if_wpi.c revision 1.1
1/*  $NetBSD: if_wpi.c,v 1.1 2006/08/13 02:21:45 simonb Exp $    */
2
3/*-
4 * Copyright (c) 2006
5 *	Damien Bergamini <damien.bergamini@free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20#include <sys/cdefs.h>
21__KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.1 2006/08/13 02:21:45 simonb Exp $");
22
23/*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27#include "bpfilter.h"
28
29#include <sys/param.h>
30#include <sys/sockio.h>
31#include <sys/sysctl.h>
32#include <sys/mbuf.h>
33#include <sys/kernel.h>
34#include <sys/socket.h>
35#include <sys/systm.h>
36#include <sys/malloc.h>
37#include <sys/conf.h>
38#include <sys/kauth.h>
39
40#include <machine/bus.h>
41#include <machine/endian.h>
42#include <machine/intr.h>
43
44#include <dev/pci/pcireg.h>
45#include <dev/pci/pcivar.h>
46#include <dev/pci/pcidevs.h>
47
48#if NBPFILTER > 0
49#include <net/bpf.h>
50#endif
51#include <net/if.h>
52#include <net/if_arp.h>
53#include <net/if_dl.h>
54#include <net/if_ether.h>
55#include <net/if_media.h>
56#include <net/if_types.h>
57
58#include <net80211/ieee80211_var.h>
59#include <net80211/ieee80211_radiotap.h>
60
61#include <netinet/in.h>
62#include <netinet/in_systm.h>
63#include <netinet/in_var.h>
64#include <netinet/ip.h>
65
66#include <dev/firmload.h>
67
68#include <dev/pci/if_wpireg.h>
69#include <dev/pci/if_wpivar.h>
70
71#ifdef WPI_DEBUG
72#define DPRINTF(x)	if (wpi_debug > 0) printf x
73#define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
74int wpi_debug = 1;
75#else
76#define DPRINTF(x)
77#define DPRINTFN(n, x)
78#endif
79
80/*
81 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
82 */
83static const struct ieee80211_rateset wpi_rateset_11a =
84	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
85
86static const struct ieee80211_rateset wpi_rateset_11b =
87	{ 4, { 2, 4, 11, 22 } };
88
89static const struct ieee80211_rateset wpi_rateset_11g =
90	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
91
92static const uint8_t wpi_ridx_to_plcp[] = {
93	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,	/* OFDM R1-R4 */
94	10, 20, 55, 110	/* CCK */
95};
96
97static int  wpi_match(struct device *, struct cfdata *, void *);
98static void wpi_attach(struct device *, struct device *, void *);
99static int  wpi_detach(struct device*, int);
100static void wpi_power(int, void *);
101static int  wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
102	void **, bus_size_t, bus_size_t, int);
103static void wpi_dma_contig_free(struct wpi_softc *, struct wpi_dma_info *);
104static int  wpi_alloc_shared(struct wpi_softc *);
105static void wpi_free_shared(struct wpi_softc *);
106static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
107static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
108static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
109static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
110	int);
111static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
112static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
113static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
114static int  wpi_media_change(struct ifnet *);
115static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
116static void wpi_mem_lock(struct wpi_softc *);
117static void wpi_mem_unlock(struct wpi_softc *);
118static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
119static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
120static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
121	const uint32_t *, int);
122static uint16_t wpi_read_prom_word(struct wpi_softc *, uint32_t);
123static int  wpi_load_firmware(struct wpi_softc *, uint32_t, const char *,
124	int);
125static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
126	struct wpi_rx_data *);
127static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
128static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
129static void wpi_notif_intr(struct wpi_softc *);
130static int  wpi_intr(void *);
131static uint8_t wpi_plcp_signal(int);
132static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
133	struct ieee80211_node *, int);
134static void wpi_start(struct ifnet *);
135static void wpi_watchdog(struct ifnet *);
136static int  wpi_ioctl(struct ifnet *, u_long, caddr_t);
137static void wpi_read_eeprom(struct wpi_softc *);
138static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
139static int  wpi_wme_update(struct ieee80211com *);
140static int  wpi_mrr_setup(struct wpi_softc *);
141static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
142static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
143static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
144static int  wpi_auth(struct wpi_softc *);
145static int  wpi_scan(struct wpi_softc *, uint16_t);
146static int  wpi_config(struct wpi_softc *);
147static void wpi_stop_master(struct wpi_softc *);
148static int  wpi_power_up(struct wpi_softc *);
149static int  wpi_reset(struct wpi_softc *);
150static void wpi_hw_config(struct wpi_softc *);
151static int  wpi_init(struct ifnet *);
152static void wpi_stop(struct ifnet *, int);
153
154/* rate control algorithm: should be moved to net80211 */
155static void wpi_amrr_init(struct wpi_amrr *);
156static void wpi_amrr_timeout(void *);
157static void wpi_amrr_ratectl(void *, struct ieee80211_node *);
158
159CFATTACH_DECL(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
160	wpi_detach, NULL);
161
162static int
163wpi_match(struct device *parent, struct cfdata *match, void *aux)
164{
165	struct pci_attach_args *pa = aux;
166
167	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
168		return 0;
169
170	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
171		PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
172		return 1;
173
174	return 0;
175}
176
177/* Base Address Register */
178#define WPI_PCI_BAR0	0x10
179
180static void
181wpi_attach(struct device *parent, struct device *self, void *aux)
182{
183	struct wpi_softc *sc = (struct wpi_softc *)self;
184	struct ieee80211com *ic = &sc->sc_ic;
185	struct ifnet *ifp = &sc->sc_ec.ec_if;
186	struct pci_attach_args *pa = aux;
187	const char *intrstr;
188	char devinfo[256];
189	bus_space_tag_t memt;
190	bus_space_handle_t memh;
191	bus_addr_t base;
192	pci_intr_handle_t ih;
193	pcireg_t data;
194	int error, ac, revision, i;
195
196	sc->sc_pct = pa->pa_pc;
197	sc->sc_pcitag = pa->pa_tag;
198
199	callout_init(&sc->amrr_ch);
200
201	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
202	revision = PCI_REVISION(pa->pa_class);
203	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
204
205	/* clear device specific PCI configuration register 0x41 */
206	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
207	data &= ~0x0000ff00;
208	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
209
210	/* enable bus-mastering */
211	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
212	data |= PCI_COMMAND_MASTER_ENABLE;
213	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
214
215	/* map the register window */
216	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
217		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz);
218	if (error != 0) {
219		aprint_error("%s: could not map memory space\n",
220			sc->sc_dev.dv_xname);
221		return;
222	}
223
224	sc->sc_st = memt;
225	sc->sc_sh = memh;
226	sc->sc_dmat = pa->pa_dmat;
227
228	if (pci_intr_map(pa, &ih) != 0) {
229		aprint_error("%s: could not map interrupt\n",
230			sc->sc_dev.dv_xname);
231		return;
232	}
233
234	intrstr = pci_intr_string(sc->sc_pct, ih);
235	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
236	if (sc->sc_ih == NULL) {
237		aprint_error("%s: could not establish interrupt",
238			sc->sc_dev.dv_xname);
239		if (intrstr != NULL)
240			aprint_error(" at %s", intrstr);
241		aprint_error("\n");
242		return;
243	}
244	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
245
246	if (wpi_reset(sc) != 0) {
247		aprint_error("%s: could not reset adapter\n",
248			sc->sc_dev.dv_xname);
249		return;
250	}
251
252	/*
253	 * Allocate shared page and Tx/Rx rings.
254	 */
255	if ((error = wpi_alloc_shared(sc)) != 0) {
256		aprint_error("%s: could not allocate shared area\n",
257			sc->sc_dev.dv_xname);
258		return;
259	}
260
261	for (ac = 0; ac < 4; ac++) {
262		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
263		if (error != 0) {
264			aprint_error("%s: could not allocate Tx ring %d\n",
265					sc->sc_dev.dv_xname, ac);
266			goto fail1;
267		}
268	}
269
270	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
271	if (error != 0) {
272		aprint_error("%s: could not allocate command ring\n",
273			sc->sc_dev.dv_xname);
274		goto fail1;
275	}
276
277	error = wpi_alloc_tx_ring(sc, &sc->svcq, WPI_SVC_RING_COUNT, 5);
278	if (error != 0) {
279		aprint_error("%s: could not allocate service ring\n",
280			sc->sc_dev.dv_xname);
281		goto fail2;
282	}
283
284	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
285		aprint_error("%s: could not allocate Rx ring\n",
286			sc->sc_dev.dv_xname);
287		goto fail3;
288	}
289
290
291	ic->ic_ifp = ifp;
292	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
293	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
294	ic->ic_state = IEEE80211_S_INIT;
295
296	/* set device capabilities */
297	ic->ic_caps =
298		IEEE80211_C_IBSS |       /* IBSS mode support */
299		IEEE80211_C_WPA |        /* 802.11i */
300		IEEE80211_C_MONITOR |    /* monitor mode supported */
301		IEEE80211_C_TXPMGT |     /* tx power management */
302		IEEE80211_C_SHSLOT |     /* short slot time supported */
303		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
304		IEEE80211_C_WME;         /* 802.11e */
305
306	wpi_read_eeprom(sc);
307	aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname,
308		ether_sprintf(ic->ic_myaddr));
309
310		/* set supported .11a rates */
311		ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
312
313		/* set supported .11a channels */
314		for (i = 36; i <= 64; i += 4) {
315			ic->ic_channels[i].ic_freq =
316				ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
317			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
318		}
319		for (i = 100; i <= 140; i += 4) {
320			ic->ic_channels[i].ic_freq =
321				ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
322			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
323		}
324		for (i = 149; i <= 165; i += 4) {
325			ic->ic_channels[i].ic_freq =
326				ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
327			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
328		}
329
330	/* set supported .11b and .11g rates */
331	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
332	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
333
334	/* set supported .11b and .11g channels (1 through 14) */
335	for (i = 1; i <= 14; i++) {
336		ic->ic_channels[i].ic_freq =
337			ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
338		ic->ic_channels[i].ic_flags =
339			IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
340			IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
341	}
342
343	ic->ic_ibss_chan = &ic->ic_channels[0];
344
345	ifp->if_softc = sc;
346	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
347	ifp->if_init = wpi_init;
348	ifp->if_stop = wpi_stop;
349	ifp->if_ioctl = wpi_ioctl;
350	ifp->if_start = wpi_start;
351	ifp->if_watchdog = wpi_watchdog;
352	IFQ_SET_READY(&ifp->if_snd);
353	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
354
355	if_attach(ifp);
356	ieee80211_ifattach(ic);
357	/* override default methods */
358	ic->ic_node_alloc = wpi_node_alloc;
359	ic->ic_wme.wme_update = wpi_wme_update;
360
361	/* override state transition machine */
362	sc->sc_newstate = ic->ic_newstate;
363	ic->ic_newstate = wpi_newstate;
364	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
365
366	/* set powerhook */
367	sc->powerhook = powerhook_establish(wpi_power, sc);
368
369#if NBPFILTER > 0
370	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
371		sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
372		&sc->sc_drvbpf);
373
374	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
375	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
376	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
377
378	sc->sc_txtap_len = sizeof sc->sc_txtapu;
379	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
380	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
381#endif
382
383	ieee80211_announce(ic);
384
385	return;
386
387fail3:  wpi_free_tx_ring(sc, &sc->svcq);
388fail2:  wpi_free_tx_ring(sc, &sc->cmdq);
389fail1:  while (--ac >= 0)
390			wpi_free_tx_ring(sc, &sc->txq[ac]);
391		wpi_free_shared(sc);
392}
393
394static int
395wpi_detach(struct device* self, int flags)
396{
397	struct wpi_softc *sc = (struct wpi_softc *)self;
398	struct ifnet *ifp = &sc->sc_ec.ec_if;
