if_cas.c revision 1.46
1/*	$NetBSD: if_cas.c,v 1.46 2021/05/30 00:17:20 joerg Exp $	*/
2/*	$OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $	*/
3
4/*
5 *
6 * Copyright (C) 2007 Mark Kettenis.
7 * Copyright (C) 2001 Eduardo Horvath.
8 * All rights reserved.
9 *
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34/*
35 * Driver for Sun Cassini ethernet controllers.
36 *
37 * There are basically two variants of this chip: Cassini and
38 * Cassini+.  We can distinguish between the two by revision: 0x10 and
39 * up are Cassini+.  The most important difference is that Cassini+
40 * has a second RX descriptor ring.  Cassini+ will not work without
41 * configuring that second ring.  However, since we don't use it we
42 * don't actually fill the descriptors, and only hand off the first
43 * four to the chip.
44 */
45
46#include <sys/cdefs.h>
47__KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.46 2021/05/30 00:17:20 joerg Exp $");
48
49#ifndef _MODULE
50#include "opt_inet.h"
51#endif
52
53#include <sys/param.h>
54#include <sys/systm.h>
55#include <sys/callout.h>
56#include <sys/mbuf.h>
57#include <sys/syslog.h>
58#include <sys/malloc.h>
59#include <sys/kernel.h>
60#include <sys/socket.h>
61#include <sys/ioctl.h>
62#include <sys/errno.h>
63#include <sys/device.h>
64#include <sys/module.h>
65
66#include <machine/endian.h>
67
68#include <net/if.h>
69#include <net/if_dl.h>
70#include <net/if_media.h>
71#include <net/if_ether.h>
72
73#ifdef INET
74#include <netinet/in.h>
75#include <netinet/in_systm.h>
76#include <netinet/in_var.h>
77#include <netinet/ip.h>
78#include <netinet/tcp.h>
79#include <netinet/udp.h>
80#endif
81
82#include <net/bpf.h>
83
84#include <sys/bus.h>
85#include <sys/intr.h>
86#include <sys/rndsource.h>
87
88#include <dev/mii/mii.h>
89#include <dev/mii/miivar.h>
90#include <dev/mii/mii_bitbang.h>
91
92#include <dev/pci/pcivar.h>
93#include <dev/pci/pcireg.h>
94#include <dev/pci/pcidevs.h>
95#include <prop/proplib.h>
96
97#include <dev/pci/if_casreg.h>
98#include <dev/pci/if_casvar.h>
99
100#define TRIES	10000
101
102static bool	cas_estintr(struct cas_softc *sc, int);
103bool		cas_shutdown(device_t, int);
104static bool	cas_suspend(device_t, const pmf_qual_t *);
105static bool	cas_resume(device_t, const pmf_qual_t *);
106static int	cas_detach(device_t, int);
107static void	cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
108
109int		cas_match(device_t, cfdata_t, void *);
110void		cas_attach(device_t, device_t, void *);
111
112
113CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
114    cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
115    DVF_DETACH_SHUTDOWN);
116
117int	cas_pci_readvpd(struct cas_softc *, struct pci_attach_args *, uint8_t *);
118
119void		cas_config(struct cas_softc *, const uint8_t *);
120void		cas_start(struct ifnet *);
121void		cas_stop(struct ifnet *, int);
122int		cas_ioctl(struct ifnet *, u_long, void *);
123void		cas_tick(void *);
124void		cas_watchdog(struct ifnet *);
125int		cas_init(struct ifnet *);
126void		cas_init_regs(struct cas_softc *);
127int		cas_ringsize(int);
128int		cas_cringsize(int);
129int		cas_meminit(struct cas_softc *);
130void		cas_mifinit(struct cas_softc *);
131int		cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
132		    uint32_t, uint32_t);
133void		cas_reset(struct cas_softc *);
134int		cas_reset_rx(struct cas_softc *);
135int		cas_reset_tx(struct cas_softc *);
136int		cas_disable_rx(struct cas_softc *);
137int		cas_disable_tx(struct cas_softc *);
138void		cas_rxdrain(struct cas_softc *);
139int		cas_add_rxbuf(struct cas_softc *, int);
140void		cas_iff(struct cas_softc *);
141int		cas_encap(struct cas_softc *, struct mbuf *, uint32_t *);
142
143/* MII methods & callbacks */
144int		cas_mii_readreg(device_t, int, int, uint16_t*);
145int		cas_mii_writereg(device_t, int, int, uint16_t);
146void		cas_mii_statchg(struct ifnet *);
147int		cas_pcs_readreg(device_t, int, int, uint16_t *);
148int		cas_pcs_writereg(device_t, int, int, uint16_t);
149
150int		cas_mediachange(struct ifnet *);
151void		cas_mediastatus(struct ifnet *, struct ifmediareq *);
152
153int		cas_eint(struct cas_softc *, u_int);
154int		cas_rint(struct cas_softc *);
155int		cas_tint(struct cas_softc *, uint32_t);
156int		cas_pint(struct cas_softc *);
157int		cas_intr(void *);
158
159#ifdef CAS_DEBUG
160#define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
161				printf x
162#else
163#define	DPRINTF(sc, x)	/* nothing */
164#endif
165
166static const struct device_compatible_entry compat_data[] = {
167	{ .id = PCI_ID_CODE(PCI_VENDOR_SUN,
168		PCI_PRODUCT_SUN_CASSINI),
169	  .value = CAS_CAS },
170
171	{ .id = PCI_ID_CODE(PCI_VENDOR_NS,
172		PCI_PRODUCT_NS_SATURN),
173	  .value = CAS_SATURN },
174
175	PCI_COMPAT_EOL
176};
177
178#define	CAS_LOCAL_MAC_ADDRESS	"local-mac-address"
179#define	CAS_PHY_INTERFACE	"phy-interface"
180#define	CAS_PHY_TYPE		"phy-type"
181#define	CAS_PHY_TYPE_PCS	"pcs"
182
183int
184cas_match(device_t parent, cfdata_t cf, void *aux)
185{
186	struct pci_attach_args *pa = aux;
187
188	return pci_compatible_match(pa, compat_data);
189}
190
191#define	PROMHDR_PTR_DATA	0x18
192#define	PROMDATA_PTR_VPD	0x08
193#define	PROMDATA_DATA2		0x0a
194
195static const uint8_t cas_promhdr[] = { 0x55, 0xaa };
196static const uint8_t cas_promdat[] = {
197	'P', 'C', 'I', 'R',
198	PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
199	PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
200};
201static const uint8_t cas_promdat_ns[] = {
202	'P', 'C', 'I', 'R',
203	PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
204	PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
205};
206
207static const uint8_t cas_promdat2[] = {
208	0x18, 0x00,			/* structure length */
209	0x00,				/* structure revision */
210	0x00,				/* interface revision */
211	PCI_SUBCLASS_NETWORK_ETHERNET,	/* subclass code */
212	PCI_CLASS_NETWORK		/* class code */
213};
214
215#define CAS_LMA_MAXNUM	4
216int
217cas_pci_readvpd(struct cas_softc *sc, struct pci_attach_args *pa,
218    uint8_t *enaddr)
219{
220	struct pci_vpd_largeres *res;
221	struct pci_vpd *vpd;
222	bus_space_handle_t romh;
223	bus_space_tag_t romt;
224	bus_size_t romsize = 0;
225	uint8_t enaddrs[CAS_LMA_MAXNUM][ETHER_ADDR_LEN];
226	bool pcs[4] = {false, false, false, false};
227	uint8_t buf[32], *desc;
228	pcireg_t address;
229	int dataoff, vpdoff, len, lma = 0, phy = 0;
230	int i, rv = -1;
231
232	if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
233	    &romt, &romh, NULL, &romsize))
234		return (-1);
235
236	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
237	address |= PCI_MAPREG_ROM_ENABLE;
238	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
239
240	bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
241	if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
242		goto fail;
243
244	dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
245	if (dataoff < 0x1c)
246		goto fail;
247
248	bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
249	if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
250	     bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
251	    bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
252		goto fail;
253
254	vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
255	if (vpdoff < 0x1c)
256		goto fail;
257
258next:
259	bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
260	if (!PCI_VPDRES_ISLARGE(buf[0]))
261		goto fail;
262
263	res = (struct pci_vpd_largeres *)buf;
264	vpdoff += sizeof(*res);
265
266	len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
267	switch (PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
268	case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
269		/* Skip identifier string. */
270		vpdoff += len;
271		goto next;
272
273	case PCI_VPDRES_TYPE_VPD:
274#ifdef CAS_DEBUG
275	printf("\n");
276	for (i = 0; i < len; i++) {
277		uint8_t byte;
278		if (i % 16 == 0)
279			printf("%04x :", i);
280		byte = bus_space_read_1(romt, romh, vpdoff + i);
281		printf(" %02x", byte);
282		if (i % 16 == 15)
283			printf("\n");
284	}
285	printf("\n");
286#endif
287
288		while (len > 0) {
289			bus_space_read_region_1(romt, romh, vpdoff,
290			     buf, sizeof(buf));
291
292			vpd = (struct pci_vpd *)buf;
293			vpdoff += sizeof(*vpd) + vpd->vpd_len;
294			len -= sizeof(*vpd) + vpd->vpd_len;
295
296			/*
297			 * We're looking for an "Enhanced" VPD...
