1/*	$NetBSD: if_pcn.c,v 1.78 2024/02/10 09:30:06 andvar Exp $	*/
2
3/*
4 * Copyright (c) 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed for the NetBSD Project by
20 *	Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 *    or promote products derived from this software without specific prior
23 *    written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38/*
39 * Device driver for the AMD PCnet-PCI series of Ethernet
40 * chips:
41 *
42 *	* Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
43 *	  Local Bus
44 *
45 *	* Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
46 *	  for PCI Local Bus
47 *
48 *	* Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
49 *	  Ethernet Controller for PCI Local Bus
50 *
51 *	* Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
52 *	  with OnNow Support
53 *
54 *	* Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
55 *	  Ethernet Controller with Integrated PHY
56 *
57 * This also supports the virtual PCnet-PCI Ethernet interface found
58 * in VMware.
59 *
60 * TODO:
61 *
62 *	* Split this into bus-specific and bus-independent portions.
63 *	  The core could also be used for the ILACC (Am79900) 32-bit
64 *	  Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
65 */
66
67#include <sys/cdefs.h>
68__KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.78 2024/02/10 09:30:06 andvar Exp $");
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/callout.h>
73#include <sys/mbuf.h>
74#include <sys/kernel.h>
75#include <sys/socket.h>
76#include <sys/ioctl.h>
77#include <sys/errno.h>
78#include <sys/device.h>
79#include <sys/queue.h>
80
81#include <sys/rndsource.h>
82
83#include <net/if.h>
84#include <net/if_dl.h>
85#include <net/if_media.h>
86#include <net/if_ether.h>
87
88#include <net/bpf.h>
89
90#include <sys/bus.h>
91#include <sys/intr.h>
92#include <machine/endian.h>
93
94#include <dev/mii/mii.h>
95#include <dev/mii/miivar.h>
96
97#include <dev/ic/am79900reg.h>
98#include <dev/ic/lancereg.h>
99
100#include <dev/pci/pcireg.h>
101#include <dev/pci/pcivar.h>
102#include <dev/pci/pcidevs.h>
103
104#include <dev/pci/if_pcnreg.h>
105
106/*
107 * Transmit descriptor list size.  This is arbitrary, but allocate
108 * enough descriptors for 128 pending transmissions, and 4 segments
109 * per packet.  This MUST work out to a power of 2.
110 *
111 * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
112 *
113 * So we play a little trick here.  We give each packet up to 16
114 * DMA segments, but only allocate the max of 512 descriptors.  The
115 * transmit logic can deal with this, we just are hoping to sneak by.
116 */
117#define	PCN_NTXSEGS		16
118#define	PCN_NTXSEGS_VMWARE	8	/* bug in VMware's emulation */
119
120#define	PCN_TXQUEUELEN		128
121#define	PCN_TXQUEUELEN_MASK	(PCN_TXQUEUELEN - 1)
122#define	PCN_NTXDESC		512
123#define	PCN_NTXDESC_MASK	(PCN_NTXDESC - 1)
124#define	PCN_NEXTTX(x)		(((x) + 1) & PCN_NTXDESC_MASK)
125#define	PCN_NEXTTXS(x)		(((x) + 1) & PCN_TXQUEUELEN_MASK)
126
127/* Tx interrupt every N + 1 packets. */
128#define	PCN_TXINTR_MASK		7
129
130/*
131 * Receive descriptor list size.  We have one Rx buffer per incoming
132 * packet, so this logic is a little simpler.
133 */
134#define	PCN_NRXDESC		128
135#define	PCN_NRXDESC_MASK	(PCN_NRXDESC - 1)
136#define	PCN_NEXTRX(x)		(((x) + 1) & PCN_NRXDESC_MASK)
137
138/*
139 * Control structures are DMA'd to the PCnet chip.  We allocate them in
140 * a single clump that maps to a single DMA segment to make several things
141 * easier.
142 */
143struct pcn_control_data {
144	/* The transmit descriptors. */
145	struct letmd pcd_txdescs[PCN_NTXDESC];
146
147	/* The receive descriptors. */
148	struct lermd pcd_rxdescs[PCN_NRXDESC];
149
150	/* The init block. */
151	struct leinit pcd_initblock;
152};
153
154#define	PCN_CDOFF(x)	offsetof(struct pcn_control_data, x)
155#define	PCN_CDTXOFF(x)	PCN_CDOFF(pcd_txdescs[(x)])
156#define	PCN_CDRXOFF(x)	PCN_CDOFF(pcd_rxdescs[(x)])
157#define	PCN_CDINITOFF	PCN_CDOFF(pcd_initblock)
158
159/*
160 * Software state for transmit jobs.
161 */
162struct pcn_txsoft {
163	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
164	bus_dmamap_t txs_dmamap;	/* our DMA map */
165	int txs_firstdesc;		/* first descriptor in packet */
166	int txs_lastdesc;		/* last descriptor in packet */
167};
168
169/*
170 * Software state for receive jobs.
171 */
172struct pcn_rxsoft {
173	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
174	bus_dmamap_t rxs_dmamap;	/* our DMA map */
175};
176
177/*
178 * Description of Rx FIFO watermarks for various revisions.
179 */
180static const char * const pcn_79c970_rcvfw[] = {
181	"16 bytes",
182	"64 bytes",
183	"128 bytes",
184	NULL,
185};
186
187static const char * const pcn_79c971_rcvfw[] = {
188	"16 bytes",
189	"64 bytes",
190	"112 bytes",
191	NULL,
192};
193
194/*
195 * Description of Tx start points for various revisions.
196 */
197static const char * const pcn_79c970_xmtsp[] = {
198	"8 bytes",
199	"64 bytes",
200	"128 bytes",
201	"248 bytes",
202};
203
204static const char * const pcn_79c971_xmtsp[] = {
205	"20 bytes",
206	"64 bytes",
207	"128 bytes",
208	"248 bytes",
209};
210
211static const char * const pcn_79c971_xmtsp_sram[] = {
212	"44 bytes",
213	"64 bytes",
214	"128 bytes",
215	"store-and-forward",
216};
217
218/*
219 * Description of Tx FIFO watermarks for various revisions.
220 */
221static const char * const pcn_79c970_xmtfw[] = {
222	"16 bytes",
223	"64 bytes",
224	"128 bytes",
225	NULL,
226};
227
228static const char * const pcn_79c971_xmtfw[] = {
229	"16 bytes",
230	"64 bytes",
231	"108 bytes",
232	NULL,
233};
234
235/*
236 * Software state per device.