399	int ac;
400
401	wpi_stop(ifp, 1);
402
403#if NBPFILTER > 0
404	if (ifp != NULL)
405		bpfdetach(ifp);
406#endif
407	ieee80211_ifdetach(&sc->sc_ic);
408	if (ifp != NULL)
409		if_detach(ifp);
410
411	for (ac = 0; ac < 4; ac++)
412		wpi_free_tx_ring(sc, &sc->txq[ac]);
413	wpi_free_tx_ring(sc, &sc->cmdq);
414	wpi_free_tx_ring(sc, &sc->svcq);
415	wpi_free_rx_ring(sc, &sc->rxq);
416	wpi_free_shared(sc);
417
418	if (sc->sc_ih != NULL) {
419		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
420		sc->sc_ih = NULL;
421	}
422
423	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
424
425	return 0;
426}
427
428static void
429wpi_power(int why, void *arg)
430{
431	struct wpi_softc *sc = arg;
432	struct ifnet *ifp;
433	pcireg_t data;
434	int s;
435
436	if (why != PWR_RESUME)
437		return;
438
439	/* clear device specific PCI configuration register 0x41 */
440	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
441	data &= ~0x0000ff00;
442	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
443
444	s = splnet();
445	ifp = sc->sc_ic.ic_ifp;
446	if (ifp->if_flags & IFF_UP) {
447		ifp->if_init(ifp);
448		if (ifp->if_flags & IFF_RUNNING)
449			ifp->if_start(ifp);
450	}
451	splx(s);
452}
453
454static int
455wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
456	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
457{
458	int nsegs, error;
459
460	dma->size = size;
461
462	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
463		flags, &dma->map);
464	if (error != 0) {
465		aprint_error("%s: could not create DMA map\n",
466			sc->sc_dev.dv_xname);
467		goto fail;
468	}
469
470	error = bus_dmamem_alloc(sc->sc_dmat, size, alignment, 0, &dma->seg,
471		1, &nsegs, flags);
472	if (error != 0) {
473		aprint_error("%s: could not allocate DMA memory\n",
474			sc->sc_dev.dv_xname);
475		goto fail;
476	}
477
478	error = bus_dmamem_map(sc->sc_dmat, &dma->seg, 1, size,
479			&dma->vaddr, flags);
480	if (error != 0) {
481		aprint_error("%s: could not map DMA memory\n",
482			sc->sc_dev.dv_xname);
483		goto fail;
484	}
485
486	error = bus_dmamap_load(sc->sc_dmat, dma->map, dma->vaddr,
487		size, NULL, flags);
488	if (error != 0) {
489		aprint_error("%s: could not load DMA memory\n",
490			sc->sc_dev.dv_xname);
491		goto fail;
492	}
493
494	memset(dma->vaddr, 0, size);
495
496	dma->paddr = dma->map->dm_segs[0].ds_addr;
497	*kvap = dma->vaddr;
498
499	return 0;
500
501fail:   wpi_dma_contig_free(sc, dma);
502	return error;
503}
504
505static void
506wpi_dma_contig_free(struct wpi_softc *sc, struct wpi_dma_info *dma)
507{
508	if (dma->map != NULL) {
509		if (dma->vaddr != NULL) {
510			bus_dmamap_unload(sc->sc_dmat, dma->map);
511			bus_dmamem_unmap(sc->sc_dmat, dma->vaddr, dma->size);
512			bus_dmamem_free(sc->sc_dmat, &dma->seg, 1);
513			dma->vaddr = NULL;
514		}
515		bus_dmamap_destroy(sc->sc_dmat, dma->map);
516		dma->map = NULL;
517	}
518}
519
520/*
521 * Allocate a shared page between host and NIC.
522 */
523static int
524wpi_alloc_shared(struct wpi_softc *sc)
525{
526	int error;
527	/* must be aligned on a 4K-page boundary */
528	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
529			(void **)&sc->shared, sizeof (struct wpi_shared), PAGE_SIZE,
530			BUS_DMA_NOWAIT);
531	if (error != 0)
532		aprint_error("%s: could not allocate shared area DMA memory\n",
533			sc->sc_dev.dv_xname);
534
535	return error;
536}
537
538static void
539wpi_free_shared(struct wpi_softc *sc)
540{
541	wpi_dma_contig_free(sc, &sc->shared_dma);
542}
543
544static int
545wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
546{
547	struct wpi_rx_data *data;
548	int i, error;
549
550	ring->cur = 0;
551
552	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
553		(void **)&ring->desc,
554		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
555		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
556	if (error != 0) {
557		aprint_error("%s: could not allocate rx ring DMA memory\n",
558			sc->sc_dev.dv_xname);
559		goto fail;
560	}
561
562	/*
563	 * Allocate Rx buffers.
564	 */
565	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
566		data = &ring->data[i];
567
568		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
569			0, BUS_DMA_NOWAIT, &data->map);
570		if (error != 0) {
571			aprint_error("%s: could not create rx buf DMA map\n",
572				sc->sc_dev.dv_xname);
573			goto fail;
574		}
575
576		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
577		if (data->m == NULL) {
578			aprint_error("%s: could not allocate rx mbuf\n",
579				sc->sc_dev.dv_xname);
580			error = ENOMEM;
581			goto fail;
582		}
583
584		MCLGET(data->m, M_DONTWAIT);
585		if (!(data->m->m_flags & M_EXT)) {
586			m_freem(data->m);
587			data->m = NULL;
588			aprint_error("%s: could not allocate rx mbuf cluster\n",
589				sc->sc_dev.dv_xname);
590			error = ENOMEM;
591			goto fail;
592		}
593
594		error = bus_dmamap_load(sc->sc_dmat, data->map,
595			mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT |
596			BUS_DMA_READ);
597		if (error != 0) {
598			aprint_error("%s: could not load rx buf DMA map\n",
599				sc->sc_dev.dv_xname);
600			goto fail;
601		}
602
603		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr);
604	}
605
606	return 0;
607
608fail:	wpi_free_rx_ring(sc, ring);
609	return error;
610}
611
612static void
613wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
614{
615	int ntries;
616
617	wpi_mem_lock(sc);
618
619	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
620	for (ntries = 0; ntries < 100; ntries++) {
621		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
622			break;
623		DELAY(10);
624	}
625#ifdef WPI_DEBUG
626	if (ntries == 100 && wpi_debug > 0)
627		aprint_error("%s: timeout resetting Rx ring\n",
628			sc->sc_dev.dv_xname);
629#endif
630	wpi_mem_unlock(sc);
631
632	ring->cur = 0;
633}
634
635static void
636wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
637{
638	struct wpi_rx_data *data;
639	int i;
640
641	wpi_dma_contig_free(sc, &ring->desc_dma);
642
643	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
644		data = &ring->data[i];
645
646		if (data->m != NULL) {
647			bus_dmamap_unload(sc->sc_dmat, data->map);
648			m_freem(data->m);
649		}
650		bus_dmamap_destroy(sc->sc_dmat, data->map);
651	}
652}
653
654static int
655wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
656	int qid)
657{
658	struct wpi_tx_data *data;
659	int i, error;
660
661	ring->qid = qid;
662	ring->count = count;
663	ring->queued = 0;
664	ring->cur = 0;
665
666	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
667		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
668		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
669	if (error != 0) {
670		aprint_error("%s: could not allocate tx ring DMA memory\n",
671			sc->sc_dev.dv_xname);
672		goto fail;
673	}
674
675	/* update shared page with ring's base address */
676	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
677
678	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
679		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
680	if (error != 0) {
681		aprint_error("%s: could not allocate tx cmd DMA memory\n",
682			sc->sc_dev.dv_xname);
683		goto fail;
684	}
685
686	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
687		M_NOWAIT);
688	if (ring->data == NULL) {
689		aprint_error("%s: could not allocate tx data slots\n",
690			sc->sc_dev.dv_xname);
691		goto fail;
692	}
693
694	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
695
696	for (i = 0; i < count; i++) {
697		data = &ring->data[i];
698
699		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
700			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
701			&data->map);
702		if (error != 0) {
703			aprint_error("%s: could not create tx buf DMA map\n",
704				sc->sc_dev.dv_xname);
705			goto fail;
706		}
707	}
708
709	return 0;
710
711fail:	wpi_free_tx_ring(sc, ring);
712	return error;
713}
714
715static void
716wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
717{
718	struct wpi_tx_data *data;
719	int i, ntries;
720
721	wpi_mem_lock(sc);
722
723	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
724	for (ntries = 0; ntries < 100; ntries++) {
725		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
726			break;
727		DELAY(10);
728	}
729#ifdef WPI_DEBUG
730	if (ntries == 100 && wpi_debug > 0) {
731		aprint_error("%s: timeout resetting Tx ring %d\n",
732			sc->sc_dev.dv_xname, ring->qid);
733	}
734#endif
735	wpi_mem_unlock(sc);
736
737	for (i = 0; i < ring->count; i++) {
738		data = &ring->data[i];
739
740		if (data->m != NULL) {
741			bus_dmamap_unload(sc->sc_dmat, data->map);
742			m_freem(data->m);
743			data->m = NULL;
744		}
745	}
746
747	ring->queued = 0;
748	ring->cur = 0;
749}
750
751static void
752wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
753{
754	struct wpi_tx_data *data;
755	int i;
756
757	wpi_dma_contig_free(sc, &ring->desc_dma);
758	wpi_dma_contig_free(sc, &ring->cmd_dma);
759
760	if (ring->data != NULL) {
761		for (i = 0; i < ring->count; i++) {
762			data = &ring->data[i];
763
764			if (data->m != NULL) {
765				bus_dmamap_unload(sc->sc_dmat, data->map);
766				m_freem(data->m);
767			}
768		}
769		free(ring->data, M_DEVBUF);
770	}
771}
772
773/*ARGUSED*/
774static struct ieee80211_node *
775wpi_node_alloc(struct ieee80211_node_table *ic)
776{
777	struct wpi_amrr *amrr;
778
779	amrr = malloc(sizeof (struct wpi_amrr), M_80211_NODE, M_NOWAIT);
780	if (amrr != NULL) {
781		memset(amrr, 0, sizeof (struct wpi_amrr));
782		wpi_amrr_init(amrr);
783	}
784	return (struct ieee80211_node *)amrr;
785}
786
787static int
788wpi_media_change(struct ifnet *ifp)
789{
790	int error;
791
792	error = ieee80211_media_change(ifp);
793	if (error != ENETRESET)
794		return error;
795
796	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
797		wpi_init(ifp);
798
799	return 0;
800}
801
802static int
803wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
804{
805	struct ifnet *ifp = ic->ic_ifp;
806	struct wpi_softc *sc = ifp->if_softc;
807	int error;
808
809	callout_stop(&sc->amrr_ch);
810
811	switch (nstate) {
812	case IEEE80211_S_SCAN:
813		ieee80211_node_table_reset(&ic->ic_scan);
814		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
815
816		/* make the link LED blink while we're scanning */
817		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
818
819		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
820			aprint_error("%s: could not initiate scan\n",
821				sc->sc_dev.dv_xname);
822			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
823			return error;
824		}
825
826		ic->ic_state = nstate;
827		return 0;
828
829	case IEEE80211_S_AUTH:
830		sc->config.state &= ~htole16(WPI_STATE_ASSOCIATED);
831		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
832		if ((error = wpi_auth(sc)) != 0) {
833			aprint_error("%s: could not send authentication request\n",
834				sc->sc_dev.dv_xname);
835			return error;
836		}
837		break;
838
839	case IEEE80211_S_RUN:
840		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
841			/* link LED blinks while monitoring */
842			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
843			break;
844		}
845
846		if (ic->ic_opmode != IEEE80211_M_STA) {
847			(void) wpi_auth(sc);    /* XXX */
848			wpi_setup_beacon(sc, ic->ic_bss);
849		}
850
851		wpi_enable_tsf(sc, ic->ic_bss);
852
853		/* update adapter's configuration */
854		sc->config.state = htole16(WPI_STATE_ASSOCIATED);
855		/* short preamble/slot time are negotiated when associating */
856		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
857			WPI_CONFIG_SHSLOT);
858		if (ic->ic_flags & IEEE80211_F_SHSLOT)
859			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
860		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
861			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
862		sc->config.filter |= htole32(WPI_FILTER_BSS);
863		if (ic->ic_opmode != IEEE80211_M_STA)
864			sc->config.filter |= htole32(WPI_FILTER_BEACON);
865
866/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
867
868		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
869			sc->config.flags));
870		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
871			sizeof (struct wpi_config), 1);
872		if (error != 0) {
873			aprint_error("%s: could not update configuration\n",
874				sc->sc_dev.dv_xname);
875			return error;
876		}
877
878		/* enable automatic rate adaptation in STA mode */
879		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
880			callout_reset(&sc->amrr_ch, hz, wpi_amrr_timeout, sc);
881
882		/* link LED always on while associated */
883		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
884		break;
885
886	case IEEE80211_S_ASSOC:
887	case IEEE80211_S_INIT:
888		break;
889	}
890
891	return sc->sc_newstate(ic, nstate, arg);
892}
893
894/*
895 * Grab exclusive access to NIC memory.