298			 */
299			if (vpd->vpd_key0 != 'Z')
300				continue;
301
302			desc = buf + sizeof(*vpd);
303
304			/*
305			 * ...which is an instance property...
306			 */
307			if (desc[0] != 'I')
308				continue;
309			desc += 3;
310
311			if (desc[0] == 'B' || desc[1] == ETHER_ADDR_LEN) {
312				/*
313				 * ...that's a byte array with the proper
314				 * length for a MAC address...
315				 */
316				desc += 2;
317
318				/*
319				 * ...named "local-mac-address".
320				 */
321				if (strcmp(desc, CAS_LOCAL_MAC_ADDRESS) != 0)
322					continue;
323				desc += sizeof(CAS_LOCAL_MAC_ADDRESS);
324
325				if (lma == CAS_LMA_MAXNUM)
326					continue;
327
328				memcpy(enaddrs[lma], desc, ETHER_ADDR_LEN);
329				lma++;
330				rv = 0;
331				continue;
332			} else if (desc[0] == 'S') {
333				size_t k;
334
335				/* String */
336				desc += 2;
337#ifdef CAS_DEBUG
338				/* ...named "pcs". */
339				printf("STR: \"%s\"\n", desc);
340				if (strcmp(desc, CAS_PHY_TYPE_PCS) != 0)
341					continue;
342				desc += sizeof(CAS_PHY_TYPE_PCS);
343				printf("STR: \"%s\"\n", desc);
344#endif
345				/* ...named "phy-interface" or "phy-type". */
346				if (strcmp(desc, CAS_PHY_INTERFACE) == 0)
347					k = sizeof(CAS_PHY_INTERFACE);
348				else if (strcmp(desc, CAS_PHY_TYPE) == 0)
349					k = sizeof(CAS_PHY_TYPE);
350				else
351					continue;
352
353				desc += k;
354#ifdef CAS_DEBUG
355				printf("STR: \"%s\"\n", desc);
356#endif
357				if (strcmp(desc, CAS_PHY_TYPE_PCS) == 0)
358					pcs[phy] = true;
359				phy++;
360				continue;
361			}
362		}
363		break;
364
365	default:
366		goto fail;
367	}
368
369	/*
370	 * Multi port card has bridge chip. The device number is fixed:
371	 * e.g.
372	 * p0: 005:00:0
373	 * p1: 005:01:0
374	 * p2: 006:02:0
375	 * p3: 006:03:0
376	 */
377	if (enaddr != 0) {
378		i = 0;
379		if ((lma > 1) && (pa->pa_device < CAS_LMA_MAXNUM)
380		    && (pa->pa_device < lma))
381			i = pa->pa_device;
382		memcpy(enaddr, enaddrs[i], ETHER_ADDR_LEN);
383	}
384	if (pcs[pa->pa_device])
385		sc->sc_flags |= CAS_SERDES;
386 fail:
387	if (romsize != 0)
388		bus_space_unmap(romt, romh, romsize);
389
390	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
391	address &= ~PCI_MAPREG_ROM_ENABLE;
392	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
393
394	return (rv);
395}
396
397void
398cas_attach(device_t parent, device_t self, void *aux)
399{
400	struct pci_attach_args *pa = aux;
401	const struct device_compatible_entry *dce;
402	struct cas_softc *sc = device_private(self);
403	prop_data_t data;
404	uint8_t enaddr[ETHER_ADDR_LEN];
405
406	sc->sc_dev = self;
407	pci_aprint_devinfo(pa, NULL);
408	sc->sc_rev = PCI_REVISION(pa->pa_class);
409
410	if (pci_dma64_available(pa))
411		sc->sc_dmatag = pa->pa_dmat64;
412	else
413		sc->sc_dmatag = pa->pa_dmat;
414
415	dce = pci_compatible_lookup(pa, compat_data);
416	KASSERT(dce != NULL);
417	sc->sc_variant = (u_int)dce->value;
418
419	aprint_debug_dev(sc->sc_dev, "variant = %d\n", sc->sc_variant);
420
421#define PCI_CAS_BASEADDR	0x10
422	if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
423	    &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
424		aprint_error_dev(sc->sc_dev,
425		    "unable to map device registers\n");
426		return;
427	}
428
429	if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
430	    "mac-address")) != NULL)
431		memcpy(enaddr, prop_data_value(data), ETHER_ADDR_LEN);
432	if (cas_pci_readvpd(sc, pa, (data == NULL) ? enaddr : 0) != 0) {
433		aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
434		memset(enaddr, 0, sizeof(enaddr));
435	}
436
437	sc->sc_burst = 16;	/* XXX */
438
439	sc->sc_att_stage = CAS_ATT_BACKEND_0;
440
441	if (pci_intr_map(pa, &sc->sc_handle) != 0) {
442		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
443		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
444		return;
445	}
446	sc->sc_pc = pa->pa_pc;
447	if (!cas_estintr(sc, CAS_INTR_PCI)) {
448		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
449		aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
450		return;
451	}
452
453	sc->sc_att_stage = CAS_ATT_BACKEND_1;
454
455	/*
456	 * call the main configure
457	 */
458	cas_config(sc, enaddr);
459
460	if (pmf_device_register1(sc->sc_dev,
461	    cas_suspend, cas_resume, cas_shutdown))
462		pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
463	else
464		aprint_error_dev(sc->sc_dev,
465		    "could not establish power handlers\n");
466
467	sc->sc_att_stage = CAS_ATT_FINISHED;
468		/*FALLTHROUGH*/
469}
470
471/*
472 * cas_config:
473 *
474 *	Attach a Cassini interface to the system.
475 */
476void
477cas_config(struct cas_softc *sc, const uint8_t *enaddr)
478{
479	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
480	struct mii_data *mii = &sc->sc_mii;
481	struct mii_softc *child;
482	uint32_t reg;
483	int i, error;
484
485	/* Make sure the chip is stopped. */
486	ifp->if_softc = sc;
487	cas_reset(sc);
488
489	/*
490	 * Allocate the control data structures, and create and load the
491	 * DMA map for it.
492	 */
493	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
494	    sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
495	    1, &sc->sc_cdnseg, 0)) != 0) {
496		aprint_error_dev(sc->sc_dev,
497		    "unable to allocate control data, error = %d\n",
498		    error);
499		cas_partial_detach(sc, CAS_ATT_0);
500	}
501
502	/* XXX should map this in with correct endianness */
503	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg,
504	    sc->sc_cdnseg, sizeof(struct cas_control_data),
505	    (void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) {
506		aprint_error_dev(sc->sc_dev,
507		    "unable to map control data, error = %d\n", error);
508		cas_partial_detach(sc, CAS_ATT_1);
509	}
510
511	if ((error = bus_dmamap_create(sc->sc_dmatag,
512	    sizeof(struct cas_control_data), 1,
513	    sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
514		aprint_error_dev(sc->sc_dev,
515		    "unable to create control data DMA map, error = %d\n",
516		    error);
517		cas_partial_detach(sc, CAS_ATT_2);
518	}
519
520	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
521	    sc->sc_control_data, sizeof(struct cas_control_data), NULL,
522	    0)) != 0) {
523		aprint_error_dev(sc->sc_dev,
524		    "unable to load control data DMA map, error = %d\n",
525		    error);
526		cas_partial_detach(sc, CAS_ATT_3);
527	}
528
529	memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
530
531	/*
532	 * Create the receive buffer DMA maps.