237 */
238struct pcn_softc {
239	device_t sc_dev;		/* generic device information */
240	bus_space_tag_t sc_st;		/* bus space tag */
241	bus_space_handle_t sc_sh;	/* bus space handle */
242	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
243	struct ethercom sc_ethercom;	/* Ethernet common data */
244
245	/* Points to our media routines, etc. */
246	const struct pcn_variant *sc_variant;
247
248	void *sc_ih;			/* interrupt cookie */
249
250	struct mii_data sc_mii;		/* MII/media information */
251
252	callout_t sc_tick_ch;		/* tick callout */
253
254	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
255#define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
256
257	/* Software state for transmit and receive descriptors. */
258	struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
259	struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
260
261	/* Control data structures */
262	struct pcn_control_data *sc_control_data;
263#define	sc_txdescs	sc_control_data->pcd_txdescs
264#define	sc_rxdescs	sc_control_data->pcd_rxdescs
265#define	sc_initblock	sc_control_data->pcd_initblock
266
267#ifdef PCN_EVENT_COUNTERS
268	/* Event counters. */
269	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
270	struct evcnt sc_ev_txintr;	/* Tx interrupts */
271	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
272	struct evcnt sc_ev_babl;	/* BABL in pcn_intr() */
273	struct evcnt sc_ev_miss;	/* MISS in pcn_intr() */
274	struct evcnt sc_ev_merr;	/* MERR in pcn_intr() */
275
276	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
277	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
278	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
279	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
280	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
281	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
282	struct evcnt sc_ev_txcopy;	/* Tx copies required */
283#endif /* PCN_EVENT_COUNTERS */
284
285	const char * const *sc_rcvfw_desc;	/* Rx FIFO watermark info */
286	int sc_rcvfw;
287
288	const char * const *sc_xmtsp_desc;	/* Tx start point info */
289	int sc_xmtsp;
290
291	const char * const *sc_xmtfw_desc;	/* Tx FIFO watermark info */
292	int sc_xmtfw;
293
294	int sc_flags;			/* misc. flags; see below */
295	int sc_swstyle;			/* the software style in use */
296
297	int sc_txfree;			/* number of free Tx descriptors */
298	int sc_txnext;			/* next ready Tx descriptor */
299
300	int sc_txsfree;			/* number of free Tx jobs */
301	int sc_txsnext;			/* next free Tx job */
302	int sc_txsdirty;		/* dirty Tx jobs */
303
304	int sc_rxptr;			/* next ready Rx descriptor/job */
305
306	uint32_t sc_csr5;		/* prototype CSR5 register */
307	uint32_t sc_mode;		/* prototype MODE register */
308
309	krndsource_t rnd_source;	/* random source */
310};
311
312/* sc_flags */
313#define	PCN_F_HAS_MII		0x0001	/* has MII */
314
315#ifdef PCN_EVENT_COUNTERS
316#define	PCN_EVCNT_INCR(ev)	(ev)->ev_count++
317#else
318#define	PCN_EVCNT_INCR(ev)	/* nothing */
319#endif
320
321#define	PCN_CDTXADDR(sc, x)	((sc)->sc_cddma + PCN_CDTXOFF((x)))
322#define	PCN_CDRXADDR(sc, x)	((sc)->sc_cddma + PCN_CDRXOFF((x)))
323#define	PCN_CDINITADDR(sc)	((sc)->sc_cddma + PCN_CDINITOFF)
324
325#define	PCN_CDTXSYNC(sc, x, n, ops)					\
326do {									\
327	int __x, __n;							\
328									\
329	__x = (x);							\
330	__n = (n);							\
331									\
332	/* If it will wrap around, sync to the end of the ring. */	\
333	if ((__x + __n) > PCN_NTXDESC) {				\
334		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
335		    PCN_CDTXOFF(__x), sizeof(struct letmd) *		\
336		    (PCN_NTXDESC - __x), (ops));			\
337		__n -= (PCN_NTXDESC - __x);				\
338		__x = 0;						\
339	}								\
340									\
341	/* Now sync whatever is left. */				\
342	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
343	    PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops));	\
344} while (/*CONSTCOND*/0)
345
346#define	PCN_CDRXSYNC(sc, x, ops)					\
347	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
348	    PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
349
350#define	PCN_CDINITSYNC(sc, ops)						\
351	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
352	    PCN_CDINITOFF, sizeof(struct leinit), (ops))
353
354#define	PCN_INIT_RXDESC(sc, x)						\
355do {									\
356	struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
357	struct lermd *__rmd = &(sc)->sc_rxdescs[(x)];			\
358	struct mbuf *__m = __rxs->rxs_mbuf;				\
359									\
360	/*								\
361	 * Note: We scoot the packet forward 2 bytes in the buffer	\
362	 * so that the payload after the Ethernet header is aligned	\
363	 * to a 4-byte boundary.					\
364	 */								\
365	__m->m_data = __m->m_ext.ext_buf + 2;				\
366									\
367	if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {		\
368		__rmd->rmd2 =						\
369		    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);	\
370		__rmd->rmd0 = 0;					\
371	} else {							\
372		__rmd->rmd2 = 0;					\
373		__rmd->rmd0 =						\
374		    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);	\
375	}								\
376	__rmd->rmd1 = htole32(LE_R1_OWN | LE_R1_ONES |			\
377	    (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK));			\
378	PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);\
379} while(/*CONSTCOND*/0)
380
381static void	pcn_start(struct ifnet *);
382static void	pcn_watchdog(struct ifnet *);
383static int	pcn_ioctl(struct ifnet *, u_long, void *);
384static int	pcn_init(struct ifnet *);
385static void	pcn_stop(struct ifnet *, int);
386
387static bool	pcn_shutdown(device_t, int);
388
389static void	pcn_reset(struct pcn_softc *);
390static void	pcn_rxdrain(struct pcn_softc *);
391static int	pcn_add_rxbuf(struct pcn_softc *, int);
392static void	pcn_tick(void *);
393
394static void	pcn_spnd(struct pcn_softc *);
395
396static void	pcn_set_filter(struct pcn_softc *);
397
398static int	pcn_intr(void *);
399static void	pcn_txintr(struct pcn_softc *);
400static int	pcn_rxintr(struct pcn_softc *);
401
402static int	pcn_mii_readreg(device_t, int, int, uint16_t *);
403static int	pcn_mii_writereg(device_t, int, int, uint16_t);
404static void	pcn_mii_statchg(struct ifnet *);
405
406static void	pcn_79c970_mediainit(struct pcn_softc *);
407static int	pcn_79c970_mediachange(struct ifnet *);
408static void	pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
409
410static void	pcn_79c971_mediainit(struct pcn_softc *);
411
412/*
413 * Description of a PCnet-PCI variant.  Used to select media access
414 * method, mostly, and to print a nice description of the chip.
415 */
416static const struct pcn_variant {
417	const char *pcv_desc;
418	void (*pcv_mediainit)(struct pcn_softc *);
419	uint16_t pcv_chipid;
420} pcn_variants[] = {
421	{ "Am79c970 PCnet-PCI",
422	  pcn_79c970_mediainit,
423	  PARTID_Am79c970 },
424
425	{ "Am79c970A PCnet-PCI II",
426	  pcn_79c970_mediainit,
427	  PARTID_Am79c970A },
428
429	{ "Am79c971 PCnet-FAST",
430	  pcn_79c971_mediainit,
431	  PARTID_Am79c971 },
432
433	{ "Am79c972 PCnet-FAST+",
434	  pcn_79c971_mediainit,
435	  PARTID_Am79c972 },
436
437	{ "Am79c973 PCnet-FAST III",
438	  pcn_79c971_mediainit,
439	  PARTID_Am79c973 },
440
441	{ "Am79c975 PCnet-FAST III",
442	  pcn_79c971_mediainit,
443	  PARTID_Am79c975 },
444
445	{ "Unknown PCnet-PCI variant",
446	  pcn_79c971_mediainit,
447	  0 },
448};
449
450int	pcn_copy_small = 0;
451
452static int	pcn_match(device_t, cfdata_t, void *);
453static void	pcn_attach(device_t, device_t, void *);
454
455CFATTACH_DECL_NEW(pcn, sizeof(struct pcn_softc),
456    pcn_match, pcn_attach, NULL, NULL);
457
458/*
459 * Routines to read and write the PCnet-PCI CSR/BCR space.
460 */
461
462static inline uint32_t
463pcn_csr_read(struct pcn_softc *sc, int reg)
464{
465
466	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
467	return bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP);
468}
469
470static inline void
471pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
472{
473
474	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
475	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
476}
477
478static inline uint32_t
479pcn_bcr_read(struct pcn_softc *sc, int reg)
480{
481
482	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
483	return bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP);
484}
485
486static inline void
487pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
488{
489
490	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
491	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
492}
493
494static bool
495pcn_is_vmware(const char *enaddr)
496{
497
498	/*
499	 * VMware uses the OUI 00:0c:29 for auto-generated MAC
500	 * addresses.
501	 */
502	if (enaddr[0] == 0x00 && enaddr[1] == 0x0c && enaddr[2] == 0x29)
503		return TRUE;
504
505	/*
506	 * VMware uses the OUI 00:50:56 for manually-set MAC
507	 * addresses (and some auto-generated ones).
508	 */
509	if (enaddr[0] == 0x00 && enaddr[1] == 0x50 && enaddr[2] == 0x56)
510		return TRUE;
511
512	return FALSE;
513}
514
515static const struct pcn_variant *
516pcn_lookup_variant(uint16_t chipid)
517{
518	const struct pcn_variant *pcv;
519
520	for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
521		if (chipid == pcv->pcv_chipid)
522			return pcv;
523	}
524
525	/*
526	 * This covers unknown chips, which we simply treat like
527	 * a generic PCnet-FAST.
528	 */
529	return pcv;
530}
531
532static int
533pcn_match(device_t parent, cfdata_t cf, void *aux)
534{
535	struct pci_attach_args *pa = aux;
536
537	/*
538	 * IBM Makes a PCI variant of this card which shows up as a
539	 * Trident Microsystems 4DWAVE DX (ethernet network, revision 0x25)
540	 * this card is truly a pcn card, so we have a special case match for
541	 * it
542	 */
543
544	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TRIDENT &&
545	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_TRIDENT_4DWAVE_DX &&
546	    PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
547		return 1;
548
549	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD)
550		return 0;
551
552	switch (PCI_PRODUCT(pa->pa_id)) {
553	case PCI_PRODUCT_AMD_PCNET_PCI:
554		/* Beat if_le_pci.c */
555		return 10;
556	}
557
558	return 0;
559}
560
561static void
562pcn_attach(device_t parent, device_t self, void *aux)
563{
564	struct pcn_softc *sc = device_private(self);
565	struct pci_attach_args *pa = aux;
566	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
567	pci_chipset_tag_t pc = pa->pa_pc;
568	pci_intr_handle_t ih;
569	const char *intrstr = NULL;
570	bus_space_tag_t iot, memt;
571	bus_space_handle_t ioh, memh;
572	bus_dma_segment_t seg;
573	int ioh_valid, memh_valid;
574	int ntxsegs, i, rseg, error;
575	uint32_t chipid, reg;
576	uint8_t enaddr[ETHER_ADDR_LEN];
577	prop_object_t obj;
578	bool is_vmware;
579	char intrbuf[PCI_INTRSTR_LEN];
580
581	sc->sc_dev = self;
582	callout_init(&sc->sc_tick_ch, 0);
583	callout_setfunc(&sc->sc_tick_ch, pcn_tick, sc);
584
585	aprint_normal(": AMD PCnet-PCI Ethernet\n");
586
587	/*
588	 * Map the device.