896 */
897static void
898wpi_mem_lock(struct wpi_softc *sc)
899{
900	uint32_t tmp;
901	int ntries;
902
903	tmp = WPI_READ(sc, WPI_GPIO_CTL);
904	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
905
906	/* spin until we actually get the lock */
907	for (ntries = 0; ntries < 1000; ntries++) {
908		if ((WPI_READ(sc, WPI_GPIO_CTL) &
909			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
910			break;
911		DELAY(10);
912	}
913	if (ntries == 1000)
914		aprint_error("%s: could not lock memory\n", sc->sc_dev.dv_xname);
915}
916
917/*
918 * Release lock on NIC memory.
919 */
920static void
921wpi_mem_unlock(struct wpi_softc *sc)
922{
923	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
924	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
925}
926
927static uint32_t
928wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
929{
930	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
931	return WPI_READ(sc, WPI_READ_MEM_DATA);
932}
933
934static void
935wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
936{
937	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
938	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
939}
940
941static void
942wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
943	const uint32_t *data, int wlen)
944{
945	for (; wlen > 0; wlen--, data++, addr += 4)
946		wpi_mem_write(sc, addr, *data);
947}
948
949/*
950 * Read 16 bits from the EEPROM.  We access EEPROM through the MAC instead of
951 * using the traditional bit-bang method.
952 */
953static uint16_t
954wpi_read_prom_word(struct wpi_softc *sc, uint32_t addr)
955{
956	int ntries;
957	uint32_t val;
958
959	WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
960
961	wpi_mem_lock(sc);
962	for (ntries = 0; ntries < 10; ntries++) {
963		if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
964			break;
965		DELAY(10);
966	}
967	wpi_mem_unlock(sc);
968
969	if (ntries == 10) {
970		aprint_error("%s: could not read EEPROM\n", sc->sc_dev.dv_xname);
971		return 0xdead;
972	}
973	return val >> 16;
974}
975
976/*
977 * The firmware boot code is small and is intended to be copied directly into
978 * the NIC internal memory.
979 */
980static int
981wpi_load_microcode(struct wpi_softc *sc, const char *ucode, int size)
982{
983	/* check that microcode size is a multiple of 4 */
984	if (size & 3)
985		return EINVAL;
986
987	size /= sizeof (uint32_t);
988
989	wpi_mem_lock(sc);
990
991	/* copy microcode image into NIC memory */
992	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, (const uint32_t *)ucode,
993		size);
994
995	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
996	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
997	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
998
999	/* run microcode */
1000	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1001
1002	wpi_mem_unlock(sc);
1003
1004	return 0;
1005}
1006
1007/*
1008 * The firmware text and data segments are transferred to the NIC using DMA.
1009 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1010 * where to find it.  Once the NIC has copied the firmware into its internal
1011 * memory, we can free our local copy in the driver.
1012 */
1013static int
1014wpi_load_firmware(struct wpi_softc *sc, uint32_t target, const char *fw,
1015	int size)
1016{
1017	bus_dmamap_t map;
1018	bus_dma_segment_t seg;
1019	caddr_t virtaddr;
1020	struct wpi_tx_desc desc;
1021	int i, ntries, nsegs, error;
1022
1023	/*
1024	 * Allocate DMA-safe memory to store the firmware.
1025	 */
1026	error = bus_dmamap_create(sc->sc_dmat, size, WPI_MAX_SCATTER,
1027		WPI_MAX_SEG_LEN, 0, BUS_DMA_NOWAIT, &map);
1028	if (error != 0) {
1029		aprint_error("%s: could not create firmware DMA map\n",
1030			sc->sc_dev.dv_xname);
1031		goto fail1;
1032	}
1033
1034	error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
1035		&nsegs, BUS_DMA_NOWAIT);
1036	if (error != 0) {
1037		aprint_error("%s: could not allocate firmware DMA memory\n",
1038			sc->sc_dev.dv_xname);
1039		goto fail2;
1040	}
1041
1042	error = bus_dmamem_map(sc->sc_dmat, &seg, nsegs, size, &virtaddr,
1043		BUS_DMA_NOWAIT);
1044	if (error != 0) {
1045		aprint_error("%s: could not map firmware DMA memory\n",
1046			sc->sc_dev.dv_xname);
1047		goto fail3;
1048	}
1049
1050	error = bus_dmamap_load(sc->sc_dmat, map, virtaddr, size, NULL,
1051		BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1052	if (error != 0) {
1053		aprint_error("%s: could not load firmware DMA map\n",
1054			sc->sc_dev.dv_xname);
1055		goto fail4;
1056	}
1057
1058	/* copy firmware image to DMA-safe memory */
1059	bcopy(fw, virtaddr, size);
1060
1061	/* make sure the adapter will get up-to-date values */
1062	bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_PREWRITE);
1063
1064	bzero(&desc, sizeof desc);
1065	desc.flags = htole32(WPI_PAD32(size) << 28 | map->dm_nsegs << 24);
1066	for (i = 0; i < map->dm_nsegs; i++) {
1067		desc.segs[i].addr = htole32(map->dm_segs[i].ds_addr);
1068		desc.segs[i].len  = htole32(map->dm_segs[i].ds_len);
1069	}
1070
1071	wpi_mem_lock(sc);
1072
1073	/* tell adapter where to copy image in its internal memory */
1074	WPI_WRITE(sc, WPI_FW_TARGET, target);
1075
1076	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0);
1077
1078	/* copy firmware descriptor into NIC memory */
1079	WPI_WRITE_REGION_4(sc, WPI_TX_DESC(6), (uint32_t *)&desc,
1080		sizeof desc / sizeof (uint32_t));
1081
1082	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0xfffff);
1083	WPI_WRITE(sc, WPI_TX_STATE(6), 0x4001);
1084	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0x80000001);
1085
1086	/* wait while the adapter is busy copying the firmware */
1087	for (ntries = 0; ntries < 100; ntries++) {
1088		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(6))
1089			break;
1090		DELAY(1000);
1091	}
1092	if (ntries == 100) {
1093		aprint_error("%s: timeout transferring firmware\n",
1094			sc->sc_dev.dv_xname);
1095		error = ETIMEDOUT;
1096	}
1097
1098	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0);
1099
1100	wpi_mem_unlock(sc);
1101
1102	bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_POSTWRITE);
1103	bus_dmamap_unload(sc->sc_dmat, map);
1104fail4:	bus_dmamem_unmap(sc->sc_dmat, virtaddr, size);
1105fail3:	bus_dmamem_free(sc->sc_dmat, &seg, 1);
1106fail2:	bus_dmamap_destroy(sc->sc_dmat, map);
1107fail1:	return error;
1108}
1109
1110static void
1111wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1112	struct wpi_rx_data *data)
1113{
1114	struct ieee80211com *ic = &sc->sc_ic;
1115	struct ifnet *ifp = ic->ic_ifp;
1116	struct wpi_rx_ring *ring = &sc->rxq;
1117	struct wpi_rx_stat *stat;
1118	struct wpi_rx_head *head;
1119	struct wpi_rx_tail *tail;
1120	struct ieee80211_frame *wh;
1121	struct ieee80211_node *ni;
1122	struct mbuf *m, *mnew;
1123	int error;
1124
1125	stat = (struct wpi_rx_stat *)(desc + 1);
1126
1127	if (stat->len > WPI_STAT_MAXLEN) {
1128		aprint_error("%s: invalid rx statistic header\n",
1129			sc->sc_dev.dv_xname);
1130		ifp->if_ierrors++;
1131		return;
1132	}
1133
1134	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1135	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1136
1137	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1138		"chan=%d tstamp=%llu\n", ring->cur, le32toh(desc->len),
1139		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1140		le64toh(tail->tstamp)));
1141
1142	/*
1143	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1144	 * to radiotap in monitor mode).