533	 */
534	for (i = 0; i < CAS_NRXDESC; i++) {
535		bus_dma_segment_t seg;
536		char *kva;
537		int rseg;
538
539		if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
540		    CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
541			aprint_error_dev(sc->sc_dev,
542			    "unable to alloc rx DMA mem %d, error = %d\n",
543			    i, error);
544			cas_partial_detach(sc, CAS_ATT_5);
545		}
546		sc->sc_rxsoft[i].rxs_dmaseg = seg;
547
548		if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
549		    CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
550			aprint_error_dev(sc->sc_dev,
551			    "unable to alloc rx DMA mem %d, error = %d\n",
552			    i, error);
553			cas_partial_detach(sc, CAS_ATT_5);
554		}
555		sc->sc_rxsoft[i].rxs_kva = kva;
556
557		if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
558		    CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
559			aprint_error_dev(sc->sc_dev,
560			    "unable to create rx DMA map %d, error = %d\n",
561			    i, error);
562			cas_partial_detach(sc, CAS_ATT_5);
563		}
564
565		if ((error = bus_dmamap_load(sc->sc_dmatag,
566		   sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
567		   BUS_DMA_NOWAIT)) != 0) {
568			aprint_error_dev(sc->sc_dev,
569			    "unable to load rx DMA map %d, error = %d\n",
570			    i, error);
571			cas_partial_detach(sc, CAS_ATT_5);
572		}
573	}
574
575	/*
576	 * Create the transmit buffer DMA maps.
577	 */
578	for (i = 0; i < CAS_NTXDESC; i++) {
579		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
580		    CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
581		    &sc->sc_txd[i].sd_map)) != 0) {
582			aprint_error_dev(sc->sc_dev,
583			    "unable to create tx DMA map %d, error = %d\n",
584			    i, error);
585			cas_partial_detach(sc, CAS_ATT_6);
586		}
587		sc->sc_txd[i].sd_mbuf = NULL;
588	}
589
590	/*
591	 * From this point forward, the attachment cannot fail.  A failure
592	 * before this point releases all resources that may have been
593	 * allocated.
594	 */
595
596	/* Announce ourselves. */
597	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
598	    ether_sprintf(enaddr));
599	aprint_naive(": Ethernet controller\n");
600
601	/* Get RX FIFO size */
602	sc->sc_rxfifosize = 16 * 1024;
603
604	/* Initialize ifnet structure. */
605	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
606	ifp->if_softc = sc;
607	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
608	ifp->if_start = cas_start;
609	ifp->if_ioctl = cas_ioctl;
610	ifp->if_watchdog = cas_watchdog;
611	ifp->if_stop = cas_stop;
612	ifp->if_init = cas_init;
613	IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
614	IFQ_SET_READY(&ifp->if_snd);
615
616	/* Initialize ifmedia structures and MII info */
617	mii->mii_ifp = ifp;
618	mii->mii_readreg = cas_mii_readreg;
619	mii->mii_writereg = cas_mii_writereg;
620	mii->mii_statchg = cas_mii_statchg;
621
622	ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
623	sc->sc_ethercom.ec_mii = mii;
624
625	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
626
627	cas_mifinit(sc);
628
629	if (sc->sc_mif_config & (CAS_MIF_CONFIG_MDI1 | CAS_MIF_CONFIG_MDI0)) {
630		if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
631			sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
632			bus_space_write_4(sc->sc_memt, sc->sc_memh,
633			    CAS_MIF_CONFIG, sc->sc_mif_config);
634		}
635		/* Enable/unfreeze the GMII pins of Saturn. */
636		if (sc->sc_variant == CAS_SATURN) {
637			reg = bus_space_read_4(sc->sc_memt, sc->sc_memh,
638			    CAS_SATURN_PCFG) & ~CAS_SATURN_PCFG_FSI;
639			if ((sc->sc_mif_config & CAS_MIF_CONFIG_MDI0) != 0)
640				reg |= CAS_SATURN_PCFG_FSI;
641			bus_space_write_4(sc->sc_memt, sc->sc_memh,
642			    CAS_SATURN_PCFG, reg);
643			/* Read to flush */
644			bus_space_read_4(sc->sc_memt, sc->sc_memh,
645			    CAS_SATURN_PCFG);
646			DELAY(10000);
647		}
648	}
649
650	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
651	    MII_OFFSET_ANY, 0);
652
653	child = LIST_FIRST(&mii->mii_phys);
654	if (child == NULL &&
655	    sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0 | CAS_MIF_CONFIG_MDI1)) {
656		/*
657		 * Try the external PCS SERDES if we didn't find any
658		 * MII devices.
659		 */
660		bus_space_write_4(sc->sc_memt, sc->sc_memh,
661		    CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
662
663		bus_space_write_4(sc->sc_memt, sc->sc_memh,
664		     CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
665
666		mii->mii_readreg = cas_pcs_readreg;
667		mii->mii_writereg = cas_pcs_writereg;
668
669		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
670		    MII_OFFSET_ANY, MIIF_NOISOLATE);
671	}
672
673	child = LIST_FIRST(&mii->mii_phys);
674	if (child == NULL) {
675		/* No PHY attached */
676		ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
677		ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_MANUAL);
678	} else {
679		/*
680		 * Walk along the list of attached MII devices and
681		 * establish an `MII instance' to `phy number'
682		 * mapping. We'll use this mapping in media change
683		 * requests to determine which phy to use to program
684		 * the MIF configuration register.
685		 */
686		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
687			/*
688			 * Note: we support just two PHYs: the built-in
689			 * internal device and an external on the MII
690			 * connector.
691			 */
692			if (child->mii_phy > 1 || child->mii_inst > 1) {
693				aprint_error_dev(sc->sc_dev,
694				    "cannot accommodate MII device %s"
695				    " at phy %d, instance %d\n",
696				    device_xname(child->mii_dev),
697				    child->mii_phy, child->mii_inst);
698				continue;
699			}
700
701			sc->sc_phys[child->mii_inst] = child->mii_phy;
702		}
703
704		/*
705		 * XXX - we can really do the following ONLY if the
706		 * phy indeed has the auto negotiation capability!!
707		 */
708		ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
709	}
710
711	/* claim 802.1q capability */
712	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
713
714	/* Attach the interface. */
715	if_attach(ifp);
716	if_deferred_start_init(ifp, NULL);
717	ether_ifattach(ifp, enaddr);
718
719	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
720			  RND_TYPE_NET, RND_FLAG_DEFAULT);
721
722	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
723	    NULL, device_xname(sc->sc_dev), "interrupts");
724
725	callout_init(&sc->sc_tick_ch, 0);
726	callout_setfunc(&sc->sc_tick_ch, cas_tick, sc);
727
728	return;
729}
730
731int
732cas_detach(device_t self, int flags)
733{
734	int i;
735	struct cas_softc *sc = device_private(self);
736	bus_space_tag_t t = sc->sc_memt;
737	bus_space_handle_t h = sc->sc_memh;
738	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
739
740	/*
741	 * Free any resources we've allocated during the failed attach
742	 * attempt.  Do this in reverse order and fall through.