589	 */
590	ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
591	    &iot, &ioh, NULL, NULL) == 0);
592	memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM,
593	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
594	    &memt, &memh, NULL, NULL) == 0);
595
596	if (memh_valid) {
597		sc->sc_st = memt;
598		sc->sc_sh = memh;
599	} else if (ioh_valid) {
600		sc->sc_st = iot;
601		sc->sc_sh = ioh;
602	} else {
603		aprint_error_dev(self, "unable to map device registers\n");
604		return;
605	}
606
607	sc->sc_dmat = pa->pa_dmat;
608
609	/* Make sure bus mastering is enabled. */
610	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
611	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
612	    PCI_COMMAND_MASTER_ENABLE);
613
614	/* power up chip */
615	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
616	    NULL)) && error != EOPNOTSUPP) {
617		aprint_error_dev(self, "cannot activate %d\n", error);
618		return;
619	}
620
621	/*
622	 * Reset the chip to a known state.  This also puts the
623	 * chip into 32-bit mode.
624	 */
625	pcn_reset(sc);
626
627	/*
628	 * On some systems with the chip is an on-board device, the
629	 * EEPROM is not used.  Handle this by reading the MAC address
630	 * from the CSRs (assuming that boot firmware has written
631	 * it there).
632	 */
633	obj = prop_dictionary_get(device_properties(sc->sc_dev),
634				  "am79c970-no-eeprom");
635	if (prop_bool_true(obj)) {
636		for (i = 0; i < 3; i++) {
637			uint32_t val;
638			val = pcn_csr_read(sc, LE_CSR12 + i);
639			enaddr[2 * i] = val & 0xff;
640			enaddr[2 * i + 1] = (val >> 8) & 0xff;
641		}
642	} else {
643		for (i = 0; i < ETHER_ADDR_LEN; i++) {
644			enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
645			    PCN32_APROM + i);
646		}
647	}
648
649	/* Check to see if this is a VMware emulated network interface. */
650	is_vmware = pcn_is_vmware(enaddr);
651
652	/*
653	 * Now that the device is mapped, attempt to figure out what
654	 * kind of chip we have.  Note that IDL has all 32 bits of
655	 * the chip ID when we're in 32-bit mode.
656	 */
657	chipid = pcn_csr_read(sc, LE_CSR88);
658	sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
659
660	aprint_normal_dev(self, "%s rev %d, Ethernet address %s\n",
661	    sc->sc_variant->pcv_desc, CHIPID_VER(chipid),
662	    ether_sprintf(enaddr));
663
664	/*
665	 * VMware has a bug in its network interface emulation; we must
666	 * limit the number of Tx segments.
667	 */
668	if (is_vmware) {
669		ntxsegs = PCN_NTXSEGS_VMWARE;
670		prop_dictionary_set_bool(device_properties(sc->sc_dev),
671					 "am79c970-vmware-tx-bug", TRUE);
672		aprint_verbose_dev(self,
673		    "VMware Tx segment count bug detected\n");
674	} else {
675		ntxsegs = PCN_NTXSEGS;
676	}
677
678	/*
679	 * Map and establish our interrupt.
680	 */
681	if (pci_intr_map(pa, &ih)) {
682		aprint_error_dev(self, "unable to map interrupt\n");
683		return;
684	}
685	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
686	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, pcn_intr, sc,
687	    device_xname(self));
688	if (sc->sc_ih == NULL) {
689		aprint_error_dev(self, "unable to establish interrupt");
690		if (intrstr != NULL)
691			aprint_error(" at %s", intrstr);
692		aprint_error("\n");
693		return;
694	}
695	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
696
697	/*
698	 * Allocate the control data structures, and create and load the
699	 * DMA map for it.
700	 */
701	if ((error = bus_dmamem_alloc(sc->sc_dmat,
702	     sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
703	     0)) != 0) {
704		aprint_error_dev(self, "unable to allocate control data, "
705		    "error = %d\n", error);
706		goto fail_0;
707	}
708
709	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
710	     sizeof(struct pcn_control_data), (void **)&sc->sc_control_data,
711	     BUS_DMA_COHERENT)) != 0) {
712		aprint_error_dev(self, "unable to map control data, "
713		    "error = %d\n", error);
714		goto fail_1;
715	}
716
717	if ((error = bus_dmamap_create(sc->sc_dmat,
718	     sizeof(struct pcn_control_data), 1,
719	     sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
720		aprint_error_dev(self, "unable to create control data DMA map, "
721		    "error = %d\n", error);
722		goto fail_2;
723	}
724
725	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
726	     sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
727	     0)) != 0) {
728		aprint_error_dev(self,
729		    "unable to load control data DMA map, error = %d\n", error);
730		goto fail_3;
731	}
732
733	/* Create the transmit buffer DMA maps. */
734	for (i = 0; i < PCN_TXQUEUELEN; i++) {
735		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
736		     ntxsegs, MCLBYTES, 0, 0,
737		     &sc->sc_txsoft[i].txs_dmamap)) != 0) {
738			aprint_error_dev(self,
739			    "unable to create tx DMA map %d, error = %d\n",
740			    i, error);
741			goto fail_4;
742		}
743	}
744
745	/* Create the receive buffer DMA maps. */
746	for (i = 0; i < PCN_NRXDESC; i++) {
747		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
748		     MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
749			aprint_error_dev(self,
750			    "unable to create rx DMA map %d, error = %d\n",
751			    i, error);
752			goto fail_5;
753		}
754		sc->sc_rxsoft[i].rxs_mbuf = NULL;
755	}
756
757	/* Initialize our media structures. */
758	(*sc->sc_variant->pcv_mediainit)(sc);
759
760	/*
761	 * Initialize FIFO watermark info.
762	 */
763	switch (sc->sc_variant->pcv_chipid) {
764	case PARTID_Am79c970:
765	case PARTID_Am79c970A:
766		sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
767		sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
768		sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
769		break;
770
771	default:
772		sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
773		/*
774		 * Read BCR25 to determine how much SRAM is
775		 * on the board.  If > 0, then we the chip
776		 * uses different Start Point thresholds.
777		 *
778		 * Note BCR25 and BCR26 are loaded from the
779		 * EEPROM on RST, and unaffected by S_RESET,
780		 * so we don't really have to worry about
781		 * them except for this.
782		 */
783		reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
784		if (reg != 0)
785			sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
786		else
787			sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
788		sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
789		break;
790	}
791
792	/*
793	 * Set up defaults -- see the tables above for what these
794	 * values mean.
795	 *
796	 * XXX How should we tune RCVFW and XMTFW?
797	 */
798	sc->sc_rcvfw = 1;	/* minimum for full-duplex */
799	sc->sc_xmtsp = 1;
800	sc->sc_xmtfw = 0;
801
802	ifp = &sc->sc_ethercom.ec_if;
803	strcpy(ifp->if_xname, device_xname(self));
804	ifp->if_softc = sc;
805	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
806	ifp->if_ioctl = pcn_ioctl;
807	ifp->if_start = pcn_start;
808	ifp->if_watchdog = pcn_watchdog;
809	ifp->if_init = pcn_init;
810	ifp->if_stop = pcn_stop;
811	IFQ_SET_READY(&ifp->if_snd);
812
813	/* Attach the interface. */
814	if_attach(ifp);
815	if_deferred_start_init(ifp, NULL);
816	ether_ifattach(ifp, enaddr);
817	rnd_attach_source(&sc->rnd_source, device_xname(self),
818	    RND_TYPE_NET, RND_FLAG_DEFAULT);
819
820#ifdef PCN_EVENT_COUNTERS
821	/* Attach event counters. */
822	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
823	    NULL, device_xname(self), "txdstall");
824	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
825	    NULL, device_xname(self), "txintr");
826	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
827	    NULL, device_xname(self), "rxintr");
828	evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC,
829	    NULL, device_xname(self), "babl");
830	evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC,
831	    NULL, device_xname(self), "miss");
832	evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC,
833	    NULL, device_xname(self), "merr");
834
835	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
836	    NULL, device_xname(self), "txseg1");
837	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
838	    NULL, device_xname(self), "txseg2");
839	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
840	    NULL, device_xname(self), "txseg3");
841	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
842	    NULL, device_xname(self), "txseg4");
843	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
844	    NULL, device_xname(self), "txseg5");
845	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
846	    NULL, device_xname(self), "txsegmore");
847	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
848	    NULL, device_xname(self), "txcopy");
849#endif /* PCN_EVENT_COUNTERS */
850
851	/*
852	 * Establish power handler with shutdown hook, to make sure
853	 * the interface is shutdown during reboot.
