if_cas.c revision 1.7
1/*	$NetBSD: if_cas.c,v 1.7 2010/03/11 04:00:36 mrg Exp $	*/
2/*	$OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $	*/
3
4/*
5 *
6 * Copyright (C) 2007 Mark Kettenis.
7 * Copyright (C) 2001 Eduardo Horvath.
8 * All rights reserved.
9 *
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34/*
35 * Driver for Sun Cassini ethernet controllers.
36 *
37 * There are basically two variants of this chip: Cassini and
38 * Cassini+.  We can distinguish between the two by revision: 0x10 and
39 * up are Cassini+.  The most important difference is that Cassini+
40 * has a second RX descriptor ring.  Cassini+ will not work without
41 * configuring that second ring.  However, since we don't use it we
42 * don't actually fill the descriptors, and only hand off the first
43 * four to the chip.
44 */
45
46#include <sys/cdefs.h>
47__KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.7 2010/03/11 04:00:36 mrg Exp $");
48
49#include "opt_inet.h"
50
51#include <sys/param.h>
52#include <sys/systm.h>
53#include <sys/callout.h>
54#include <sys/mbuf.h>
55#include <sys/syslog.h>
56#include <sys/malloc.h>
57#include <sys/kernel.h>
58#include <sys/socket.h>
59#include <sys/ioctl.h>
60#include <sys/errno.h>
61#include <sys/device.h>
62
63#include <machine/endian.h>
64
65#include <uvm/uvm_extern.h>
66
67#include <net/if.h>
68#include <net/if_dl.h>
69#include <net/if_media.h>
70#include <net/if_ether.h>
71
72#ifdef INET
73#include <netinet/in.h>
74#include <netinet/in_systm.h>
75#include <netinet/in_var.h>
76#include <netinet/ip.h>
77#include <netinet/tcp.h>
78#include <netinet/udp.h>
79#endif
80
81#include <net/bpf.h>
82
83#include <sys/bus.h>
84#include <sys/intr.h>
85
86#include <dev/mii/mii.h>
87#include <dev/mii/miivar.h>
88#include <dev/mii/mii_bitbang.h>
89
90#include <dev/pci/pcivar.h>
91#include <dev/pci/pcireg.h>
92#include <dev/pci/pcidevs.h>
93#include <prop/proplib.h>
94
95#include <dev/pci/if_casreg.h>
96#include <dev/pci/if_casvar.h>
97
98#define TRIES	10000
99
100static bool	cas_estintr(struct cas_softc *sc, int);
101bool		cas_shutdown(device_t, int);
102static bool	cas_suspend(device_t, const pmf_qual_t *);
103static bool	cas_resume(device_t, const pmf_qual_t *);
104static int	cas_detach(device_t, int);
105static void	cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
106
107int		cas_match(device_t, cfdata_t, void *);
108void		cas_attach(device_t, device_t, void *);
109
110
111CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
112    cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
113    DVF_DETACH_SHUTDOWN);
114
115int	cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
116
117void		cas_config(struct cas_softc *, const uint8_t *);
118void		cas_start(struct ifnet *);
119void		cas_stop(struct ifnet *, int);
120int		cas_ioctl(struct ifnet *, u_long, void *);
121void		cas_tick(void *);
122void		cas_watchdog(struct ifnet *);
123int		cas_init(struct ifnet *);
124void		cas_init_regs(struct cas_softc *);
125int		cas_ringsize(int);
126int		cas_cringsize(int);
127int		cas_meminit(struct cas_softc *);
128void		cas_mifinit(struct cas_softc *);
129int		cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
130		    u_int32_t, u_int32_t);
131void		cas_reset(struct cas_softc *);
132int		cas_reset_rx(struct cas_softc *);
133int		cas_reset_tx(struct cas_softc *);
134int		cas_disable_rx(struct cas_softc *);
135int		cas_disable_tx(struct cas_softc *);
136void		cas_rxdrain(struct cas_softc *);
137int		cas_add_rxbuf(struct cas_softc *, int idx);
138void		cas_iff(struct cas_softc *);
139int		cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
140
141/* MII methods & callbacks */
142int		cas_mii_readreg(device_t, int, int);
143void		cas_mii_writereg(device_t, int, int, int);
144void		cas_mii_statchg(device_t);
145int		cas_pcs_readreg(device_t, int, int);
146void		cas_pcs_writereg(device_t, int, int, int);
147
148int		cas_mediachange(struct ifnet *);
149void		cas_mediastatus(struct ifnet *, struct ifmediareq *);
150
151int		cas_eint(struct cas_softc *, u_int);
152int		cas_rint(struct cas_softc *);
153int		cas_tint(struct cas_softc *, u_int32_t);
154int		cas_pint(struct cas_softc *);
155int		cas_intr(void *);
156
157#ifdef CAS_DEBUG
158#define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
159				printf x
160#else
161#define	DPRINTF(sc, x)	/* nothing */
162#endif
163
164int
165cas_match(device_t parent, cfdata_t cf, void *aux)
166{
167	struct pci_attach_args *pa = aux;
168
169	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
170	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
171		return 1;
172
173	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
174	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
175		return 1;
176
177	return 0;
178}
179
180#define	PROMHDR_PTR_DATA	0x18
181#define	PROMDATA_PTR_VPD	0x08
182#define	PROMDATA_DATA2		0x0a
183
184static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
185static const u_int8_t cas_promdat[] = {
186	'P', 'C', 'I', 'R',
187	PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
188	PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
189};
190
191static const u_int8_t cas_promdat2[] = {
192	0x18, 0x00,			/* structure length */
193	0x00,				/* structure revision */
194	0x00,				/* interface revision */
195	PCI_SUBCLASS_NETWORK_ETHERNET,	/* subclass code */
196	PCI_CLASS_NETWORK		/* class code */
197};
198
199int
200cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
201    uint8_t *enaddr)
202{
203	struct pci_vpd_largeres *res;
204	struct pci_vpd *vpd;
205	bus_space_handle_t romh;
206	bus_space_tag_t romt;
207	bus_size_t romsize = 0;
208	u_int8_t buf[32], *desc;
209	pcireg_t address;
210	int dataoff, vpdoff, len;
211	int rv = -1;
212
213	if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
214	    &romt, &romh, NULL, &romsize))
215		return (-1);
216
217	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
218	address |= PCI_MAPREG_ROM_ENABLE;
219	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
220
221	bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
222	if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
223		goto fail;
224
225	dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
226	if (dataoff < 0x1c)
227		goto fail;
228
229	bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
230	if (bcmp(buf, cas_promdat, sizeof(cas_promdat)) ||
231	    bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
232		goto fail;
233
234	vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
235	if (vpdoff < 0x1c)
236		goto fail;
237
238next:
239	bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
240	if (!PCI_VPDRES_ISLARGE(buf[0]))
241		goto fail;
242
243	res = (struct pci_vpd_largeres *)buf;
244	vpdoff += sizeof(*res);
245
246	len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
247	switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
248	case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
249		/* Skip identifier string. */
250		vpdoff += len;
251		goto next;
252
253	case PCI_VPDRES_TYPE_VPD:
254		while (len > 0) {
255			bus_space_read_region_1(romt, romh, vpdoff,
256			     buf, sizeof(buf));
257
258			vpd = (struct pci_vpd *)buf;
259			vpdoff += sizeof(*vpd) + vpd->vpd_len;
260			len -= sizeof(*vpd) + vpd->vpd_len;
261
262			/*
263			 * We're looking for an "Enhanced" VPD...