743	 */
744	switch (sc->sc_att_stage) {
745	case CAS_ATT_FINISHED:
746		bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
747		pmf_device_deregister(self);
748		cas_stop(&sc->sc_ethercom.ec_if, 1);
749		evcnt_detach(&sc->sc_ev_intr);
750
751		rnd_detach_source(&sc->rnd_source);
752
753		ether_ifdetach(ifp);
754		if_detach(ifp);
755
756		callout_destroy(&sc->sc_tick_ch);
757
758		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
759
760		ifmedia_fini(&sc->sc_mii.mii_media);
761
762		/*FALLTHROUGH*/
763	case CAS_ATT_MII:
764	case CAS_ATT_7:
765	case CAS_ATT_6:
766		for (i = 0; i < CAS_NTXDESC; i++) {
767			if (sc->sc_txd[i].sd_map != NULL)
768				bus_dmamap_destroy(sc->sc_dmatag,
769				    sc->sc_txd[i].sd_map);
770		}
771		/*FALLTHROUGH*/
772	case CAS_ATT_5:
773		for (i = 0; i < CAS_NRXDESC; i++) {
774			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
775				bus_dmamap_unload(sc->sc_dmatag,
776				    sc->sc_rxsoft[i].rxs_dmamap);
777			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
778				bus_dmamap_destroy(sc->sc_dmatag,
779				    sc->sc_rxsoft[i].rxs_dmamap);
780			if (sc->sc_rxsoft[i].rxs_kva != NULL)
781				bus_dmamem_unmap(sc->sc_dmatag,
782				    sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
783			/* XXX   need to check that bus_dmamem_alloc suceeded
784			if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
785			*/
786			bus_dmamem_free(sc->sc_dmatag,
787			    &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
788		}
789		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
790		/*FALLTHROUGH*/
791	case CAS_ATT_4:
792	case CAS_ATT_3:
793		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
794		/*FALLTHROUGH*/
795	case CAS_ATT_2:
796		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
797		    sizeof(struct cas_control_data));
798		/*FALLTHROUGH*/
799	case CAS_ATT_1:
800		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
801		/*FALLTHROUGH*/
802	case CAS_ATT_0:
803		sc->sc_att_stage = CAS_ATT_0;
804		/*FALLTHROUGH*/
805	case CAS_ATT_BACKEND_2:
806	case CAS_ATT_BACKEND_1:
807		if (sc->sc_ih != NULL) {
808			pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
809			sc->sc_ih = NULL;
810		}
811		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
812		/*FALLTHROUGH*/
813	case CAS_ATT_BACKEND_0:
814		break;
815	}
816	return 0;
817}
818
819static void
820cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
821{
822	cfattach_t ca = device_cfattach(sc->sc_dev);
823
824	sc->sc_att_stage = stage;
825	(*ca->ca_detach)(sc->sc_dev, 0);
826}
827
828void
829cas_tick(void *arg)
830{
831	struct cas_softc *sc = arg;
832	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
833	bus_space_tag_t t = sc->sc_memt;
834	bus_space_handle_t mac = sc->sc_memh;
835	int s;
836	uint32_t v;
837
838	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
839
840	/* unload collisions counters */
841	v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
842	    bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
843	if_statadd_ref(nsr, if_collisions, v +
844	    bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
845	    bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT));
846	if_statadd_ref(nsr, if_oerrors, v);
847
848	/* read error counters */
849	if_statadd_ref(nsr, if_ierrors,
850	    bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
851	    bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
852	    bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
853	    bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL));
854
855	IF_STAT_PUTREF(ifp);
856
857	/* clear the hardware counters */
858	bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
859	bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
860	bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
861	bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
862	bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
863	bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
864	bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
865	bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
866
867	s = splnet();
868	mii_tick(&sc->sc_mii);
869	splx(s);
870
871	callout_schedule(&sc->sc_tick_ch, hz);
872}
873
874int
875cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
876    uint32_t clr, uint32_t set)
877{
878	int i;
879	uint32_t reg;
880
881	for (i = TRIES; i--; DELAY(100)) {
882		reg = bus_space_read_4(sc->sc_memt, h, r);
883		if ((reg & clr) == 0 && (reg & set) == set)
884			return (1);
885	}
886
887	return (0);
888}
889
890void
891cas_reset(struct cas_softc *sc)
892{
893	bus_space_tag_t t = sc->sc_memt;
894	bus_space_handle_t h = sc->sc_memh;
895	int s;
896
897	s = splnet();
898	DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
899	cas_reset_rx(sc);
900	cas_reset_tx(sc);
901
902	/* Disable interrupts */
903	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
904
905	/* Do a full reset */
906	bus_space_write_4(t, h, CAS_RESET,
907	    CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
908	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
909		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
910	splx(s);
911}
912
913
914/*
915 * cas_rxdrain:
916 *
917 *	Drain the receive queue.
918 */
919void
920cas_rxdrain(struct cas_softc *sc)
921{
922	/* Nothing to do yet. */
923}
924
925/*
926 * Reset the whole thing.
927 */
928void
929cas_stop(struct ifnet *ifp, int disable)
930{
931	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
932	struct cas_sxd *sd;
933	uint32_t i;
934
935	DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
936
937	callout_stop(&sc->sc_tick_ch);
938
939	/*
940	 * Mark the interface down and cancel the watchdog timer.
941	 */
942	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
943	ifp->if_timer = 0;
944
945	mii_down(&sc->sc_mii);
946
947	cas_reset_rx(sc);
948	cas_reset_tx(sc);
949
950	/*
951	 * Release any queued transmit buffers.
952	 */
953	for (i = 0; i < CAS_NTXDESC; i++) {
954		sd = &sc->sc_txd[i];
955		if (sd->sd_mbuf != NULL) {
956			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
957			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
958			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
959			m_freem(sd->sd_mbuf);
960			sd->sd_mbuf = NULL;
961		}
962	}
963	sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
964
965	if (disable)
966		cas_rxdrain(sc);
967}
968
969
970/*
971 * Reset the receiver
972 */
973int
974cas_reset_rx(struct cas_softc *sc)
975{
976	bus_space_tag_t t = sc->sc_memt;
977	bus_space_handle_t h = sc->sc_memh;
978
979	/*
980	 * Resetting while DMA is in progress can cause a bus hang, so we
981	 * disable DMA first.
982	 */
983	cas_disable_rx(sc);
984	bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
985	/* Wait till it finishes */
986	if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
987		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
988	/* Wait 5ms extra. */
989	delay(5000);
990
991	/* Finally, reset the ERX */
992	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
993	/* Wait till it finishes */
994	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
995		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
996		return (1);
997	}
998	return (0);
999}
1000
1001
1002/*
1003 * Reset the transmitter
1004 */
1005int
1006cas_reset_tx(struct cas_softc *sc)
1007{
1008	bus_space_tag_t t = sc->sc_memt;
1009	bus_space_handle_t h = sc->sc_memh;
1010
1011	/*
1012	 * Resetting while DMA is in progress can cause a bus hang, so we
1013	 * disable DMA first.
1014	 */
1015	cas_disable_tx(sc);
1016	bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
1017	/* Wait till it finishes */
1018	if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
1019		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
1020	/* Wait 5ms extra. */
1021	delay(5000);
1022
1023	/* Finally, reset the ETX */
1024	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
1025	/* Wait till it finishes */
1026	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
1027		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
1028		return (1);
1029	}
1030	return (0);
1031}
1032
1033/*
1034 * Disable receiver.
1035 */
1036int
1037cas_disable_rx(struct cas_softc *sc)
1038{
1039	bus_space_tag_t t = sc->sc_memt;
1040	bus_space_handle_t h = sc->sc_memh;
1041	uint32_t cfg;
1042
1043	/* Flip the enable bit */
1044	cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1045	cfg &= ~CAS_MAC_RX_ENABLE;
1046	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
1047
1048	/* Wait for it to finish */
1049	return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
1050}
1051
1052/*
1053 * Disable transmitter.
1054 */
1055int
1056cas_disable_tx(struct cas_softc *sc)
1057{
1058	bus_space_tag_t t = sc->sc_memt;
1059	bus_space_handle_t h = sc->sc_memh;
1060	uint32_t cfg;
1061
1062	/* Flip the enable bit */
1063	cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
1064	cfg &= ~CAS_MAC_TX_ENABLE;
1065	bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
1066
1067	/* Wait for it to finish */
1068	return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
1069}
1070
1071/*
1072 * Initialize interface.
1073 */
1074int
1075cas_meminit(struct cas_softc *sc)
1076{
1077	int i;
1078
1079	/*
1080	 * Initialize the transmit descriptor ring.
1081	 */
1082	for (i = 0; i < CAS_NTXDESC; i++) {
1083		sc->sc_txdescs[i].cd_flags = 0;
1084		sc->sc_txdescs[i].cd_addr = 0;
1085	}
1086	CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
1087	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1088
1089	/*
1090	 * Initialize the receive descriptor and receive job
1091	 * descriptor rings.