854	 */
855	if (pmf_device_register1(self, NULL, NULL, pcn_shutdown))
856		pmf_class_network_register(self, ifp);
857	else
858		aprint_error_dev(self, "couldn't establish power handler\n");
859
860	return;
861
862	/*
863	 * Free any resources we've allocated during the failed attach
864	 * attempt.  Do this in reverse order and fall through.
865	 */
866 fail_5:
867	for (i = 0; i < PCN_NRXDESC; i++) {
868		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
869			bus_dmamap_destroy(sc->sc_dmat,
870			    sc->sc_rxsoft[i].rxs_dmamap);
871	}
872 fail_4:
873	for (i = 0; i < PCN_TXQUEUELEN; i++) {
874		if (sc->sc_txsoft[i].txs_dmamap != NULL)
875			bus_dmamap_destroy(sc->sc_dmat,
876			    sc->sc_txsoft[i].txs_dmamap);
877	}
878	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
879 fail_3:
880	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
881 fail_2:
882	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
883	    sizeof(struct pcn_control_data));
884 fail_1:
885	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
886 fail_0:
887	return;
888}
889
890/*
891 * pcn_shutdown:
892 *
893 *	Make sure the interface is stopped at reboot time.
894 */
895static bool
896pcn_shutdown(device_t self, int howto)
897{
898	struct pcn_softc *sc = device_private(self);
899
900	pcn_stop(&sc->sc_ethercom.ec_if, 1);
901	/* explicitly reset the chip for some onboard one with lazy firmware */
902	pcn_reset(sc);
903
904	return true;
905}
906
907/*
908 * pcn_start:		[ifnet interface function]
909 *
910 *	Start packet transmission on the interface.
911 */
912static void
913pcn_start(struct ifnet *ifp)
914{
915	struct pcn_softc *sc = ifp->if_softc;
916	struct mbuf *m0, *m;
917	struct pcn_txsoft *txs;
918	bus_dmamap_t dmamap;
919	int error, nexttx, lasttx = -1, ofree, seg;
920
921	if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
922		return;
923
924	/*
925	 * Remember the previous number of free descriptors and
926	 * the first descriptor we'll use.
927	 */
928	ofree = sc->sc_txfree;
929
930	/*
931	 * Loop through the send queue, setting up transmit descriptors
932	 * until we drain the queue, or use up all available transmit
933	 * descriptors.
934	 */
935	while (sc->sc_txsfree != 0) {
936		/* Grab a packet off the queue. */
937		IFQ_POLL(&ifp->if_snd, m0);
938		if (m0 == NULL)
939			break;
940		m = NULL;
941
942		txs = &sc->sc_txsoft[sc->sc_txsnext];
943		dmamap = txs->txs_dmamap;
944
945		/*
946		 * Load the DMA map.  If this fails, the packet either
947		 * didn't fit in the allotted number of segments, or we
948		 * were short on resources.  In this case, we'll copy
949		 * and try again.
950		 */
951		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
952		    BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
953			PCN_EVCNT_INCR(&sc->sc_ev_txcopy);
954			MGETHDR(m, M_DONTWAIT, MT_DATA);
955			if (m == NULL) {
956				printf("%s: unable to allocate Tx mbuf\n",
957				    device_xname(sc->sc_dev));
958				break;
959			}
960			if (m0->m_pkthdr.len > MHLEN) {
961				MCLGET(m, M_DONTWAIT);
962				if ((m->m_flags & M_EXT) == 0) {
963					printf("%s: unable to allocate Tx "
964					    "cluster\n",
965					    device_xname(sc->sc_dev));
966					m_freem(m);
967					break;
968				}
969			}
970			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
971			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
972			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
973			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
974			if (error) {
975				printf("%s: unable to load Tx buffer, "
976				    "error = %d\n", device_xname(sc->sc_dev),
977				    error);
978				m_freem(m);
979				break;
980			}
981		}
982
983		/*
984		 * Ensure we have enough descriptors free to describe
985		 * the packet.  Note, we always reserve one descriptor
986		 * at the end of the ring as a termination point, to
987		 * prevent wrap-around.
988		 */
989		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
990			/*
991			 * Not enough free descriptors to transmit this
992			 * packet.
993			 */
994			bus_dmamap_unload(sc->sc_dmat, dmamap);
995			if (m != NULL)
996				m_freem(m);
997			PCN_EVCNT_INCR(&sc->sc_ev_txdstall);
998			break;
999		}
1000
1001		IFQ_DEQUEUE(&ifp->if_snd, m0);
1002		if (m != NULL) {
1003			m_freem(m0);
1004			m0 = m;
1005		}
1006
1007		/*
1008		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1009		 */
1010
1011		/* Sync the DMA map. */
1012		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1013		    BUS_DMASYNC_PREWRITE);
1014
1015#ifdef PCN_EVENT_COUNTERS
1016		switch (dmamap->dm_nsegs) {
1017		case 1:
1018			PCN_EVCNT_INCR(&sc->sc_ev_txseg1);
1019			break;
1020		case 2:
1021			PCN_EVCNT_INCR(&sc->sc_ev_txseg2);
1022			break;
1023		case 3:
1024			PCN_EVCNT_INCR(&sc->sc_ev_txseg3);
1025			break;
1026		case 4:
1027			PCN_EVCNT_INCR(&sc->sc_ev_txseg4);
1028			break;
1029		case 5:
1030			PCN_EVCNT_INCR(&sc->sc_ev_txseg5);
1031			break;
1032		default:
1033			PCN_EVCNT_INCR(&sc->sc_ev_txsegmore);
1034			break;
1035		}
1036#endif /* PCN_EVENT_COUNTERS */
1037
1038		/*
1039		 * Initialize the transmit descriptors.
1040		 */
1041		if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
1042			for (nexttx = sc->sc_txnext, seg = 0;
1043			     seg < dmamap->dm_nsegs;
1044			     seg++, nexttx = PCN_NEXTTX(nexttx)) {
1045				/*
1046				 * If this is the first descriptor we're
1047				 * enqueueing, don't set the OWN bit just
1048				 * yet.  That could cause a race condition.
1049				 * We'll do it below.
1050				 */
1051				sc->sc_txdescs[nexttx].tmd0 = 0;
1052				sc->sc_txdescs[nexttx].tmd2 =
1053				    htole32(dmamap->dm_segs[seg].ds_addr);
1054				sc->sc_txdescs[nexttx].tmd1 =
1055				    htole32(LE_T1_ONES |
1056				    (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1057				    (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1058				     LE_T1_BCNT_MASK));
1059				lasttx = nexttx;
1060			}
1061		} else {
1062			for (nexttx = sc->sc_txnext, seg = 0;
1063			     seg < dmamap->dm_nsegs;
1064			     seg++, nexttx = PCN_NEXTTX(nexttx)) {
1065				/*
1066				 * If this is the first descriptor we're
1067				 * enqueueing, don't set the OWN bit just
1068				 * yet.  That could cause a race condition.
1069				 * We'll do it below.
1070				 */
1071				sc->sc_txdescs[nexttx].tmd0 =
1072				    htole32(dmamap->dm_segs[seg].ds_addr);
1073				sc->sc_txdescs[nexttx].tmd2 = 0;
1074				sc->sc_txdescs[nexttx].tmd1 =
1075				    htole32(LE_T1_ONES |
1076				    (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1077				    (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1078				     LE_T1_BCNT_MASK));
1079				lasttx = nexttx;
1080			}
1081		}
1082
1083		KASSERT(lasttx != -1);
1084		/* Interrupt on the packet, if appropriate. */
1085		if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
1086			sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
1087
1088		/* Set `start of packet' and `end of packet' appropriately. */
1089		sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
1090		sc->sc_txdescs[sc->sc_txnext].tmd1 |=
1091		    htole32(LE_T1_OWN | LE_T1_STP);
1092
1093		/* Sync the descriptors we're using. */
1094		PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1095		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1096
1097		/* Kick the transmitter. */
1098		pcn_csr_write(sc, LE_CSR0, LE_C0_INEA | LE_C0_TDMD);
1099
1100		/*
1101		 * Store a pointer to the packet so we can free it later,
1102		 * and remember what txdirty will be once the packet is
1103		 * done.