264			 */
265			if (vpd->vpd_key0 != 'Z')
266				continue;
267
268			desc = buf + sizeof(*vpd);
269
270			/*
271			 * ...which is an instance property...
272			 */
273			if (desc[0] != 'I')
274				continue;
275			desc += 3;
276
277			/*
278			 * ...that's a byte array with the proper
279			 * length for a MAC address...
280			 */
281			if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
282				continue;
283			desc += 2;
284
285			/*
286			 * ...named "local-mac-address".
287			 */
288			if (strcmp(desc, "local-mac-address") != 0)
289				continue;
290			desc += strlen("local-mac-address") + 1;
291
292			memcpy(enaddr, desc, ETHER_ADDR_LEN);
293			rv = 0;
294		}
295		break;
296
297	default:
298		goto fail;
299	}
300
301 fail:
302	if (romsize != 0)
303		bus_space_unmap(romt, romh, romsize);
304
305	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
306	address &= ~PCI_MAPREG_ROM_ENABLE;
307	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
308
309	return (rv);
310}
311
312void
313cas_attach(device_t parent, device_t self, void *aux)
314{
315	struct pci_attach_args *pa = aux;
316	struct cas_softc *sc = device_private(self);
317	char devinfo[256];
318	prop_data_t data;
319	uint8_t enaddr[ETHER_ADDR_LEN];
320
321	sc->sc_dev = self;
322	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
323	sc->sc_rev = PCI_REVISION(pa->pa_class);
324	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, sc->sc_rev);
325	sc->sc_dmatag = pa->pa_dmat;
326
327#define PCI_CAS_BASEADDR	0x10
328	if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
329	    &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
330		aprint_error_dev(sc->sc_dev,
331		    "unable to map device registers\n");
332		return;
333	}
334
335	if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
336	    "mac-address")) != NULL)
337		memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
338	else if (cas_pci_enaddr(sc, pa, enaddr) != 0)
339		aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
340
341	sc->sc_burst = 16;	/* XXX */
342
343	sc->sc_att_stage = CAS_ATT_BACKEND_0;
344
345	if (pci_intr_map(pa, &sc->sc_handle) != 0) {
346		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
347		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
348		return;
349	}
350	sc->sc_pc = pa->pa_pc;
351	if (!cas_estintr(sc, CAS_INTR_PCI)) {
352		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
353		aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
354		return;
355	}
356
357	sc->sc_att_stage = CAS_ATT_BACKEND_1;
358
359	/*
360	 * call the main configure
361	 */
362	cas_config(sc, enaddr);
363
364	if (pmf_device_register1(sc->sc_dev,
365	    cas_suspend, cas_resume, cas_shutdown))
366		pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
367	else
368		aprint_error_dev(sc->sc_dev,
369		    "could not establish power handlers\n");
370
371	sc->sc_att_stage = CAS_ATT_FINISHED;
372		/*FALLTHROUGH*/
373}
374
375/*
376 * cas_config:
377 *
378 *	Attach a Cassini interface to the system.
379 */
380void
381cas_config(struct cas_softc *sc, const uint8_t *enaddr)
382{
383	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
384	struct mii_data *mii = &sc->sc_mii;
385	struct mii_softc *child;
386	int i, error;
387
388	/* Make sure the chip is stopped. */
389	ifp->if_softc = sc;
390	cas_reset(sc);
391
392	/*
393	 * Allocate the control data structures, and create and load the
394	 * DMA map for it.
395	 */
396	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
397	    sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
398	    1, &sc->sc_cdnseg, 0)) != 0) {
399		aprint_error_dev(sc->sc_dev,
400		    "unable to allocate control data, error = %d\n",
401		    error);
402		cas_partial_detach(sc, CAS_ATT_0);
403	}
404
405	/* XXX should map this in with correct endianness */
406	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
407	    sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
408	    BUS_DMA_COHERENT)) != 0) {
409		aprint_error_dev(sc->sc_dev,
410		    "unable to map control data, error = %d\n", error);
411		cas_partial_detach(sc, CAS_ATT_1);
412	}
413
414	if ((error = bus_dmamap_create(sc->sc_dmatag,
415	    sizeof(struct cas_control_data), 1,
416	    sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
417		aprint_error_dev(sc->sc_dev,
418		    "unable to create control data DMA map, error = %d\n", error);
419		cas_partial_detach(sc, CAS_ATT_2);
420	}
421
422	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
423	    sc->sc_control_data, sizeof(struct cas_control_data), NULL,
424	    0)) != 0) {
425		aprint_error_dev(sc->sc_dev,
426		    "unable to load control data DMA map, error = %d\n",
427		    error);
428		cas_partial_detach(sc, CAS_ATT_3);
429	}
430
431	memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
432
433	/*
434	 * Create the receive buffer DMA maps.
435	 */
436	for (i = 0; i < CAS_NRXDESC; i++) {
437		bus_dma_segment_t seg;
438		char *kva;
439		int rseg;
440
441		if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
442		    CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
443			aprint_error_dev(sc->sc_dev,
444			    "unable to alloc rx DMA mem %d, error = %d\n",
445			    i, error);
446			cas_partial_detach(sc, CAS_ATT_5);
447		}
448		sc->sc_rxsoft[i].rxs_dmaseg = seg;
449
450		if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
451		    CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
452			aprint_error_dev(sc->sc_dev,
453			    "unable to alloc rx DMA mem %d, error = %d\n",
454			    i, error);
455			cas_partial_detach(sc, CAS_ATT_5);
456		}
457		sc->sc_rxsoft[i].rxs_kva = kva;
458
459		if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
460		    CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
461			aprint_error_dev(sc->sc_dev,
462			    "unable to create rx DMA map %d, error = %d\n",
463			    i, error);
464			cas_partial_detach(sc, CAS_ATT_5);
465		}
466
467		if ((error = bus_dmamap_load(sc->sc_dmatag,
468		   sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
469		   BUS_DMA_NOWAIT)) != 0) {
470			aprint_error_dev(sc->sc_dev,
471			    "unable to load rx DMA map %d, error = %d\n",
472			    i, error);
473			cas_partial_detach(sc, CAS_ATT_5);
474		}
475	}
476
477	/*
478	 * Create the transmit buffer DMA maps.
479	 */
480	for (i = 0; i < CAS_NTXDESC; i++) {
481		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
482		    CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
483		    &sc->sc_txd[i].sd_map)) != 0) {
484			aprint_error_dev(sc->sc_dev,
485			    "unable to create tx DMA map %d, error = %d\n",
486			    i, error);
487			cas_partial_detach(sc, CAS_ATT_6);
488		}
489		sc->sc_txd[i].sd_mbuf = NULL;
490	}
491
492	/*
493	 * From this point forward, the attachment cannot fail.  A failure
494	 * before this point releases all resources that may have been
495	 * allocated.