1092	 */
1093	for (i = 0; i < CAS_NRXDESC; i++)
1094		CAS_INIT_RXDESC(sc, i, i);
1095	sc->sc_rxdptr = 0;
1096	sc->sc_rxptr = 0;
1097
1098	/*
1099	 * Initialize the receive completion ring.
1100	 */
1101	for (i = 0; i < CAS_NRXCOMP; i++) {
1102		sc->sc_rxcomps[i].cc_word[0] = 0;
1103		sc->sc_rxcomps[i].cc_word[1] = 0;
1104		sc->sc_rxcomps[i].cc_word[2] = 0;
1105		sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
1106		CAS_CDRXCSYNC(sc, i,
1107		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1108	}
1109
1110	return (0);
1111}
1112
1113int
1114cas_ringsize(int sz)
1115{
1116	switch (sz) {
1117	case 32:
1118		return CAS_RING_SZ_32;
1119	case 64:
1120		return CAS_RING_SZ_64;
1121	case 128:
1122		return CAS_RING_SZ_128;
1123	case 256:
1124		return CAS_RING_SZ_256;
1125	case 512:
1126		return CAS_RING_SZ_512;
1127	case 1024:
1128		return CAS_RING_SZ_1024;
1129	case 2048:
1130		return CAS_RING_SZ_2048;
1131	case 4096:
1132		return CAS_RING_SZ_4096;
1133	case 8192:
1134		return CAS_RING_SZ_8192;
1135	default:
1136		aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1137		    sz);
1138		return CAS_RING_SZ_32;
1139	}
1140}
1141
1142int
1143cas_cringsize(int sz)
1144{
1145	int i;
1146
1147	for (i = 0; i < 9; i++)
1148		if (sz == (128 << i))
1149			return i;
1150
1151	aprint_error("cas: invalid completion ring size %d\n", sz);
1152	return 128;
1153}
1154
1155/*
1156 * Initialization of interface; set up initialization block
1157 * and transmit/receive descriptor rings.
1158 */
1159int
1160cas_init(struct ifnet *ifp)
1161{
1162	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1163	bus_space_tag_t t = sc->sc_memt;
1164	bus_space_handle_t h = sc->sc_memh;
1165	int s;
1166	u_int max_frame_size;
1167	uint32_t v;
1168
1169	s = splnet();
1170
1171	DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1172	/*
1173	 * Initialization sequence. The numbered steps below correspond
1174	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1175	 * Channel Engine manual (part of the PCIO manual).
1176	 * See also the STP2002-STQ document from Sun Microsystems.
1177	 */
1178
1179	/* step 1 & 2. Reset the Ethernet Channel */
1180	cas_stop(ifp, 0);
1181	cas_reset(sc);
1182	DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1183
1184	/* Re-initialize the MIF */
1185	cas_mifinit(sc);
1186
1187	/* step 3. Setup data structures in host memory */
1188	cas_meminit(sc);
1189
1190	/* step 4. TX MAC registers & counters */
1191	cas_init_regs(sc);
1192	max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1193	v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1194	bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1195
1196	/* step 5. RX MAC registers & counters */
1197	cas_iff(sc);
1198
1199	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1200	KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1201	bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1202	    BUS_ADDR_HI32(CAS_CDTXADDR(sc, 0)));
1203	bus_space_write_4(t, h, CAS_TX_RING_PTR_LO,
1204	    BUS_ADDR_LO32(CAS_CDTXADDR(sc, 0)));
1205
1206	KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1207	bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1208	    BUS_ADDR_HI32(CAS_CDRXADDR(sc, 0)));
1209	bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO,
1210	    BUS_ADDR_LO32(CAS_CDRXADDR(sc, 0)));
1211
1212	KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1213	bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1214	    BUS_ADDR_HI32(CAS_CDRXCADDR(sc, 0)));
1215	bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO,
1216	    BUS_ADDR_LO32(CAS_CDRXCADDR(sc, 0)));
1217
1218	if (CAS_PLUS(sc)) {
1219		KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1220		bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1221		    BUS_ADDR_HI32(CAS_CDRXADDR2(sc, 0)));
1222		bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1223		    BUS_ADDR_LO32(CAS_CDRXADDR2(sc, 0)));
1224	}
1225
1226	/* step 8. Global Configuration & Interrupt Mask */
1227	cas_estintr(sc, CAS_INTR_REG);
1228
1229	/* step 9. ETX Configuration: use mostly default values */
1230
1231	/* Enable DMA */
1232	v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1233	bus_space_write_4(t, h, CAS_TX_CONFIG,
1234	    v | CAS_TX_CONFIG_TXDMA_EN | (1 << 24) | (1 << 29));
1235	bus_space_write_4(t, h, CAS_TX_KICK, 0);
1236
1237	/* step 10. ERX Configuration */
1238
1239	/* Encode Receive Descriptor ring size */
1240	v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1241	if (CAS_PLUS(sc))
1242		v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1243
1244	/* Encode Receive Completion ring size */
1245	v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1246
1247	/* Enable DMA */
1248	bus_space_write_4(t, h, CAS_RX_CONFIG,
1249	    v|(2<<CAS_RX_CONFIG_FBOFF_SHFT) | CAS_RX_CONFIG_RXDMA_EN);
1250
1251	/*
1252	 * The following value is for an OFF Threshold of about 3/4 full
1253	 * and an ON Threshold of 1/4 full.
1254	 */
1255	bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1256	    (3 * sc->sc_rxfifosize / 256) |
1257	    ((sc->sc_rxfifosize / 256) << 12));
1258	bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1259
1260	/* step 11. Configure Media */
1261	mii_ifmedia_change(&sc->sc_mii);
1262
1263	/* step 12. RX_MAC Configuration Register */
1264	v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1265	v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1266	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1267
1268	/* step 14. Issue Transmit Pending command */
1269
1270	/* step 15.  Give the receiver a swift kick */
1271	bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1272	if (CAS_PLUS(sc))
1273		bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1274
1275	/* Start the one second timer. */
1276	callout_schedule(&sc->sc_tick_ch, hz);
1277
1278	ifp->if_flags |= IFF_RUNNING;
1279	ifp->if_flags &= ~IFF_OACTIVE;
1280	ifp->if_timer = 0;
1281	splx(s);
1282
1283	return (0);
1284}
1285
1286void
1287cas_init_regs(struct cas_softc *sc)
1288{
1289	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1290	bus_space_tag_t t = sc->sc_memt;
1291	bus_space_handle_t h = sc->sc_memh;
1292	const u_char *laddr = CLLADDR(ifp->if_sadl);
1293	uint32_t v, r;
1294
1295	/* These regs are not cleared on reset */
1296	sc->sc_inited = 0;
1297	if (!sc->sc_inited) {
1298		/* Load recommended values  */
1299		bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1300		bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1301		bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1302
1303		bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1304		/* Max frame and max burst size */
1305		v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1306		bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1307
1308		bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1309		bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1310		bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1311		bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1312		bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1313		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1314
1315		/* Secondary MAC addresses set to 0:0:0:0:0:0 */
1316		for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1317			bus_space_write_4(t, h, r, 0);
1318
1319		/* MAC control addr set to 0:1:c2:0:1:80 */
1320		bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1321		bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1322		bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1323
1324		/* MAC filter addr set to 0:0:0:0:0:0 */
1325		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1326		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1327		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1328
1329		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1330		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1331
1332		/* Hash table initialized to 0 */
1333		for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1334			bus_space_write_4(t, h, r, 0);
1335
1336		sc->sc_inited = 1;
1337	}
1338
1339	/* Counters need to be zeroed */
1340	bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1341	bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1342	bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1343	bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1344	bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1345	bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1346	bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1347	bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1348	bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1349	bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1350	bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1351
1352	/* Un-pause stuff */
1353	bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1354
1355	/*
1356	 * Set the station address.
1357	 */
1358	bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1359	bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1360	bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1361}
1362
1363/*
1364 * Receive interrupt.
