if_wpi.c revision 1.38
1/*  $NetBSD: if_wpi.c,v 1.38 2008/04/28 18:33:31 drochner Exp $    */
2
3/*-
4 * Copyright (c) 2006, 2007
5 *	Damien Bergamini <damien.bergamini@free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20#include <sys/cdefs.h>
21__KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.38 2008/04/28 18:33:31 drochner Exp $");
22
23/*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27#include "bpfilter.h"
28
29#include <sys/param.h>
30#include <sys/sockio.h>
31#include <sys/sysctl.h>
32#include <sys/mbuf.h>
33#include <sys/kernel.h>
34#include <sys/socket.h>
35#include <sys/systm.h>
36#include <sys/malloc.h>
37#include <sys/conf.h>
38#include <sys/kauth.h>
39#include <sys/callout.h>
40
41#include <sys/bus.h>
42#include <machine/endian.h>
43#include <sys/intr.h>
44
45#include <dev/pci/pcireg.h>
46#include <dev/pci/pcivar.h>
47#include <dev/pci/pcidevs.h>
48
49#if NBPFILTER > 0
50#include <net/bpf.h>
51#endif
52#include <net/if.h>
53#include <net/if_arp.h>
54#include <net/if_dl.h>
55#include <net/if_ether.h>
56#include <net/if_media.h>
57#include <net/if_types.h>
58
59#include <net80211/ieee80211_var.h>
60#include <net80211/ieee80211_amrr.h>
61#include <net80211/ieee80211_radiotap.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/in_var.h>
66#include <netinet/ip.h>
67
68#include <dev/firmload.h>
69
70#include <dev/pci/if_wpireg.h>
71#include <dev/pci/if_wpivar.h>
72
73#ifdef WPI_DEBUG
74#define DPRINTF(x)	if (wpi_debug > 0) printf x
75#define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
76int wpi_debug = 1;
77#else
78#define DPRINTF(x)
79#define DPRINTFN(n, x)
80#endif
81
82/*
83 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84 */
85static const struct ieee80211_rateset wpi_rateset_11a =
86	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87
88static const struct ieee80211_rateset wpi_rateset_11b =
89	{ 4, { 2, 4, 11, 22 } };
90
91static const struct ieee80211_rateset wpi_rateset_11g =
92	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93
94static int  wpi_match(device_t, struct cfdata *, void *);
95static void wpi_attach(device_t, device_t, void *);
96static int  wpi_detach(device_t , int);
97static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
98	void **, bus_size_t, bus_size_t, int);
99static void wpi_dma_contig_free(struct wpi_dma_info *);
100static int  wpi_alloc_shared(struct wpi_softc *);
101static void wpi_free_shared(struct wpi_softc *);
102static int  wpi_alloc_fwmem(struct wpi_softc *);
103static void wpi_free_fwmem(struct wpi_softc *);
104static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
105static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
106static int  wpi_alloc_rpool(struct wpi_softc *);
107static void wpi_free_rpool(struct wpi_softc *);
108static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
109static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
110static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
111static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
112	int);
113static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
114static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
115static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
116static void wpi_newassoc(struct ieee80211_node *, int);
117static int  wpi_media_change(struct ifnet *);
118static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
119static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
120static void wpi_mem_lock(struct wpi_softc *);
121static void wpi_mem_unlock(struct wpi_softc *);
122static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
123static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
124static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
125								   const uint32_t *, int);
126static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
127static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
128static int  wpi_load_firmware(struct wpi_softc *);
129static void wpi_calib_timeout(void *);
130static void wpi_iter_func(void *, struct ieee80211_node *);
131static void wpi_power_calibration(struct wpi_softc *, int);
132static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
133	struct wpi_rx_data *);
134static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
135static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
136static void wpi_notif_intr(struct wpi_softc *);
137static int  wpi_intr(void *);
138static void wpi_read_eeprom(struct wpi_softc *);
139static void wpi_read_eeprom_channels(struct wpi_softc *, int);
140static void wpi_read_eeprom_group(struct wpi_softc *, int);
141static uint8_t wpi_plcp_signal(int);
142static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
143	struct ieee80211_node *, int);
144static void wpi_start(struct ifnet *);
145static void wpi_watchdog(struct ifnet *);
146static int  wpi_ioctl(struct ifnet *, u_long, void *);
147static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
148static int  wpi_wme_update(struct ieee80211com *);
149static int  wpi_mrr_setup(struct wpi_softc *);
150static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
151static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
152static int  wpi_set_txpower(struct wpi_softc *,
153			    struct ieee80211_channel *, int);
154static int  wpi_get_power_index(struct wpi_softc *,
155		struct wpi_power_group *, struct ieee80211_channel *, int);
156static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
157static int  wpi_auth(struct wpi_softc *);
158static int  wpi_scan(struct wpi_softc *, uint16_t);
159static int  wpi_config(struct wpi_softc *);
160static void wpi_stop_master(struct wpi_softc *);
161static int  wpi_power_up(struct wpi_softc *);
162static int  wpi_reset(struct wpi_softc *);
163static void wpi_hw_config(struct wpi_softc *);
164static int  wpi_init(struct ifnet *);
165static void wpi_stop(struct ifnet *, int);
166static bool wpi_resume(device_t PMF_FN_PROTO);
167static int	wpi_getrfkill(struct wpi_softc *);
168static void wpi_sysctlattach(struct wpi_softc *);
169
170CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
171	wpi_detach, NULL);
172
173static int
174wpi_match(device_t parent, struct cfdata *match __unused, void *aux)
175{
176	struct pci_attach_args *pa = aux;
177
178	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
179		return 0;
180
181	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
182	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
183		return 1;
184
185	return 0;
186}
187
188/* Base Address Register */
189#define WPI_PCI_BAR0	0x10
190
191static void
192wpi_attach(device_t parent __unused, device_t self, void *aux)
193{
194	struct wpi_softc *sc = device_private(self);
195	struct ieee80211com *ic = &sc->sc_ic;
196	struct ifnet *ifp = &sc->sc_ec.ec_if;
197	struct pci_attach_args *pa = aux;
198	const char *intrstr;
199	char devinfo[256];
200	bus_space_tag_t memt;
201	bus_space_handle_t memh;
202	pci_intr_handle_t ih;
203	pcireg_t data;
204	int error, ac, revision;
205
206	sc->sc_dev = self;
207	sc->sc_pct = pa->pa_pc;
208	sc->sc_pcitag = pa->pa_tag;
209
210	callout_init(&sc->calib_to, 0);
211	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
212
213	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
214	revision = PCI_REVISION(pa->pa_class);
215	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
216
217	/* enable bus-mastering */
218	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
219	data |= PCI_COMMAND_MASTER_ENABLE;
220	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
221
222	/* map the register window */
223	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
224		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
225	if (error != 0) {
226		aprint_error_dev(self, "could not map memory space\n");
227		return;
228	}
229
230	sc->sc_st = memt;
231	sc->sc_sh = memh;
232	sc->sc_dmat = pa->pa_dmat;
233
234	if (pci_intr_map(pa, &ih) != 0) {
235		aprint_error_dev(self, "could not map interrupt\n");
236		return;
237	}
238
239	intrstr = pci_intr_string(sc->sc_pct, ih);
240	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
241	if (sc->sc_ih == NULL) {
242		aprint_error_dev(self, "could not establish interrupt");
243		if (intrstr != NULL)
244			aprint_error(" at %s", intrstr);
245		aprint_error("\n");
246		return;
247	}
248	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
249
250	if (wpi_reset(sc) != 0) {
251		aprint_error_dev(self, "could not reset adapter\n");
252		return;
253	}
254
255 	/*
256	 * Allocate DMA memory for firmware transfers.
257	 */
258	if ((error = wpi_alloc_fwmem(sc)) != 0)
259		return;
260
261	/*
262	 * Allocate shared page and Tx/Rx rings.
263	 */
264	if ((error = wpi_alloc_shared(sc)) != 0) {
265		aprint_error_dev(self, "could not allocate shared area\n");
266		goto fail1;
267	}
268
269	if ((error = wpi_alloc_rpool(sc)) != 0) {
270		aprint_error_dev(self, "could not allocate Rx buffers\n");
271		goto fail2;
272	}
273
274	for (ac = 0; ac < 4; ac++) {
275		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
276		if (error != 0) {
277			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
278			goto fail3;
279		}
280	}
281
282	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
283	if (error != 0) {
284		aprint_error_dev(self, "could not allocate command ring\n");
285		goto fail3;
286	}
287
288	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
289		aprint_error_dev(self, "could not allocate Rx ring\n");
290		goto fail4;
291	}
292
293	ic->ic_ifp = ifp;
294	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
295	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
296	ic->ic_state = IEEE80211_S_INIT;
297
298	/* set device capabilities */
299	ic->ic_caps =
300		IEEE80211_C_IBSS |       /* IBSS mode support */
301		IEEE80211_C_WPA |        /* 802.11i */
302		IEEE80211_C_MONITOR |    /* monitor mode supported */
303		IEEE80211_C_TXPMGT |     /* tx power management */
304		IEEE80211_C_SHSLOT |     /* short slot time supported */
305		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
306		IEEE80211_C_WME;         /* 802.11e */
307
308	/* read supported channels and MAC address from EEPROM */
309	wpi_read_eeprom(sc);
310
311	/* set supported .11a, .11b, .11g rates */
312	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
313	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
314	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
315
316	ic->ic_ibss_chan = &ic->ic_channels[0];
317
318	ifp->if_softc = sc;
319	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
320	ifp->if_init = wpi_init;
321	ifp->if_stop = wpi_stop;
322	ifp->if_ioctl = wpi_ioctl;
323	ifp->if_start = wpi_start;
324	ifp->if_watchdog = wpi_watchdog;
325	IFQ_SET_READY(&ifp->if_snd);
326	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
327
328	if_attach(ifp);
329	ieee80211_ifattach(ic);
330	/* override default methods */
331	ic->ic_node_alloc = wpi_node_alloc;
332	ic->ic_newassoc = wpi_newassoc;
333	ic->ic_wme.wme_update = wpi_wme_update;
334
335	/* override state transition machine */
336	sc->sc_newstate = ic->ic_newstate;
337	ic->ic_newstate = wpi_newstate;
338	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
339
340	sc->amrr.amrr_min_success_threshold = 1;
341	sc->amrr.amrr_max_success_threshold = 15;
342
343	wpi_sysctlattach(sc);
344
345	if (!pmf_device_register(self, NULL, wpi_resume))
346		aprint_error_dev(self, "couldn't establish power handler\n");
347	else
348		pmf_class_network_register(self, ifp);
349
350#if NBPFILTER > 0
351	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
352		sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
353		&sc->sc_drvbpf);
354
355	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
356	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
357	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
358
359	sc->sc_txtap_len = sizeof sc->sc_txtapu;
360	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
361	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
362#endif
363
364	ieee80211_announce(ic);
365
366	return;
367
368fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
369fail3:  while (--ac >= 0)
370			wpi_free_tx_ring(sc, &sc->txq[ac]);
371	wpi_free_rpool(sc);
372fail2:	wpi_free_shared(sc);
373fail1:	wpi_free_fwmem(sc);
374}
375
376static int
377wpi_detach(device_t self, int flags __unused)
378{
379	struct wpi_softc *sc = device_private(self);
380	struct ifnet *ifp = sc->sc_ic.ic_ifp;
381	int ac;
382
383	wpi_stop(ifp, 1);
384
385#if NBPFILTER > 0
386	if (ifp != NULL)
387		bpfdetach(ifp);
388#endif
389	ieee80211_ifdetach(&sc->sc_ic);
390	if (ifp != NULL)
391		if_detach(ifp);
392
393	for (ac = 0; ac < 4; ac++)
394		wpi_free_tx_ring(sc, &sc->txq[ac]);
395	wpi_free_tx_ring(sc, &sc->cmdq);
396	wpi_free_rx_ring(sc, &sc->rxq);
397	wpi_free_rpool(sc);
398	wpi_free_shared(sc);
399
400	if (sc->sc_ih != NULL) {
401		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
402		sc->sc_ih = NULL;
403	}
404
405	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
406
407	return 0;
408}
409
410static int
411wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
412	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
413{
414	int nsegs, error;
415
416	dma->tag = tag;
417	dma->size = size;
418
419	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
420	if (error != 0)
421		goto fail;
422
423	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
424	    flags);
425	if (error != 0)
426		goto fail;
427
428	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
429	if (error != 0)
430		goto fail;
431
432	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
433	if (error != 0)
434		goto fail;
435
436	memset(dma->vaddr, 0, size);
437
438	dma->paddr = dma->map->dm_segs[0].ds_addr;
439	if (kvap != NULL)
440		*kvap = dma->vaddr;
441
442	return 0;
443
444fail:   wpi_dma_contig_free(dma);
445	return error;
446}
447
448static void
449wpi_dma_contig_free(struct wpi_dma_info *dma)
450{
451	if (dma->map != NULL) {
452		if (dma->vaddr != NULL) {
453			bus_dmamap_unload(dma->tag, dma->map);
454			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
455			bus_dmamem_free(dma->tag, &dma->seg, 1);
456			dma->vaddr = NULL;
457		}
458		bus_dmamap_destroy(dma->tag, dma->map);
459		dma->map = NULL;
460	}
461}
462
463/*
464 * Allocate a shared page between host and NIC.