1145	 */
1146	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1147		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1148		ifp->if_ierrors++;
1149		return;
1150	}
1151
1152
1153	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1154	if (mnew == NULL) {
1155		ifp->if_ierrors++;
1156		return;
1157	}
1158
1159	MCLGET(mnew, M_DONTWAIT);
1160	if (!(mnew->m_flags & M_EXT)) {
1161		m_freem(mnew);
1162		ifp->if_ierrors++;
1163		return;
1164	}
1165
1166	bus_dmamap_unload(sc->sc_dmat, data->map);
1167
1168	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(mnew, void *),
1169		MCLBYTES, NULL, BUS_DMA_NOWAIT);
1170	if (error != 0) {
1171		m_freem(mnew);
1172
1173		/* try to reload the old mbuf */
1174		error = bus_dmamap_load(sc->sc_dmat, data->map,
1175			mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1176		if (error != 0) {
1177			/* very unlikely that it will fail... */
1178			panic("%s: could not load old rx mbuf",
1179				sc->sc_dev.dv_xname);
1180		}
1181		ifp->if_ierrors++;
1182		return;
1183	}
1184
1185	m = data->m;
1186	data->m = mnew;
1187
1188	/* update Rx descriptor */
1189	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr);
1190
1191	/* finalize mbuf */
1192	m->m_pkthdr.rcvif = ifp;
1193	m->m_data = (caddr_t)(head + 1);
1194	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1195
1196#if NBPFILTER > 0
1197	if (sc->sc_drvbpf != NULL) {
1198		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1199
1200		tap->wr_flags = 0;
1201		tap->wr_chan_freq =
1202			htole16(ic->ic_channels[head->chan].ic_freq);
1203		tap->wr_chan_flags =
1204			htole16(ic->ic_channels[head->chan].ic_flags);
1205		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1206		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1207		tap->wr_tsft = tail->tstamp;
1208		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1209		switch (head->rate) {
1210		/* CCK rates */
1211		case  10: tap->wr_rate =   2; break;
1212		case  20: tap->wr_rate =   4; break;
1213		case  55: tap->wr_rate =  11; break;
1214		case 110: tap->wr_rate =  22; break;
1215		/* OFDM rates */
1216		case 0xd: tap->wr_rate =  12; break;
1217		case 0xf: tap->wr_rate =  18; break;
1218		case 0x5: tap->wr_rate =  24; break;
1219		case 0x7: tap->wr_rate =  36; break;
1220		case 0x9: tap->wr_rate =  48; break;
1221		case 0xb: tap->wr_rate =  72; break;
1222		case 0x1: tap->wr_rate =  96; break;
1223		case 0x3: tap->wr_rate = 108; break;
1224		/* unknown rate: should not happen */
1225		default:  tap->wr_rate =   0;
1226		}
1227		if (le16toh(head->flags) & 0x4)
1228			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1229
1230		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1231	}
1232#endif
1233
1234	/* grab a reference to the source node */
1235	wh = mtod(m, struct ieee80211_frame *);
1236	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1237
1238	/* send the frame to the 802.11 layer */
1239	ieee80211_input(ic, m, ni, stat->rssi, 0);
1240
1241	/* release node reference */
1242	ieee80211_free_node(ni);
1243}
1244
1245static void
1246wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1247{
1248	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1249	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1250	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1251	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1252	struct wpi_amrr *amrr = (struct wpi_amrr *)txdata->ni;
1253
1254	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1255		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1256		stat->nkill, stat->rate, le32toh(stat->duration),
1257		le32toh(stat->status)));
1258
1259	/*
1260	 * Update rate control statistics for the node.
1261	 * XXX we should not count mgmt frames since they're always sent at
1262	 * the lowest available bit-rate.
1263	 */
1264	amrr->txcnt++;
1265	if (stat->ntries > 0) {
1266		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1267		amrr->retrycnt++;
1268	}
1269
1270	bus_dmamap_unload(sc->sc_dmat, txdata->map);
1271
1272	m_freem(txdata->m);
1273	txdata->m = NULL;
1274	ieee80211_free_node(txdata->ni);
1275	txdata->ni = NULL;
1276
1277	if ((le32toh(stat->status) & 0xff) != 1)
1278		ifp->if_oerrors++;
1279	else
1280		ifp->if_opackets++;
1281	ring->queued--;
1282
1283	sc->sc_tx_timer = 0;
1284	ifp->if_flags &= ~IFF_OACTIVE;
1285	wpi_start(ifp);
1286}
1287
1288static void
1289wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1290{
1291	struct wpi_tx_ring *ring = &sc->cmdq;
1292	struct wpi_tx_data *data;
1293
1294	if ((desc->qid & 7) != 4)
1295		return;	/* not a command ack */
1296
1297	data = &ring->data[desc->idx];
1298
1299	/* if the command was mapped in a mbuf, free it */
1300	if (data->m != NULL) {
1301		bus_dmamap_unload(sc->sc_dmat, data->map);
1302		m_freem(data->m);
1303		data->m = NULL;
1304	}
1305
1306	wakeup(&ring->cmd[desc->idx]);
1307}
1308
1309static void
1310wpi_notif_intr(struct wpi_softc *sc)
1311{
1312	struct ieee80211com *ic = &sc->sc_ic;
1313	struct wpi_rx_desc *desc;
1314	struct wpi_rx_data *data;
1315	uint32_t hw;
1316
1317	hw = le32toh(sc->shared->next);
1318	while (sc->rxq.cur != hw) {
1319		data = &sc->rxq.data[sc->rxq.cur];
1320
1321		desc = mtod(data->m, struct wpi_rx_desc *);
1322
1323		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1324			"len=%d\n", desc->qid, desc->idx, desc->flags,
1325			desc->type, le32toh(desc->len)));
1326
1327		if (!(desc->qid & 0x80))	/* reply to a command */
1328			wpi_cmd_intr(sc, desc);
1329
1330		switch (desc->type) {
1331		case WPI_RX_DONE:
1332			/* a 802.11 frame was received */
1333			wpi_rx_intr(sc, desc, data);
1334			break;
1335
1336		case WPI_TX_DONE:
1337			/* a 802.11 frame has been transmitted */
1338			wpi_tx_intr(sc, desc);
1339			break;
1340
1341		case WPI_UC_READY:
1342		{
1343			struct wpi_ucode_info *uc =
1344				(struct wpi_ucode_info *)(desc + 1);
1345
1346			/* the microcontroller is ready */
1347			DPRINTF(("microcode alive notification version %x "
1348				"alive %x\n", le32toh(uc->version),
1349				le32toh(uc->valid)));
1350
1351			if (le32toh(uc->valid) != 1) {
1352				aprint_error("%s: microcontroller "
1353					"initialization failed\n",
1354					sc->sc_dev.dv_xname);
1355			}
1356			break;
1357		}
1358		case WPI_STATE_CHANGED:
1359		{
1360			uint32_t *status = (uint32_t *)(desc + 1);
1361
1362			/* enabled/disabled notification */
1363			DPRINTF(("state changed to %x\n", le32toh(*status)));
1364
1365			if (le32toh(*status) & 1) {
1366				/* the radio button has to be pushed */
1367				aprint_error("%s: Radio transmitter is off\n",
1368					sc->sc_dev.dv_xname);
1369			}
1370			break;
1371		}
1372		case WPI_START_SCAN:
1373		{
1374			struct wpi_start_scan *scan =
1375				(struct wpi_start_scan *)(desc + 1);
1376
1377			DPRINTFN(2, ("scanning channel %d status %x\n",
1378				scan->chan, le32toh(scan->status)));
1379
1380			/* fix current channel */
1381			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1382			break;
1383		}
1384		case WPI_STOP_SCAN:
1385		{
1386			struct wpi_stop_scan *scan =
1387				(struct wpi_stop_scan *)(desc + 1);
1388
1389			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1390				scan->nchan, scan->status, scan->chan));
1391
1392			if (scan->status == 1 && scan->chan <= 14) {
1393				/*
1394				 * We just finished scanning 802.11g channels,
1395				 * start scanning 802.11a ones.
1396				 */
1397				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1398					break;
1399			}
1400			ieee80211_end_scan(ic);
1401			break;
1402		}
1403		}
1404
1405		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1406	}
1407
1408	/* tell the firmware what we have processed */
1409	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1410	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1411}
1412
1413static int
1414wpi_intr(void *arg)
1415{
1416	struct wpi_softc *sc = arg;
1417	uint32_t r;
1418
1419	r = WPI_READ(sc, WPI_INTR);
1420	if (r == 0 || r == 0xffffffff)
1421		return 0;	/* not for us */
1422
1423	DPRINTFN(5, ("interrupt reg %x\n", r));
1424
1425	/* disable interrupts */
1426	WPI_WRITE(sc, WPI_MASK, 0);
1427	/* ack interrupts */
1428	WPI_WRITE(sc, WPI_INTR, r);
1429
1430	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1431		/* SYSTEM FAILURE, SYSTEM FAILURE */
1432		aprint_error("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
1433		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1434		wpi_stop(&sc->sc_ec.ec_if, 1);
1435		return 1;
1436	}
1437
1438	if (r & WPI_RX_INTR)
1439		wpi_notif_intr(sc);
1440
1441	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1442		wakeup(sc);
1443
1444	/* re-enable interrupts */
1445	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1446
1447	return 1;
1448}
1449
1450static uint8_t
1451wpi_plcp_signal(int rate)
1452{
1453	switch (rate) {
1454	/* CCK rates (returned values are device-dependent) */
1455	case 2:		return 10;
1456	case 4:		return 20;
1457	case 11:	return 55;
1458	case 22:	return 110;
1459
1460	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1461	/* R1-R4, (u)ral is R4-R1 */
1462	case 12:	return 0xd;
1463	case 18:	return 0xf;
1464	case 24:	return 0x5;
1465	case 36:	return 0x7;
1466	case 48:	return 0x9;
1467	case 72:	return 0xb;
1468	case 96:	return 0x1;
1469	case 108:	return 0x3;
1470
1471	/* unsupported rates (should not get there) */
1472	default:	return 0;
1473	}
1474}
1475
1476/* quickly determine if a given rate is CCK or OFDM */
1477#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1478
1479static int
1480wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1481	int ac)
1482{
1483	struct ieee80211com *ic = &sc->sc_ic;
1484	struct wpi_tx_ring *ring = &sc->txq[ac];
1485	struct wpi_tx_desc *desc;
1486	struct wpi_tx_data *data;
1487	struct wpi_tx_cmd *cmd;
1488	struct wpi_cmd_data *tx;
1489	struct ieee80211_frame *wh;
1490	struct ieee80211_key *k;
1491	const struct chanAccParams *cap;
1492	struct mbuf *mnew;
1493	int i, error, rate, hdrlen, noack = 0;
1494
1495	desc = &ring->desc[ring->cur];
1496	data = &ring->data[ring->cur];
1497
1498	wh = mtod(m0, struct ieee80211_frame *);
1499
1500	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1501		hdrlen = sizeof (struct ieee80211_qosframe);
1502		cap = &ic->ic_wme.wme_chanParams;
1503		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1504	} else
1505		hdrlen = sizeof (struct ieee80211_frame);
1506
1507	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1508		k = ieee80211_crypto_encap(ic, ni, m0);
1509		if (k == NULL) {
1510			m_freem(m0);
1511			return ENOBUFS;
1512		}
1513
1514		/* packet header may have moved, reset our local pointer */
1515		wh = mtod(m0, struct ieee80211_frame *);
1516	}
1517
1518	/* pickup a rate */
1519	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1520		IEEE80211_FC0_TYPE_MGT) {
1521		/* mgmt frames are sent at the lowest available bit-rate */
1522		rate = ni->ni_rates.rs_rates[0];
1523	} else {
1524		if (ic->ic_fixed_rate != -1) {
1525			rate = ic->ic_sup_rates[ic->ic_curmode].
