576		return error;
2577	}
2578
2579	/* configuration has changed, set Tx power accordingly */
2580	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2581		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2582		return error;
2583	}
2584
2585	/* add default node */
2586	memset(&node, 0, sizeof node);
2587	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2588	node.id = WPI_ID_BSS;
2589	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2590	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2591	node.action = htole32(WPI_ACTION_SET_RATE);
2592	node.antenna = WPI_ANTENNA_BOTH;
2593	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2594	if (error != 0) {
2595		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2596		return error;
2597	}
2598
2599	return 0;
2600}
2601
2602/*
2603 * Send a scan request to the firmware.  Since this command is huge, we map it
2604 * into a mbuf instead of using the pre-allocated set of commands.
2605 */
2606static int
2607wpi_scan(struct wpi_softc *sc, uint16_t flags)
2608{
2609	struct ieee80211com *ic = &sc->sc_ic;
2610	struct wpi_tx_ring *ring = &sc->cmdq;
2611	struct wpi_tx_desc *desc;
2612	struct wpi_tx_data *data;
2613	struct wpi_tx_cmd *cmd;
2614	struct wpi_scan_hdr *hdr;
2615	struct wpi_scan_chan *chan;
2616	struct ieee80211_frame *wh;
2617	struct ieee80211_rateset *rs;
2618	struct ieee80211_channel *c;
2619	enum ieee80211_phymode mode;
2620	uint8_t *frm;
2621	int nrates, pktlen, error;
2622
2623	desc = &ring->desc[ring->cur];
2624	data = &ring->data[ring->cur];
2625
2626	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2627	if (data->m == NULL) {
2628		aprint_error_dev(sc->sc_dev,
2629						"could not allocate mbuf for scan command\n");
2630		return ENOMEM;
2631	}
2632
2633	MCLGET(data->m, M_DONTWAIT);
2634	if (!(data->m->m_flags & M_EXT)) {
2635		m_freem(data->m);
2636		data->m = NULL;
2637		aprint_error_dev(sc->sc_dev,
2638						 "could not allocate mbuf for scan command\n");
2639		return ENOMEM;
2640	}
2641
2642	cmd = mtod(data->m, struct wpi_tx_cmd *);
2643	cmd->code = WPI_CMD_SCAN;
2644	cmd->flags = 0;
2645	cmd->qid = ring->qid;
2646	cmd->idx = ring->cur;
2647
2648	hdr = (struct wpi_scan_hdr *)cmd->data;
2649	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2650	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2651	hdr->id = WPI_ID_BROADCAST;
2652	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2653
2654	/*
2655	 * Move to the next channel if no packets are received within 5 msecs
2656	 * after sending the probe request (this helps to reduce the duration
2657	 * of active scans).
2658	 */
2659	hdr->quiet = htole16(5);        /* timeout in milliseconds */
2660	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2661
2662	if (flags & IEEE80211_CHAN_A) {
2663		hdr->crc_threshold = htole16(1);
2664		/* send probe requests at 6Mbps */
2665		hdr->rate = wpi_plcp_signal(12);
2666	} else {
2667		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2668		/* send probe requests at 1Mbps */
2669		hdr->rate = wpi_plcp_signal(2);
2670	}
2671
2672	/* for directed scans, firmware inserts the essid IE itself */
2673	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2674	hdr->essid[0].len = ic->ic_des_esslen;
2675	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2676
2677	/*
2678	 * Build a probe request frame.  Most of the following code is a
2679	 * copy & paste of what is done in net80211.