1365 */
1366int
1367cas_rint(struct cas_softc *sc)
1368{
1369	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1370	bus_space_tag_t t = sc->sc_memt;
1371	bus_space_handle_t h = sc->sc_memh;
1372	struct cas_rxsoft *rxs;
1373	struct mbuf *m;
1374	uint64_t word[4];
1375	int len, off, idx;
1376	int i, skip;
1377	void *cp;
1378
1379	for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1380		CAS_CDRXCSYNC(sc, i,
1381		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1382
1383		word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1384		word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1385		word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1386		word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1387
1388		/* Stop if the hardware still owns the descriptor. */
1389		if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1390			break;
1391
1392		len = CAS_RC1_HDR_LEN(word[1]);
1393		if (len > 0) {
1394			off = CAS_RC1_HDR_OFF(word[1]);
1395			idx = CAS_RC1_HDR_IDX(word[1]);
1396			rxs = &sc->sc_rxsoft[idx];
1397
1398			DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1399			    idx, off, len));
1400
1401			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1402			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1403
1404			cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1405			m = m_devget(cp, len, 0, ifp);
1406
1407			if (word[0] & CAS_RC0_RELEASE_HDR)
1408				cas_add_rxbuf(sc, idx);
1409
1410			if (m != NULL) {
1411
1412				/*
1413				 * Pass this up to any BPF listeners, but only
1414				 * pass it up the stack if its for us.
1415				 */
1416				m->m_pkthdr.csum_flags = 0;
1417				if_percpuq_enqueue(ifp->if_percpuq, m);
1418			} else
1419				if_statinc(ifp, if_ierrors);
1420		}
1421
1422		len = CAS_RC0_DATA_LEN(word[0]);
1423		if (len > 0) {
1424			off = CAS_RC0_DATA_OFF(word[0]);
1425			idx = CAS_RC0_DATA_IDX(word[0]);
1426			rxs = &sc->sc_rxsoft[idx];
1427
1428			DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1429			    idx, off, len));
1430
1431			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1432			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1433
1434			/* XXX We should not be copying the packet here. */
1435			cp = rxs->rxs_kva + off + ETHER_ALIGN;
1436			m = m_devget(cp, len, 0, ifp);
1437
1438			if (word[0] & CAS_RC0_RELEASE_DATA)
1439				cas_add_rxbuf(sc, idx);
1440
1441			if (m != NULL) {
1442				/*
1443				 * Pass this up to any BPF listeners, but only
1444				 * pass it up the stack if its for us.
1445				 */
1446				m->m_pkthdr.csum_flags = 0;
1447				if_percpuq_enqueue(ifp->if_percpuq, m);
1448			} else
1449				if_statinc(ifp, if_ierrors);
1450		}
1451
1452		if (word[0] & CAS_RC0_SPLIT)
1453			aprint_error_dev(sc->sc_dev, "split packet\n");
1454
1455		skip = CAS_RC0_SKIP(word[0]);
1456	}
1457
1458	while (sc->sc_rxptr != i) {
1459		sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1460		sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1461		sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1462		sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1463		    CAS_DMA_WRITE(CAS_RC3_OWN);
1464		CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1465		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1466
1467		sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1468	}
1469
1470	bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1471
1472	DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1473		sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1474
1475	return (1);
1476}
1477
1478/*
1479 * cas_add_rxbuf:
1480 *
1481 *	Add a receive buffer to the indicated descriptor.
1482 */
1483int
1484cas_add_rxbuf(struct cas_softc *sc, int idx)
1485{
1486	bus_space_tag_t t = sc->sc_memt;
1487	bus_space_handle_t h = sc->sc_memh;
1488
1489	CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1490
1491	if ((sc->sc_rxdptr % 4) == 0)
1492		bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1493
1494	if (++sc->sc_rxdptr == CAS_NRXDESC)
1495		sc->sc_rxdptr = 0;
1496
1497	return (0);
1498}
1499
1500int
1501cas_eint(struct cas_softc *sc, u_int status)
1502{
1503	char bits[128];
1504	if ((status & CAS_INTR_MIF) != 0) {
1505		DPRINTF(sc, ("%s: link status changed\n",
1506		    device_xname(sc->sc_dev)));
1507		return (1);
1508	}
1509
1510	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1511	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1512	return (1);
1513}
1514
1515int
1516cas_pint(struct cas_softc *sc)
1517{
1518	bus_space_tag_t t = sc->sc_memt;
1519	bus_space_handle_t seb = sc->sc_memh;
1520	uint32_t status;
1521
1522	status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1523	status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1524#ifdef CAS_DEBUG
1525	if (status)
1526		printf("%s: link status changed\n", device_xname(sc->sc_dev));
1527#endif
1528	return (1);
1529}
1530
1531int
1532cas_intr(void *v)
1533{
1534	struct cas_softc *sc = (struct cas_softc *)v;
1535	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1536	bus_space_tag_t t = sc->sc_memt;
1537	bus_space_handle_t seb = sc->sc_memh;
1538	uint32_t status;
1539	int r = 0;
1540#ifdef CAS_DEBUG
1541	char bits[128];
1542#endif
1543
1544	sc->sc_ev_intr.ev_count++;
1545
1546	status = bus_space_read_4(t, seb, CAS_STATUS);
1547#ifdef CAS_DEBUG
1548	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1549#endif
1550	DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1551		device_xname(sc->sc_dev), (status>>19), bits));
1552
1553	if ((status & CAS_INTR_PCS) != 0)
1554		r |= cas_pint(sc);
1555
1556	if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1557	    CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1558		r |= cas_eint(sc, status);
1559
1560	if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1561		r |= cas_tint(sc, status);
1562
1563	if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1564		r |= cas_rint(sc);
1565
1566	/* We should eventually do more than just print out error stats. */
1567	if (status & CAS_INTR_TX_MAC) {
1568		int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1569#ifdef CAS_DEBUG
1570		if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1571			printf("%s: MAC tx fault, status %x\n",
1572			    device_xname(sc->sc_dev), txstat);
1573#endif
1574		if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1575			cas_init(ifp);
1576	}
1577	if (status & CAS_INTR_RX_MAC) {
1578		int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1579#ifdef CAS_DEBUG
1580		if (rxstat & ~CAS_MAC_RX_DONE)
1581			printf("%s: MAC rx fault, status %x\n",
1582			    device_xname(sc->sc_dev), rxstat);
1583#endif
1584		/*
1585		 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1586		 * due to a silicon bug so handle them silently.
1587		 */
1588		if (rxstat & CAS_MAC_RX_OVERFLOW) {
1589			if_statinc(ifp, if_ierrors);
1590			cas_init(ifp);
1591		}
1592#ifdef CAS_DEBUG
1593		else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1594			printf("%s: MAC rx fault, status %x\n",
1595			    device_xname(sc->sc_dev), rxstat);
1596#endif
1597	}
1598	rnd_add_uint32(&sc->rnd_source, status);
1599	return (r);
1600}
1601
1602
1603void
1604cas_watchdog(struct ifnet *ifp)
1605{
1606	struct cas_softc *sc = ifp->if_softc;
1607
1608	DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1609		"CAS_MAC_RX_CONFIG %x\n",
1610		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1611		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1612		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1613
1614	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1615	if_statinc(ifp, if_oerrors);
1616
1617	/* Try to get more packets going. */
1618	cas_init(ifp);
1619}
1620
1621/*
1622 * Initialize the MII Management Interface
1623 */
1624void
1625cas_mifinit(struct cas_softc *sc)
1626{
1627	bus_space_tag_t t = sc->sc_memt;
1628	bus_space_handle_t mif = sc->sc_memh;
1629
1630	/* Configure the MIF in frame mode */
1631	sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1632	sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1633	bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1634}
1635
1636/*
1637 * MII interface
1638 *
1639 * The Cassini MII interface supports at least three different operating modes:
1640 *
1641 * Bitbang mode is implemented using data, clock and output enable registers.
1642 *
1643 * Frame mode is implemented by loading a complete frame into the frame
1644 * register and polling the valid bit for completion.
1645 *
1646 * Polling mode uses the frame register but completion is indicated by
1647 * an interrupt.