1526				rs_rates[ic->ic_fixed_rate];
1527		} else
1528			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1529	}
1530	rate &= IEEE80211_RATE_VAL;
1531
1532
1533#if NBPFILTER > 0
1534	if (sc->sc_drvbpf != NULL) {
1535		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1536
1537		tap->wt_flags = 0;
1538		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1539		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1540		tap->wt_rate = rate;
1541		tap->wt_hwqueue = ac;
1542		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1543			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1544
1545		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1546	}
1547#endif
1548
1549	cmd = &ring->cmd[ring->cur];
1550	cmd->code = WPI_CMD_TX_DATA;
1551	cmd->flags = 0;
1552	cmd->qid = ring->qid;
1553	cmd->idx = ring->cur;
1554
1555	tx = (struct wpi_cmd_data *)cmd->data;
1556	tx->flags = 0;
1557
1558	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1559		tx->id = WPI_ID_BSS;
1560		tx->flags |= htole32(WPI_TX_NEED_ACK);
1561		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >
1562		    ic->ic_rtsthreshold || (WPI_RATE_IS_OFDM(rate) &&
1563		    (ic->ic_flags & IEEE80211_F_USEPROT)))
1564			tx->flags |= htole32(WPI_TX_NEED_RTS |
1565				WPI_TX_FULL_TXOP);
1566	} else
1567		tx->id = WPI_ID_BROADCAST;
1568
1569	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1570
1571	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1572		IEEE80211_FC0_TYPE_MGT) {
1573		/* tell h/w to set timestamp in probe responses */
1574		if ((wh->i_fc[0] &
1575		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1576		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1577			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1578
1579		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1580			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1581			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1582			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1583			tx->timeout = htole16(3);
1584		else
1585			tx->timeout = htole16(2);
1586	} else
1587		tx->timeout = htole16(0);
1588
1589	tx->rate = wpi_plcp_signal(rate);
1590
1591	/* be very persistant at sending frames out */
1592	tx->rts_ntries = 7;
1593	tx->data_ntries = 15;
1594
1595	tx->ofdm_mask = 0xff;
1596	tx->cck_mask = 0xf;
1597	tx->lifetime = htole32(0xffffffff);
1598
1599	tx->len = htole16(m0->m_pkthdr.len);
1600
1601	/* save and trim IEEE802.11 header */
1602	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1603	m_adj(m0, hdrlen);
1604
1605	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1606		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1607	if (error != 0 && error != EFBIG) {
1608		aprint_error("%s: could not map mbuf (error %d)\n",
1609			sc->sc_dev.dv_xname, error);
1610		m_freem(m0);
1611		return error;
1612	}
1613	if (error != 0) {
1614		/* too many fragments, linearize */
1615		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1616		if (mnew == NULL) {
1617			m_freem(m0);
1618			return ENOMEM;
1619		}
1620
1621		M_COPY_PKTHDR(mnew, m0);
1622		if (m0->m_pkthdr.len > MHLEN) {
1623			MCLGET(mnew, M_DONTWAIT);
1624			if (!(mnew->m_flags & M_EXT)) {
1625				m_freem(m0);
1626				m_freem(mnew);
1627				return ENOMEM;
1628			}
1629		}
1630
1631		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t));
1632		m_freem(m0);
1633		mnew->m_len = mnew->m_pkthdr.len;
1634		m0 = mnew;
1635
1636		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1637			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1638		if (error != 0) {
1639			aprint_error("%s: could not map mbuf (error %d)\n",
1640				sc->sc_dev.dv_xname, error);
1641			m_freem(m0);
1642			return error;
1643		}
1644	}
1645
1646	data->m = m0;
1647	data->ni = ni;
1648
1649	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1650		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1651
1652	/* first scatter/gather segment is used by the tx data command */
1653	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1654		(1 + data->map->dm_nsegs) << 24);
1655	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1656		ring->cur * sizeof (struct wpi_tx_cmd));
1657	/*XXX The next line might be wrong. I don't use hdrlen*/
1658	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1659
1660	for (i = 1; i <= data->map->dm_nsegs; i++) {
1661		desc->segs[i].addr =
1662			htole32(data->map->dm_segs[i - 1].ds_addr);
1663		desc->segs[i].len  =
1664			htole32(data->map->dm_segs[i - 1].ds_len);
1665	}
1666
1667	ring->queued++;
1668
1669	/* kick ring */
1670	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1671	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1672
1673	return 0;
1674}
1675
1676static void
1677wpi_start(struct ifnet *ifp)
1678{
1679	struct wpi_softc *sc = ifp->if_softc;
1680	struct ieee80211com *ic = &sc->sc_ic;
1681	struct ieee80211_node *ni;
1682	struct ether_header *eh;
1683	struct mbuf *m0;
1684	int ac;
1685
1686	/*
1687	 * net80211 may still try to send management frames even if the
1688	 * IFF_RUNNING flag is not set...
1689	 */
1690	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1691		return;
1692
1693	for (;;) {
1694		IF_POLL(&ic->ic_mgtq, m0);
1695		if (m0 != NULL) {
1696			IF_DEQUEUE(&ic->ic_mgtq, m0);
1697
1698			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1699			m0->m_pkthdr.rcvif = NULL;
1700
1701			/* management frames go into ring 0 */
1702			if (sc->txq[0].queued > sc->txq[0].count - 8) {
1703				ifp->if_oerrors++;
1704				continue;
1705			}
1706#if NBPFILTER > 0
1707			if (ic->ic_rawbpf != NULL)
1708				bpf_mtap(ic->ic_rawbpf, m0);
1709#endif
1710			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1711				ifp->if_oerrors++;
1712				break;
1713			}
1714		} else {
1715			if (ic->ic_state != IEEE80211_S_RUN)
1716				break;
1717			IF_DEQUEUE(&ifp->if_snd, m0);
1718			if (m0 == NULL)
1719				break;
1720
1721			if (m0->m_len < sizeof (*eh) &&
1722			    (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
1723				ifp->if_oerrors++;
1724				continue;
1725			}
1726			eh = mtod(m0, struct ether_header *);
1727			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1728			if (ni == NULL) {
1729				m_freem(m0);
1730				ifp->if_oerrors++;
1731				continue;
1732			}
1733
1734			/* classify mbuf so we can find which tx ring to use */
1735			if (ieee80211_classify(ic, m0, ni) != 0) {
1736				m_freem(m0);
1737				ieee80211_free_node(ni);
1738				ifp->if_oerrors++;
1739				continue;
1740			}
1741
1742			/* no QoS encapsulation for EAPOL frames */
1743			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1744			    M_WME_GETAC(m0) : WME_AC_BE;
1745
1746			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1747				/* there is no place left in this ring */
1748				IF_PREPEND(&ifp->if_snd, m0);
1749				ifp->if_flags |= IFF_OACTIVE;
1750				break;
1751			}
1752#if NBPFILTER > 0
1753			if (ifp->if_bpf != NULL)
1754				bpf_mtap(ifp->if_bpf, m0);
1755#endif
1756			m0 = ieee80211_encap(ic, m0, ni);
1757			if (m0 == NULL) {
1758				ieee80211_free_node(ni);
1759				ifp->if_oerrors++;
1760				continue;
1761			}
1762#if NBPFILTER > 0
1763			if (ic->ic_rawbpf != NULL)
1764				bpf_mtap(ic->ic_rawbpf, m0);
1765#endif
1766			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
1767				ieee80211_free_node(ni);
1768				ifp->if_oerrors++;
1769				break;
1770			}
1771		}
1772
1773		sc->sc_tx_timer = 5;
1774		ifp->if_timer = 1;
1775	}
1776}
1777
1778static void
1779wpi_watchdog(struct ifnet *ifp)
1780{
1781	struct wpi_softc *sc = ifp->if_softc;
1782
1783	ifp->if_timer = 0;
1784
1785	if (sc->sc_tx_timer > 0) {
1786		if (--sc->sc_tx_timer == 0) {
1787			aprint_error("%s: device timeout\n",
1788				sc->sc_dev.dv_xname);
1789			ifp->if_oerrors++;
1790			ifp->if_flags &= ~IFF_UP;
1791			wpi_stop(ifp, 1);
1792			return;
1793		}
1794		ifp->if_timer = 1;
1795	}
1796
1797	ieee80211_watchdog(&sc->sc_ic);
1798}
1799
1800static int
1801wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1802{
1803#define IS_RUNNING(ifp) \
1804	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1805
1806	struct wpi_softc *sc = ifp->if_softc;
1807	struct ieee80211com *ic = &sc->sc_ic;
1808	struct ifreq *ifr = (struct ifreq *)data;
1809	int s, error = 0;
1810
1811	s = splnet();
1812
1813	switch (cmd) {
1814	case SIOCSIFFLAGS:
1815		if (ifp->if_flags & IFF_UP) {
1816			if (!(ifp->if_flags & IFF_RUNNING))
1817				wpi_init(ifp);
1818		} else {
1819			if (ifp->if_flags & IFF_RUNNING)
1820				wpi_stop(ifp, 1);
1821		}
1822		break;
1823
1824	case SIOCADDMULTI:
1825	case SIOCDELMULTI:
1826		error = (cmd == SIOCADDMULTI) ?
1827			ether_addmulti(ifr, &sc->sc_ec) :
1828			ether_delmulti(ifr, &sc->sc_ec);
1829		if (error == ENETRESET) {
1830			/* setup multicast filter, etc */
1831			error = 0;
1832		}
1833		break;
1834
1835	default:
1836		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
1837	}
1838
1839	if (error == ENETRESET) {
1840		if (IS_RUNNING(ifp) &&
1841			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1842			wpi_init(ifp);
1843		error = 0;
1844	}
1845
1846	splx(s);
1847	return error;
1848
1849#undef IS_RUNNING
1850}
1851
1852/*
1853 * Extract various information from EEPROM.
1854 */
1855static void
1856wpi_read_eeprom(struct wpi_softc *sc)
1857{
1858	struct ieee80211com *ic = &sc->sc_ic;
1859	uint16_t val;
1860	int i;
1861
1862	/* read MAC address */
1863	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 0);
1864	ic->ic_myaddr[0] = val & 0xff;
1865	ic->ic_myaddr[1] = val >> 8;
1866	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 1);
1867	ic->ic_myaddr[2] = val & 0xff;
1868	ic->ic_myaddr[3] = val >> 8;
1869	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 2);
1870	ic->ic_myaddr[4] = val & 0xff;
1871	ic->ic_myaddr[5] = val >> 8;
1872
1873	/* read power settings for 2.4GHz channels */
1874	for (i = 0; i < 14; i++) {
1875		sc->pwr1[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR1 + i);
1876		sc->pwr2[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR2 + i);
1877		DPRINTFN(2, ("channel %d pwr1 0x%04x pwr2 0x%04x\n", i + 1,
1878			sc->pwr1[i], sc->pwr2[i]));
1879	}
1880}
1881
1882/*
1883 * Send a command to the firmware.