2680	 */
2681	wh = (struct ieee80211_frame *)(hdr + 1);
2682	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2683		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2684	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2685	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2686	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2687	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2688	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2689	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2690
2691	frm = (uint8_t *)(wh + 1);
2692
2693	/* add empty essid IE (firmware generates it for directed scans) */
2694	*frm++ = IEEE80211_ELEMID_SSID;
2695	*frm++ = 0;
2696
2697	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2698	rs = &ic->ic_sup_rates[mode];
2699
2700	/* add supported rates IE */
2701	*frm++ = IEEE80211_ELEMID_RATES;
2702	nrates = rs->rs_nrates;
2703	if (nrates > IEEE80211_RATE_SIZE)
2704		nrates = IEEE80211_RATE_SIZE;
2705	*frm++ = nrates;
2706	memcpy(frm, rs->rs_rates, nrates);
2707	frm += nrates;
2708
2709	/* add supported xrates IE */
2710	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2711		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2712		*frm++ = IEEE80211_ELEMID_XRATES;
2713		*frm++ = nrates;
2714		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2715		frm += nrates;
2716	}
2717
2718	/* setup length of probe request */
2719	hdr->paylen = htole16(frm - (uint8_t *)wh);
2720
2721	chan = (struct wpi_scan_chan *)frm;
2722	for (c  = &ic->ic_channels[1];
2723	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2724		if ((c->ic_flags & flags) != flags)
2725			continue;
2726
2727		chan->chan = ieee80211_chan2ieee(ic, c);
2728		chan->flags = 0;
2729		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2730			chan->flags |= WPI_CHAN_ACTIVE;
2731			if (ic->ic_des_esslen != 0)
2732				chan->flags |= WPI_CHAN_DIRECT;
2733		}
2734		chan->dsp_gain = 0x6e;
2735		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2736			chan->rf_gain = 0x3b;
2737			chan->active = htole16(10);
2738			chan->passive = htole16(110);
2739		} else {
2740			chan->rf_gain = 0x28;
2741			chan->active = htole16(20);
2742			chan->passive = htole16(120);
2743		}
2744		hdr->nchan++;
2745		chan++;
2746
2747		frm += sizeof (struct wpi_scan_chan);
2748	}
2749	hdr->len = htole16(frm - (uint8_t *)hdr);
2750	pktlen = frm - (uint8_t *)cmd;
2751
2752	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2753		NULL, BUS_DMA_NOWAIT);
2754	if (error) {
2755		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2756		m_freem(data->m);
2757		data->m = NULL;
2758		return error;
2759	}
2760
2761	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2762	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2763	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2764
2765	/* kick cmd ring */
2766	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2767	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2768
2769	return 0;	/* will be notified async. of failure/success */
2770}
2771
2772static int
2773wpi_config(struct wpi_softc *sc)
2774{
2775	struct ieee80211com *ic = &sc->sc_ic;
2776	struct ifnet *ifp = ic->ic_ifp;
2777	struct wpi_power power;
2778	struct wpi_bluetooth bluetooth;
2779	struct wpi_node_info node;
2780	int error;
2781
2782	memset(&power, 0, sizeof power);
2783	power.flags = htole32(WPI_POWER_CAM | 0x8);
2784	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2785	if (error != 0) {
2786		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2787		return error;
2788	}
2789
2790	/* configure bluetooth coexistence */
2791	memset(&bluetooth, 0, sizeof bluetooth);
2792	bluetooth.flags = 3;
2793	bluetooth.lead = 0xaa;
2794	bluetooth.kill = 1;
2795	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2796		0);
2797	if (error != 0) {
2798		aprint_error_dev(sc->sc_dev,
2799			"could not configure bluetooth coexistence\n");
2800		return error;
2801	}
2802
2803	/* configure adapter */
2804	memset(&sc->config, 0, sizeof (struct wpi_config));
2805	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2806	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2807	/*set default channel*/
2808	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2809	sc->config.flags = htole32(WPI_CONFIG_TSF);
2810	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2811		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2812		    WPI_CONFIG_24GHZ);
2813	}
2814	sc->config.filter = 0;
2815	switch (ic->ic_opmode) {
2816	case IEEE80211_M_STA:
2817		sc->config.mode = WPI_MODE_STA;
2818		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2819		break;
2820	case IEEE80211_M_IBSS:
2821	case IEEE80211_M_AHDEMO:
2822		sc->config.mode = WPI_MODE_IBSS;
2823		break;
2824	case IEEE80211_M_HOSTAP:
2825		sc->config.mode = WPI_MODE_HOSTAP;
2826		break;
2827	case IEEE80211_M_MONITOR:
2828		sc->config.mode = WPI_MODE_MONITOR;
2829		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2830			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2831		break;
2832	}
2833	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2834	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2835	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2836		sizeof (struct wpi_config), 0);
2837	if (error != 0) {
2838		aprint_error_dev(sc->sc_dev, "configure command failed\n");
2839		return error;
2840	}
2841
2842	/* configuration has changed, set Tx power accordingly */