1104		 */
1105		txs->txs_mbuf = m0;
1106		txs->txs_firstdesc = sc->sc_txnext;
1107		txs->txs_lastdesc = lasttx;
1108
1109		/* Advance the tx pointer. */
1110		sc->sc_txfree -= dmamap->dm_nsegs;
1111		sc->sc_txnext = nexttx;
1112
1113		sc->sc_txsfree--;
1114		sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
1115
1116		/* Pass the packet to any BPF listeners. */
1117		bpf_mtap(ifp, m0, BPF_D_OUT);
1118	}
1119
1120	if (sc->sc_txfree != ofree) {
1121		/* Set a watchdog timer in case the chip flakes out. */
1122		ifp->if_timer = 5;
1123	}
1124}
1125
1126/*
1127 * pcn_watchdog:	[ifnet interface function]
1128 *
1129 *	Watchdog timer handler.
1130 */
1131static void
1132pcn_watchdog(struct ifnet *ifp)
1133{
1134	struct pcn_softc *sc = ifp->if_softc;
1135
1136	/*
1137	 * Since we're not interrupting every packet, sweep
1138	 * up before we report an error.
1139	 */
1140	pcn_txintr(sc);
1141
1142	if (sc->sc_txfree != PCN_NTXDESC) {
1143		printf("%s: device timeout (txfree %d txsfree %d)\n",
1144		    device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree);
1145		if_statinc(ifp, if_oerrors);
1146
1147		/* Reset the interface. */
1148		(void) pcn_init(ifp);
1149	}
1150
1151	/* Try to get more packets going. */
1152	pcn_start(ifp);
1153}
1154
1155/*
1156 * pcn_ioctl:		[ifnet interface function]
1157 *
1158 *	Handle control requests from the operator.
1159 */
1160static int
1161pcn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1162{
1163	int s, error;
1164
1165	s = splnet();
1166
1167	switch (cmd) {
1168	default:
1169		error = ether_ioctl(ifp, cmd, data);
1170		if (error == ENETRESET) {
1171			/*
1172			 * Multicast list has changed; set the hardware filter
1173			 * accordingly.
1174			 */
1175			if (ifp->if_flags & IFF_RUNNING)
1176				error = pcn_init(ifp);
1177			else
1178				error = 0;
1179		}
1180		break;
1181	}
1182
1183	/* Try to get more packets going. */
1184	pcn_start(ifp);
1185
1186	splx(s);
1187	return error;
1188}
1189
1190/*
1191 * pcn_intr:
1192 *
1193 *	Interrupt service routine.
1194 */
1195static int
1196pcn_intr(void *arg)
1197{
1198	struct pcn_softc *sc = arg;
1199	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1200	uint32_t csr0;
1201	int wantinit, handled = 0;
1202
1203	for (wantinit = 0; wantinit == 0;) {
1204		csr0 = pcn_csr_read(sc, LE_CSR0);
1205		if ((csr0 & LE_C0_INTR) == 0)
1206			break;
1207
1208		rnd_add_uint32(&sc->rnd_source, csr0);
1209
1210		/* ACK the bits and re-enable interrupts. */
1211		pcn_csr_write(sc, LE_CSR0, csr0 &
1212		    (LE_C0_INEA | LE_C0_BABL | LE_C0_MISS | LE_C0_MERR |
1213			LE_C0_RINT | LE_C0_TINT | LE_C0_IDON));
1214
1215		handled = 1;
1216
1217		if (csr0 & LE_C0_RINT) {
1218			PCN_EVCNT_INCR(&sc->sc_ev_rxintr);
1219			wantinit = pcn_rxintr(sc);
1220		}
1221
1222		if (csr0 & LE_C0_TINT) {
1223			PCN_EVCNT_INCR(&sc->sc_ev_txintr);
1224			pcn_txintr(sc);
1225		}
1226
1227		if (csr0 & LE_C0_ERR) {
1228			if (csr0 & LE_C0_BABL) {
1229				PCN_EVCNT_INCR(&sc->sc_ev_babl);
1230				if_statinc(ifp, if_oerrors);
1231			}
1232			if (csr0 & LE_C0_MISS) {
1233				PCN_EVCNT_INCR(&sc->sc_ev_miss);
1234				if_statinc(ifp, if_ierrors);
1235			}
1236			if (csr0 & LE_C0_MERR) {
1237				PCN_EVCNT_INCR(&sc->sc_ev_merr);
1238				printf("%s: memory error\n",
1239				    device_xname(sc->sc_dev));
1240				wantinit = 1;
1241				break;
1242			}
1243		}
1244
1245		if ((csr0 & LE_C0_RXON) == 0) {
1246			printf("%s: receiver disabled\n",
1247			    device_xname(sc->sc_dev));
1248			if_statinc(ifp, if_ierrors);
1249			wantinit = 1;
1250		}
1251
1252		if ((csr0 & LE_C0_TXON) == 0) {
1253			printf("%s: transmitter disabled\n",
1254			    device_xname(sc->sc_dev));
1255			if_statinc(ifp, if_oerrors);
1256			wantinit = 1;
1257		}
1258	}
1259
1260	if (handled) {
1261		if (wantinit)
1262			pcn_init(ifp);
1263
1264		/* Try to get more packets going. */
1265		if_schedule_deferred_start(ifp);
1266	}
1267
1268	return handled;
1269}
1270
1271/*
1272 * pcn_spnd:
1273 *
1274 *	Suspend the chip.
1275 */
1276static void
1277pcn_spnd(struct pcn_softc *sc)
1278{
1279	int i;
1280
1281	pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
1282
1283	for (i = 0; i < 10000; i++) {
1284		if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
1285			return;
1286		delay(5);
1287	}
1288
1289	printf("%s: WARNING: chip failed to enter suspended state\n",
1290	    device_xname(sc->sc_dev));
1291}
1292
1293/*
1294 * pcn_txintr:
1295 *
1296 *	Helper; handle transmit interrupts.
1297 */
1298static void
1299pcn_txintr(struct pcn_softc *sc)
1300{
1301	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1302	struct pcn_txsoft *txs;
1303	uint32_t tmd1, tmd2, tmd;
1304	int i, j;
1305
1306	/*
1307	 * Go through our Tx list and free mbufs for those
1308	 * frames which have been transmitted.
1309	 */
1310	for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
1311	     i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
1312		txs = &sc->sc_txsoft[i];
1313
1314		PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1315		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1316
1317		tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
1318		if (tmd1 & LE_T1_OWN)
1319			break;
1320
1321		/*
1322		 * Slightly annoying -- we have to loop through the
1323		 * descriptors we've used looking for ERR, since it
1324		 * can appear on any descriptor in the chain.
1325		 */
1326		for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
1327			tmd = le32toh(sc->sc_txdescs[j].tmd1);
1328			if (tmd & LE_T1_ERR) {
1329				if_statinc(ifp, if_oerrors);
1330				if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1331					tmd2 = le32toh(sc->sc_txdescs[j].tmd0);
1332				else
1333					tmd2 = le32toh(sc->sc_txdescs[j].tmd2);
1334				if (tmd2 & LE_T2_UFLO) {
1335					if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
1336						sc->sc_xmtsp++;
1337						printf("%s: transmit "
1338						    "underrun; new threshold: "
1339						    "%s\n",
1340						    device_xname(sc->sc_dev),
1341						    sc->sc_xmtsp_desc[
1342						    sc->sc_xmtsp]);
1343						pcn_spnd(sc);
1344						pcn_csr_write(sc, LE_CSR80,
1345						    LE_C80_RCVFW(sc->sc_rcvfw) |
1346						    LE_C80_XMTSP(sc->sc_xmtsp) |
1347						    LE_C80_XMTFW(sc->sc_xmtfw));
1348						pcn_csr_write(sc, LE_CSR5,
1349						    sc->sc_csr5);
1350					} else {
1351						printf("%s: transmit "
1352						    "underrun\n",
1353						    device_xname(sc->sc_dev));
1354					}
1355				} else if (tmd2 & LE_T2_BUFF) {
1356					printf("%s: transmit buffer error\n",
1357					    device_xname(sc->sc_dev));
1358				}
1359				if (tmd2 & LE_T2_LCOL)
1360					if_statinc(ifp, if_collisions);
1361				if (tmd2 & LE_T2_RTRY)
1362					if_statadd(ifp, if_collisions, 16);
1363				goto next_packet;
1364			}
1365			if (j == txs->txs_lastdesc)
1366				break;
1367		}
1368		if (tmd1 & LE_T1_ONE)
1369			if_statinc(ifp, if_collisions);
1370		else if (tmd & LE_T1_MORE) {
1371			/* Real number is unknown. */
1372			if_statadd(ifp, if_collisions, 2);
1373		}
1374		if_statinc(ifp, if_opackets);
1375 next_packet:
1376		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1377		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1378		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1379		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1380		m_freem(txs->txs_mbuf);
1381		txs->txs_mbuf = NULL;
1382	}
1383
1384	/* Update the dirty transmit buffer pointer. */
1385	sc->sc_txsdirty = i;
1386
1387	/*
1388	 * If there are no more pending transmissions, cancel the watchdog
1389	 * timer.