1884 */
1885static int
1886wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
1887{
1888	struct wpi_tx_ring *ring = &sc->cmdq;
1889	struct wpi_tx_desc *desc;
1890	struct wpi_tx_cmd *cmd;
1891
1892	KASSERT(size <= sizeof cmd->data);
1893
1894	desc = &ring->desc[ring->cur];
1895	cmd = &ring->cmd[ring->cur];
1896
1897	cmd->code = code;
1898	cmd->flags = 0;
1899	cmd->qid = ring->qid;
1900	cmd->idx = ring->cur;
1901	memcpy(cmd->data, buf, size);
1902
1903	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
1904	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1905		ring->cur * sizeof (struct wpi_tx_cmd));
1906	desc->segs[0].len  = htole32(4 + size);
1907
1908	/* kick cmd ring */
1909	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
1910	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1911
1912	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
1913}
1914
1915static int
1916wpi_wme_update(struct ieee80211com *ic)
1917{
1918#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
1919#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1920	struct wpi_softc *sc = ic->ic_ifp->if_softc;
1921	const struct wmeParams *wmep;
1922	struct wpi_wme_setup wme;
1923	int ac;
1924
1925	/* don't override default WME values if WME is not actually enabled */
1926	if (!(ic->ic_flags & IEEE80211_F_WME))
1927		return 0;
1928
1929	wme.flags = 0;
1930	for (ac = 0; ac < WME_NUM_AC; ac++) {
1931		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1932		wme.ac[ac].aifsn = wmep->wmep_aifsn;
1933		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
1934		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
1935		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
1936
1937		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
1938		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
1939		    wme.ac[ac].cwmax, wme.ac[ac].txop));
1940	}
1941
1942	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
1943#undef WPI_USEC
1944#undef WPI_EXP2
1945}
1946
1947/*
1948 * Configure h/w multi-rate retries.
1949 */
1950static int
1951wpi_mrr_setup(struct wpi_softc *sc)
1952{
1953	struct ieee80211com *ic = &sc->sc_ic;
1954	struct wpi_mrr_setup mrr;
1955	int i, error;
1956
1957	/* CCK rates (not used with 802.11a) */
1958	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
1959		mrr.rates[i].flags = 0;
1960		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
1961		/* fallback to the immediate lower CCK rate (if any) */
1962		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
1963		/* try one time at this rate before falling back to "next" */
1964		mrr.rates[i].ntries = 1;
1965	}
1966
1967	/* OFDM rates (not used with 802.11b) */
1968	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
1969		mrr.rates[i].flags = 0;
1970		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
1971		/* fallback to the immediate lower rate (if any) */
1972		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
1973		mrr.rates[i].next = (i == WPI_OFDM6) ?
1974		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
1975			WPI_OFDM6 : WPI_CCK2) :
1976		    i - 1;
1977		/* try one time at this rate before falling back to "next" */
1978		mrr.rates[i].ntries = 1;
1979	}
1980
1981	/* setup MRR for control frames */
1982	mrr.which = htole32(WPI_MRR_CTL);
1983	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 1);
1984	if (error != 0) {
1985		aprint_error("%s: could not setup MRR for control frames\n",
1986			sc->sc_dev.dv_xname);
1987		return error;
1988	}
1989
1990	/* setup MRR for data frames */
1991	mrr.which = htole32(WPI_MRR_DATA);
1992	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 1);
1993	if (error != 0) {
1994		aprint_error("%s: could not setup MRR for data frames\n",
1995			sc->sc_dev.dv_xname);
1996		return error;
1997	}
1998
1999	return 0;
2000}
2001
2002static void
2003wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2004{
2005	struct wpi_cmd_led led;
2006
2007	led.which = which;
2008	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2009	led.off = off;
2010	led.on = on;
2011
2012	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2013}
2014
2015static void
2016wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2017{
2018	struct wpi_cmd_tsf tsf;
2019	uint64_t val, mod;
2020
2021	memset(&tsf, 0, sizeof tsf);
2022	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2023	tsf.bintval = htole16(ni->ni_intval);
2024	tsf.lintval = htole16(10);
2025
2026	/* compute remaining time until next beacon */
2027	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
2028	mod = le64toh(tsf.tstamp) % val;
2029	tsf.binitval = htole32((uint32_t)(val - mod));
2030
2031	DPRINTF(("TSF bintval=%u tstamp=%llu, init=%u\n",
2032	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2033
2034	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2035		aprint_error("%s: could not enable TSF\n", sc->sc_dev.dv_xname);
2036}
2037
2038/*
2039 * Build a beacon frame that the firmware will broadcast periodically in
2040 * IBSS or HostAP modes.
2041 */
2042static int
2043wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2044{
2045	struct ieee80211com *ic = &sc->sc_ic;
2046	struct wpi_tx_ring *ring = &sc->cmdq;
2047	struct wpi_tx_desc *desc;
2048	struct wpi_tx_data *data;
2049	struct wpi_tx_cmd *cmd;
2050	struct wpi_cmd_beacon *bcn;
2051	struct ieee80211_beacon_offsets bo;
2052	struct mbuf *m0;
2053	int error;
2054
2055	desc = &ring->desc[ring->cur];
2056	data = &ring->data[ring->cur];
2057
2058	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2059	if (m0 == NULL) {
2060		aprint_error("%s: could not allocate beacon frame\n",
2061			sc->sc_dev.dv_xname);
2062		return ENOMEM;
2063	}
2064
2065	cmd = &ring->cmd[ring->cur];
2066	cmd->code = WPI_CMD_SET_BEACON;
2067	cmd->flags = 0;
2068	cmd->qid = ring->qid;
2069	cmd->idx = ring->cur;
2070
2071	bcn = (struct wpi_cmd_beacon *)cmd->data;
2072	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2073	bcn->id = WPI_ID_BROADCAST;
2074	bcn->ofdm_mask = 0xff;
2075	bcn->cck_mask = 0x0f;
2076	bcn->lifetime = htole32(0xffffffff);
2077	bcn->len = htole16(m0->m_pkthdr.len);
2078	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2079		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2080	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2081
2082	/* save and trim IEEE802.11 header */
2083	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2084	m_adj(m0, sizeof (struct ieee80211_frame));
2085
2086	/* assume beacon frame is contiguous */
2087	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2088		BUS_DMA_READ | BUS_DMA_NOWAIT);
2089	if (error) {
2090		aprint_error("%s: could not map beacon\n", sc->sc_dev.dv_xname);
2091		m_freem(m0);
2092		return error;
2093	}
2094
2095	data->m = m0;
2096
2097	/* first scatter/gather segment is used by the beacon command */
2098	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2099	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2100		ring->cur * sizeof (struct wpi_tx_cmd));
2101	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2102	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2103	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2104
2105	/* kick cmd ring */
2106	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2107	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2108
2109	return 0;
2110}
2111
2112static int
2113wpi_auth(struct wpi_softc *sc)
2114{
2115	struct ieee80211com *ic = &sc->sc_ic;
2116	struct ieee80211_node *ni = ic->ic_bss;
2117	struct wpi_node node;
2118	int error;
2119
2120	/* update adapter's configuration */
2121	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2122	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2123	sc->config.flags = htole32(WPI_CONFIG_TSF);
2124	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2125		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2126		    WPI_CONFIG_24GHZ);
2127	}
2128	switch (ic->ic_curmode) {
2129	case IEEE80211_MODE_11A:
2130		sc->config.cck_mask  = 0;
2131		sc->config.ofdm_mask = 0x15;
2132		break;
2133	case IEEE80211_MODE_11B:
2134		sc->config.cck_mask  = 0x03;
2135		sc->config.ofdm_mask = 0;
2136		break;
2137	default:	/* assume 802.11b/g */
2138		sc->config.cck_mask  = 0x0f;
2139		sc->config.ofdm_mask = 0x15;
2140	}
2141
2142	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2143		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2144	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2145		sizeof (struct wpi_config), 1);
2146	if (error != 0) {
2147		aprint_error("%s: could not configure\n", sc->sc_dev.dv_xname);
2148		return error;
2149	}
2150
2151	/* add default node */
2152	memset(&node, 0, sizeof node);
2153	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2154	node.id = WPI_ID_BSS;
2155	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2156	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2157	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2158	if (error != 0) {
2159		aprint_error("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
2160		return error;
2161	}
2162
2163	error = wpi_mrr_setup(sc);
2164	if (error != 0) {
2165		aprint_error("%s: could not setup MRR\n", sc->sc_dev.dv_xname);
2166		return error;
2167	}
2168
2169	return 0;
2170}
2171
2172/*
2173 * Send a scan request to the firmware.  Since this command is huge, we map it
2174 * into a mbuf instead of using the pre-allocated set of commands.
2175 */
2176static int
2177wpi_scan(struct wpi_softc *sc, uint16_t flags)
2178{
2179	struct ieee80211com *ic = &sc->sc_ic;
2180	struct wpi_tx_ring *ring = &sc->cmdq;
2181	struct wpi_tx_desc *desc;
2182	struct wpi_tx_data *data;
2183	struct wpi_tx_cmd *cmd;
2184	struct wpi_scan_hdr *hdr;
2185	struct wpi_scan_chan *chan;
2186	struct ieee80211_frame *wh;
2187	struct ieee80211_rateset *rs;
2188	struct ieee80211_channel *c;
2189	enum ieee80211_phymode mode;
2190	uint8_t *frm;
2191	int nrates, pktlen, error;
2192
2193	desc = &ring->desc[ring->cur];
2194	data = &ring->data[ring->cur];
2195
2196	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2197	if (data->m == NULL) {
2198		aprint_error("%s: could not allocate mbuf for scan command\n",
2199			sc->sc_dev.dv_xname);
2200		return ENOMEM;
2201	}
2202
2203	MCLGET(data->m, M_DONTWAIT);
2204	if (!(data->m->m_flags & M_EXT)) {
2205		m_freem(data->m);
2206		data->m = NULL;
2207		aprint_error("%s: could not allocate mbuf for scan command\n",
2208			sc->sc_dev.dv_xname);
2209		return ENOMEM;
2210	}
2211
2212	cmd = mtod(data->m, struct wpi_tx_cmd *);
2213	cmd->code = WPI_CMD_SCAN;
2214	cmd->flags = 0;
2215	cmd->qid = ring->qid;
2216	cmd->idx = ring->cur;
2217
2218	hdr = (struct wpi_scan_hdr *)cmd->data;
2219	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2220	hdr->first = 1;
2221	/*
2222	 * Move to the next channel if no packets are received within 5 msecs
2223	 * after sending the probe request (this helps to reduce the duration
2224	 * of active scans).
2225	 */
2226	hdr->quiet = htole16(5);        /* timeout in milliseconds */
2227	hdr->threshold = htole16(1);    /* min # of packets */
2228
2229	if (flags & IEEE80211_CHAN_A) {
2230		hdr->band = htole16(WPI_SCAN_5GHZ);
2231		/* send probe requests at 6Mbps */
2232		hdr->rate = wpi_plcp_signal(12);
2233	} else {
2234		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2235		/* send probe requests at 1Mbps */
2236		hdr->rate = wpi_plcp_signal(2);
2237	}
2238	hdr->id = WPI_ID_BROADCAST;
2239	hdr->mask = htole32(0xffffffff);
2240	hdr->magic1 = htole32(1 << 13);
2241
2242	hdr->esslen = ic->ic_des_esslen;
2243	memcpy(hdr->essid, ic->ic_des_essid, ic->ic_des_esslen);
2244
2245	/*
2246	 * Build a probe request frame.  Most of the following code is a
2247	 * copy & paste of what is done in net80211.