496	 */
497
498	/* Announce ourselves. */
499	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
500	    ether_sprintf(enaddr));
501	aprint_naive(": Ethernet controller\n");
502
503	/* Get RX FIFO size */
504	sc->sc_rxfifosize = 16 * 1024;
505
506	/* Initialize ifnet structure. */
507	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
508	ifp->if_softc = sc;
509	ifp->if_flags =
510	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
511	ifp->if_start = cas_start;
512	ifp->if_ioctl = cas_ioctl;
513	ifp->if_watchdog = cas_watchdog;
514	ifp->if_stop = cas_stop;
515	ifp->if_init = cas_init;
516	IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
517	IFQ_SET_READY(&ifp->if_snd);
518
519	/* Initialize ifmedia structures and MII info */
520	mii->mii_ifp = ifp;
521	mii->mii_readreg = cas_mii_readreg;
522	mii->mii_writereg = cas_mii_writereg;
523	mii->mii_statchg = cas_mii_statchg;
524
525	ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
526	sc->sc_ethercom.ec_mii = mii;
527
528	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
529
530	cas_mifinit(sc);
531
532	if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
533		sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
534		bus_space_write_4(sc->sc_memt, sc->sc_memh,
535	            CAS_MIF_CONFIG, sc->sc_mif_config);
536	}
537
538	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
539	    MII_OFFSET_ANY, 0);
540
541	child = LIST_FIRST(&mii->mii_phys);
542	if (child == NULL &&
543	    sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
544		/*
545		 * Try the external PCS SERDES if we didn't find any
546		 * MII devices.
547		 */
548		bus_space_write_4(sc->sc_memt, sc->sc_memh,
549		    CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
550
551		bus_space_write_4(sc->sc_memt, sc->sc_memh,
552		     CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
553
554		mii->mii_readreg = cas_pcs_readreg;
555		mii->mii_writereg = cas_pcs_writereg;
556
557		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
558		    MII_OFFSET_ANY, MIIF_NOISOLATE);
559	}
560
561	child = LIST_FIRST(&mii->mii_phys);
562	if (child == NULL) {
563		/* No PHY attached */
564		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
565		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
566	} else {
567		/*
568		 * Walk along the list of attached MII devices and
569		 * establish an `MII instance' to `phy number'
570		 * mapping. We'll use this mapping in media change
571		 * requests to determine which phy to use to program
572		 * the MIF configuration register.
573		 */
574		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
575			/*
576			 * Note: we support just two PHYs: the built-in
577			 * internal device and an external on the MII
578			 * connector.
579			 */
580			if (child->mii_phy > 1 || child->mii_inst > 1) {
581				aprint_error_dev(sc->sc_dev,
582				    "cannot accommodate MII device %s"
583				    " at phy %d, instance %d\n",
584				    device_xname(child->mii_dev),
585				    child->mii_phy, child->mii_inst);
586				continue;
587			}
588
589			sc->sc_phys[child->mii_inst] = child->mii_phy;
590		}
591
592		/*
593		 * XXX - we can really do the following ONLY if the
594		 * phy indeed has the auto negotiation capability!!
595		 */
596		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
597	}
598
599	/* claim 802.1q capability */
600	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
601
602	/* Attach the interface. */
603	if_attach(ifp);
604	ether_ifattach(ifp, enaddr);
605
606#if NRND > 0
607	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
608			  RND_TYPE_NET, 0);
609#endif
610
611	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
612	    NULL, device_xname(sc->sc_dev), "interrupts");
613
614	callout_init(&sc->sc_tick_ch, 0);
615
616	return;
617}
618
619int
620cas_detach(device_t self, int flags)
621{
622	int i;
623	struct cas_softc *sc = device_private(self);
624	bus_space_tag_t t = sc->sc_memt;
625	bus_space_handle_t h = sc->sc_memh;
626	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
627
628	/*
629	 * Free any resources we've allocated during the failed attach
630	 * attempt.  Do this in reverse order and fall through.
631	 */
632	switch (sc->sc_att_stage) {
633	case CAS_ATT_FINISHED:
634		bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
635		pmf_device_deregister(self);
636		cas_stop(&sc->sc_ethercom.ec_if, 1);
637		evcnt_detach(&sc->sc_ev_intr);
638
639#if NRND > 0
640		rnd_detach_source(&sc->rnd_source);
641#endif
642
643		ether_ifdetach(ifp);
644		if_detach(ifp);
645		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
646
647		callout_destroy(&sc->sc_tick_ch);
648
649		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
650
651		/*FALLTHROUGH*/
652	case CAS_ATT_MII:
653	case CAS_ATT_7:
654	case CAS_ATT_6:
655		for (i = 0; i < CAS_NTXDESC; i++) {
656			if (sc->sc_txd[i].sd_map != NULL)
657				bus_dmamap_destroy(sc->sc_dmatag,
658				    sc->sc_txd[i].sd_map);
659		}
660		/*FALLTHROUGH*/
661	case CAS_ATT_5:
662		for (i = 0; i < CAS_NRXDESC; i++) {
663			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
664				bus_dmamap_unload(sc->sc_dmatag,
665				    sc->sc_rxsoft[i].rxs_dmamap);
666			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
667				bus_dmamap_destroy(sc->sc_dmatag,
668				    sc->sc_rxsoft[i].rxs_dmamap);
669			if (sc->sc_rxsoft[i].rxs_kva != NULL)
670				bus_dmamem_unmap(sc->sc_dmatag,
671				    sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
672			/* XXX   need to check that bus_dmamem_alloc suceeded
673			if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
674			*/
675				bus_dmamem_free(sc->sc_dmatag,
676				    &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
677		}
678		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
679		/*FALLTHROUGH*/
680	case CAS_ATT_4:
681	case CAS_ATT_3:
682		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
683		/*FALLTHROUGH*/
684	case CAS_ATT_2:
685		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
686		    sizeof(struct cas_control_data));
687		/*FALLTHROUGH*/
688	case CAS_ATT_1:
689		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
690		/*FALLTHROUGH*/
691	case CAS_ATT_0:
692		sc->sc_att_stage = CAS_ATT_0;
693		/*FALLTHROUGH*/
694	case CAS_ATT_BACKEND_2:
695	case CAS_ATT_BACKEND_1:
696		if (sc->sc_ih != NULL) {
697			pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
698			sc->sc_ih = NULL;
699		}
700		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
701		/*FALLTHROUGH*/
702	case CAS_ATT_BACKEND_0:
703		break;
704	}
705	return 0;
706}
707
708static void
709cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
710{
711	cfattach_t ca = device_cfattach(sc->sc_dev);
712
713	sc->sc_att_stage = stage;
714	(*ca->ca_detach)(sc->sc_dev, 0);
715}
716
717void
718cas_tick(void *arg)
719{
720	struct cas_softc *sc = arg;
721	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
722	bus_space_tag_t t = sc->sc_memt;
723	bus_space_handle_t mac = sc->sc_memh;
724	int s;
725	u_int32_t v;
726
727	/* unload collisions counters */
728	v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
729	    bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
730	ifp->if_collisions += v +
731	    bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
732	    bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
733	ifp->if_oerrors += v;
734
735	/* read error counters */
736	ifp->if_ierrors +=
737	    bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
738	    bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
739	    bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
740	    bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
741
742	/* clear the hardware counters */
743	bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
744	bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
745	bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
746	bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
747	bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
748	bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
749	bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
750	bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
751
752	s = splnet();
753	mii_tick(&sc->sc_mii);
754	splx(s);
755
756	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
757}
758
759int
760cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
761    u_int32_t clr, u_int32_t set)
762{
763	int i;
764	u_int32_t reg;
765
766	for (i = TRIES; i--; DELAY(100)) {
767		reg = bus_space_read_4(sc->sc_memt, h, r);
768		if ((reg & clr) == 0 && (reg & set) == set)
769			return (1);
770	}
771
772	return (0);
773}
774
775void
776cas_reset(struct cas_softc *sc)
777{
778	bus_space_tag_t t = sc->sc_memt;
779	bus_space_handle_t h = sc->sc_memh;
780	int s;
781
782	s = splnet();
783	DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
784	cas_reset_rx(sc);
785	cas_reset_tx(sc);
786
787	/* Do a full reset */
788	bus_space_write_4(t, h, CAS_RESET,
789	    CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
790	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
791		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
792	splx(s);
793}
794
795
796/*
797 * cas_rxdrain:
798 *
799 *	Drain the receive queue.