465 */
466static int
467wpi_alloc_shared(struct wpi_softc *sc)
468{
469	int error;
470	/* must be aligned on a 4K-page boundary */
471	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
472			(void **)&sc->shared, sizeof (struct wpi_shared),
473			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
474	if (error != 0)
475		aprint_error_dev(sc->sc_dev,
476				"could not allocate shared area DMA memory\n");
477
478	return error;
479}
480
481static void
482wpi_free_shared(struct wpi_softc *sc)
483{
484	wpi_dma_contig_free(&sc->shared_dma);
485}
486
487/*
488 * Allocate DMA-safe memory for firmware transfer.
489 */
490static int
491wpi_alloc_fwmem(struct wpi_softc *sc)
492{
493	int error;
494	/* allocate enough contiguous space to store text and data */
495	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
496	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
497	    BUS_DMA_NOWAIT);
498
499	if (error != 0)
500		aprint_error_dev(sc->sc_dev,
501			"could not allocate firmware transfer area"
502			"DMA memory\n");
503	return error;
504}
505
506static void
507wpi_free_fwmem(struct wpi_softc *sc)
508{
509	wpi_dma_contig_free(&sc->fw_dma);
510}
511
512
513static struct wpi_rbuf *
514wpi_alloc_rbuf(struct wpi_softc *sc)
515{
516	struct wpi_rbuf *rbuf;
517
518	rbuf = SLIST_FIRST(&sc->rxq.freelist);
519	if (rbuf == NULL)
520		return NULL;
521	SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
522	sc->rxq.nb_free_entries --;
523
524	return rbuf;
525}
526
527/*
528 * This is called automatically by the network stack when the mbuf to which our
529 * Rx buffer is attached is freed.
530 */
531static void
532wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
533{
534	struct wpi_rbuf *rbuf = arg;
535	struct wpi_softc *sc = rbuf->sc;
536
537	/* put the buffer back in the free list */
538
539	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
540	sc->rxq.nb_free_entries ++;
541
542	if (__predict_true(m != NULL))
543		pool_cache_put(mb_cache, m);
544}
545
546static int
547wpi_alloc_rpool(struct wpi_softc *sc)
548{
549	struct wpi_rx_ring *ring = &sc->rxq;
550	struct wpi_rbuf *rbuf;
551	int i, error;
552
553	/* allocate a big chunk of DMA'able memory.. */
554	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
555	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
556	if (error != 0) {
557		aprint_normal_dev(sc->sc_dev,
558						  "could not allocate Rx buffers DMA memory\n");
559		return error;
560	}
561
562	/* ..and split it into 3KB chunks */
563	SLIST_INIT(&ring->freelist);
564	for (i = 0; i < WPI_RBUF_COUNT; i++) {
565		rbuf = &ring->rbuf[i];
566		rbuf->sc = sc;	/* backpointer for callbacks */
567		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
568		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
569
570		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
571	}
572
573	ring->nb_free_entries = WPI_RBUF_COUNT;
574	return 0;
575}
576
577static void
578wpi_free_rpool(struct wpi_softc *sc)
579{
580	wpi_dma_contig_free(&sc->rxq.buf_dma);
581}
582
583static int
584wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
585{
586	struct wpi_rx_data *data;
587	struct wpi_rbuf *rbuf;
588	int i, error;
589
590	ring->cur = 0;
591
592	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
593		(void **)&ring->desc,
594		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
595		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
596	if (error != 0) {
597		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
598		goto fail;
599	}
600
601	/*
602	 * Setup Rx buffers.
603	 */
604	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
605		data = &ring->data[i];
606
607		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
608		if (data->m == NULL) {
609			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
610			error = ENOMEM;
611			goto fail;
612		}
613		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
614			m_freem(data->m);
615			data->m = NULL;
616			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
617			error = ENOMEM;
618			goto fail;
619		}
620		/* attach Rx buffer to mbuf */
621		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
622		    rbuf);
623		data->m->m_flags |= M_EXT_RW;
624
625		ring->desc[i] = htole32(rbuf->paddr);
626	}
627
628	return 0;
629
630fail:	wpi_free_rx_ring(sc, ring);
631	return error;
632}
633
634static void
635wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
636{
637	int ntries;
638
639	wpi_mem_lock(sc);
640
641	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
642	for (ntries = 0; ntries < 100; ntries++) {
643		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
644			break;
645		DELAY(10);
646	}
647#ifdef WPI_DEBUG
648	if (ntries == 100 && wpi_debug > 0)
649		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
650#endif
651	wpi_mem_unlock(sc);
652
653	ring->cur = 0;
654}
655
656static void
657wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
658{
659	int i;
660
661	wpi_dma_contig_free(&ring->desc_dma);
662
663	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
664		if (ring->data[i].m != NULL)
665			m_freem(ring->data[i].m);
666	}
667}
668
669static int
670wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
671	int qid)
672{
673	struct wpi_tx_data *data;
674	int i, error;
675
676	ring->qid = qid;
677	ring->count = count;
678	ring->queued = 0;
679	ring->cur = 0;
680
681	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
682		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
683		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
684	if (error != 0) {
685		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
686		goto fail;
687	}
688
689	/* update shared page with ring's base address */
690	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
691
692	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
693		(void **)&ring->cmd,
694		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
695	if (error != 0) {
696		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
697		goto fail;
698	}
699
700	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
701		M_NOWAIT);
702	if (ring->data == NULL) {
703		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
704		goto fail;
705	}
706
707	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
708
709	for (i = 0; i < count; i++) {
710		data = &ring->data[i];
711
712		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
713			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
714			&data->map);
715		if (error != 0) {
716			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
717			goto fail;
718		}
719	}
720
721	return 0;
722
723fail:	wpi_free_tx_ring(sc, ring);
724	return error;
725}
726
727static void
728wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
729{
730	struct wpi_tx_data *data;
731	int i, ntries;
732
733	wpi_mem_lock(sc);
734
735	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
736	for (ntries = 0; ntries < 100; ntries++) {
737		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
738			break;
739		DELAY(10);
740	}
741#ifdef WPI_DEBUG
742	if (ntries == 100 && wpi_debug > 0) {
743		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
744									   ring->qid);
745	}
746#endif
747	wpi_mem_unlock(sc);
748
749	for (i = 0; i < ring->count; i++) {
750		data = &ring->data[i];
751
752		if (data->m != NULL) {
753			bus_dmamap_unload(sc->sc_dmat, data->map);
754			m_freem(data->m);
755			data->m = NULL;
756		}
757	}
758
759	ring->queued = 0;
760	ring->cur = 0;
761}
762
763static void
764wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
765{
766	struct wpi_tx_data *data;
767	int i;
768
769	wpi_dma_contig_free(&ring->desc_dma);
770	wpi_dma_contig_free(&ring->cmd_dma);
771
772	if (ring->data != NULL) {
773		for (i = 0; i < ring->count; i++) {
774			data = &ring->data[i];
775
776			if (data->m != NULL) {
777				bus_dmamap_unload(sc->sc_dmat, data->map);
778				m_freem(data->m);
779			}
780		}
781		free(ring->data, M_DEVBUF);
782	}
783}
784
785/*ARGUSED*/
786static struct ieee80211_node *
787wpi_node_alloc(struct ieee80211_node_table *nt __unused)
788{
789	struct wpi_node *wn;
790
791	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
792
793	return (struct ieee80211_node *)wn;
794}
795
796static void
797wpi_newassoc(struct ieee80211_node *ni, int isnew)
798{
799	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
800	int i;
801
802	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
803
804	/* set rate to some reasonable initial value */
805	for (i = ni->ni_rates.rs_nrates - 1;
806	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
807	     i--);
808	ni->ni_txrate = i;
809}
810
811static int
812wpi_media_change(struct ifnet *ifp)
813{
814	int error;
815
816	error = ieee80211_media_change(ifp);
817	if (error != ENETRESET)
818		return error;
819
820	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
821		wpi_init(ifp);
822
823	return 0;
824}
825
826static int
827wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
828{
829	struct ifnet *ifp = ic->ic_ifp;
830	struct wpi_softc *sc = ifp->if_softc;
831	struct ieee80211_node *ni;
832	int error;
833
834	callout_stop(&sc->calib_to);
835
836	switch (nstate) {
837	case IEEE80211_S_SCAN:
838
839		if (sc->is_scanning)
840			break;
841
842		sc->is_scanning = true;
843		ieee80211_node_table_reset(&ic->ic_scan);
844		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
845
846		/* make the link LED blink while we're scanning */
847		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
848
849		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
850			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
851			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
852			return error;
853		}
854
855		ic->ic_state = nstate;
856		return 0;
857
858	case IEEE80211_S_ASSOC:
859		if (ic->ic_state != IEEE80211_S_RUN)
860			break;
861		/* FALLTHROUGH */
862	case IEEE80211_S_AUTH:
863		sc->config.associd = 0;
864		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
865		if ((error = wpi_auth(sc)) != 0) {
866			aprint_error_dev(sc->sc_dev,
867							"could not send authentication request\n");
868			return error;
869		}
870		break;
871
872	case IEEE80211_S_RUN:
873		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
874			/* link LED blinks while monitoring */
875			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
876			break;
877		}
878
879		ni = ic->ic_bss;
880
881		if (ic->ic_opmode != IEEE80211_M_STA) {
882			(void) wpi_auth(sc);    /* XXX */
883			wpi_setup_beacon(sc, ni);
884		}
885
886		wpi_enable_tsf(sc, ni);
887
888		/* update adapter's configuration */
889		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
890		/* short preamble/slot time are negotiated when associating */
891		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
892			WPI_CONFIG_SHSLOT);
893		if (ic->ic_flags & IEEE80211_F_SHSLOT)
894			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
895		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
896			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
897		sc->config.filter |= htole32(WPI_FILTER_BSS);
898		if (ic->ic_opmode != IEEE80211_M_STA)
899			sc->config.filter |= htole32(WPI_FILTER_BEACON);
900
901/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
902
903		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
904			sc->config.flags));
905		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
906			sizeof (struct wpi_config), 1);
907		if (error != 0) {
908			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
909			return error;
910		}
911
912		/* configuration has changed, set Tx power accordingly */
913		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
914			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
915			return error;
916		}
917
918		if (ic->ic_opmode == IEEE80211_M_STA) {
919			/* fake a join to init the tx rate */
920			wpi_newassoc(ni, 1);
921		}
922
923		/* start periodic calibration timer */
924		sc->calib_cnt = 0;
925		callout_schedule(&sc->calib_to, hz/2);
926
927		/* link LED always on while associated */
928		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
929		break;
930
931	case IEEE80211_S_INIT:
932		sc->is_scanning = false;
933		break;
934	}
935
936	return sc->sc_newstate(ic, nstate, arg);
937}
938
939/*
940 * XXX: Hack to set the current channel to the value advertised in beacons or
941 * probe responses. Only used during AP detection.