1390	 */
1391	if (sc->sc_txsfree == PCN_TXQUEUELEN)
1392		ifp->if_timer = 0;
1393}
1394
1395/*
1396 * pcn_rxintr:
1397 *
1398 *	Helper; handle receive interrupts.
1399 */
1400static int
1401pcn_rxintr(struct pcn_softc *sc)
1402{
1403	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1404	struct pcn_rxsoft *rxs;
1405	struct mbuf *m;
1406	uint32_t rmd1;
1407	int i, len;
1408
1409	for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
1410		rxs = &sc->sc_rxsoft[i];
1411
1412		PCN_CDRXSYNC(sc, i,
1413		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1414
1415		rmd1 = le32toh(sc->sc_rxdescs[i].rmd1);
1416
1417		if (rmd1 & LE_R1_OWN)
1418			break;
1419
1420		/*
1421		 * Check for errors and make sure the packet fit into
1422		 * a single buffer.  We have structured this block of
1423		 * code the way it is in order to compress it into
1424		 * one test in the common case (no error).
1425		 */
1426		if (__predict_false((rmd1 & (LE_R1_STP | LE_R1_ENP |LE_R1_ERR))
1427		    != (LE_R1_STP | LE_R1_ENP))) {
1428			/* Make sure the packet is in a single buffer. */
1429			if ((rmd1 & (LE_R1_STP | LE_R1_ENP)) !=
1430			    (LE_R1_STP | LE_R1_ENP)) {
1431				printf("%s: packet spilled into next buffer\n",
1432				    device_xname(sc->sc_dev));
1433				return 1;	/* pcn_intr() will re-init */
1434			}
1435
1436			/*
1437			 * If the packet had an error, simple recycle the
1438			 * buffer.
1439			 */
1440			if (rmd1 & LE_R1_ERR) {
1441				if_statinc(ifp, if_ierrors);
1442				/*
1443				 * If we got an overflow error, chances
1444				 * are there will be a CRC error.  In
1445				 * this case, just print the overflow
1446				 * error, and skip the others.
1447				 */
1448				if (rmd1 & LE_R1_OFLO)
1449					printf("%s: overflow error\n",
1450					    device_xname(sc->sc_dev));
1451				else {
1452#define	PRINTIT(x, str)							\
1453					if (rmd1 & (x))			\
1454						printf("%s: %s\n",	\
1455						    device_xname(sc->sc_dev), \
1456						    str);
1457					PRINTIT(LE_R1_FRAM, "framing error");
1458					PRINTIT(LE_R1_CRC, "CRC error");
1459					PRINTIT(LE_R1_BUFF, "buffer error");
1460				}
1461#undef PRINTIT
1462				PCN_INIT_RXDESC(sc, i);
1463				continue;
1464			}
1465		}
1466
1467		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1468		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1469
1470		/*
1471		 * No errors; receive the packet.
1472		 */
1473		if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1474			len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
1475		else
1476			len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
1477
1478		/*
1479		 * The LANCE family includes the CRC with every packet;
1480		 * trim it off here.
1481		 */
1482		len -= ETHER_CRC_LEN;
1483
1484		/*
1485		 * If the packet is small enough to fit in a
1486		 * single header mbuf, allocate one and copy
1487		 * the data into it.  This greatly reduces
1488		 * memory consumption when we receive lots
1489		 * of small packets.
1490		 *
1491		 * Otherwise, we add a new buffer to the receive
1492		 * chain.  If this fails, we drop the packet and
1493		 * recycle the old buffer.
1494		 */
1495		if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
1496			MGETHDR(m, M_DONTWAIT, MT_DATA);
1497			if (m == NULL)
1498				goto dropit;
1499			m->m_data += 2;
1500			memcpy(mtod(m, void *),
1501			    mtod(rxs->rxs_mbuf, void *), len);
1502			PCN_INIT_RXDESC(sc, i);
1503			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1504			    rxs->rxs_dmamap->dm_mapsize,
1505			    BUS_DMASYNC_PREREAD);
1506		} else {
1507			m = rxs->rxs_mbuf;
1508			if (pcn_add_rxbuf(sc, i) != 0) {
1509 dropit:
1510				if_statinc(ifp, if_ierrors);
1511				PCN_INIT_RXDESC(sc, i);
1512				bus_dmamap_sync(sc->sc_dmat,
1513				    rxs->rxs_dmamap, 0,
1514				    rxs->rxs_dmamap->dm_mapsize,
1515				    BUS_DMASYNC_PREREAD);
1516				continue;
1517			}
1518		}
1519
1520		m_set_rcvif(m, ifp);
1521		m->m_pkthdr.len = m->m_len = len;
1522
1523		/* Pass it on. */
1524		if_percpuq_enqueue(ifp->if_percpuq, m);
1525	}
1526
1527	/* Update the receive pointer. */
1528	sc->sc_rxptr = i;
1529	return 0;
1530}
1531
1532/*
1533 * pcn_tick:
1534 *
1535 *	One second timer, used to tick the MII.
1536 */
1537static void
1538pcn_tick(void *arg)
1539{
1540	struct pcn_softc *sc = arg;
1541	int s;
1542
1543	s = splnet();
1544	mii_tick(&sc->sc_mii);
1545	splx(s);
1546
1547	callout_schedule(&sc->sc_tick_ch, hz);
1548}
1549
1550/*
1551 * pcn_reset:
1552 *
1553 *	Perform a soft reset on the PCnet-PCI.
1554 */
1555static void
1556pcn_reset(struct pcn_softc *sc)
1557{
1558
1559	/*
1560	 * The PCnet-PCI chip is reset by reading from the
1561	 * RESET register.  Note that while the NE2100 LANCE
1562	 * boards require a write after the read, the PCnet-PCI
1563	 * chips do not require this.
1564	 *
1565	 * Since we don't know if we're in 16-bit or 32-bit
1566	 * mode right now, issue both (it's safe) in the
1567	 * hopes that one will succeed.
1568	 */
1569	(void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
1570	(void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
1571
1572	/* Wait 1ms for it to finish. */
1573	delay(1000);
1574
1575	/*
1576	 * Select 32-bit I/O mode by issuing a 32-bit write to the
1577	 * RDP.  Since the RAP is 0 after a reset, writing a 0
1578	 * to RDP is safe (since it simply clears CSR0).
1579	 */
1580	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
1581}
1582
1583/*
1584 * pcn_init:		[ifnet interface function]
1585 *
1586 *	Initialize the interface.  Must be called at splnet().
1587 */
1588static int
1589pcn_init(struct ifnet *ifp)
1590{
1591	struct pcn_softc *sc = ifp->if_softc;
1592	struct pcn_rxsoft *rxs;
1593	const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
1594	int i, error = 0;
1595	uint32_t reg;
1596
1597	/* Cancel any pending I/O. */
1598	pcn_stop(ifp, 0);
1599
1600	/* Reset the chip to a known state. */
1601	pcn_reset(sc);
1602
1603	/*
1604	 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
1605	 * else.
1606	 *
1607	 * XXX It'd be really nice to use SSTYLE 2 on all the chips,
1608	 * because the structure layout is compatible with ILACC,
1609	 * but the burst mode is only available in SSTYLE 3, and
1610	 * burst mode should provide some performance enhancement.
1611	 */
1612	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
1613		sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
1614	else
1615		sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
1616	pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
1617
1618	/* Initialize the transmit descriptor ring. */
1619	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1620	PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
1621	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1622	sc->sc_txfree = PCN_NTXDESC;
1623	sc->sc_txnext = 0;
1624
1625	/* Initialize the transmit job descriptors. */
1626	for (i = 0; i < PCN_TXQUEUELEN; i++)
1627		sc->sc_txsoft[i].txs_mbuf = NULL;
1628	sc->sc_txsfree = PCN_TXQUEUELEN;
1629	sc->sc_txsnext = 0;
1630	sc->sc_txsdirty = 0;
1631
1632	/*
1633	 * Initialize the receive descriptor and receive job
1634	 * descriptor rings.
1635	 */
1636	for (i = 0; i < PCN_NRXDESC; i++) {
1637		rxs = &sc->sc_rxsoft[i];
1638		if (rxs->rxs_mbuf == NULL) {
1639			if ((error = pcn_add_rxbuf(sc, i)) != 0) {
1640				printf("%s: unable to allocate or map rx "
1641				    "buffer %d, error = %d\n",
1642				    device_xname(sc->sc_dev), i, error);
1643				/*
1644				 * XXX Should attempt to run with fewer receive
1645				 * XXX buffers instead of just failing.