800 */
801void
802cas_rxdrain(struct cas_softc *sc)
803{
804	/* Nothing to do yet. */
805}
806
807/*
808 * Reset the whole thing.
809 */
810void
811cas_stop(struct ifnet *ifp, int disable)
812{
813	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
814	struct cas_sxd *sd;
815	u_int32_t i;
816
817	DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
818
819	callout_stop(&sc->sc_tick_ch);
820
821	/*
822	 * Mark the interface down and cancel the watchdog timer.
823	 */
824	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
825	ifp->if_timer = 0;
826
827	mii_down(&sc->sc_mii);
828
829	cas_reset_rx(sc);
830	cas_reset_tx(sc);
831
832	/*
833	 * Release any queued transmit buffers.
834	 */
835	for (i = 0; i < CAS_NTXDESC; i++) {
836		sd = &sc->sc_txd[i];
837		if (sd->sd_mbuf != NULL) {
838			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
839			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
840			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
841			m_freem(sd->sd_mbuf);
842			sd->sd_mbuf = NULL;
843		}
844	}
845	sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
846
847	if (disable)
848		cas_rxdrain(sc);
849}
850
851
852/*
853 * Reset the receiver
854 */
855int
856cas_reset_rx(struct cas_softc *sc)
857{
858	bus_space_tag_t t = sc->sc_memt;
859	bus_space_handle_t h = sc->sc_memh;
860
861	/*
862	 * Resetting while DMA is in progress can cause a bus hang, so we
863	 * disable DMA first.
864	 */
865	cas_disable_rx(sc);
866	bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
867	/* Wait till it finishes */
868	if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
869		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
870	/* Wait 5ms extra. */
871	delay(5000);
872
873	/* Finally, reset the ERX */
874	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
875	/* Wait till it finishes */
876	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
877		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
878		return (1);
879	}
880	return (0);
881}
882
883
884/*
885 * Reset the transmitter
886 */
887int
888cas_reset_tx(struct cas_softc *sc)
889{
890	bus_space_tag_t t = sc->sc_memt;
891	bus_space_handle_t h = sc->sc_memh;
892
893	/*
894	 * Resetting while DMA is in progress can cause a bus hang, so we
895	 * disable DMA first.
896	 */
897	cas_disable_tx(sc);
898	bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
899	/* Wait till it finishes */
900	if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
901		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
902	/* Wait 5ms extra. */
903	delay(5000);
904
905	/* Finally, reset the ETX */
906	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
907	/* Wait till it finishes */
908	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
909		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
910		return (1);
911	}
912	return (0);
913}
914
915/*
916 * Disable receiver.
917 */
918int
919cas_disable_rx(struct cas_softc *sc)
920{
921	bus_space_tag_t t = sc->sc_memt;
922	bus_space_handle_t h = sc->sc_memh;
923	u_int32_t cfg;
924
925	/* Flip the enable bit */
926	cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
927	cfg &= ~CAS_MAC_RX_ENABLE;
928	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
929
930	/* Wait for it to finish */
931	return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
932}
933
934/*
935 * Disable transmitter.
936 */
937int
938cas_disable_tx(struct cas_softc *sc)
939{
940	bus_space_tag_t t = sc->sc_memt;
941	bus_space_handle_t h = sc->sc_memh;
942	u_int32_t cfg;
943
944	/* Flip the enable bit */
945	cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
946	cfg &= ~CAS_MAC_TX_ENABLE;
947	bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
948
949	/* Wait for it to finish */
950	return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
951}
952
953/*
954 * Initialize interface.
955 */
956int
957cas_meminit(struct cas_softc *sc)
958{
959	struct cas_rxsoft *rxs;
960	int i, error;
961
962	rxs = (void *)&error;
963
964	/*
965	 * Initialize the transmit descriptor ring.
966	 */
967	for (i = 0; i < CAS_NTXDESC; i++) {
968		sc->sc_txdescs[i].cd_flags = 0;
969		sc->sc_txdescs[i].cd_addr = 0;
970	}
971	CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
972	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
973
974	/*
975	 * Initialize the receive descriptor and receive job
976	 * descriptor rings.
977	 */
978	for (i = 0; i < CAS_NRXDESC; i++)
979		CAS_INIT_RXDESC(sc, i, i);
980	sc->sc_rxdptr = 0;
981	sc->sc_rxptr = 0;
982
983	/*
984	 * Initialize the receive completion ring.
985	 */
986	for (i = 0; i < CAS_NRXCOMP; i++) {
987		sc->sc_rxcomps[i].cc_word[0] = 0;
988		sc->sc_rxcomps[i].cc_word[1] = 0;
989		sc->sc_rxcomps[i].cc_word[2] = 0;
990		sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
991		CAS_CDRXCSYNC(sc, i,
992		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
993	}
994
995	return (0);
996}
997
998int
999cas_ringsize(int sz)
1000{
1001	switch (sz) {
1002	case 32:
1003		return CAS_RING_SZ_32;
1004	case 64:
1005		return CAS_RING_SZ_64;
1006	case 128:
1007		return CAS_RING_SZ_128;
1008	case 256:
1009		return CAS_RING_SZ_256;
1010	case 512:
1011		return CAS_RING_SZ_512;
1012	case 1024:
1013		return CAS_RING_SZ_1024;
1014	case 2048:
1015		return CAS_RING_SZ_2048;
1016	case 4096:
1017		return CAS_RING_SZ_4096;
1018	case 8192:
1019		return CAS_RING_SZ_8192;
1020	default:
1021		aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1022		    sz);
1023		return CAS_RING_SZ_32;
1024	}
1025}
1026
1027int
1028cas_cringsize(int sz)
1029{
1030	int i;
1031
1032	for (i = 0; i < 9; i++)
1033		if (sz == (128 << i))
1034			return i;
1035
1036	aprint_error("cas: invalid completion ring size %d\n", sz);
1037	return 128;
1038}
1039
1040/*
1041 * Initialization of interface; set up initialization block
1042 * and transmit/receive descriptor rings.