942 * XXX: Duplicated from if_iwi.c
943 */
944static void
945wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
946{
947	struct ieee80211_frame *wh;
948	uint8_t subtype;
949	uint8_t *frm, *efrm;
950
951	wh = mtod(m, struct ieee80211_frame *);
952
953	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
954		return;
955
956	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
957
958	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
959	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
960		return;
961
962	frm = (uint8_t *)(wh + 1);
963	efrm = mtod(m, uint8_t *) + m->m_len;
964
965	frm += 12;	/* skip tstamp, bintval and capinfo fields */
966	while (frm < efrm) {
967		if (*frm == IEEE80211_ELEMID_DSPARMS)
968#if IEEE80211_CHAN_MAX < 255
969		if (frm[2] <= IEEE80211_CHAN_MAX)
970#endif
971			ic->ic_curchan = &ic->ic_channels[frm[2]];
972
973		frm += frm[1] + 2;
974	}
975}
976
977/*
978 * Grab exclusive access to NIC memory.
979 */
980static void
981wpi_mem_lock(struct wpi_softc *sc)
982{
983	uint32_t tmp;
984	int ntries;
985
986	tmp = WPI_READ(sc, WPI_GPIO_CTL);
987	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
988
989	/* spin until we actually get the lock */
990	for (ntries = 0; ntries < 1000; ntries++) {
991		if ((WPI_READ(sc, WPI_GPIO_CTL) &
992			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
993			break;
994		DELAY(10);
995	}
996	if (ntries == 1000)
997		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
998}
999
1000/*
1001 * Release lock on NIC memory.
1002 */
1003static void
1004wpi_mem_unlock(struct wpi_softc *sc)
1005{
1006	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1007	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1008}
1009
1010static uint32_t
1011wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1012{
1013	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1014	return WPI_READ(sc, WPI_READ_MEM_DATA);
1015}
1016
1017static void
1018wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1019{
1020	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1021	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1022}
1023
1024static void
1025wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1026						const uint32_t *data, int wlen)
1027{
1028	for (; wlen > 0; wlen--, data++, addr += 4)
1029		wpi_mem_write(sc, addr, *data);
1030}
1031
1032
1033/*
1034 * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1035 * instead of using the traditional bit-bang method.
1036 */
1037static int
1038wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1039{
1040	uint8_t *out = data;
1041	uint32_t val;
1042	int ntries;
1043
1044	wpi_mem_lock(sc);
1045	for (; len > 0; len -= 2, addr++) {
1046		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1047
1048		for (ntries = 0; ntries < 10; ntries++) {
1049			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1050			    WPI_EEPROM_READY)
1051				break;
1052			DELAY(5);
1053		}
1054		if (ntries == 10) {
1055			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1056			return ETIMEDOUT;
1057		}
1058		*out++ = val >> 16;
1059		if (len > 1)
1060			*out++ = val >> 24;
1061	}
1062	wpi_mem_unlock(sc);
1063
1064	return 0;
1065}
1066
1067/*
1068 * The firmware boot code is small and is intended to be copied directly into
1069 * the NIC internal memory.
1070 */
1071int
1072wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1073{
1074	int ntries;
1075
1076	size /= sizeof (uint32_t);
1077
1078	wpi_mem_lock(sc);
1079
1080	/* copy microcode image into NIC memory */
1081	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1082	    (const uint32_t *)ucode, size);
1083
1084	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1085	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1086	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1087
1088	/* run microcode */
1089	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1090
1091	/* wait for transfer to complete */
1092	for (ntries = 0; ntries < 1000; ntries++) {
1093		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1094			break;
1095		DELAY(10);
1096	}
1097	if (ntries == 1000) {
1098		wpi_mem_unlock(sc);
1099		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1100		return ETIMEDOUT;
1101	}
1102	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1103
1104	wpi_mem_unlock(sc);
1105
1106	return 0;
1107}
1108
1109static int
1110wpi_load_firmware(struct wpi_softc *sc)
1111{
1112	struct wpi_dma_info *dma = &sc->fw_dma;
1113	struct wpi_firmware_hdr hdr;
1114	const uint8_t *init_text, *init_data, *main_text, *main_data;
1115	const uint8_t *boot_text;
1116	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1117	uint32_t boot_textsz;
1118	firmware_handle_t fw;
1119	u_char *dfw;
1120	size_t size;
1121	int error;
1122
1123	/* load firmware image from disk */
1124	if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1125		aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1126		goto fail1;
1127	}
1128
1129	size = firmware_get_size(fw);
1130
1131	/* extract firmware header information */
1132	if (size < sizeof (struct wpi_firmware_hdr)) {
1133		aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n",
1134		    			 size);
1135		error = EINVAL;
1136		goto fail2;
1137	}
1138
1139	if ((error = firmware_read(fw, 0, &hdr,
1140		sizeof (struct wpi_firmware_hdr))) != 0) {
1141		aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
1142		goto fail2;
1143	}
1144
1145	main_textsz = le32toh(hdr.main_textsz);
1146	main_datasz = le32toh(hdr.main_datasz);
1147	init_textsz = le32toh(hdr.init_textsz);
1148	init_datasz = le32toh(hdr.init_datasz);
1149	boot_textsz = le32toh(hdr.boot_textsz);
1150
1151	/* sanity-check firmware segments sizes */
1152	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1153	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1154	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1155	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1156	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1157	    (boot_textsz & 3) != 0) {
1158		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1159		error = EINVAL;
1160		goto fail2;
1161	}
1162
1163	/* check that all firmware segments are present */
1164	if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
1165		main_datasz + init_textsz + init_datasz + boot_textsz) {
1166		aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n",
1167		    			 size);
1168		error = EINVAL;
1169		goto fail2;
1170	}
1171
1172	dfw = firmware_malloc(size);
1173	if (dfw == NULL) {
1174		aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1175		error = ENOMEM;
1176		goto fail2;
1177	}
1178
1179	if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
1180		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1181		goto fail2;
1182	}
1183
1184	/* get pointers to firmware segments */
1185	main_text = dfw + sizeof (struct wpi_firmware_hdr);
1186	main_data = main_text + main_textsz;
1187	init_text = main_data + main_datasz;
1188	init_data = init_text + init_textsz;
1189	boot_text = init_data + init_datasz;
1190
1191	/* copy initialization images into pre-allocated DMA-safe memory */
1192	memcpy(dma->vaddr, init_data, init_datasz);
1193	memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1194
1195	/* tell adapter where to find initialization images */
1196	wpi_mem_lock(sc);
1197	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1198	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1199	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1200	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1201	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1202	wpi_mem_unlock(sc);
1203
1204	/* load firmware boot code */
1205	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1206		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1207		goto fail3;
1208	}
1209
1210	/* now press "execute" ;-) */
1211	WPI_WRITE(sc, WPI_RESET, 0);
1212
1213	/* ..and wait at most one second for adapter to initialize */
1214	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1215		/* this isn't what was supposed to happen.. */
1216		aprint_error_dev(sc->sc_dev,
1217					"timeout waiting for adapter to initialize\n");
1218	}
1219
1220	/* copy runtime images into pre-allocated DMA-safe memory */
1221	memcpy(dma->vaddr, main_data, main_datasz);
1222	memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1223
1224	/* tell adapter where to find runtime images */
1225	wpi_mem_lock(sc);
1226	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1227	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1228	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1229	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1230	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1231	wpi_mem_unlock(sc);
1232
1233	/* wait at most one second for second alive notification */
1234	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1235		/* this isn't what was supposed to happen.. */
1236		aprint_error_dev(sc->sc_dev,
1237						"timeout waiting for adapter to initialize\n");
1238	}
1239
1240
1241fail3: 	firmware_free(dfw,size);
1242fail2:	firmware_close(fw);
1243fail1:	return error;
1244}
1245
1246static void
1247wpi_calib_timeout(void *arg)
1248{
1249	struct wpi_softc *sc = arg;
1250	struct ieee80211com *ic = &sc->sc_ic;
1251	int temp, s;
1252
1253	/* automatic rate control triggered every 500ms */
1254	if (ic->ic_fixed_rate == -1) {
1255		s = splnet();
1256		if (ic->ic_opmode == IEEE80211_M_STA)
1257			wpi_iter_func(sc, ic->ic_bss);
1258		else
1259                	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1260		splx(s);
1261	}
1262
1263	/* update sensor data */
1264	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1265
1266	/* automatic power calibration every 60s */
1267	if (++sc->calib_cnt >= 120) {
1268		wpi_power_calibration(sc, temp);
1269		sc->calib_cnt = 0;
1270	}
1271
1272	callout_schedule(&sc->calib_to, hz/2);
1273}
1274
1275static void
1276wpi_iter_func(void *arg, struct ieee80211_node *ni)
1277{
1278	struct wpi_softc *sc = arg;
1279	struct wpi_node *wn = (struct wpi_node *)ni;
1280
1281	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1282}
1283
1284/*
1285 * This function is called periodically (every 60 seconds) to adjust output
1286 * power to temperature changes.