1646				 */
1647				pcn_rxdrain(sc);
1648				goto out;
1649			}
1650		} else
1651			PCN_INIT_RXDESC(sc, i);
1652	}
1653	sc->sc_rxptr = 0;
1654
1655	/* Initialize MODE for the initialization block. */
1656	sc->sc_mode = 0;
1657	if (ifp->if_flags & IFF_PROMISC)
1658		sc->sc_mode |= LE_C15_PROM;
1659	if ((ifp->if_flags & IFF_BROADCAST) == 0)
1660		sc->sc_mode |= LE_C15_DRCVBC;
1661
1662	/*
1663	 * If we have MII, simply select MII in the MODE register,
1664	 * and clear ASEL.  Otherwise, let ASEL stand (for now),
1665	 * and leave PORTSEL alone (it is ignored with ASEL is set).
1666	 */
1667	if (sc->sc_flags & PCN_F_HAS_MII) {
1668		pcn_bcr_write(sc, LE_BCR2,
1669		    pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
1670		sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
1671
1672		/*
1673		 * Disable MII auto-negotiation.  We handle that in
1674		 * our own MII layer.
1675		 */
1676		pcn_bcr_write(sc, LE_BCR32,
1677		    pcn_bcr_read(sc, LE_BCR32) | LE_B32_DANAS);
1678	}
1679
1680	/*
1681	 * Set the Tx and Rx descriptor ring addresses in the init
1682	 * block, the TLEN and RLEN other fields of the init block
1683	 * MODE register.
1684	 */
1685	sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
1686	sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
1687	sc->sc_initblock.init_mode = htole32(sc->sc_mode |
1688	    (((uint32_t)ffs(PCN_NTXDESC) - 1) << 28) |
1689	    ((ffs(PCN_NRXDESC) - 1) << 20));
1690
1691	/* Set the station address in the init block. */
1692	sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
1693	    (enaddr[1] << 8) | (enaddr[2] << 16) |
1694	    ((uint32_t)enaddr[3] << 24));
1695	sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
1696	    (enaddr[5] << 8));
1697
1698	/* Set the multicast filter in the init block. */
1699	pcn_set_filter(sc);
1700
1701	/* Initialize CSR3. */
1702	pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM | LE_C3_IDONM | LE_C3_DXSUFLO);
1703
1704	/* Initialize CSR4. */
1705	pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS | LE_C4_APAD_XMT |
1706	    LE_C4_MFCOM | LE_C4_RCVCCOM | LE_C4_TXSTRTM);
1707
1708	/* Initialize CSR5. */
1709	sc->sc_csr5 = LE_C5_LTINTEN | LE_C5_SINTE;
1710	pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
1711
1712	/*
1713	 * If we have an Am79c971 or greater, initialize CSR7.
1714	 *
1715	 * XXX Might be nice to use the MII auto-poll interrupt someday.
1716	 */
1717	switch (sc->sc_variant->pcv_chipid) {
1718	case PARTID_Am79c970:
1719	case PARTID_Am79c970A:
1720		/* Not available on these chips. */
1721		break;
1722
1723	default:
1724		pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
1725		break;
1726	}
1727
1728	/*
1729	 * On the Am79c970A and greater, initialize BCR18 to
1730	 * enable burst mode.
1731	 *
1732	 * Also enable the "no underflow" option on the Am79c971 and
1733	 * higher, which prevents the chip from generating transmit
1734	 * underflows, yet sill provides decent performance.  Note if
1735	 * chip is not connected to external SRAM, then we still have
1736	 * to handle underflow errors (the NOUFLO bit is ignored in
1737	 * that case).
1738	 */
1739	reg = pcn_bcr_read(sc, LE_BCR18);
1740	switch (sc->sc_variant->pcv_chipid) {
1741	case PARTID_Am79c970:
1742		break;
1743
1744	case PARTID_Am79c970A:
1745		reg |= LE_B18_BREADE | LE_B18_BWRITE;
1746		break;
1747
1748	default:
1749		reg |= LE_B18_BREADE | LE_B18_BWRITE | LE_B18_NOUFLO;
1750		break;
1751	}
1752	pcn_bcr_write(sc, LE_BCR18, reg);
1753
1754	/*
1755	 * Initialize CSR80 (FIFO thresholds for Tx and Rx).
1756	 */
1757	pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
1758	    LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
1759
1760	/*
1761	 * Send the init block to the chip, and wait for it
1762	 * to be processed.
1763	 */
1764	PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
1765	pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
1766	pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
1767	pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
1768	delay(100);
1769	for (i = 0; i < 10000; i++) {
1770		if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
1771			break;
1772		delay(10);
1773	}
1774	PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
1775	if (i == 10000) {
1776		printf("%s: timeout processing init block\n",
1777		    device_xname(sc->sc_dev));
1778		error = EIO;
1779		goto out;
1780	}
1781
1782	/* Set the media. */
1783	if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1784		goto out;
1785
1786	/* Enable interrupts and external activity (and ACK IDON). */
1787	pcn_csr_write(sc, LE_CSR0, LE_C0_INEA | LE_C0_STRT | LE_C0_IDON);
1788
1789	if (sc->sc_flags & PCN_F_HAS_MII) {
1790		/* Start the one second MII clock. */
1791		callout_schedule(&sc->sc_tick_ch, hz);
1792	}
1793
1794	/* ...all done! */
1795	ifp->if_flags |= IFF_RUNNING;
1796
1797 out:
1798	if (error)
1799		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1800	return error;
1801}
1802
1803/*
1804 * pcn_rxdrain:
1805 *
1806 *	Drain the receive queue.
1807 */
1808static void
1809pcn_rxdrain(struct pcn_softc *sc)
1810{
1811	struct pcn_rxsoft *rxs;
1812	int i;
1813
1814	for (i = 0; i < PCN_NRXDESC; i++) {
1815		rxs = &sc->sc_rxsoft[i];
1816		if (rxs->rxs_mbuf != NULL) {
1817			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1818			m_freem(rxs->rxs_mbuf);
1819			rxs->rxs_mbuf = NULL;
1820		}
1821	}
1822}
1823
1824/*
1825 * pcn_stop:		[ifnet interface function]
1826 *
1827 *	Stop transmission on the interface.
1828 */
1829static void
1830pcn_stop(struct ifnet *ifp, int disable)
1831{
1832	struct pcn_softc *sc = ifp->if_softc;
1833	struct pcn_txsoft *txs;
1834	int i;
1835
1836	if (sc->sc_flags & PCN_F_HAS_MII) {
1837		/* Stop the one second clock. */
1838		callout_stop(&sc->sc_tick_ch);
1839
1840		/* Down the MII. */
1841		mii_down(&sc->sc_mii);
1842	}
1843
1844	/* Stop the chip. */
1845	pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
1846
1847	/* Release any queued transmit buffers. */
1848	for (i = 0; i < PCN_TXQUEUELEN; i++) {
1849		txs = &sc->sc_txsoft[i];
1850		if (txs->txs_mbuf != NULL) {
1851			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1852			m_freem(txs->txs_mbuf);
1853			txs->txs_mbuf = NULL;
1854		}
1855	}
1856
1857	/* Mark the interface as down and cancel the watchdog timer. */
1858	ifp->if_flags &= ~IFF_RUNNING;
1859	ifp->if_timer = 0;
1860
1861	if (disable)
1862		pcn_rxdrain(sc);
1863}
1864
1865/*
1866 * pcn_add_rxbuf:
1867 *
1868 *	Add a receive buffer to the indicated descriptor.
1869 */
1870static int
1871pcn_add_rxbuf(struct pcn_softc *sc, int idx)
1872{
1873	struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
1874	struct mbuf *m;
1875	int error;
1876
1877	MGETHDR(m, M_DONTWAIT, MT_DATA);
1878	if (m == NULL)
1879		return ENOBUFS;
1880
1881	MCLGET(m, M_DONTWAIT);
1882	if ((m->m_flags & M_EXT) == 0) {
1883		m_freem(m);
1884		return ENOBUFS;
1885	}
1886
1887	if (rxs->rxs_mbuf != NULL)
1888		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1889
1890	rxs->rxs_mbuf = m;
1891
1892	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1893	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1894	    BUS_DMA_READ | BUS_DMA_NOWAIT);
1895	if (error) {
1896		printf("%s: can't load rx DMA map %d, error = %d\n",
1897		    device_xname(sc->sc_dev), idx, error);
1898		panic("pcn_add_rxbuf");
1899	}
1900
1901	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1902	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1903
1904	PCN_INIT_RXDESC(sc, idx);
1905
1906	return 0;
1907}
1908
1909/*
1910 * pcn_set_filter:
1911 *
1912 *	Set up the receive filter.