2248	 */
2249	wh = (struct ieee80211_frame *)(hdr + 1);
2250	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2251		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2252	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2253	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2254	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2255	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2256	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2257	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2258
2259	frm = (uint8_t *)(wh + 1);
2260
2261	/* add essid IE */
2262	*frm++ = IEEE80211_ELEMID_SSID;
2263	*frm++ = ic->ic_des_esslen;
2264	memcpy(frm, ic->ic_des_essid, ic->ic_des_esslen);
2265	frm += ic->ic_des_esslen;
2266
2267	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2268	rs = &ic->ic_sup_rates[mode];
2269
2270	/* add supported rates IE */
2271	*frm++ = IEEE80211_ELEMID_RATES;
2272	nrates = rs->rs_nrates;
2273	if (nrates > IEEE80211_RATE_SIZE)
2274		nrates = IEEE80211_RATE_SIZE;
2275	*frm++ = nrates;
2276	memcpy(frm, rs->rs_rates, nrates);
2277	frm += nrates;
2278
2279	/* add supported xrates IE */
2280	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2281		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2282		*frm++ = IEEE80211_ELEMID_XRATES;
2283		*frm++ = nrates;
2284		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2285		frm += nrates;
2286	}
2287
2288	/* add optionnal IE (usually an RSN IE) */
2289	if (ic->ic_opt_ie != NULL) {
2290		memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
2291		frm += ic->ic_opt_ie_len;
2292	}
2293
2294	/* setup length of probe request */
2295	hdr->pbrlen = htole16(frm - (uint8_t *)wh);
2296
2297	chan = (struct wpi_scan_chan *)frm;
2298	for (c  = &ic->ic_channels[1];
2299	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2300		if ((c->ic_flags & flags) != flags)
2301			continue;
2302
2303		chan->chan = ieee80211_chan2ieee(ic, c);
2304		chan->flags = (c->ic_flags & IEEE80211_CHAN_PASSIVE) ?
2305			0 : WPI_CHAN_ACTIVE;
2306		chan->magic = htole16(0x62ab);
2307		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2308			chan->active = htole16(10);
2309			chan->passive = htole16(110);
2310		} else {
2311			chan->active = htole16(20);
2312			chan->passive = htole16(120);
2313		}
2314		hdr->nchan++;
2315		chan++;
2316
2317		frm += sizeof (struct wpi_scan_chan);
2318	}
2319
2320	hdr->len = hdr->nchan * sizeof (struct wpi_scan_chan);
2321	pktlen = frm - mtod(data->m, uint8_t *);
2322
2323	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2324		NULL, BUS_DMA_NOWAIT);
2325	if (error) {
2326		aprint_error("%s: could not map scan command\n",
2327			sc->sc_dev.dv_xname);
2328		m_freem(data->m);
2329		data->m = NULL;
2330		return error;
2331	}
2332
2333	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2334	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2335	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2336
2337	/* kick cmd ring */
2338	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2339	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2340
2341	return 0;	/* will be notified async. of failure/success */
2342}
2343
2344static int
2345wpi_config(struct wpi_softc *sc)
2346{
2347	struct ieee80211com *ic = &sc->sc_ic;
2348	struct ifnet *ifp = ic->ic_ifp;
2349	struct wpi_txpower txpower;
2350	struct wpi_power power;
2351	struct wpi_bluetooth bluetooth;
2352	struct wpi_node node;
2353	int error;
2354
2355	/* set Tx power for 2.4GHz channels (values read from EEPROM) */
2356	memset(&txpower, 0, sizeof txpower);
2357	memcpy(txpower.pwr1, sc->pwr1, 14 * sizeof (uint16_t));
2358	memcpy(txpower.pwr2, sc->pwr2, 14 * sizeof (uint16_t));
2359	error = wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, 0);
2360	if (error != 0) {
2361		aprint_error("%s: could not set txpower\n",
2362			sc->sc_dev.dv_xname);
2363		return error;
2364	}
2365
2366	/* set power mode */
2367	memset(&power, 0, sizeof power);
2368	power.flags = htole32(0x8);	/* XXX */
2369	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2370	if (error != 0) {
2371		aprint_error("%s: could not set power mode\n",
2372			sc->sc_dev.dv_xname);
2373		return error;
2374	}
2375
2376	/* configure bluetooth coexistence */
2377	memset(&bluetooth, 0, sizeof bluetooth);
2378	bluetooth.flags = 3;
2379	bluetooth.lead = 0xaa;
2380	bluetooth.kill = 1;
2381	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2382		0);
2383	if (error != 0) {
2384		aprint_error(
2385			"%s: could not configure bluetooth coexistence\n",
2386			sc->sc_dev.dv_xname);
2387		return error;
2388	}
2389
2390	/* configure adapter */
2391	memset(&sc->config, 0, sizeof (struct wpi_config));
2392	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2393	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2394	/*set default channel*/
2395	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2396	sc->config.flags = htole32(WPI_CONFIG_TSF);
2397	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2398		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2399		    WPI_CONFIG_24GHZ);
2400	}
2401	sc->config.filter = 0;
2402	switch (ic->ic_opmode) {
2403	case IEEE80211_M_STA:
2404		sc->config.mode = WPI_MODE_STA;
2405		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2406		break;
2407	case IEEE80211_M_IBSS:
2408	case IEEE80211_M_AHDEMO:
2409		sc->config.mode = WPI_MODE_IBSS;
2410		break;
2411	case IEEE80211_M_HOSTAP:
2412		sc->config.mode = WPI_MODE_HOSTAP;
2413		break;
2414	case IEEE80211_M_MONITOR:
2415		sc->config.mode = WPI_MODE_MONITOR;
2416		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2417			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2418		break;
2419	}
2420	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2421	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2422	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2423		sizeof (struct wpi_config), 0);
2424	if (error != 0) {
2425		aprint_error("%s: configure command failed\n",
2426			sc->sc_dev.dv_xname);
2427		return error;
2428	}
2429
2430	/* add broadcast node */
2431	memset(&node, 0, sizeof node);
2432	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2433	node.id = WPI_ID_BROADCAST;
2434	node.rate = wpi_plcp_signal(2);
2435	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2436	if (error != 0) {
2437		aprint_error("%s: could not add broadcast node\n",
2438			sc->sc_dev.dv_xname);
2439		return error;
2440	}
2441
2442	return 0;
2443}
2444
2445static void
2446wpi_stop_master(struct wpi_softc *sc)
2447{
2448	uint32_t tmp;
2449	int ntries;
2450
2451	tmp = WPI_READ(sc, WPI_RESET);
2452	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2453
2454	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2455	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2456		return;	/* already asleep */
2457
2458	for (ntries = 0; ntries < 100; ntries++) {
2459		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2460			break;
2461		DELAY(10);
2462	}
2463	if (ntries == 100) {
2464		aprint_error("%s: timeout waiting for master\n",
2465			sc->sc_dev.dv_xname);
2466	}
2467}
2468
2469static int
2470wpi_power_up(struct wpi_softc *sc)
2471{
2472	uint32_t tmp;
2473	int ntries;
2474
2475	wpi_mem_lock(sc);
2476	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2477	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2478	wpi_mem_unlock(sc);
2479
2480	for (ntries = 0; ntries < 5000; ntries++) {
2481		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2482			break;
2483		DELAY(10);
2484	}
2485	if (ntries == 5000) {
2486		aprint_error("%s: timeout waiting for NIC to power up\n",
2487			sc->sc_dev.dv_xname);
2488		return ETIMEDOUT;
2489	}
2490	return 0;
2491}
2492
2493static int
2494wpi_reset(struct wpi_softc *sc)
2495{
2496	uint32_t tmp;
2497	int ntries;
2498
2499	/* clear any pending interrupts */
2500	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2501
2502	tmp = WPI_READ(sc, WPI_PLL_CTL);
2503	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2504
2505	tmp = WPI_READ(sc, WPI_CHICKEN);
2506	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2507
2508	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2509	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2510
2511	/* wait for clock stabilization */
2512	for (ntries = 0; ntries < 1000; ntries++) {
2513		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2514			break;
2515		DELAY(10);
2516	}
2517	if (ntries == 1000) {
2518		aprint_error("%s: timeout waiting for clock stabilization\n",
2519			sc->sc_dev.dv_xname);
2520		return ETIMEDOUT;
2521	}
2522
2523	/* initialize EEPROM */
2524	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2525	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2526		aprint_error("%s: EEPROM not found\n", sc->sc_dev.dv_xname);
2527		return EIO;
2528	}
2529	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2530
2531	return 0;
2532}
2533
2534static void
2535wpi_hw_config(struct wpi_softc *sc)
2536{
2537	uint16_t val;
2538	uint32_t rev, hw;
2539
2540	/* voodoo from the Linux "driver".. */
2541	hw = WPI_READ(sc, WPI_HWCONFIG);
2542
2543	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
2544	rev = PCI_REVISION(rev);
2545	if ((rev & 0xc0) == 0x40)
2546		hw |= WPI_HW_ALM_MB;
2547	else if (!(rev & 0x80))
2548		hw |= WPI_HW_ALM_MM;
2549
2550	val = wpi_read_prom_word(sc, WPI_EEPROM_CAPABILITIES);
2551	if ((val & 0xff) == 0x80)
2552		hw |= WPI_HW_SKU_MRC;
2553
2554	val = wpi_read_prom_word(sc, WPI_EEPROM_REVISION);
2555	hw &= ~WPI_HW_REV_D;
2556	if ((val & 0xf0) == 0xd0)
2557		hw |= WPI_HW_REV_D;
2558
2559	val = wpi_read_prom_word(sc, WPI_EEPROM_TYPE);
2560	if ((val & 0xff) > 1)
2561		hw |= WPI_HW_TYPE_B;
2562
2563	DPRINTF(("setting h/w config %x\n", hw));
2564	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2565}
2566
2567static int
2568wpi_init(struct ifnet *ifp)
2569{
2570	struct wpi_softc *sc = ifp->if_softc;
2571	struct ieee80211com *ic = &sc->sc_ic;
2572	struct wpi_firmware_hdr hdr;
2573	const char *boot, *text, *data;
2574	firmware_handle_t fw;
2575	u_char *dfw;
2576	off_t size;
2577	size_t wsize;
2578	uint32_t tmp;
2579	int qid, ntries, error;
2580
2581	(void)wpi_reset(sc);
2582
2583	wpi_mem_lock(sc);
2584	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