1287 */
1288void
1289wpi_power_calibration(struct wpi_softc *sc, int temp)
1290{
1291	/* sanity-check read value */
1292	if (temp < -260 || temp > 25) {
1293		/* this can't be correct, ignore */
1294		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1295		return;
1296	}
1297
1298	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1299
1300	/* adjust Tx power if need be */
1301	if (abs(temp - sc->temp) <= 6)
1302		return;
1303
1304	sc->temp = temp;
1305
1306	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1307		/* just warn, too bad for the automatic calibration... */
1308		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1309	}
1310}
1311
1312static void
1313wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1314	struct wpi_rx_data *data)
1315{
1316	struct ieee80211com *ic = &sc->sc_ic;
1317	struct ifnet *ifp = ic->ic_ifp;
1318	struct wpi_rx_ring *ring = &sc->rxq;
1319	struct wpi_rx_stat *stat;
1320	struct wpi_rx_head *head;
1321	struct wpi_rx_tail *tail;
1322	struct wpi_rbuf *rbuf;
1323	struct ieee80211_frame *wh;
1324	struct ieee80211_node *ni;
1325	struct mbuf *m, *mnew;
1326	int data_off ;
1327
1328	stat = (struct wpi_rx_stat *)(desc + 1);
1329
1330	if (stat->len > WPI_STAT_MAXLEN) {
1331		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1332		ifp->if_ierrors++;
1333		return;
1334	}
1335
1336	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1337	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1338
1339	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1340		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1341		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1342		le64toh(tail->tstamp)));
1343
1344	/*
1345	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1346	 * to radiotap in monitor mode).
1347	 */
1348	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1349		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1350		ifp->if_ierrors++;
1351		return;
1352	}
1353
1354	/* Compute where are the useful datas */
1355	data_off = (char*)(head + 1) - mtod(data->m, char*);
1356
1357	/*
1358	 * If the number of free entry is too low
1359	 * just dup the data->m socket and reuse the same rbuf entry
1360	 */
1361	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1362
1363		/* Prepare the mbuf for the m_dup */
1364		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1365		data->m->m_data = (char*) data->m->m_data + data_off;
1366
1367		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1368
1369		/* Restore the m_data pointer for future use */
1370		data->m->m_data = (char*) data->m->m_data - data_off;
1371
1372		if (m == NULL) {
1373			ifp->if_ierrors++;
1374			return;
1375		}
1376	} else {
1377
1378		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1379		if (mnew == NULL) {
1380			ifp->if_ierrors++;
1381			return;
1382		}
1383
1384		rbuf = wpi_alloc_rbuf(sc);
1385		KASSERT(rbuf != NULL);
1386
1387 		/* attach Rx buffer to mbuf */
1388		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1389		 	rbuf);
1390		mnew->m_flags |= M_EXT_RW;
1391
1392		m = data->m;
1393		data->m = mnew;
1394
1395		/* update Rx descriptor */
1396		ring->desc[ring->cur] = htole32(rbuf->paddr);
1397
1398		m->m_data = (char*)m->m_data + data_off;
1399		m->m_pkthdr.len = m->m_len = le16toh(head->len);
1400	}
1401
1402	/* finalize mbuf */
1403	m->m_pkthdr.rcvif = ifp;
1404
1405	if (ic->ic_state == IEEE80211_S_SCAN)
1406		wpi_fix_channel(ic, m);
1407
1408#if NBPFILTER > 0
1409	if (sc->sc_drvbpf != NULL) {
1410		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1411
1412		tap->wr_flags = 0;
1413		tap->wr_chan_freq =
1414			htole16(ic->ic_channels[head->chan].ic_freq);
1415		tap->wr_chan_flags =
1416			htole16(ic->ic_channels[head->chan].ic_flags);
1417		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1418		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1419		tap->wr_tsft = tail->tstamp;
1420		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1421		switch (head->rate) {
1422		/* CCK rates */
1423		case  10: tap->wr_rate =   2; break;
1424		case  20: tap->wr_rate =   4; break;
1425		case  55: tap->wr_rate =  11; break;
1426		case 110: tap->wr_rate =  22; break;
1427		/* OFDM rates */
1428		case 0xd: tap->wr_rate =  12; break;
1429		case 0xf: tap->wr_rate =  18; break;
1430		case 0x5: tap->wr_rate =  24; break;
1431		case 0x7: tap->wr_rate =  36; break;
1432		case 0x9: tap->wr_rate =  48; break;
1433		case 0xb: tap->wr_rate =  72; break;
1434		case 0x1: tap->wr_rate =  96; break;
1435		case 0x3: tap->wr_rate = 108; break;
1436		/* unknown rate: should not happen */
1437		default:  tap->wr_rate =   0;
1438		}
1439		if (le16toh(head->flags) & 0x4)
1440			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1441
1442		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1443	}
1444#endif
1445
1446	/* grab a reference to the source node */
1447	wh = mtod(m, struct ieee80211_frame *);
1448	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1449
1450	/* send the frame to the 802.11 layer */
1451	ieee80211_input(ic, m, ni, stat->rssi, 0);
1452
1453	/* release node reference */
1454	ieee80211_free_node(ni);
1455}
1456
1457static void
1458wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1459{
1460	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1461	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1462	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1463	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1464	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1465
1466	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1467		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1468		stat->nkill, stat->rate, le32toh(stat->duration),
1469		le32toh(stat->status)));
1470
1471	/*
1472	 * Update rate control statistics for the node.
1473	 * XXX we should not count mgmt frames since they're always sent at
1474	 * the lowest available bit-rate.
1475	 */
1476	wn->amn.amn_txcnt++;
1477	if (stat->ntries > 0) {
1478		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1479		wn->amn.amn_retrycnt++;
1480	}
1481
1482	if ((le32toh(stat->status) & 0xff) != 1)
1483		ifp->if_oerrors++;
1484	else
1485		ifp->if_opackets++;
1486
1487	bus_dmamap_unload(sc->sc_dmat, txdata->map);
1488	m_freem(txdata->m);
1489	txdata->m = NULL;
1490	ieee80211_free_node(txdata->ni);
1491	txdata->ni = NULL;
1492
1493	ring->queued--;
1494
1495	sc->sc_tx_timer = 0;
1496	ifp->if_flags &= ~IFF_OACTIVE;
1497	wpi_start(ifp);
1498}
1499
1500static void
1501wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1502{
1503	struct wpi_tx_ring *ring = &sc->cmdq;
1504	struct wpi_tx_data *data;
1505
1506	if ((desc->qid & 7) != 4)
1507		return;	/* not a command ack */
1508
1509	data = &ring->data[desc->idx];
1510
1511	/* if the command was mapped in a mbuf, free it */
1512	if (data->m != NULL) {
1513		bus_dmamap_unload(sc->sc_dmat, data->map);
1514		m_freem(data->m);
1515		data->m = NULL;
1516	}
1517
1518	wakeup(&ring->cmd[desc->idx]);
1519}
1520
1521static void
1522wpi_notif_intr(struct wpi_softc *sc)
1523{
1524	struct ieee80211com *ic = &sc->sc_ic;
1525	struct ifnet *ifp =  ic->ic_ifp;
1526	struct wpi_rx_desc *desc;
1527	struct wpi_rx_data *data;
1528	uint32_t hw;
1529
1530	hw = le32toh(sc->shared->next);
1531	while (sc->rxq.cur != hw) {
1532		data = &sc->rxq.data[sc->rxq.cur];
1533
1534		desc = mtod(data->m, struct wpi_rx_desc *);
1535
1536		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1537			"len=%d\n", desc->qid, desc->idx, desc->flags,
1538			desc->type, le32toh(desc->len)));
1539
1540		if (!(desc->qid & 0x80))	/* reply to a command */
1541			wpi_cmd_intr(sc, desc);
1542
1543		switch (desc->type) {
1544		case WPI_RX_DONE:
1545			/* a 802.11 frame was received */
1546			wpi_rx_intr(sc, desc, data);
1547			break;
1548
1549		case WPI_TX_DONE:
1550			/* a 802.11 frame has been transmitted */
1551			wpi_tx_intr(sc, desc);
1552			break;
1553
1554		case WPI_UC_READY:
1555		{
1556			struct wpi_ucode_info *uc =
1557				(struct wpi_ucode_info *)(desc + 1);
1558
1559			/* the microcontroller is ready */
1560			DPRINTF(("microcode alive notification version %x "
1561				"alive %x\n", le32toh(uc->version),
1562				le32toh(uc->valid)));
1563
1564			if (le32toh(uc->valid) != 1) {
1565				aprint_error_dev(sc->sc_dev,
1566					"microcontroller initialization failed\n");
1567			}
1568			break;
1569		}
1570		case WPI_STATE_CHANGED:
1571		{
1572			uint32_t *status = (uint32_t *)(desc + 1);
1573
1574			/* enabled/disabled notification */
1575			DPRINTF(("state changed to %x\n", le32toh(*status)));
1576
1577			if (le32toh(*status) & 1) {
1578				/* the radio button has to be pushed */
1579				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1580				/* turn the interface down */
1581				ifp->if_flags &= ~IFF_UP;
1582				wpi_stop(ifp, 1);
1583				return;	/* no further processing */
1584			}
1585			break;
1586		}
1587		case WPI_START_SCAN:
1588		{
1589			struct wpi_start_scan *scan =
1590				(struct wpi_start_scan *)(desc + 1);
1591
1592			DPRINTFN(2, ("scanning channel %d status %x\n",
1593				scan->chan, le32toh(scan->status)));
1594
1595			/* fix current channel */
1596			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1597			break;
1598		}
1599		case WPI_STOP_SCAN:
1600		{
1601			struct wpi_stop_scan *scan =
1602				(struct wpi_stop_scan *)(desc + 1);
1603
1604			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1605				scan->nchan, scan->status, scan->chan));
1606
1607			if (scan->status == 1 && scan->chan <= 14) {
1608				/*
1609				 * We just finished scanning 802.11g channels,
1610				 * start scanning 802.11a ones.