1043 */
1044int
1045cas_init(struct ifnet *ifp)
1046{
1047	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1048	bus_space_tag_t t = sc->sc_memt;
1049	bus_space_handle_t h = sc->sc_memh;
1050	int s;
1051	u_int max_frame_size;
1052	u_int32_t v;
1053
1054	s = splnet();
1055
1056	DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1057	/*
1058	 * Initialization sequence. The numbered steps below correspond
1059	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1060	 * Channel Engine manual (part of the PCIO manual).
1061	 * See also the STP2002-STQ document from Sun Microsystems.
1062	 */
1063
1064	/* step 1 & 2. Reset the Ethernet Channel */
1065	cas_stop(ifp, 0);
1066	cas_reset(sc);
1067	DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1068
1069	/* Re-initialize the MIF */
1070	cas_mifinit(sc);
1071
1072	/* step 3. Setup data structures in host memory */
1073	cas_meminit(sc);
1074
1075	/* step 4. TX MAC registers & counters */
1076	cas_init_regs(sc);
1077	max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1078	v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1079	bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1080
1081	/* step 5. RX MAC registers & counters */
1082	cas_iff(sc);
1083
1084	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1085	KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1086	bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1087	    (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1088	bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1089
1090	KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1091	bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1092	    (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1093	bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1094
1095	KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1096	bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1097	    (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1098	bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1099
1100	if (CAS_PLUS(sc)) {
1101		KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1102		bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1103		    (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1104		bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1105		    CAS_CDRXADDR2(sc, 0));
1106	}
1107
1108	/* step 8. Global Configuration & Interrupt Mask */
1109	cas_estintr(sc, CAS_INTR_REG);
1110
1111	/* step 9. ETX Configuration: use mostly default values */
1112
1113	/* Enable DMA */
1114	v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1115	bus_space_write_4(t, h, CAS_TX_CONFIG,
1116	    v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1117	bus_space_write_4(t, h, CAS_TX_KICK, 0);
1118
1119	/* step 10. ERX Configuration */
1120
1121	/* Encode Receive Descriptor ring size */
1122	v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1123	if (CAS_PLUS(sc))
1124		v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1125
1126	/* Encode Receive Completion ring size */
1127	v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1128
1129	/* Enable DMA */
1130	bus_space_write_4(t, h, CAS_RX_CONFIG,
1131	    v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1132
1133	/*
1134	 * The following value is for an OFF Threshold of about 3/4 full
1135	 * and an ON Threshold of 1/4 full.
1136	 */
1137	bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1138	    (3 * sc->sc_rxfifosize / 256) |
1139	    ((sc->sc_rxfifosize / 256) << 12));
1140	bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1141
1142	/* step 11. Configure Media */
1143	mii_ifmedia_change(&sc->sc_mii);
1144
1145	/* step 12. RX_MAC Configuration Register */
1146	v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1147	v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1148	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1149
1150	/* step 14. Issue Transmit Pending command */
1151
1152	/* step 15.  Give the receiver a swift kick */
1153	bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1154	if (CAS_PLUS(sc))
1155		bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1156
1157	/* Start the one second timer. */
1158	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1159
1160	ifp->if_flags |= IFF_RUNNING;
1161	ifp->if_flags &= ~IFF_OACTIVE;
1162	ifp->if_timer = 0;
1163	splx(s);
1164
1165	return (0);
1166}
1167
1168void
1169cas_init_regs(struct cas_softc *sc)
1170{
1171	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1172	bus_space_tag_t t = sc->sc_memt;
1173	bus_space_handle_t h = sc->sc_memh;
1174	const u_char *laddr = CLLADDR(ifp->if_sadl);
1175	u_int32_t v, r;
1176
1177	/* These regs are not cleared on reset */
1178	sc->sc_inited = 0;
1179	if (!sc->sc_inited) {
1180		/* Load recommended values  */
1181		bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1182		bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1183		bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1184
1185		bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1186		/* Max frame and max burst size */
1187		v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1188		bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1189
1190		bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1191		bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1192		bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1193		bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1194		bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1195		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1196
1197		/* Secondary MAC addresses set to 0:0:0:0:0:0 */
1198		for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1199			bus_space_write_4(t, h, r, 0);
1200
1201		/* MAC control addr set to 0:1:c2:0:1:80 */
1202		bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1203		bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1204		bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1205
1206		/* MAC filter addr set to 0:0:0:0:0:0 */
1207		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1208		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1209		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1210
1211		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1212		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1213
1214		/* Hash table initialized to 0 */
1215		for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1216			bus_space_write_4(t, h, r, 0);
1217
1218		sc->sc_inited = 1;
1219	}
1220
1221	/* Counters need to be zeroed */
1222	bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1223	bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1224	bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1225	bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1226	bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1227	bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1228	bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1229	bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1230	bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1231	bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1232	bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1233
1234	/* Un-pause stuff */
1235	bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1236
1237	/*
1238	 * Set the station address.
1239	 */
1240	bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1241	bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1242	bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1243}
1244
1245/*
1246 * Receive interrupt.
1247 */
1248int
1249cas_rint(struct cas_softc *sc)
1250{
1251	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1252	bus_space_tag_t t = sc->sc_memt;
1253	bus_space_handle_t h = sc->sc_memh;
1254	struct cas_rxsoft *rxs;
1255	struct mbuf *m;
1256	u_int64_t word[4];
1257	int len, off, idx;
1258	int i, skip;
1259	void *cp;
1260
1261	for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1262		CAS_CDRXCSYNC(sc, i,
1263		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1264
1265		word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1266		word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1267		word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1268		word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1269
1270		/* Stop if the hardware still owns the descriptor. */
1271		if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1272			break;
1273
1274		len = CAS_RC1_HDR_LEN(word[1]);
1275		if (len > 0) {
1276			off = CAS_RC1_HDR_OFF(word[1]);
1277			idx = CAS_RC1_HDR_IDX(word[1]);
1278			rxs = &sc->sc_rxsoft[idx];
1279
1280			DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1281			    idx, off, len));
1282
1283			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1284			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1285
1286			cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1287			m = m_devget(cp, len, 0, ifp, NULL);
1288
1289			if (word[0] & CAS_RC0_RELEASE_HDR)
1290				cas_add_rxbuf(sc, idx);
1291
1292			if (m != NULL) {
1293
1294				/*
1295				 * Pass this up to any BPF listeners, but only
1296				 * pass it up the stack if its for us.
1297				 */
1298				if (ifp->if_bpf)
1299					bpf_ops->bpf_mtap(ifp->if_bpf, m);
1300
1301				ifp->if_ipackets++;
1302				m->m_pkthdr.csum_flags = 0;
1303				(*ifp->if_input)(ifp, m);
1304			} else
1305				ifp->if_ierrors++;
1306		}
1307
1308		len = CAS_RC0_DATA_LEN(word[0]);
1309		if (len > 0) {
1310			off = CAS_RC0_DATA_OFF(word[0]);
1311			idx = CAS_RC0_DATA_IDX(word[0]);
1312			rxs = &sc->sc_rxsoft[idx];
1313
1314			DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1315			    idx, off, len));
1316
1317			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1318			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1319
1320			/* XXX We should not be copying the packet here. */
1321			cp = rxs->rxs_kva + off + ETHER_ALIGN;
1322			m = m_devget(cp, len, 0, ifp, NULL);
1323
1324			if (word[0] & CAS_RC0_RELEASE_DATA)
1325				cas_add_rxbuf(sc, idx);
1326
1327			if (m != NULL) {
1328				/*
1329				 * Pass this up to any BPF listeners, but only
1330				 * pass it up the stack if its for us.