2843	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2844		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2845		return error;
2846	}
2847
2848	/* add broadcast node */
2849	memset(&node, 0, sizeof node);
2850	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2851	node.id = WPI_ID_BROADCAST;
2852	node.rate = wpi_plcp_signal(2);
2853	node.action = htole32(WPI_ACTION_SET_RATE);
2854	node.antenna = WPI_ANTENNA_BOTH;
2855	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2856	if (error != 0) {
2857		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2858		return error;
2859	}
2860
2861	if ((error = wpi_mrr_setup(sc)) != 0) {
2862		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2863		return error;
2864	}
2865
2866	return 0;
2867}
2868
2869static void
2870wpi_stop_master(struct wpi_softc *sc)
2871{
2872	uint32_t tmp;
2873	int ntries;
2874
2875	tmp = WPI_READ(sc, WPI_RESET);
2876	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2877
2878	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2879	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2880		return;	/* already asleep */
2881
2882	for (ntries = 0; ntries < 100; ntries++) {
2883		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2884			break;
2885		DELAY(10);
2886	}
2887	if (ntries == 100) {
2888		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2889	}
2890}
2891
2892static int
2893wpi_power_up(struct wpi_softc *sc)
2894{
2895	uint32_t tmp;
2896	int ntries;
2897
2898	wpi_mem_lock(sc);
2899	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2900	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2901	wpi_mem_unlock(sc);
2902
2903	for (ntries = 0; ntries < 5000; ntries++) {
2904		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2905			break;
2906		DELAY(10);
2907	}
2908	if (ntries == 5000) {
2909		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2910		return ETIMEDOUT;
2911	}
2912	return 0;
2913}
2914
2915static int
2916wpi_reset(struct wpi_softc *sc)
2917{
2918	uint32_t tmp;
2919	int ntries;
2920
2921	/* clear any pending interrupts */
2922	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2923
2924	tmp = WPI_READ(sc, WPI_PLL_CTL);
2925	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2926
2927	tmp = WPI_READ(sc, WPI_CHICKEN);
2928	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2929
2930	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2931	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2932
2933	/* wait for clock stabilization */
2934	for (ntries = 0; ntries < 1000; ntries++) {
2935		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2936			break;
2937		DELAY(10);
2938	}
2939	if (ntries == 1000) {
2940		aprint_error_dev(sc->sc_dev,
2941						 "timeout waiting for clock stabilization\n");
2942		return ETIMEDOUT;
2943	}
2944
2945	/* initialize EEPROM */
2946	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2947	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2948		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
2949		return EIO;
2950	}
2951	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2952
2953	return 0;
2954}
2955
2956static void
2957wpi_hw_config(struct wpi_softc *sc)
2958{
2959	uint32_t rev, hw;
2960
2961	/* voodoo from the reference driver */
2962	hw = WPI_READ(sc, WPI_HWCONFIG);
2963
2964	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
2965	rev = PCI_REVISION(rev);
2966	if ((rev & 0xc0) == 0x40)
2967		hw |= WPI_HW_ALM_MB;
2968	else if (!(rev & 0x80))
2969		hw |= WPI_HW_ALM_MM;
2970
2971	if (sc->cap == 0x80)
2972		hw |= WPI_HW_SKU_MRC;
2973
2974	hw &= ~WPI_HW_REV_D;
2975	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2976		hw |= WPI_HW_REV_D;
2977
2978	if (sc->type > 1)
2979		hw |= WPI_HW_TYPE_B;
2980
2981	DPRINTF(("setting h/w config %x\n", hw));
2982	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2983}
2984
2985static int
2986wpi_init(struct ifnet *ifp)
2987{
2988	struct wpi_softc *sc = ifp->if_softc;
2989	struct ieee80211com *ic = &sc->sc_ic;
2990	uint32_t tmp;
2991	int qid, ntries, error;
2992
2993	wpi_stop(ifp,1);
2994	(void)wpi_reset(sc);
2995
2996	wpi_mem_lock(sc);
2997	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
2998	DELAY(20);
2999	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3000	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3001	wpi_mem_unlock(sc);
3002
3003	(void)wpi_power_up(sc);
3004	wpi_hw_config(sc);
3005
3006	/* init Rx ring */
3007	wpi_mem_lock(sc);
3008	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3009	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3010	    offsetof(struct wpi_shared, next));
3011	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3012	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3013	wpi_mem_unlock(sc);
3014
3015	/* init Tx rings */
3016	wpi_mem_lock(sc);
3017	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3018	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3019	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3020	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3021	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3022	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3023	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3024
3025	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3026	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3027
3028	for (qid = 0; qid < 6; qid++) {
3029		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3030		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3031		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3032	}