1611				 */
1612				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1613					break;
1614			}
1615			sc->is_scanning = false;
1616			ieee80211_end_scan(ic);
1617			break;
1618		}
1619		}
1620
1621		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1622	}
1623
1624	/* tell the firmware what we have processed */
1625	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1626	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1627}
1628
1629static int
1630wpi_intr(void *arg)
1631{
1632	struct wpi_softc *sc = arg;
1633	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1634	uint32_t r;
1635
1636	r = WPI_READ(sc, WPI_INTR);
1637	if (r == 0 || r == 0xffffffff)
1638		return 0;	/* not for us */
1639
1640	DPRINTFN(5, ("interrupt reg %x\n", r));
1641
1642	/* disable interrupts */
1643	WPI_WRITE(sc, WPI_MASK, 0);
1644	/* ack interrupts */
1645	WPI_WRITE(sc, WPI_INTR, r);
1646
1647	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1648		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1649		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1650		wpi_stop(sc->sc_ic.ic_ifp, 1);
1651		return 1;
1652	}
1653
1654	if (r & WPI_RX_INTR)
1655		wpi_notif_intr(sc);
1656
1657	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1658		wakeup(sc);
1659
1660	/* re-enable interrupts */
1661	if (ifp->if_flags & IFF_UP)
1662		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1663
1664	return 1;
1665}
1666
1667static uint8_t
1668wpi_plcp_signal(int rate)
1669{
1670	switch (rate) {
1671	/* CCK rates (returned values are device-dependent) */
1672	case 2:		return 10;
1673	case 4:		return 20;
1674	case 11:	return 55;
1675	case 22:	return 110;
1676
1677	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1678	/* R1-R4, (u)ral is R4-R1 */
1679	case 12:	return 0xd;
1680	case 18:	return 0xf;
1681	case 24:	return 0x5;
1682	case 36:	return 0x7;
1683	case 48:	return 0x9;
1684	case 72:	return 0xb;
1685	case 96:	return 0x1;
1686	case 108:	return 0x3;
1687
1688	/* unsupported rates (should not get there) */
1689	default:	return 0;
1690	}
1691}
1692
1693/* quickly determine if a given rate is CCK or OFDM */
1694#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1695
1696static int
1697wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1698	int ac)
1699{
1700	struct ieee80211com *ic = &sc->sc_ic;
1701	struct wpi_tx_ring *ring = &sc->txq[ac];
1702	struct wpi_tx_desc *desc;
1703	struct wpi_tx_data *data;
1704	struct wpi_tx_cmd *cmd;
1705	struct wpi_cmd_data *tx;
1706	struct ieee80211_frame *wh;
1707	struct ieee80211_key *k;
1708	const struct chanAccParams *cap;
1709	struct mbuf *mnew;
1710	int i, error, rate, hdrlen, noack = 0;
1711
1712	desc = &ring->desc[ring->cur];
1713	data = &ring->data[ring->cur];
1714
1715	wh = mtod(m0, struct ieee80211_frame *);
1716
1717	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1718		cap = &ic->ic_wme.wme_chanParams;
1719		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1720	}
1721
1722	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1723		k = ieee80211_crypto_encap(ic, ni, m0);
1724		if (k == NULL) {
1725			m_freem(m0);
1726			return ENOBUFS;
1727		}
1728
1729		/* packet header may have moved, reset our local pointer */
1730		wh = mtod(m0, struct ieee80211_frame *);
1731	}
1732
1733	hdrlen = ieee80211_anyhdrsize(wh);
1734
1735	/* pickup a rate */
1736	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1737		IEEE80211_FC0_TYPE_MGT) {
1738		/* mgmt frames are sent at the lowest available bit-rate */
1739		rate = ni->ni_rates.rs_rates[0];
1740	} else {
1741		if (ic->ic_fixed_rate != -1) {
1742			rate = ic->ic_sup_rates[ic->ic_curmode].
1743				rs_rates[ic->ic_fixed_rate];
1744		} else
1745			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1746	}
1747	rate &= IEEE80211_RATE_VAL;
1748
1749
1750#if NBPFILTER > 0
1751	if (sc->sc_drvbpf != NULL) {
1752		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1753
1754		tap->wt_flags = 0;
1755		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1756		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1757		tap->wt_rate = rate;
1758		tap->wt_hwqueue = ac;
1759		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1760			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1761
1762		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1763	}
1764#endif
1765
1766	cmd = &ring->cmd[ring->cur];
1767	cmd->code = WPI_CMD_TX_DATA;
1768	cmd->flags = 0;
1769	cmd->qid = ring->qid;
1770	cmd->idx = ring->cur;
1771
1772	tx = (struct wpi_cmd_data *)cmd->data;
1773	tx->flags = 0;
1774
1775	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1776		tx->flags |= htole32(WPI_TX_NEED_ACK);
1777	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1778		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1779
1780	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1781
1782	/* retrieve destination node's id */
1783	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1784		WPI_ID_BSS;
1785
1786	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1787		IEEE80211_FC0_TYPE_MGT) {
1788		/* tell h/w to set timestamp in probe responses */
1789		if ((wh->i_fc[0] &
1790		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1791		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1792			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1793
1794		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1795			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1796			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1797			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1798			tx->timeout = htole16(3);
1799		else
1800			tx->timeout = htole16(2);
1801	} else
1802		tx->timeout = htole16(0);
1803
1804	tx->rate = wpi_plcp_signal(rate);
1805
1806	/* be very persistant at sending frames out */
1807	tx->rts_ntries = 7;
1808	tx->data_ntries = 15;
1809
1810	tx->ofdm_mask = 0xff;
1811	tx->cck_mask = 0xf;
1812	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1813
1814	tx->len = htole16(m0->m_pkthdr.len);
1815
1816	/* save and trim IEEE802.11 header */
1817	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1818	m_adj(m0, hdrlen);
1819
1820	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1821		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1822	if (error != 0 && error != EFBIG) {
1823		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1824		m_freem(m0);
1825		return error;
1826	}
1827	if (error != 0) {
1828		/* too many fragments, linearize */
1829		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1830		if (mnew == NULL) {
1831			m_freem(m0);
1832			return ENOMEM;
1833		}
1834
1835		M_COPY_PKTHDR(mnew, m0);
1836		if (m0->m_pkthdr.len > MHLEN) {
1837			MCLGET(mnew, M_DONTWAIT);
1838			if (!(mnew->m_flags & M_EXT)) {
1839				m_freem(m0);
1840				m_freem(mnew);
1841				return ENOMEM;
1842			}
1843		}
1844
1845		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1846		m_freem(m0);
1847		mnew->m_len = mnew->m_pkthdr.len;
1848		m0 = mnew;
1849
1850		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1851			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1852		if (error != 0) {
1853			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1854							 error);
1855			m_freem(m0);
1856			return error;
1857		}
1858	}
1859
1860	data->m = m0;
1861	data->ni = ni;
1862
1863	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1864		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1865
1866	/* first scatter/gather segment is used by the tx data command */
1867	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1868		(1 + data->map->dm_nsegs) << 24);
1869	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1870		ring->cur * sizeof (struct wpi_tx_cmd));
1871	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
1872						 ((hdrlen + 3) & ~3));
1873
1874	for (i = 1; i <= data->map->dm_nsegs; i++) {
1875		desc->segs[i].addr =
1876			htole32(data->map->dm_segs[i - 1].ds_addr);
1877		desc->segs[i].len  =
1878			htole32(data->map->dm_segs[i - 1].ds_len);
1879	}
1880
1881	ring->queued++;
1882
1883	/* kick ring */
1884	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1885	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1886
1887	return 0;
1888}
1889
1890static void
1891wpi_start(struct ifnet *ifp)
1892{
1893	struct wpi_softc *sc = ifp->if_softc;
1894	struct ieee80211com *ic = &sc->sc_ic;
1895	struct ieee80211_node *ni;
1896	struct ether_header *eh;
1897	struct mbuf *m0;
1898	int ac;
1899
1900	/*
1901	 * net80211 may still try to send management frames even if the
1902	 * IFF_RUNNING flag is not set...
1903	 */
1904	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1905		return;
1906
1907	for (;;) {
1908		IF_DEQUEUE(&ic->ic_mgtq, m0);
1909		if (m0 != NULL) {
1910
1911			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1912			m0->m_pkthdr.rcvif = NULL;
1913
1914			/* management frames go into ring 0 */
1915			if (sc->txq[0].queued > sc->txq[0].count - 8) {
1916				ifp->if_oerrors++;
1917				continue;
1918			}
1919#if NBPFILTER > 0
1920			if (ic->ic_rawbpf != NULL)
1921				bpf_mtap(ic->ic_rawbpf, m0);
1922#endif
1923			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1924				ifp->if_oerrors++;
1925				break;
1926			}
1927		} else {
1928			if (ic->ic_state != IEEE80211_S_RUN)
1929				break;
1930			IFQ_POLL(&ifp->if_snd, m0);
1931			if (m0 == NULL)
1932				break;
1933
1934			if (m0->m_len < sizeof (*eh) &&
1935			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
1936				ifp->if_oerrors++;
1937				continue;
1938			}
1939			eh = mtod(m0, struct ether_header *);
1940			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1941			if (ni == NULL) {
1942				m_freem(m0);
1943				ifp->if_oerrors++;
1944				continue;
1945			}
1946
1947			/* classify mbuf so we can find which tx ring to use */
1948			if (ieee80211_classify(ic, m0, ni) != 0) {
1949				m_freem(m0);
1950				ieee80211_free_node(ni);
1951				ifp->if_oerrors++;
1952				continue;
1953			}
1954
1955			/* no QoS encapsulation for EAPOL frames */
1956			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1957			    M_WME_GETAC(m0) : WME_AC_BE;
1958
1959			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1960				/* there is no place left in this ring */
1961				ifp->if_flags |= IFF_OACTIVE;
1962				break;
1963			}
1964			IFQ_DEQUEUE(&ifp->if_snd, m0);
1965#if NBPFILTER > 0
1966			if (ifp->if_bpf != NULL)
1967				bpf_mtap(ifp->if_bpf, m0);
1968#endif
1969			m0 = ieee80211_encap(ic, m0, ni);
1970			if (m0 == NULL) {
1971				ieee80211_free_node(ni);
1972				ifp->if_oerrors++;
1973				continue;
1974			}
1975#if NBPFILTER > 0
1976			if (ic->ic_rawbpf != NULL)
1977				bpf_mtap(ic->ic_rawbpf, m0);
1978#endif
1979			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
1980				ieee80211_free_node(ni);
1981				ifp->if_oerrors++;
1982				break;
1983			}
1984		}
1985
1986		sc->sc_tx_timer = 5;
1987		ifp->if_timer = 1;
1988	}
1989}
1990
1991static void
1992wpi_watchdog(struct ifnet *ifp)
1993{
1994	struct wpi_softc *sc = ifp->if_softc;
1995
1996	ifp->if_timer = 0;
1997
1998	if (sc->sc_tx_timer > 0) {
1999		if (--sc->sc_tx_timer == 0) {
2000			aprint_error_dev(sc->sc_dev, "device timeout\n");
2001			ifp->if_oerrors++;
2002			ifp->if_flags &= ~IFF_UP;
2003			wpi_stop(ifp, 1);
2004			return;
2005		}
2006		ifp->if_timer = 1;
2007	}
2008
2009	ieee80211_watchdog(&sc->sc_ic);
2010}
2011
2012static int
2013wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2014{
2015#define IS_RUNNING(ifp) \
2016	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2017
2018	struct wpi_softc *sc = ifp->if_softc;
2019	struct ieee80211com *ic = &sc->sc_ic;
2020	int s, error = 0;
2021
2022	s = splnet();
2023
2024	switch (cmd) {
2025	case SIOCSIFFLAGS:
2026		if (ifp->if_flags & IFF_UP) {
2027			if (!(ifp->if_flags & IFF_RUNNING))
2028				wpi_init(ifp);
2029		} else {
2030			if (ifp->if_flags & IFF_RUNNING)
2031				wpi_stop(ifp, 1);
2032		}
2033		break;
2034
2035	case SIOCADDMULTI:
2036	case SIOCDELMULTI:
2037		/* XXX no h/w multicast filter? --dyoung */
2038		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2039			/* setup multicast filter, etc */
2040			error = 0;
2041		}
2042		break;
2043
2044	default:
2045		error = ieee80211_ioctl(ic, cmd, data);
2046	}
2047
2048	if (error == ENETRESET) {
2049		if (IS_RUNNING(ifp) &&
2050			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2051			wpi_init(ifp);
2052		error = 0;
2053	}
2054
2055	splx(s);
2056	return error;
2057
2058#undef IS_RUNNING
2059}
2060
2061/*
2062 * Extract various information from EEPROM.