1331				 */
1332				if (ifp->if_bpf)
1333					bpf_ops->bpf_mtap(ifp->if_bpf, m);
1334
1335				ifp->if_ipackets++;
1336				m->m_pkthdr.csum_flags = 0;
1337				(*ifp->if_input)(ifp, m);
1338			} else
1339				ifp->if_ierrors++;
1340		}
1341
1342		if (word[0] & CAS_RC0_SPLIT)
1343			aprint_error_dev(sc->sc_dev, "split packet\n");
1344
1345		skip = CAS_RC0_SKIP(word[0]);
1346	}
1347
1348	while (sc->sc_rxptr != i) {
1349		sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1350		sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1351		sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1352		sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1353		    CAS_DMA_WRITE(CAS_RC3_OWN);
1354		CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1355		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1356
1357		sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1358	}
1359
1360	bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1361
1362	DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1363		sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1364
1365	return (1);
1366}
1367
1368/*
1369 * cas_add_rxbuf:
1370 *
1371 *	Add a receive buffer to the indicated descriptor.
1372 */
1373int
1374cas_add_rxbuf(struct cas_softc *sc, int idx)
1375{
1376	bus_space_tag_t t = sc->sc_memt;
1377	bus_space_handle_t h = sc->sc_memh;
1378
1379	CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1380
1381	if ((sc->sc_rxdptr % 4) == 0)
1382		bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1383
1384	if (++sc->sc_rxdptr == CAS_NRXDESC)
1385		sc->sc_rxdptr = 0;
1386
1387	return (0);
1388}
1389
1390int
1391cas_eint(struct cas_softc *sc, u_int status)
1392{
1393	char bits[128];
1394	if ((status & CAS_INTR_MIF) != 0) {
1395		DPRINTF(sc, ("%s: link status changed\n",
1396		    device_xname(sc->sc_dev)));
1397		return (1);
1398	}
1399
1400	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1401	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1402	return (1);
1403}
1404
1405int
1406cas_pint(struct cas_softc *sc)
1407{
1408	bus_space_tag_t t = sc->sc_memt;
1409	bus_space_handle_t seb = sc->sc_memh;
1410	u_int32_t status;
1411
1412	status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1413	status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1414#ifdef CAS_DEBUG
1415	if (status)
1416		printf("%s: link status changed\n", device_xname(sc->sc_dev));
1417#endif
1418	return (1);
1419}
1420
1421int
1422cas_intr(void *v)
1423{
1424	struct cas_softc *sc = (struct cas_softc *)v;
1425	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1426	bus_space_tag_t t = sc->sc_memt;
1427	bus_space_handle_t seb = sc->sc_memh;
1428	u_int32_t status;
1429	int r = 0;
1430#ifdef CAS_DEBUG
1431	char bits[128];
1432#endif
1433
1434	sc->sc_ev_intr.ev_count++;
1435
1436	status = bus_space_read_4(t, seb, CAS_STATUS);
1437#ifdef CAS_DEBUG
1438	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1439#endif
1440	DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1441		device_xname(sc->sc_dev), (status>>19), bits));
1442
1443	if ((status & CAS_INTR_PCS) != 0)
1444		r |= cas_pint(sc);
1445
1446	if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1447	    CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1448		r |= cas_eint(sc, status);
1449
1450	if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1451		r |= cas_tint(sc, status);
1452
1453	if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1454		r |= cas_rint(sc);
1455
1456	/* We should eventually do more than just print out error stats. */
1457	if (status & CAS_INTR_TX_MAC) {
1458		int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1459#ifdef CAS_DEBUG
1460		if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1461			printf("%s: MAC tx fault, status %x\n",
1462			    device_xname(sc->sc_dev), txstat);
1463#endif
1464		if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1465			cas_init(ifp);
1466	}
1467	if (status & CAS_INTR_RX_MAC) {
1468		int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1469#ifdef CAS_DEBUG
1470		if (rxstat & ~CAS_MAC_RX_DONE)
1471			printf("%s: MAC rx fault, status %x\n",
1472			    device_xname(sc->sc_dev), rxstat);
1473#endif
1474		/*
1475		 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1476		 * due to a silicon bug so handle them silently.
1477		 */
1478		if (rxstat & CAS_MAC_RX_OVERFLOW) {
1479			ifp->if_ierrors++;
1480			cas_init(ifp);
1481		}
1482#ifdef CAS_DEBUG
1483		else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1484			printf("%s: MAC rx fault, status %x\n",
1485			    device_xname(sc->sc_dev), rxstat);
1486#endif
1487	}
1488#if NRND > 0
1489	rnd_add_uint32(&sc->rnd_source, status);
1490#endif
1491	return (r);
1492}
1493
1494
1495void
1496cas_watchdog(struct ifnet *ifp)
1497{
1498	struct cas_softc *sc = ifp->if_softc;
1499
1500	DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1501		"CAS_MAC_RX_CONFIG %x\n",
1502		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1503		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1504		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1505
1506	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1507	++ifp->if_oerrors;
1508
1509	/* Try to get more packets going. */
1510	cas_init(ifp);
1511}
1512
1513/*
1514 * Initialize the MII Management Interface
1515 */
1516void
1517cas_mifinit(struct cas_softc *sc)
1518{
1519	bus_space_tag_t t = sc->sc_memt;
1520	bus_space_handle_t mif = sc->sc_memh;
1521
1522	/* Configure the MIF in frame mode */
1523	sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1524	sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1525	bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1526}
1527
1528/*
1529 * MII interface
1530 *
1531 * The Cassini MII interface supports at least three different operating modes:
1532 *
1533 * Bitbang mode is implemented using data, clock and output enable registers.
1534 *
1535 * Frame mode is implemented by loading a complete frame into the frame
1536 * register and polling the valid bit for completion.
1537 *
1538 * Polling mode uses the frame register but completion is indicated by
1539 * an interrupt.