1913 */
1914static void
1915pcn_set_filter(struct pcn_softc *sc)
1916{
1917	struct ethercom *ec = &sc->sc_ethercom;
1918	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1919	struct ether_multi *enm;
1920	struct ether_multistep step;
1921	uint32_t crc;
1922
1923	/*
1924	 * Set up the multicast address filter by passing all multicast
1925	 * addresses through a CRC generator, and then using the high
1926	 * order 6 bits as an index into the 64-bit logical address
1927	 * filter.  The high order bits select the word, while the rest
1928	 * of the bits select the bit within the word.
1929	 */
1930
1931	if (ifp->if_flags & IFF_PROMISC)
1932		goto allmulti;
1933
1934	sc->sc_initblock.init_ladrf[0] =
1935	    sc->sc_initblock.init_ladrf[1] =
1936	    sc->sc_initblock.init_ladrf[2] =
1937	    sc->sc_initblock.init_ladrf[3] = 0;
1938
1939	ETHER_LOCK(ec);
1940	ETHER_FIRST_MULTI(step, ec, enm);
1941	while (enm != NULL) {
1942		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1943			/*
1944			 * We must listen to a range of multicast addresses.
1945			 * For now, just accept all multicasts, rather than
1946			 * trying to set only those filter bits needed to match
1947			 * the range.  (At this time, the only use of address
1948			 * ranges is for IP multicast routing, for which the
1949			 * range is big enough to require all bits set.)
1950			 */
1951			ETHER_UNLOCK(ec);
1952			goto allmulti;
1953		}
1954
1955		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1956
1957		/* Just want the 6 most significant bits. */
1958		crc >>= 26;
1959
1960		/* Set the corresponding bit in the filter. */
1961		sc->sc_initblock.init_ladrf[crc >> 4] |=
1962		    htole16(1 << (crc & 0xf));
1963
1964		ETHER_NEXT_MULTI(step, enm);
1965	}
1966	ETHER_UNLOCK(ec);
1967
1968	ifp->if_flags &= ~IFF_ALLMULTI;
1969	return;
1970
1971 allmulti:
1972	ifp->if_flags |= IFF_ALLMULTI;
1973	sc->sc_initblock.init_ladrf[0] =
1974	    sc->sc_initblock.init_ladrf[1] =
1975	    sc->sc_initblock.init_ladrf[2] =
1976	    sc->sc_initblock.init_ladrf[3] = 0xffff;
1977}
1978
1979/*
1980 * pcn_79c970_mediainit:
1981 *
1982 *	Initialize media for the Am79c970.
1983 */
1984static void
1985pcn_79c970_mediainit(struct pcn_softc *sc)
1986{
1987	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1988	struct mii_data * const mii = &sc->sc_mii;
1989	const char *sep = "";
1990
1991	mii->mii_ifp = ifp;
1992
1993	ifmedia_init(&mii->mii_media, IFM_IMASK, pcn_79c970_mediachange,
1994	    pcn_79c970_mediastatus);
1995
1996#define	ADD(str, m, d)							\
1997do {									\
1998	aprint_normal("%s%s", sep, str);				\
1999	ifmedia_add(&mii->mii_media, IFM_ETHER | (m), (d), NULL);	\
2000	sep = ", ";							\
2001} while (/*CONSTCOND*/0)
2002
2003	aprint_normal("%s: ", device_xname(sc->sc_dev));
2004	ADD("10base5", IFM_10_5, PORTSEL_AUI);
2005	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2006		ADD("10base5-FDX", IFM_10_5 | IFM_FDX, PORTSEL_AUI);
2007	ADD("10baseT", IFM_10_T, PORTSEL_10T);
2008	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2009		ADD("10baseT-FDX", IFM_10_T | IFM_FDX, PORTSEL_10T);
2010	ADD("auto", IFM_AUTO, 0);
2011	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2012		ADD("auto-FDX", IFM_AUTO | IFM_FDX, 0);
2013	aprint_normal("\n");
2014
2015	ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
2016}
2017
2018/*
2019 * pcn_79c970_mediastatus:	[ifmedia interface function]
2020 *
2021 *	Get the current interface media status (Am79c970 version).
2022 */
2023static void
2024pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2025{
2026	struct pcn_softc *sc = ifp->if_softc;
2027
2028	/*
2029	 * The currently selected media is always the active media.
2030	 * Note: We have no way to determine what media the AUTO
2031	 * process picked.
2032	 */
2033	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
2034}
2035
2036/*
2037 * pcn_79c970_mediachange:	[ifmedia interface function]
2038 *
2039 *	Set hardware to newly-selected media (Am79c970 version).
2040 */
2041static int
2042pcn_79c970_mediachange(struct ifnet *ifp)
2043{
2044	struct pcn_softc *sc = ifp->if_softc;
2045	uint32_t reg;
2046
2047	if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
2048		/*
2049		 * CSR15:PORTSEL doesn't matter.  Just set BCR2:ASEL.
2050		 */
2051		reg = pcn_bcr_read(sc, LE_BCR2);
2052		reg |= LE_B2_ASEL;
2053		pcn_bcr_write(sc, LE_BCR2, reg);
2054	} else {
2055		/*
2056		 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
2057		 */
2058		reg = pcn_bcr_read(sc, LE_BCR2);
2059		reg &= ~LE_B2_ASEL;
2060		pcn_bcr_write(sc, LE_BCR2, reg);
2061
2062		reg = pcn_csr_read(sc, LE_CSR15);
2063		reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
2064		    LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
2065		pcn_csr_write(sc, LE_CSR15, reg);
2066	}
2067
2068	if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
2069		reg = LE_B9_FDEN;
2070		if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
2071			reg |= LE_B9_AUIFD;
2072		pcn_bcr_write(sc, LE_BCR9, reg);
2073	} else
2074		pcn_bcr_write(sc, LE_BCR9, 0);
2075
2076	return 0;
2077}
2078
2079/*
2080 * pcn_79c971_mediainit:
2081 *
2082 *	Initialize media for the Am79c971.
2083 */
2084static void
2085pcn_79c971_mediainit(struct pcn_softc *sc)
2086{
2087	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2088	struct mii_data * const mii = &sc->sc_mii;
2089
2090	/* We have MII. */
2091	sc->sc_flags |= PCN_F_HAS_MII;
2092
2093	/*
2094	 * The built-in 10BASE-T interface is mapped to the MII
2095	 * on the PCNet-FAST.  Unfortunately, there's no EEPROM
2096	 * word that tells us which PHY to use.
2097	 * This driver used to ignore all but the first PHY to
2098	 * answer, but this code was removed to support multiple
2099	 * external PHYs. As the default instance will be the first
2100	 * one to answer, no harm is done by letting the possibly
2101	 * non-connected internal PHY show up.
2102	 */
2103
2104	/* Initialize our media structures and probe the MII. */
2105	mii->mii_ifp = ifp;
2106	mii->mii_readreg = pcn_mii_readreg;
2107	mii->mii_writereg = pcn_mii_writereg;
2108	mii->mii_statchg = pcn_mii_statchg;
2109
2110	sc->sc_ethercom.ec_mii = mii;
2111	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
2112
2113	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
2114	    MII_OFFSET_ANY, 0);
2115	if (LIST_FIRST(&mii->mii_phys) == NULL) {
2116		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
2117		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
2118	} else
2119		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
2120}
2121
2122/*
2123 * pcn_mii_readreg:	[mii interface function]
2124 *
2125 *	Read a PHY register on the MII.
2126 */
2127static int
2128pcn_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
2129{
2130	struct pcn_softc *sc = device_private(self);
2131
2132	pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2133	*val = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
2134	if (*val == 0xffff)
2135		return -1;
2136
2137	return 0;
2138}
2139
2140/*
2141 * pcn_mii_writereg:	[mii interface function]
2142 *
2143 *	Write a PHY register on the MII.
2144 */
2145static int
2146pcn_mii_writereg(device_t self, int phy, int reg, uint16_t val)
2147{
2148	struct pcn_softc *sc = device_private(self);
2149
2150	pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2151	pcn_bcr_write(sc, LE_BCR34, val);
2152
2153	return 0;
2154}
2155
2156/*
2157 * pcn_mii_statchg:	[mii interface function]
2158 *
2159 *	Callback from MII layer when media changes.
2160 */
2161static void
2162pcn_mii_statchg(struct ifnet *ifp)
2163{
2164	struct pcn_softc *sc = ifp->if_softc;
2165
2166	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2167		pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
2168	else
2169		pcn_bcr_write(sc, LE_BCR9, 0);
2170}
2171