2063 */
2064static void
2065wpi_read_eeprom(struct wpi_softc *sc)
2066{
2067	struct ieee80211com *ic = &sc->sc_ic;
2068	char domain[4];
2069	int i;
2070
2071	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2072	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2073	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2074
2075	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2076	    sc->type));
2077
2078	/* read and print regulatory domain */
2079	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2080	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2081
2082	/* read and print MAC address */
2083	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2084	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2085
2086	/* read the list of authorized channels */
2087	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2088		wpi_read_eeprom_channels(sc, i);
2089
2090	/* read the list of power groups */
2091	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2092		wpi_read_eeprom_group(sc, i);
2093}
2094
2095static void
2096wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2097{
2098	struct ieee80211com *ic = &sc->sc_ic;
2099	const struct wpi_chan_band *band = &wpi_bands[n];
2100	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2101	int chan, i;
2102
2103	wpi_read_prom_data(sc, band->addr, channels,
2104	    band->nchan * sizeof (struct wpi_eeprom_chan));
2105
2106	for (i = 0; i < band->nchan; i++) {
2107		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2108			continue;
2109
2110		chan = band->chan[i];
2111
2112		if (n == 0) {	/* 2GHz band */
2113			ic->ic_channels[chan].ic_freq =
2114			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2115			ic->ic_channels[chan].ic_flags =
2116			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2117			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2118
2119		} else {	/* 5GHz band */
2120			/*
2121			 * Some 3945abg adapters support channels 7, 8, 11
2122			 * and 12 in the 2GHz *and* 5GHz bands.
2123			 * Because of limitations in our net80211(9) stack,
2124			 * we can't support these channels in 5GHz band.
2125			 */
2126			if (chan <= 14)
2127				continue;
2128
2129			ic->ic_channels[chan].ic_freq =
2130			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2131			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2132		}
2133
2134		/* is active scan allowed on this channel? */
2135		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2136			ic->ic_channels[chan].ic_flags |=
2137			    IEEE80211_CHAN_PASSIVE;
2138		}
2139
2140		/* save maximum allowed power for this channel */
2141		sc->maxpwr[chan] = channels[i].maxpwr;
2142
2143		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2144		    chan, channels[i].flags, sc->maxpwr[chan]));
2145	}
2146}
2147
2148static void
2149wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2150{
2151	struct wpi_power_group *group = &sc->groups[n];
2152	struct wpi_eeprom_group rgroup;
2153	int i;
2154
2155	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2156	    sizeof rgroup);
2157
2158	/* save power group information */
2159	group->chan   = rgroup.chan;
2160	group->maxpwr = rgroup.maxpwr;
2161	/* temperature at which the samples were taken */
2162	group->temp   = (int16_t)le16toh(rgroup.temp);
2163
2164	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2165	    group->chan, group->maxpwr, group->temp));
2166
2167	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2168		group->samples[i].index = rgroup.samples[i].index;
2169		group->samples[i].power = rgroup.samples[i].power;
2170
2171		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2172		    group->samples[i].index, group->samples[i].power));
2173	}
2174}
2175
2176/*
2177 * Send a command to the firmware.
2178 */
2179static int
2180wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2181{
2182	struct wpi_tx_ring *ring = &sc->cmdq;
2183	struct wpi_tx_desc *desc;
2184	struct wpi_tx_cmd *cmd;
2185
2186	KASSERT(size <= sizeof cmd->data);
2187
2188	desc = &ring->desc[ring->cur];
2189	cmd = &ring->cmd[ring->cur];
2190
2191	cmd->code = code;
2192	cmd->flags = 0;
2193	cmd->qid = ring->qid;
2194	cmd->idx = ring->cur;
2195	memcpy(cmd->data, buf, size);
2196
2197	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2198	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2199		ring->cur * sizeof (struct wpi_tx_cmd));
2200	desc->segs[0].len  = htole32(4 + size);
2201
2202	/* kick cmd ring */
2203	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2204	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2205
2206	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2207}
2208
2209static int
2210wpi_wme_update(struct ieee80211com *ic)
2211{
2212#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2213#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2214	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2215	const struct wmeParams *wmep;
2216	struct wpi_wme_setup wme;
2217	int ac;
2218
2219	/* don't override default WME values if WME is not actually enabled */
2220	if (!(ic->ic_flags & IEEE80211_F_WME))
2221		return 0;
2222
2223	wme.flags = 0;
2224	for (ac = 0; ac < WME_NUM_AC; ac++) {
2225		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2226		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2227		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2228		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2229		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2230
2231		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2232		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2233		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2234	}
2235
2236	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2237#undef WPI_USEC
2238#undef WPI_EXP2
2239}
2240
2241/*
2242 * Configure h/w multi-rate retries.
2243 */
2244static int
2245wpi_mrr_setup(struct wpi_softc *sc)
2246{
2247	struct ieee80211com *ic = &sc->sc_ic;
2248	struct wpi_mrr_setup mrr;
2249	int i, error;
2250
2251	/* CCK rates (not used with 802.11a) */
2252	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2253		mrr.rates[i].flags = 0;
2254		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2255		/* fallback to the immediate lower CCK rate (if any) */
2256		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2257		/* try one time at this rate before falling back to "next" */
2258		mrr.rates[i].ntries = 1;
2259	}
2260
2261	/* OFDM rates (not used with 802.11b) */
2262	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2263		mrr.rates[i].flags = 0;
2264		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2265		/* fallback to the immediate lower rate (if any) */
2266		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2267		mrr.rates[i].next = (i == WPI_OFDM6) ?
2268		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2269			WPI_OFDM6 : WPI_CCK2) :
2270		    i - 1;
2271		/* try one time at this rate before falling back to "next" */
2272		mrr.rates[i].ntries = 1;
2273	}
2274
2275	/* setup MRR for control frames */
2276	mrr.which = htole32(WPI_MRR_CTL);
2277	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2278	if (error != 0) {
2279		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2280		return error;
2281	}
2282
2283	/* setup MRR for data frames */
2284	mrr.which = htole32(WPI_MRR_DATA);
2285	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2286	if (error != 0) {
2287		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2288		return error;
2289	}
2290
2291	return 0;
2292}
2293
2294static void
2295wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2296{
2297	struct wpi_cmd_led led;
2298
2299	led.which = which;
2300	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2301	led.off = off;
2302	led.on = on;
2303
2304	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2305}
2306
2307static void
2308wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2309{
2310	struct wpi_cmd_tsf tsf;
2311	uint64_t val, mod;
2312
2313	memset(&tsf, 0, sizeof tsf);
2314	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2315	tsf.bintval = htole16(ni->ni_intval);
2316	tsf.lintval = htole16(10);
2317
2318	/* compute remaining time until next beacon */
2319	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
2320	mod = le64toh(tsf.tstamp) % val;
2321	tsf.binitval = htole32((uint32_t)(val - mod));
2322
2323	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2324	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2325
2326	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2327		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2328}
2329
2330/*
2331 * Update Tx power to match what is defined for channel `c'.
2332 */
2333static int
2334wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2335{
2336	struct ieee80211com *ic = &sc->sc_ic;
2337	struct wpi_power_group *group;
2338	struct wpi_cmd_txpower txpower;
2339	u_int chan;
2340	int i;
2341
2342	/* get channel number */
2343	chan = ieee80211_chan2ieee(ic, c);
2344
2345	/* find the power group to which this channel belongs */
2346	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2347		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2348			if (chan <= group->chan)
2349				break;
2350	} else
2351		group = &sc->groups[0];
2352
2353	memset(&txpower, 0, sizeof txpower);
2354	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2355	txpower.chan = htole16(chan);
2356
2357	/* set Tx power for all OFDM and CCK rates */
2358	for (i = 0; i <= 11 ; i++) {
2359		/* retrieve Tx power for this channel/rate combination */
2360		int idx = wpi_get_power_index(sc, group, c,
2361		    wpi_ridx_to_rate[i]);
2362
2363		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2364
2365		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2366			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2367			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2368		} else {
2369			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2370			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2371		}
2372		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2373		    wpi_ridx_to_rate[i], idx));
2374	}
2375
2376	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2377}
2378
2379/*
2380 * Determine Tx power index for a given channel/rate combination.
2381 * This takes into account the regulatory information from EEPROM and the
2382 * current temperature.
2383 */
2384static int
2385wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2386    struct ieee80211_channel *c, int rate)
2387{
2388/* fixed-point arithmetic division using a n-bit fractional part */
2389#define fdivround(a, b, n)	\
2390	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2391
2392/* linear interpolation */
2393#define interpolate(x, x1, y1, x2, y2, n)	\
2394	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2395
2396	struct ieee80211com *ic = &sc->sc_ic;
2397	struct wpi_power_sample *sample;
2398	int pwr, idx;
2399	u_int chan;
2400
2401	/* get channel number */
2402	chan = ieee80211_chan2ieee(ic, c);
2403
2404	/* default power is group's maximum power - 3dB */
2405	pwr = group->maxpwr / 2;
2406
2407	/* decrease power for highest OFDM rates to reduce distortion */
2408	switch (rate) {
2409	case 72:	/* 36Mb/s */
2410		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2411		break;
2412	case 96:	/* 48Mb/s */
2413		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2414		break;
2415	case 108:	/* 54Mb/s */
2416		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2417		break;
2418	}
2419
2420	/* never exceed channel's maximum allowed Tx power */
2421	pwr = min(pwr, sc->maxpwr[chan]);
2422
2423	/* retrieve power index into gain tables from samples */
2424	for (sample = group->samples; sample < &group->samples[3]; sample++)
2425		if (pwr > sample[1].power)
2426			break;
2427	/* fixed-point linear interpolation using a 19-bit fractional part */
2428	idx = interpolate(pwr, sample[0].power, sample[0].index,
2429	    sample[1].power, sample[1].index, 19);
2430
2431	/*
2432	 * Adjust power index based on current temperature:
2433	 * - if cooler than factory-calibrated: decrease output power
2434	 * - if warmer than factory-calibrated: increase output power
2435	 */
2436	idx -= (sc->temp - group->temp) * 11 / 100;
2437
2438	/* decrease power for CCK rates (-5dB) */
2439	if (!WPI_RATE_IS_OFDM(rate))
2440		idx += 10;
2441
2442	/* keep power index in a valid range */
2443	if (idx < 0)
2444		return 0;
2445	if (idx > WPI_MAX_PWR_INDEX)
2446		return WPI_MAX_PWR_INDEX;
2447	return idx;
2448
2449#undef interpolate
2450#undef fdivround
2451}
2452
2453/*
2454 * Build a beacon frame that the firmware will broadcast periodically in
2455 * IBSS or HostAP modes.