1540 *
1541 */
1542int
1543cas_mii_readreg(device_t self, int phy, int reg)
1544{
1545	struct cas_softc *sc = device_private(self);
1546	bus_space_tag_t t = sc->sc_memt;
1547	bus_space_handle_t mif = sc->sc_memh;
1548	int n;
1549	u_int32_t v;
1550
1551#ifdef CAS_DEBUG
1552	if (sc->sc_debug)
1553		printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1554#endif
1555
1556	/* Construct the frame command */
1557	v = (reg << CAS_MIF_REG_SHIFT)	| (phy << CAS_MIF_PHY_SHIFT) |
1558		CAS_MIF_FRAME_READ;
1559
1560	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1561	for (n = 0; n < 100; n++) {
1562		DELAY(1);
1563		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1564		if (v & CAS_MIF_FRAME_TA0)
1565			return (v & CAS_MIF_FRAME_DATA);
1566	}
1567
1568	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1569	return (0);
1570}
1571
1572void
1573cas_mii_writereg(device_t self, int phy, int reg, int val)
1574{
1575	struct cas_softc *sc = device_private(self);
1576	bus_space_tag_t t = sc->sc_memt;
1577	bus_space_handle_t mif = sc->sc_memh;
1578	int n;
1579	u_int32_t v;
1580
1581#ifdef CAS_DEBUG
1582	if (sc->sc_debug)
1583		printf("cas_mii_writereg: phy %d reg %d val %x\n",
1584			phy, reg, val);
1585#endif
1586
1587	/* Construct the frame command */
1588	v = CAS_MIF_FRAME_WRITE			|
1589	    (phy << CAS_MIF_PHY_SHIFT)		|
1590	    (reg << CAS_MIF_REG_SHIFT)		|
1591	    (val & CAS_MIF_FRAME_DATA);
1592
1593	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1594	for (n = 0; n < 100; n++) {
1595		DELAY(1);
1596		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1597		if (v & CAS_MIF_FRAME_TA0)
1598			return;
1599	}
1600
1601	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1602}
1603
1604void
1605cas_mii_statchg(device_t self)
1606{
1607	struct cas_softc *sc = device_private(self);
1608#ifdef CAS_DEBUG
1609	int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1610#endif
1611	bus_space_tag_t t = sc->sc_memt;
1612	bus_space_handle_t mac = sc->sc_memh;
1613	u_int32_t v;
1614
1615#ifdef CAS_DEBUG
1616	if (sc->sc_debug)
1617		printf("cas_mii_statchg: status change: phy = %d\n",
1618		    sc->sc_phys[instance]);
1619#endif
1620
1621	/* Set tx full duplex options */
1622	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1623	delay(10000); /* reg must be cleared and delay before changing. */
1624	v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1625		CAS_MAC_TX_ENABLE;
1626	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1627		v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1628	}
1629	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1630
1631	/* XIF Configuration */
1632	v = CAS_MAC_XIF_TX_MII_ENA;
1633	v |= CAS_MAC_XIF_LINK_LED;
1634
1635	/* MII needs echo disable if half duplex. */
1636	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1637		/* turn on full duplex LED */
1638		v |= CAS_MAC_XIF_FDPLX_LED;
1639	else
1640		/* half duplex -- disable echo */
1641		v |= CAS_MAC_XIF_ECHO_DISABL;
1642
1643	switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1644	case IFM_1000_T:  /* Gigabit using GMII interface */
1645	case IFM_1000_SX:
1646		v |= CAS_MAC_XIF_GMII_MODE;
1647		break;
1648	default:
1649		v &= ~CAS_MAC_XIF_GMII_MODE;
1650	}
1651	bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1652}
1653
1654int
1655cas_pcs_readreg(device_t self, int phy, int reg)
1656{
1657	struct cas_softc *sc = device_private(self);
1658	bus_space_tag_t t = sc->sc_memt;
1659	bus_space_handle_t pcs = sc->sc_memh;
1660
1661#ifdef CAS_DEBUG
1662	if (sc->sc_debug)
1663		printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1664#endif
1665
1666	if (phy != CAS_PHYAD_EXTERNAL)
1667		return (0);
1668
1669	switch (reg) {
1670	case MII_BMCR:
1671		reg = CAS_MII_CONTROL;
1672		break;
1673	case MII_BMSR:
1674		reg = CAS_MII_STATUS;
1675		break;
1676	case MII_ANAR:
1677		reg = CAS_MII_ANAR;
1678		break;
1679	case MII_ANLPAR:
1680		reg = CAS_MII_ANLPAR;
1681		break;
1682	case MII_EXTSR:
1683		return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1684	default:
1685		return (0);
1686	}
1687
1688	return bus_space_read_4(t, pcs, reg);
1689}
1690
1691void
1692cas_pcs_writereg(device_t self, int phy, int reg, int val)
1693{
1694	struct cas_softc *sc = device_private(self);
1695	bus_space_tag_t t = sc->sc_memt;
1696	bus_space_handle_t pcs = sc->sc_memh;
1697	int reset = 0;
1698
1699#ifdef CAS_DEBUG
1700	if (sc->sc_debug)
1701		printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1702			phy, reg, val);
1703#endif
1704
1705	if (phy != CAS_PHYAD_EXTERNAL)
1706		return;
1707
1708	if (reg == MII_ANAR)
1709		bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1710
1711	switch (reg) {
1712	case MII_BMCR:
1713		reset = (val & CAS_MII_CONTROL_RESET);
1714		reg = CAS_MII_CONTROL;
1715		break;
1716	case MII_BMSR:
1717		reg = CAS_MII_STATUS;
1718		break;
1719	case MII_ANAR:
1720		reg = CAS_MII_ANAR;
1721		break;
1722	case MII_ANLPAR:
1723		reg = CAS_MII_ANLPAR;
1724		break;
1725	default:
1726		return;
1727	}
1728
1729	bus_space_write_4(t, pcs, reg, val);
1730
1731	if (reset)
1732		cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1733
1734	if (reg == CAS_MII_ANAR || reset)
1735		bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1736		    CAS_MII_CONFIG_ENABLE);
1737}
1738
1739int
1740cas_mediachange(struct ifnet *ifp)
1741{
1742	struct cas_softc *sc = ifp->if_softc;
1743	struct mii_data *mii = &sc->sc_mii;
1744
1745	if (mii->mii_instance) {
1746		struct mii_softc *miisc;
1747		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1748			mii_phy_reset(miisc);
1749	}
1750
1751	return (mii_mediachg(&sc->sc_mii));
1752}
1753
1754void
1755cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1756{
1757	struct cas_softc *sc = ifp->if_softc;
1758
1759	mii_pollstat(&sc->sc_mii);
1760	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1761	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1762}
1763
1764/*
1765 * Process an ioctl request.
1766 */
1767int
1768cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1769{
1770	struct cas_softc *sc = ifp->if_softc;
1771	int s, error = 0;
1772
1773	s = splnet();
1774
1775	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1776		error = 0;
1777		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1778			;
1779		else if (ifp->if_flags & IFF_RUNNING) {
1780			/*
1781			 * Multicast list has changed; set the hardware filter
1782			 * accordingly.