1648 *
1649 */
1650int
1651cas_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1652{
1653	struct cas_softc *sc = device_private(self);
1654	bus_space_tag_t t = sc->sc_memt;
1655	bus_space_handle_t mif = sc->sc_memh;
1656	int n;
1657	uint32_t v;
1658
1659#ifdef CAS_DEBUG
1660	if (sc->sc_debug)
1661		printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1662#endif
1663
1664	/* Construct the frame command */
1665	v = (reg << CAS_MIF_REG_SHIFT)	| (phy << CAS_MIF_PHY_SHIFT) |
1666		CAS_MIF_FRAME_READ;
1667
1668	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1669	for (n = 0; n < 100; n++) {
1670		DELAY(1);
1671		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1672		if (v & CAS_MIF_FRAME_TA0) {
1673			*val = v & CAS_MIF_FRAME_DATA;
1674			return 0;
1675		}
1676	}
1677
1678	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1679	return ETIMEDOUT;
1680}
1681
1682int
1683cas_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1684{
1685	struct cas_softc *sc = device_private(self);
1686	bus_space_tag_t t = sc->sc_memt;
1687	bus_space_handle_t mif = sc->sc_memh;
1688	int n;
1689	uint32_t v;
1690
1691#ifdef CAS_DEBUG
1692	if (sc->sc_debug)
1693		printf("cas_mii_writereg: phy %d reg %d val %x\n",
1694			phy, reg, val);
1695#endif
1696
1697	/* Construct the frame command */
1698	v = CAS_MIF_FRAME_WRITE			|
1699	    (phy << CAS_MIF_PHY_SHIFT)		|
1700	    (reg << CAS_MIF_REG_SHIFT)		|
1701	    (val & CAS_MIF_FRAME_DATA);
1702
1703	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1704	for (n = 0; n < 100; n++) {
1705		DELAY(1);
1706		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1707		if (v & CAS_MIF_FRAME_TA0)
1708			return 0;
1709	}
1710
1711	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1712	return ETIMEDOUT;
1713}
1714
1715void
1716cas_mii_statchg(struct ifnet *ifp)
1717{
1718	struct cas_softc *sc = ifp->if_softc;
1719#ifdef CAS_DEBUG
1720	int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1721#endif
1722	bus_space_tag_t t = sc->sc_memt;
1723	bus_space_handle_t mac = sc->sc_memh;
1724	uint32_t v;
1725
1726#ifdef CAS_DEBUG
1727	if (sc->sc_debug)
1728		printf("cas_mii_statchg: status change: phy = %d\n",
1729		    sc->sc_phys[instance]);
1730#endif
1731
1732	/* Set tx full duplex options */
1733	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1734	delay(10000); /* reg must be cleared and delay before changing. */
1735	v = CAS_MAC_TX_ENA_IPG0 | CAS_MAC_TX_NGU | CAS_MAC_TX_NGU_LIMIT |
1736		CAS_MAC_TX_ENABLE;
1737	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1738		v |= CAS_MAC_TX_IGN_CARRIER | CAS_MAC_TX_IGN_COLLIS;
1739	}
1740	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1741
1742	/* XIF Configuration */
1743	v = CAS_MAC_XIF_TX_MII_ENA;
1744	v |= CAS_MAC_XIF_LINK_LED;
1745
1746	/* MII needs echo disable if half duplex. */
1747	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1748		/* turn on full duplex LED */
1749		v |= CAS_MAC_XIF_FDPLX_LED;
1750	else
1751		/* half duplex -- disable echo */
1752		v |= CAS_MAC_XIF_ECHO_DISABL;
1753
1754	switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1755	case IFM_1000_T:  /* Gigabit using GMII interface */
1756	case IFM_1000_SX:
1757		v |= CAS_MAC_XIF_GMII_MODE;
1758		break;
1759	default:
1760		v &= ~CAS_MAC_XIF_GMII_MODE;
1761	}
1762	bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1763}
1764
1765int
1766cas_pcs_readreg(device_t self, int phy, int reg, uint16_t *val)
1767{
1768	struct cas_softc *sc = device_private(self);
1769	bus_space_tag_t t = sc->sc_memt;
1770	bus_space_handle_t pcs = sc->sc_memh;
1771
1772#ifdef CAS_DEBUG
1773	if (sc->sc_debug)
1774		printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1775#endif
1776
1777	if (phy != CAS_PHYAD_EXTERNAL)
1778		return -1;
1779
1780	switch (reg) {
1781	case MII_BMCR:
1782		reg = CAS_MII_CONTROL;
1783		break;
1784	case MII_BMSR:
1785		reg = CAS_MII_STATUS;
1786		break;
1787	case MII_ANAR:
1788		reg = CAS_MII_ANAR;
1789		break;
1790	case MII_ANLPAR:
1791		reg = CAS_MII_ANLPAR;
1792		break;
1793	case MII_EXTSR:
1794		*val = EXTSR_1000XFDX | EXTSR_1000XHDX;
1795		return 0;
1796	default:
1797		return (0);
1798	}
1799
1800	*val = bus_space_read_4(t, pcs, reg) & 0xffff;
1801	return 0;
1802}
1803
1804int
1805cas_pcs_writereg(device_t self, int phy, int reg, uint16_t val)
1806{
1807	struct cas_softc *sc = device_private(self);
1808	bus_space_tag_t t = sc->sc_memt;
1809	bus_space_handle_t pcs = sc->sc_memh;
1810	int reset = 0;
1811
1812#ifdef CAS_DEBUG
1813	if (sc->sc_debug)
1814		printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1815			phy, reg, val);
1816#endif
1817
1818	if (phy != CAS_PHYAD_EXTERNAL)
1819		return -1;
1820
1821	if (reg == MII_ANAR)
1822		bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1823
1824	switch (reg) {
1825	case MII_BMCR:
1826		reset = (val & CAS_MII_CONTROL_RESET);
1827		reg = CAS_MII_CONTROL;
1828		break;
1829	case MII_BMSR:
1830		reg = CAS_MII_STATUS;
1831		break;
1832	case MII_ANAR:
1833		reg = CAS_MII_ANAR;
1834		break;
1835	case MII_ANLPAR:
1836		reg = CAS_MII_ANLPAR;
1837		break;
1838	default:
1839		return 0;
1840	}
1841
1842	bus_space_write_4(t, pcs, reg, val);
1843
1844	if (reset)
1845		cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1846
1847	if (reg == CAS_MII_ANAR || reset)
1848		bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1849		    CAS_MII_CONFIG_ENABLE);
1850
1851	return 0;
1852}
1853
1854int
1855cas_mediachange(struct ifnet *ifp)
1856{
1857	struct cas_softc *sc = ifp->if_softc;
1858	struct mii_data *mii = &sc->sc_mii;
1859
1860	if (mii->mii_instance) {
1861		struct mii_softc *miisc;
1862		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1863			mii_phy_reset(miisc);
1864	}
1865
1866	return (mii_mediachg(&sc->sc_mii));
1867}
1868
1869void
1870cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1871{
1872	struct cas_softc *sc = ifp->if_softc;
1873
1874	mii_pollstat(&sc->sc_mii);
1875	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1876	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1877}
1878
1879/*
1880 * Process an ioctl request.
1881 */
1882int
1883cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1884{
1885	struct cas_softc *sc = ifp->if_softc;
1886	int s, error = 0;
1887
1888	s = splnet();
1889
1890	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1891		error = 0;
1892		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1893			;
1894		else if (ifp->if_flags & IFF_RUNNING) {
1895			/*
1896			 * Multicast list has changed; set the hardware filter
1897			 * accordingly.