2456 */
2457static int
2458wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2459{
2460	struct ieee80211com *ic = &sc->sc_ic;
2461	struct wpi_tx_ring *ring = &sc->cmdq;
2462	struct wpi_tx_desc *desc;
2463	struct wpi_tx_data *data;
2464	struct wpi_tx_cmd *cmd;
2465	struct wpi_cmd_beacon *bcn;
2466	struct ieee80211_beacon_offsets bo;
2467	struct mbuf *m0;
2468	int error;
2469
2470	desc = &ring->desc[ring->cur];
2471	data = &ring->data[ring->cur];
2472
2473	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2474	if (m0 == NULL) {
2475		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2476		return ENOMEM;
2477	}
2478
2479	cmd = &ring->cmd[ring->cur];
2480	cmd->code = WPI_CMD_SET_BEACON;
2481	cmd->flags = 0;
2482	cmd->qid = ring->qid;
2483	cmd->idx = ring->cur;
2484
2485	bcn = (struct wpi_cmd_beacon *)cmd->data;
2486	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2487	bcn->id = WPI_ID_BROADCAST;
2488	bcn->ofdm_mask = 0xff;
2489	bcn->cck_mask = 0x0f;
2490	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2491	bcn->len = htole16(m0->m_pkthdr.len);
2492	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2493		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2494	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2495
2496	/* save and trim IEEE802.11 header */
2497	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2498	m_adj(m0, sizeof (struct ieee80211_frame));
2499
2500	/* assume beacon frame is contiguous */
2501	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2502		BUS_DMA_READ | BUS_DMA_NOWAIT);
2503	if (error) {
2504		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2505		m_freem(m0);
2506		return error;
2507	}
2508
2509	data->m = m0;
2510
2511	/* first scatter/gather segment is used by the beacon command */
2512	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2513	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2514		ring->cur * sizeof (struct wpi_tx_cmd));
2515	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2516	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2517	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2518
2519	/* kick cmd ring */
2520	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2521	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2522
2523	return 0;
2524}
2525
2526static int
2527wpi_auth(struct wpi_softc *sc)
2528{
2529	struct ieee80211com *ic = &sc->sc_ic;
2530	struct ieee80211_node *ni = ic->ic_bss;
2531	struct wpi_node_info node;
2532	int error;
2533
2534	/* update adapter's configuration */
2535	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2536	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2537	sc->config.flags = htole32(WPI_CONFIG_TSF);
2538	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2539		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2540		    WPI_CONFIG_24GHZ);
2541	}
2542	switch (ic->ic_curmode) {
2543	case IEEE80211_MODE_11A:
2544		sc->config.cck_mask  = 0;
2545		sc->config.ofdm_mask = 0x15;
2546		break;
2547	case IEEE80211_MODE_11B:
2548		sc->config.cck_mask  = 0x03;
2549		sc->config.ofdm_mask = 0;
2550		break;
2551	default:	/* assume 802.11b/g */
2552		sc->config.cck_mask  = 0x0f;
2553		sc->config.ofdm_mask = 0x15;
2554	}
2555
2556	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2557		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2558	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2559		sizeof (struct wpi_config), 1);
2560	if (error != 0) {
2561		aprint_error_dev(sc->sc_dev, "could not configure\n");
2562		return error;
2563	}
2564
2565	/* configuration has changed, set Tx power accordingly */
2566	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2567		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2568		return error;
2569	}
2570
2571	/* add default node */
2572	memset(&node, 0, sizeof node);
2573	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2574	node.id = WPI_ID_BSS;
2575	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2576	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2577	node.action = htole32(WPI_ACTION_SET_RATE);
2578	node.antenna = WPI_ANTENNA_BOTH;
2579	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2580	if (error != 0) {
2581		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2582		return error;
2583	}
2584
2585	return 0;
2586}
2587
2588/*
2589 * Send a scan request to the firmware.  Since this command is huge, we map it
2590 * into a mbuf instead of using the pre-allocated set of commands.
2591 */
2592static int
2593wpi_scan(struct wpi_softc *sc, uint16_t flags)
2594{
2595	struct ieee80211com *ic = &sc->sc_ic;
2596	struct wpi_tx_ring *ring = &sc->cmdq;
2597	struct wpi_tx_desc *desc;
2598	struct wpi_tx_data *data;
2599	struct wpi_tx_cmd *cmd;
2600	struct wpi_scan_hdr *hdr;
2601	struct wpi_scan_chan *chan;
2602	struct ieee80211_frame *wh;
2603	struct ieee80211_rateset *rs;
2604	struct ieee80211_channel *c;
2605	enum ieee80211_phymode mode;
2606	uint8_t *frm;
2607	int nrates, pktlen, error;
2608
2609	desc = &ring->desc[ring->cur];
2610	data = &ring->data[ring->cur];
2611
2612	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2613	if (data->m == NULL) {
2614		aprint_error_dev(sc->sc_dev,
2615						"could not allocate mbuf for scan command\n");
2616		return ENOMEM;
2617	}
2618
2619	MCLGET(data->m, M_DONTWAIT);
2620	if (!(data->m->m_flags & M_EXT)) {
2621		m_freem(data->m);
2622		data->m = NULL;
2623		aprint_error_dev(sc->sc_dev,
2624						 "could not allocate mbuf for scan command\n");
2625		return ENOMEM;
2626	}
2627
2628	cmd = mtod(data->m, struct wpi_tx_cmd *);
2629	cmd->code = WPI_CMD_SCAN;
2630	cmd->flags = 0;
2631	cmd->qid = ring->qid;
2632	cmd->idx = ring->cur;
2633
2634	hdr = (struct wpi_scan_hdr *)cmd->data;
2635	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2636	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2637	hdr->id = WPI_ID_BROADCAST;
2638	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2639
2640	/*
2641	 * Move to the next channel if no packets are received within 5 msecs
2642	 * after sending the probe request (this helps to reduce the duration
2643	 * of active scans).
2644	 */
2645	hdr->quiet = htole16(5);        /* timeout in milliseconds */
2646	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2647
2648	if (flags & IEEE80211_CHAN_A) {
2649		hdr->crc_threshold = htole16(1);
2650		/* send probe requests at 6Mbps */
2651		hdr->rate = wpi_plcp_signal(12);
2652	} else {
2653		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2654		/* send probe requests at 1Mbps */
2655		hdr->rate = wpi_plcp_signal(2);
2656	}
2657
2658	/* for directed scans, firmware inserts the essid IE itself */
2659	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2660	hdr->essid[0].len = ic->ic_des_esslen;
2661	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2662
2663	/*
2664	 * Build a probe request frame.  Most of the following code is a
2665	 * copy & paste of what is done in net80211.
2666	 */
2667	wh = (struct ieee80211_frame *)(hdr + 1);
2668	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2669		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2670	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2671	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2672	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2673	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2674	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2675	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2676
2677	frm = (uint8_t *)(wh + 1);
2678
2679	/* add empty essid IE (firmware generates it for directed scans) */
2680	*frm++ = IEEE80211_ELEMID_SSID;
2681	*frm++ = 0;
2682
2683	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2684	rs = &ic->ic_sup_rates[mode];
2685
2686	/* add supported rates IE */
2687	*frm++ = IEEE80211_ELEMID_RATES;
2688	nrates = rs->rs_nrates;
2689	if (nrates > IEEE80211_RATE_SIZE)
2690		nrates = IEEE80211_RATE_SIZE;
2691	*frm++ = nrates;
2692	memcpy(frm, rs->rs_rates, nrates);
2693	frm += nrates;
2694
2695	/* add supported xrates IE */
2696	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2697		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2698		*frm++ = IEEE80211_ELEMID_XRATES;
2699		*frm++ = nrates;
2700		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2701		frm += nrates;
2702	}
2703
2704	/* setup length of probe request */
2705	hdr->paylen = htole16(frm - (uint8_t *)wh);
2706
2707	chan = (struct wpi_scan_chan *)frm;
2708	for (c  = &ic->ic_channels[1];
2709	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2710		if ((c->ic_flags & flags) != flags)
2711			continue;
2712
2713		chan->chan = ieee80211_chan2ieee(ic, c);
2714		chan->flags = 0;
2715		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2716			chan->flags |= WPI_CHAN_ACTIVE;
2717			if (ic->ic_des_esslen != 0)
2718				chan->flags |= WPI_CHAN_DIRECT;
2719		}
2720		chan->dsp_gain = 0x6e;
2721		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2722			chan->rf_gain = 0x3b;
2723			chan->active = htole16(10);
2724			chan->passive = htole16(110);
2725		} else {
2726			chan->rf_gain = 0x28;
2727			chan->active = htole16(20);
2728			chan->passive = htole16(120);
2729		}
2730		hdr->nchan++;
2731		chan++;
2732
2733		frm += sizeof (struct wpi_scan_chan);
2734	}
2735	hdr->len = htole16(frm - (uint8_t *)hdr);
2736	pktlen = frm - (uint8_t *)cmd;
2737
2738	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2739		NULL, BUS_DMA_NOWAIT);
2740	if (error) {
2741		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2742		m_freem(data->m);
2743		data->m = NULL;
2744		return error;
2745	}
2746
2747	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2748	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2749	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2750
2751	/* kick cmd ring */
2752	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2753	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2754
2755	return 0;	/* will be notified async. of failure/success */
2756}
2757
2758static int
2759wpi_config(struct wpi_softc *sc)
2760{
2761	struct ieee80211com *ic = &sc->sc_ic;
2762	struct ifnet *ifp = ic->ic_ifp;
2763	struct wpi_power power;
2764	struct wpi_bluetooth bluetooth;
2765	struct wpi_node_info node;
2766	int error;
2767
2768	memset(&power, 0, sizeof power);
2769	power.flags = htole32(WPI_POWER_CAM | 0x8);
2770	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2771	if (error != 0) {
2772		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2773		return error;
2774	}
2775
2776	/* configure bluetooth coexistence */
2777	memset(&bluetooth, 0, sizeof bluetooth);
2778	bluetooth.flags = 3;
2779	bluetooth.lead = 0xaa;
2780	bluetooth.kill = 1;
2781	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2782		0);
2783	if (error != 0) {
2784		aprint_error_dev(sc->sc_dev,
2785			"could not configure bluetooth coexistence\n");
2786		return error;
2787	}
2788
2789	/* configure adapter */
2790	memset(&sc->config, 0, sizeof (struct wpi_config));
2791	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2792	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2793	/*set default channel*/
2794	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2795	sc->config.flags = htole32(WPI_CONFIG_TSF);
2796	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2797		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2798		    WPI_CONFIG_24GHZ);
2799	}
2800	sc->config.filter = 0;
2801	switch (ic->ic_opmode) {
2802	case IEEE80211_M_STA:
2803		sc->config.mode = WPI_MODE_STA;
2804		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2805		break;
2806	case IEEE80211_M_IBSS:
2807	case IEEE80211_M_AHDEMO:
2808		sc->config.mode = WPI_MODE_IBSS;