1783			 */
1784			cas_iff(sc);
1785		}
1786	}
1787
1788	splx(s);
1789	return (error);
1790}
1791
1792static bool
1793cas_suspend(device_t self, const pmf_qual_t *qual)
1794{
1795	struct cas_softc *sc = device_private(self);
1796	bus_space_tag_t t = sc->sc_memt;
1797	bus_space_handle_t h = sc->sc_memh;
1798
1799	bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1800	if (sc->sc_ih != NULL) {
1801		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1802		sc->sc_ih = NULL;
1803	}
1804
1805	return true;
1806}
1807
1808static bool
1809cas_resume(device_t self, const pmf_qual_t *qual)
1810{
1811	struct cas_softc *sc = device_private(self);
1812
1813	return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1814}
1815
1816static bool
1817cas_estintr(struct cas_softc *sc, int what)
1818{
1819	bus_space_tag_t t = sc->sc_memt;
1820	bus_space_handle_t h = sc->sc_memh;
1821	const char *intrstr = NULL;
1822
1823	/* PCI interrupts */
1824	if (what & CAS_INTR_PCI) {
1825		intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle);
1826		sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1827		    IPL_NET, cas_intr, sc);
1828		if (sc->sc_ih == NULL) {
1829			aprint_error_dev(sc->sc_dev,
1830			    "unable to establish interrupt");
1831			if (intrstr != NULL)
1832				aprint_error(" at %s", intrstr);
1833			aprint_error("\n");
1834			return false;
1835		}
1836
1837		aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1838	}
1839
1840	/* Interrupt register */
1841	if (what & CAS_INTR_REG) {
1842		bus_space_write_4(t, h, CAS_INTMASK,
1843		    ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1844		    CAS_INTR_TX_TAG_ERR|
1845		    CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1846		    CAS_INTR_RX_TAG_ERR|
1847		    CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1848		    CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1849		    CAS_INTR_BERR));
1850		bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1851		    CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1852		bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1853		bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1854	}
1855	return true;
1856}
1857
1858bool
1859cas_shutdown(device_t self, int howto)
1860{
1861	struct cas_softc *sc = device_private(self);
1862	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1863
1864	cas_stop(ifp, 1);
1865
1866	return true;
1867}
1868
1869void
1870cas_iff(struct cas_softc *sc)
1871{
1872	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1873	struct ethercom *ec = &sc->sc_ethercom;
1874	struct ether_multi *enm;
1875	struct ether_multistep step;
1876	bus_space_tag_t t = sc->sc_memt;
1877	bus_space_handle_t h = sc->sc_memh;
1878	u_int32_t crc, hash[16], rxcfg;
1879	int i;
1880
1881	rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1882	rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1883	    CAS_MAC_RX_PROMISC_GRP);
1884	ifp->if_flags &= ~IFF_ALLMULTI;
1885
1886	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1887		ifp->if_flags |= IFF_ALLMULTI;
1888		if (ifp->if_flags & IFF_PROMISC)
1889			rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1890		else
1891			rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1892        } else {
1893		/*
1894		 * Set up multicast address filter by passing all multicast
1895		 * addresses through a crc generator, and then using the
1896		 * high order 8 bits as an index into the 256 bit logical
1897		 * address filter.  The high order 4 bits selects the word,
1898		 * while the other 4 bits select the bit within the word
1899		 * (where bit 0 is the MSB).
1900		 */
1901
1902		rxcfg |= CAS_MAC_RX_HASH_FILTER;
1903
1904		/* Clear hash table */
1905		for (i = 0; i < 16; i++)
1906			hash[i] = 0;
1907
1908		ETHER_FIRST_MULTI(step, ec, enm);
1909		while (enm != NULL) {
1910                        crc = ether_crc32_le(enm->enm_addrlo,
1911                            ETHER_ADDR_LEN);
1912
1913                        /* Just want the 8 most significant bits. */
1914                        crc >>= 24;
1915
1916                        /* Set the corresponding bit in the filter. */
1917                        hash[crc >> 4] |= 1 << (15 - (crc & 15));
1918
1919			ETHER_NEXT_MULTI(step, enm);
1920		}
1921
1922		/* Now load the hash table into the chip (if we are using it) */
1923		for (i = 0; i < 16; i++) {
1924			bus_space_write_4(t, h,
1925			    CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1926			    hash[i]);
1927		}
1928	}
1929
1930	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1931}
1932
1933int
1934cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1935{
1936	u_int64_t flags;
1937	u_int32_t cur, frag, i;
1938	bus_dmamap_t map;
1939
1940	cur = frag = *bixp;
1941	map = sc->sc_txd[cur].sd_map;
1942
1943	if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1944	    BUS_DMA_NOWAIT) != 0) {
1945		return (ENOBUFS);
1946	}
1947
1948	if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1949		bus_dmamap_unload(sc->sc_dmatag, map);
1950		return (ENOBUFS);
1951	}
1952
1953	bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1954	    BUS_DMASYNC_PREWRITE);
1955
1956	for (i = 0; i < map->dm_nsegs; i++) {
1957		sc->sc_txdescs[frag].cd_addr =
1958		    CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1959		flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1960		    (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1961		    ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1962		sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1963		bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1964		    CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1965		    BUS_DMASYNC_PREWRITE);
1966		cur = frag;
1967		if (++frag == CAS_NTXDESC)
1968			frag = 0;
1969	}
1970
1971	sc->sc_tx_cnt += map->dm_nsegs;
1972	sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1973	sc->sc_txd[cur].sd_map = map;
1974	sc->sc_txd[cur].sd_mbuf = mhead;
1975
1976	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1977
1978	*bixp = frag;
1979
1980	/* sync descriptors */
1981
1982	return (0);
1983}
1984
1985/*
1986 * Transmit interrupt.
1987 */
1988int
1989cas_tint(struct cas_softc *sc, u_int32_t status)
1990{
1991	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1992	struct cas_sxd *sd;
1993	u_int32_t cons, comp;
1994
1995	comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
1996	cons = sc->sc_tx_cons;
1997	while (cons != comp) {
1998		sd = &sc->sc_txd[cons];
1999		if (sd->sd_mbuf != NULL) {
2000			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2001			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2002			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2003			m_freem(sd->sd_mbuf);
2004			sd->sd_mbuf = NULL;
2005			ifp->if_opackets++;
2006		}
2007		sc->sc_tx_cnt--;
2008		if (++cons == CAS_NTXDESC)
2009			cons = 0;
2010	}
2011	sc->sc_tx_cons = cons;
2012
2013	if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2014		ifp->if_flags &= ~IFF_OACTIVE;
2015	if (sc->sc_tx_cnt == 0)
2016		ifp->if_timer = 0;
2017
2018	cas_start(ifp);
2019
2020	return (1);
2021}
2022
2023void
2024cas_start(struct ifnet *ifp)
2025{
2026	struct cas_softc *sc = ifp->if_softc;
2027	struct mbuf *m;
2028	u_int32_t bix;
2029
2030	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2031		return;
2032
2033	bix = sc->sc_tx_prod;
2034	while (sc->sc_txd[bix].sd_mbuf == NULL) {
2035		IFQ_POLL(&ifp->if_snd, m);
2036		if (m == NULL)
2037			break;
2038
2039		/*
2040		 * If BPF is listening on this interface, let it see the
2041		 * packet before we commit it to the wire.
2042		 */
2043		if (ifp->if_bpf)
2044			bpf_ops->bpf_mtap(ifp->if_bpf, m);
2045
2046		/*
2047		 * Encapsulate this packet and start it going...
2048		 * or fail...
2049		 */
2050		if (cas_encap(sc, m, &bix)) {
2051			ifp->if_flags |= IFF_OACTIVE;
2052			break;
2053		}
2054
2055		IFQ_DEQUEUE(&ifp->if_snd, m);
2056		ifp->if_timer = 5;
2057	}
2058
2059	sc->sc_tx_prod = bix;
2060}
2061