3033	wpi_mem_unlock(sc);
3034
3035	/* clear "radio off" and "disable command" bits (reversed logic) */
3036	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3037	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3038
3039	/* clear any pending interrupts */
3040	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3041	/* enable interrupts */
3042	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3043
3044	/* not sure why/if this is necessary... */
3045	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3046	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3047
3048	if ((error = wpi_load_firmware(sc)) != 0) {
3049		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3050		goto fail1;
3051	}
3052
3053	/* Check the status of the radio switch */
3054	if (wpi_getrfkill(sc)) {
3055		aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
3056		error = EBUSY;
3057		goto fail1;
3058	}
3059
3060	/* wait for thermal sensors to calibrate */
3061	for (ntries = 0; ntries < 1000; ntries++) {
3062		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3063			break;
3064		DELAY(10);
3065	}
3066	if (ntries == 1000) {
3067		aprint_error_dev(sc->sc_dev,
3068						 "timeout waiting for thermal sensors calibration\n");
3069		error = ETIMEDOUT;
3070		goto fail1;
3071	}
3072
3073	DPRINTF(("temperature %d\n", sc->temp));
3074
3075	if ((error = wpi_config(sc)) != 0) {
3076		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3077		goto fail1;
3078	}
3079
3080	ifp->if_flags &= ~IFF_OACTIVE;
3081	ifp->if_flags |= IFF_RUNNING;
3082
3083	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3084		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3085			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3086	}
3087	else
3088		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3089
3090	return 0;
3091
3092fail1:	wpi_stop(ifp, 1);
3093	return error;
3094}
3095
3096
3097static void
3098wpi_stop(struct ifnet *ifp, int disable)
3099{
3100	struct wpi_softc *sc = ifp->if_softc;
3101	struct ieee80211com *ic = &sc->sc_ic;
3102	uint32_t tmp;
3103	int ac;
3104
3105	ifp->if_timer = sc->sc_tx_timer = 0;
3106	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3107
3108	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3109
3110	/* disable interrupts */
3111	WPI_WRITE(sc, WPI_MASK, 0);
3112	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3113	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3114	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3115
3116	wpi_mem_lock(sc);
3117	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3118	wpi_mem_unlock(sc);
3119
3120	/* reset all Tx rings */
3121	for (ac = 0; ac < 4; ac++)
3122		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3123	wpi_reset_tx_ring(sc, &sc->cmdq);
3124
3125	/* reset Rx ring */
3126	wpi_reset_rx_ring(sc, &sc->rxq);
3127
3128	wpi_mem_lock(sc);
3129	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3130	wpi_mem_unlock(sc);
3131
3132	DELAY(5);
3133
3134	wpi_stop_master(sc);
3135
3136	tmp = WPI_READ(sc, WPI_RESET);
3137	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3138}
3139
3140static bool
3141wpi_resume(device_t dv PMF_FN_ARGS)
3142{
3143	struct wpi_softc *sc = device_private(dv);
3144
3145	(void)wpi_reset(sc);
3146
3147	return true;
3148}
3149
3150/*
3151 * Return whether or not the radio is enabled in hardware
3152 * (i.e. the rfkill switch is "off").
3153 */
3154static int
3155wpi_getrfkill(struct wpi_softc *sc)
3156{
3157	uint32_t tmp;
3158
3159	wpi_mem_lock(sc);
3160	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3161	wpi_mem_unlock(sc);
3162
3163	return !(tmp & 0x01);
3164}
3165
3166static int
3167wpi_sysctl_radio(SYSCTLFN_ARGS)
3168{
3169	struct sysctlnode node;
3170	struct wpi_softc *sc;
3171	int val, error;
3172
3173	node = *rnode;
3174	sc = (struct wpi_softc *)node.sysctl_data;
3175
3176	val = !wpi_getrfkill(sc);
3177
3178	node.sysctl_data = &val;
3179	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3180
3181	if (error || newp == NULL)
3182		return error;
3183
3184	return 0;
3185}
3186
3187static void
3188wpi_sysctlattach(struct wpi_softc *sc)
3189{
3190	int rc;
3191	const struct sysctlnode *rnode;
3192	const struct sysctlnode *cnode;
3193
3194	struct sysctllog **clog = &sc->sc_sysctllog;
3195
3196	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3197	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3198	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
3199		goto err;
3200
3201	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
3202	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3203	    SYSCTL_DESCR("wpi controls and statistics"),
3204	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
3205		goto err;
3206
3207	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3208	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3209	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3210	    wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3211		goto err;
3212
3213#ifdef WPI_DEBUG
3214	/* control debugging printfs */
3215	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3216	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3217	    "debug", SYSCTL_DESCR("Enable debugging output"),
3218	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3219		goto err;
3220#endif
3221
3222	return;
3223err:
3224	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3225}
3226