2809		break;
2810	case IEEE80211_M_HOSTAP:
2811		sc->config.mode = WPI_MODE_HOSTAP;
2812		break;
2813	case IEEE80211_M_MONITOR:
2814		sc->config.mode = WPI_MODE_MONITOR;
2815		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2816			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2817		break;
2818	}
2819	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2820	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2821	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2822		sizeof (struct wpi_config), 0);
2823	if (error != 0) {
2824		aprint_error_dev(sc->sc_dev, "configure command failed\n");
2825		return error;
2826	}
2827
2828	/* configuration has changed, set Tx power accordingly */
2829	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2830		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2831		return error;
2832	}
2833
2834	/* add broadcast node */
2835	memset(&node, 0, sizeof node);
2836	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2837	node.id = WPI_ID_BROADCAST;
2838	node.rate = wpi_plcp_signal(2);
2839	node.action = htole32(WPI_ACTION_SET_RATE);
2840	node.antenna = WPI_ANTENNA_BOTH;
2841	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2842	if (error != 0) {
2843		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2844		return error;
2845	}
2846
2847	if ((error = wpi_mrr_setup(sc)) != 0) {
2848		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2849		return error;
2850	}
2851
2852	return 0;
2853}
2854
2855static void
2856wpi_stop_master(struct wpi_softc *sc)
2857{
2858	uint32_t tmp;
2859	int ntries;
2860
2861	tmp = WPI_READ(sc, WPI_RESET);
2862	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2863
2864	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2865	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2866		return;	/* already asleep */
2867
2868	for (ntries = 0; ntries < 100; ntries++) {
2869		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2870			break;
2871		DELAY(10);
2872	}
2873	if (ntries == 100) {
2874		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2875	}
2876}
2877
2878static int
2879wpi_power_up(struct wpi_softc *sc)
2880{
2881	uint32_t tmp;
2882	int ntries;
2883
2884	wpi_mem_lock(sc);
2885	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2886	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2887	wpi_mem_unlock(sc);
2888
2889	for (ntries = 0; ntries < 5000; ntries++) {
2890		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2891			break;
2892		DELAY(10);
2893	}
2894	if (ntries == 5000) {
2895		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2896		return ETIMEDOUT;
2897	}
2898	return 0;
2899}
2900
2901static int
2902wpi_reset(struct wpi_softc *sc)
2903{
2904	uint32_t tmp;
2905	int ntries;
2906
2907	/* clear any pending interrupts */
2908	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2909
2910	tmp = WPI_READ(sc, WPI_PLL_CTL);
2911	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2912
2913	tmp = WPI_READ(sc, WPI_CHICKEN);
2914	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2915
2916	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2917	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2918
2919	/* wait for clock stabilization */
2920	for (ntries = 0; ntries < 1000; ntries++) {
2921		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2922			break;
2923		DELAY(10);
2924	}
2925	if (ntries == 1000) {
2926		aprint_error_dev(sc->sc_dev,
2927						 "timeout waiting for clock stabilization\n");
2928		return ETIMEDOUT;
2929	}
2930
2931	/* initialize EEPROM */
2932	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2933	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2934		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
2935		return EIO;
2936	}
2937	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2938
2939	return 0;
2940}
2941
2942static void
2943wpi_hw_config(struct wpi_softc *sc)
2944{
2945	uint32_t rev, hw;
2946
2947	/* voodoo from the reference driver */
2948	hw = WPI_READ(sc, WPI_HWCONFIG);
2949
2950	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
2951	rev = PCI_REVISION(rev);
2952	if ((rev & 0xc0) == 0x40)
2953		hw |= WPI_HW_ALM_MB;
2954	else if (!(rev & 0x80))
2955		hw |= WPI_HW_ALM_MM;
2956
2957	if (sc->cap == 0x80)
2958		hw |= WPI_HW_SKU_MRC;
2959
2960	hw &= ~WPI_HW_REV_D;
2961	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2962		hw |= WPI_HW_REV_D;
2963
2964	if (sc->type > 1)
2965		hw |= WPI_HW_TYPE_B;
2966
2967	DPRINTF(("setting h/w config %x\n", hw));
2968	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2969}
2970
2971static int
2972wpi_init(struct ifnet *ifp)
2973{
2974	struct wpi_softc *sc = ifp->if_softc;
2975	struct ieee80211com *ic = &sc->sc_ic;
2976	uint32_t tmp;
2977	int qid, ntries, error;
2978
2979	wpi_stop(ifp,1);
2980	(void)wpi_reset(sc);
2981
2982	wpi_mem_lock(sc);
2983	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
2984	DELAY(20);
2985	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
2986	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
2987	wpi_mem_unlock(sc);
2988
2989	(void)wpi_power_up(sc);
2990	wpi_hw_config(sc);
2991
2992	/* init Rx ring */
2993	wpi_mem_lock(sc);
2994	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
2995	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
2996	    offsetof(struct wpi_shared, next));
2997	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
2998	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
2999	wpi_mem_unlock(sc);
3000
3001	/* init Tx rings */
3002	wpi_mem_lock(sc);
3003	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3004	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3005	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3006	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3007	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3008	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3009	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3010
3011	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3012	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3013
3014	for (qid = 0; qid < 6; qid++) {
3015		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3016		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3017		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3018	}
3019	wpi_mem_unlock(sc);
3020
3021	/* clear "radio off" and "disable command" bits (reversed logic) */
3022	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3023	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3024
3025	/* clear any pending interrupts */
3026	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3027	/* enable interrupts */
3028	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3029
3030	/* not sure why/if this is necessary... */
3031	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3032	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3033
3034	if ((error = wpi_load_firmware(sc)) != 0) {
3035		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3036		goto fail1;
3037	}
3038
3039	/* Check the status of the radio switch */
3040	if (wpi_getrfkill(sc)) {
3041		aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
3042		error = EBUSY;
3043		goto fail1;
3044	}
3045
3046	/* wait for thermal sensors to calibrate */
3047	for (ntries = 0; ntries < 1000; ntries++) {
3048		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3049			break;
3050		DELAY(10);
3051	}
3052	if (ntries == 1000) {
3053		aprint_error_dev(sc->sc_dev,
3054						 "timeout waiting for thermal sensors calibration\n");
3055		error = ETIMEDOUT;
3056		goto fail1;
3057	}
3058
3059	DPRINTF(("temperature %d\n", sc->temp));
3060
3061	if ((error = wpi_config(sc)) != 0) {
3062		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3063		goto fail1;
3064	}
3065
3066	ifp->if_flags &= ~IFF_OACTIVE;
3067	ifp->if_flags |= IFF_RUNNING;
3068
3069	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3070		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3071			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3072	}
3073	else
3074		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3075
3076	return 0;
3077
3078fail1:	wpi_stop(ifp, 1);
3079	return error;
3080}
3081
3082
3083static void
3084wpi_stop(struct ifnet *ifp, int disable)
3085{
3086	struct wpi_softc *sc = ifp->if_softc;
3087	struct ieee80211com *ic = &sc->sc_ic;
3088	uint32_t tmp;
3089	int ac;
3090
3091	ifp->if_timer = sc->sc_tx_timer = 0;
3092	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3093
3094	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3095
3096	/* disable interrupts */
3097	WPI_WRITE(sc, WPI_MASK, 0);
3098	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3099	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3100	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3101
3102	wpi_mem_lock(sc);
3103	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3104	wpi_mem_unlock(sc);
3105
3106	/* reset all Tx rings */
3107	for (ac = 0; ac < 4; ac++)
3108		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3109	wpi_reset_tx_ring(sc, &sc->cmdq);
3110
3111	/* reset Rx ring */
3112	wpi_reset_rx_ring(sc, &sc->rxq);
3113
3114	wpi_mem_lock(sc);
3115	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3116	wpi_mem_unlock(sc);
3117
3118	DELAY(5);
3119
3120	wpi_stop_master(sc);
3121
3122	tmp = WPI_READ(sc, WPI_RESET);
3123	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3124}
3125
3126static bool
3127wpi_resume(device_t dv PMF_FN_ARGS)
3128{
3129	struct wpi_softc *sc = device_private(dv);
3130
3131	(void)wpi_reset(sc);
3132
3133	return true;
3134}
3135
3136/*
3137 * Return whether or not the radio is enabled in hardware
3138 * (i.e. the rfkill switch is "off").
3139 */
3140static int
3141wpi_getrfkill(struct wpi_softc *sc)
3142{
3143	uint32_t tmp;
3144
3145	wpi_mem_lock(sc);
3146	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3147	wpi_mem_unlock(sc);
3148
3149	return !(tmp & 0x01);
3150}
3151
3152static int
3153wpi_sysctl_radio(SYSCTLFN_ARGS)
3154{
3155	struct sysctlnode node;
3156	struct wpi_softc *sc;
3157	int val, error;
3158
3159	node = *rnode;
3160	sc = (struct wpi_softc *)node.sysctl_data;
3161
3162	val = !wpi_getrfkill(sc);
3163
3164	node.sysctl_data = &val;
3165	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3166
3167	if (error || newp == NULL)
3168		return error;
3169
3170	return 0;
3171}
3172
3173static void
3174wpi_sysctlattach(struct wpi_softc *sc)
3175{
3176	int rc;
3177	const struct sysctlnode *rnode;
3178	const struct sysctlnode *cnode;
3179
3180	struct sysctllog **clog = &sc->sc_sysctllog;
3181
3182	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3183	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3184	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
3185		goto err;
3186
3187	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
3188	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3189	    SYSCTL_DESCR("wpi controls and statistics"),
3190	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
3191		goto err;
3192
3193	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3194	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3195	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3196	    wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3197		goto err;
3198
3199#ifdef WPI_DEBUG
3200	/* control debugging printfs */
3201	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3202	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3203	    "debug", SYSCTL_DESCR("Enable debugging output"),
3204	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3205		goto err;
3206#endif
3207
3208	return;
3209err:
3210	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3211}
3212