2585	DELAY(20);
2586	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
2587	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
2588	wpi_mem_unlock(sc);
2589
2590	(void)wpi_power_up(sc);
2591	wpi_hw_config(sc);
2592
2593	/* init Rx ring */
2594	wpi_mem_lock(sc);
2595	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
2596	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
2597	    offsetof(struct wpi_shared, next));
2598	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
2599	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
2600	wpi_mem_unlock(sc);
2601
2602	/* init Tx rings */
2603	wpi_mem_lock(sc);
2604	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
2605	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
2606	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
2607	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
2608	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
2609	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
2610	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
2611
2612	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
2613	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
2614
2615	for (qid = 0; qid < 6; qid++) {
2616		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
2617		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
2618		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
2619	}
2620	wpi_mem_unlock(sc);
2621
2622	/* clear "radio off" and "disable command" bits (reversed logic) */
2623	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2624	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2625
2626	/* clear any pending interrupts */
2627	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2628	/* enable interrupts */
2629	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
2630
2631	if ((error = firmware_open("if_wpi", "ipw3945.ucode", &fw)) != 0) {
2632		aprint_error("%s: could not read firmware file\n",
2633			sc->sc_dev.dv_xname);
2634		goto fail1;
2635	}
2636
2637	size = firmware_get_size(fw);
2638
2639	if (size < sizeof (struct wpi_firmware_hdr)) {
2640		aprint_error("%s: firmware file too short\n",
2641			sc->sc_dev.dv_xname);
2642		error = EINVAL;
2643		goto fail2;
2644	}
2645
2646	if ((error = firmware_read(fw, 0, &hdr,
2647		sizeof (struct wpi_firmware_hdr))) != 0) {
2648		aprint_error("%s: can't get firmware header\n",
2649			sc->sc_dev.dv_xname);
2650		goto fail2;
2651	}
2652
2653	wsize = sizeof (struct wpi_firmware_hdr) + le32toh(hdr.textsz) +
2654		le32toh(hdr.datasz) + le32toh(hdr.bootsz);
2655
2656	if (size < wsize) {
2657		aprint_error("%s: fw file too short: should be %d bytes\n",
2658			sc->sc_dev.dv_xname, wsize);
2659		error = EINVAL;
2660		goto fail2;
2661	}
2662
2663	dfw = firmware_malloc(size);
2664	if (dfw == NULL) {
2665		aprint_error("%s: not enough memory to stock firmware\n",
2666			sc->sc_dev.dv_xname);
2667		error = ENOMEM;
2668		goto fail2;
2669	}
2670
2671	if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
2672		aprint_error("%s: can't get firmware\n",
2673			sc->sc_dev.dv_xname);
2674		goto fail2;
2675	}
2676
2677	/* firmware image layout: |HDR|<--TEXT-->|<--DATA-->|<--BOOT-->| */
2678	text = dfw + sizeof (struct wpi_firmware_hdr);
2679	data = text + le32toh(hdr.textsz);
2680	boot = data + le32toh(hdr.datasz);
2681
2682	/* load firmware boot code into NIC */
2683	error = wpi_load_microcode(sc, boot, le32toh(hdr.bootsz));
2684	if (error != 0) {
2685		aprint_error("%s: could not load microcode\n", sc->sc_dev.dv_xname);
2686		goto fail3;
2687	}
2688
2689	/* load firmware .text segment into NIC */
2690	error = wpi_load_firmware(sc, WPI_FW_TEXT, text, le32toh(hdr.textsz));
2691	if (error != 0) {
2692		aprint_error("%s: could not load firmware\n",
2693			sc->sc_dev.dv_xname);
2694		goto fail3;
2695	}
2696
2697	/* load firmware .data segment into NIC */
2698	error = wpi_load_firmware(sc, WPI_FW_DATA, data, le32toh(hdr.datasz));
2699	if (error != 0) {
2700		aprint_error("%s: could not load firmware\n",
2701			sc->sc_dev.dv_xname);
2702		goto fail3;
2703	}
2704
2705	firmware_free(dfw, 0);
2706	firmware_close(fw);
2707
2708	/* now press "execute" ;-) */
2709	tmp = WPI_READ(sc, WPI_RESET);
2710	tmp &= ~(WPI_MASTER_DISABLED | WPI_STOP_MASTER | WPI_NEVO_RESET);
2711	WPI_WRITE(sc, WPI_RESET, tmp);
2712
2713	/* ..and wait at most one second for adapter to initialize */
2714	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
2715		/* this isn't what was supposed to happen.. */
2716		aprint_error("%s: timeout waiting for adapter to initialize\n",
2717			sc->sc_dev.dv_xname);
2718		goto fail1;
2719	}
2720
2721	/* wait for thermal sensors to calibrate */
2722	for (ntries = 0; ntries < 1000; ntries++) {
2723		if (WPI_READ(sc, WPI_TEMPERATURE) != 0)
2724			break;
2725		DELAY(10);
2726	}
2727	if (ntries == 1000) {
2728		aprint_error("%s: timeout waiting for thermal sensors calibration\n",
2729			sc->sc_dev.dv_xname);
2730		error = ETIMEDOUT;
2731		goto fail1;
2732	}
2733	DPRINTF(("temperature %d\n", (int)WPI_READ(sc, WPI_TEMPERATURE)));
2734
2735	if ((error = wpi_config(sc)) != 0) {
2736		aprint_error("%s: could not configure device\n",
2737			sc->sc_dev.dv_xname);
2738		goto fail1;
2739	}
2740
2741	ifp->if_flags &= ~IFF_OACTIVE;
2742	ifp->if_flags |= IFF_RUNNING;
2743
2744	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2745		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2746			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2747	}
2748	else
2749		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2750
2751	return 0;
2752
2753fail3:	firmware_free(dfw, 0);
2754fail2:	firmware_close(fw);
2755fail1:	wpi_stop(ifp, 1);
2756	return error;
2757}
2758
2759
2760static void
2761wpi_stop(struct ifnet *ifp, int disable)
2762{
2763	struct wpi_softc *sc = ifp->if_softc;
2764	struct ieee80211com *ic = &sc->sc_ic;
2765	uint32_t tmp;
2766	int ac;
2767
2768	ifp->if_timer = sc->sc_tx_timer = 0;
2769	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2770
2771	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2772
2773	/* disable interrupts */
2774	WPI_WRITE(sc, WPI_MASK, 0);
2775	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
2776	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
2777	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
2778
2779	wpi_mem_lock(sc);
2780	wpi_mem_write(sc, WPI_MEM_MODE, 0);
2781	wpi_mem_unlock(sc);
2782
2783	/* reset all Tx rings */
2784	for (ac = 0; ac < 4; ac++)
2785		wpi_reset_tx_ring(sc, &sc->txq[ac]);
2786	wpi_reset_tx_ring(sc, &sc->cmdq);
2787	wpi_reset_tx_ring(sc, &sc->svcq);
2788
2789	/* reset Rx ring */
2790	wpi_reset_rx_ring(sc, &sc->rxq);
2791
2792	wpi_mem_lock(sc);
2793	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
2794	wpi_mem_unlock(sc);
2795
2796	DELAY(5);
2797
2798	wpi_stop_master(sc);
2799
2800	tmp = WPI_READ(sc, WPI_RESET);
2801	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
2802}
2803
2804/*-
2805 * Naive implementation of the Adaptive Multi Rate Retry algorithm:
2806 *	 "IEEE 802.11 Rate Adaptation: A Practical Approach"
2807 *	 Mathieu Lacage, Hossein Manshaei, Thierry Turletti
2808 *	 INRIA Sophia - Projet Planete
2809 *	 http://www-sop.inria.fr/rapports/sophia/RR-5208.html
2810 */
2811#define is_success(amrr)	\
2812	((amrr)->retrycnt < (amrr)->txcnt / 10)
2813#define is_failure(amrr)	\
2814	((amrr)->retrycnt > (amrr)->txcnt / 3)
2815#define is_enough(amrr)		\
2816	((amrr)->txcnt > 10)
2817#define is_min_rate(ni)		\
2818	((ni)->ni_txrate == 0)
2819#define is_max_rate(ni)		\
2820	((ni)->ni_txrate == (ni)->ni_rates.rs_nrates - 1)
2821#define increase_rate(ni)	\
2822	((ni)->ni_txrate++)
2823#define decrease_rate(ni)	\
2824	((ni)->ni_txrate--)
2825#define reset_cnt(amrr)		\
2826	do { (amrr)->txcnt = (amrr)->retrycnt = 0; } while (0)
2827
2828#define WPI_AMRR_MIN_SUCCESS_THRESHOLD	 1
2829#define WPI_AMRR_MAX_SUCCESS_THRESHOLD	15
2830
2831/* XXX should reset all nodes on S_INIT */
2832static void
2833wpi_amrr_init(struct wpi_amrr *amrr)
2834{
2835	struct ieee80211_node *ni = &amrr->ni;
2836	int i;
2837
2838	amrr->success = 0;
2839	amrr->recovery = 0;
2840	amrr->txcnt = amrr->retrycnt = 0;
2841	amrr->success_threshold = WPI_AMRR_MIN_SUCCESS_THRESHOLD;
2842
2843	/* set rate to some reasonable initial value */
2844	ni = &amrr->ni;
2845	for (i = ni->ni_rates.rs_nrates - 1;
2846		 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2847		 i--);
2848
2849	ni->ni_txrate = i;
2850}
2851
2852static void
2853wpi_amrr_timeout(void *arg)
2854{
2855	struct wpi_softc *sc = arg;
2856	struct ieee80211com *ic = &sc->sc_ic;
2857
2858	if (ic->ic_opmode == IEEE80211_M_STA)
2859		wpi_amrr_ratectl(NULL, ic->ic_bss);
2860	else
2861		ieee80211_iterate_nodes(&ic->ic_sta, wpi_amrr_ratectl, NULL);
2862
2863	callout_reset(&sc->amrr_ch, hz, wpi_amrr_timeout, sc);
2864}
2865
2866/* ARGSUSED */
2867static void
2868wpi_amrr_ratectl(void *arg, struct ieee80211_node *ni)
2869{
2870	struct wpi_amrr *amrr = (struct wpi_amrr *)ni;
2871	int need_change = 0;
2872
2873	if (is_success(amrr) && is_enough(amrr)) {
2874		amrr->success++;
2875		if (amrr->success >= amrr->success_threshold &&
2876			!is_max_rate(ni)) {
2877			amrr->recovery = 1;
2878			amrr->success = 0;
2879			increase_rate(ni);
2880			DPRINTFN(2, ("AMRR increasing rate %d (txcnt=%d "
2881				"retrycnt=%d)\n", ni->ni_txrate, amrr->txcnt,
2882				amrr->retrycnt));
2883			need_change = 1;
2884		} else {
2885			amrr->recovery = 0;
2886		}
2887	} else if (is_failure(amrr)) {
2888		amrr->success = 0;
2889		if (!is_min_rate(ni)) {
2890			if (amrr->recovery) {
2891				amrr->success_threshold *= 2;
2892				if (amrr->success_threshold >
2893					WPI_AMRR_MAX_SUCCESS_THRESHOLD)
2894					amrr->success_threshold =
2895						WPI_AMRR_MAX_SUCCESS_THRESHOLD;
2896			} else {
2897				amrr->success_threshold =
2898					WPI_AMRR_MIN_SUCCESS_THRESHOLD;
2899			}
2900			decrease_rate(ni);
2901			DPRINTFN(2, ("AMRR decreasing rate %d (txcnt=%d "
2902				"retrycnt=%d)\n", ni->ni_txrate, amrr->txcnt,
2903				amrr->retrycnt));
2904			need_change = 1;
2905		}
2906		amrr->recovery = 0;	/* paper is incorrect */
2907	}
2908
2909	if (is_enough(amrr) || need_change)
2910		reset_cnt(amrr);
2911}
2912