1898			 */
1899			cas_iff(sc);
1900		}
1901	}
1902
1903	splx(s);
1904	return (error);
1905}
1906
1907static bool
1908cas_suspend(device_t self, const pmf_qual_t *qual)
1909{
1910	struct cas_softc *sc = device_private(self);
1911	bus_space_tag_t t = sc->sc_memt;
1912	bus_space_handle_t h = sc->sc_memh;
1913
1914	bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1915	if (sc->sc_ih != NULL) {
1916		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1917		sc->sc_ih = NULL;
1918	}
1919
1920	return true;
1921}
1922
1923static bool
1924cas_resume(device_t self, const pmf_qual_t *qual)
1925{
1926	struct cas_softc *sc = device_private(self);
1927
1928	return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1929}
1930
1931static bool
1932cas_estintr(struct cas_softc *sc, int what)
1933{
1934	bus_space_tag_t t = sc->sc_memt;
1935	bus_space_handle_t h = sc->sc_memh;
1936	const char *intrstr = NULL;
1937	char intrbuf[PCI_INTRSTR_LEN];
1938
1939	/* PCI interrupts */
1940	if (what & CAS_INTR_PCI) {
1941		intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle, intrbuf,
1942		    sizeof(intrbuf));
1943		sc->sc_ih = pci_intr_establish_xname(sc->sc_pc, sc->sc_handle,
1944		    IPL_NET, cas_intr, sc, device_xname(sc->sc_dev));
1945		if (sc->sc_ih == NULL) {
1946			aprint_error_dev(sc->sc_dev,
1947			    "unable to establish interrupt");
1948			if (intrstr != NULL)
1949				aprint_error(" at %s", intrstr);
1950			aprint_error("\n");
1951			return false;
1952		}
1953
1954		aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1955	}
1956
1957	/* Interrupt register */
1958	if (what & CAS_INTR_REG) {
1959		bus_space_write_4(t, h, CAS_INTMASK,
1960		    ~(CAS_INTR_TX_INTME | CAS_INTR_TX_EMPTY |
1961		    CAS_INTR_TX_TAG_ERR |
1962		    CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF |
1963		    CAS_INTR_RX_TAG_ERR |
1964		    CAS_INTR_RX_COMP_FULL | CAS_INTR_PCS |
1965		    CAS_INTR_MAC_CONTROL | CAS_INTR_MIF |
1966		    CAS_INTR_BERR));
1967		bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1968		    CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT);
1969		bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1970		bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1971	}
1972	return true;
1973}
1974
1975bool
1976cas_shutdown(device_t self, int howto)
1977{
1978	struct cas_softc *sc = device_private(self);
1979	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1980
1981	cas_stop(ifp, 1);
1982
1983	return true;
1984}
1985
1986void
1987cas_iff(struct cas_softc *sc)
1988{
1989	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1990	struct ethercom *ec = &sc->sc_ethercom;
1991	struct ether_multi *enm;
1992	struct ether_multistep step;
1993	bus_space_tag_t t = sc->sc_memt;
1994	bus_space_handle_t h = sc->sc_memh;
1995	uint32_t crc, hash[16], rxcfg;
1996	int i;
1997
1998	rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1999	rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
2000	    CAS_MAC_RX_PROMISC_GRP);
2001	ifp->if_flags &= ~IFF_ALLMULTI;
2002
2003	if ((ifp->if_flags & IFF_PROMISC) != 0)
2004		goto update;
2005
2006	/*
2007	 * Set up multicast address filter by passing all multicast
2008	 * addresses through a crc generator, and then using the
2009	 * high order 8 bits as an index into the 256 bit logical
2010	 * address filter.  The high order 4 bits selects the word,
2011	 * while the other 4 bits select the bit within the word
2012	 * (where bit 0 is the MSB).
2013	 */
2014
2015	/* Clear hash table */
2016	for (i = 0; i < 16; i++)
2017		hash[i] = 0;
2018
2019	ETHER_LOCK(ec);
2020	ETHER_FIRST_MULTI(step, ec, enm);
2021	while (enm != NULL) {
2022		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2023			/* XXX Use ETHER_F_ALLMULTI in future. */
2024			ifp->if_flags |= IFF_ALLMULTI;
2025			ETHER_UNLOCK(ec);
2026			goto update;
2027		}
2028
2029		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2030
2031		/* Just want the 8 most significant bits. */
2032		crc >>= 24;
2033
2034		/* Set the corresponding bit in the filter. */
2035		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2036
2037		ETHER_NEXT_MULTI(step, enm);
2038	}
2039	ETHER_UNLOCK(ec);
2040
2041	rxcfg |= CAS_MAC_RX_HASH_FILTER;
2042
2043	/* Now load the hash table into the chip (if we are using it) */
2044	for (i = 0; i < 16; i++) {
2045		bus_space_write_4(t, h,
2046		    CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
2047		    hash[i]);
2048	}
2049
2050update:
2051	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2052		if (ifp->if_flags & IFF_PROMISC) {
2053			rxcfg |= CAS_MAC_RX_PROMISCUOUS;
2054			/* XXX Use ETHER_F_ALLMULTI in future. */
2055			ifp->if_flags |= IFF_ALLMULTI;
2056		} else
2057			rxcfg |= CAS_MAC_RX_PROMISC_GRP;
2058	}
2059	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
2060}
2061
2062int
2063cas_encap(struct cas_softc *sc, struct mbuf *mhead, uint32_t *bixp)
2064{
2065	uint64_t flags;
2066	uint32_t cur, frag, i;
2067	bus_dmamap_t map;
2068
2069	cur = frag = *bixp;
2070	map = sc->sc_txd[cur].sd_map;
2071
2072	if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
2073	    BUS_DMA_NOWAIT) != 0) {
2074		return (ENOBUFS);
2075	}
2076
2077	if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
2078		bus_dmamap_unload(sc->sc_dmatag, map);
2079		return (ENOBUFS);
2080	}
2081
2082	bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
2083	    BUS_DMASYNC_PREWRITE);
2084
2085	for (i = 0; i < map->dm_nsegs; i++) {
2086		sc->sc_txdescs[frag].cd_addr =
2087		    CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
2088		flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
2089		    (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
2090		    ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
2091		sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
2092		bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
2093		    CAS_CDTXOFF(frag), sizeof(struct cas_desc),
2094		    BUS_DMASYNC_PREWRITE);
2095		cur = frag;
2096		if (++frag == CAS_NTXDESC)
2097			frag = 0;
2098	}
2099
2100	sc->sc_tx_cnt += map->dm_nsegs;
2101	sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
2102	sc->sc_txd[cur].sd_map = map;
2103	sc->sc_txd[cur].sd_mbuf = mhead;
2104
2105	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
2106
2107	*bixp = frag;
2108
2109	/* sync descriptors */
2110
2111	return (0);
2112}
2113
2114/*
2115 * Transmit interrupt.
2116 */
2117int
2118cas_tint(struct cas_softc *sc, uint32_t status)
2119{
2120	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2121	struct cas_sxd *sd;
2122	uint32_t cons, comp;
2123
2124	comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
2125	cons = sc->sc_tx_cons;
2126	while (cons != comp) {
2127		sd = &sc->sc_txd[cons];
2128		if (sd->sd_mbuf != NULL) {
2129			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2130			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2131			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2132			m_freem(sd->sd_mbuf);
2133			sd->sd_mbuf = NULL;
2134			if_statinc(ifp, if_opackets);
2135		}
2136		sc->sc_tx_cnt--;
2137		if (++cons == CAS_NTXDESC)
2138			cons = 0;
2139	}
2140	sc->sc_tx_cons = cons;
2141
2142	if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2143		ifp->if_flags &= ~IFF_OACTIVE;
2144	if (sc->sc_tx_cnt == 0)
2145		ifp->if_timer = 0;
2146
2147	if_schedule_deferred_start(ifp);
2148
2149	return (1);
2150}
2151
2152void
2153cas_start(struct ifnet *ifp)
2154{
2155	struct cas_softc *sc = ifp->if_softc;
2156	struct mbuf *m;
2157	uint32_t bix;
2158
2159	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2160		return;
2161
2162	bix = sc->sc_tx_prod;
2163	while (sc->sc_txd[bix].sd_mbuf == NULL) {
2164		IFQ_POLL(&ifp->if_snd, m);
2165		if (m == NULL)
2166			break;
2167
2168		/*
2169		 * If BPF is listening on this interface, let it see the
2170		 * packet before we commit it to the wire.
2171		 */
2172		bpf_mtap(ifp, m, BPF_D_OUT);
2173
2174		/*
2175		 * Encapsulate this packet and start it going...
2176		 * or fail...
2177		 */
2178		if (cas_encap(sc, m, &bix)) {
2179			ifp->if_flags |= IFF_OACTIVE;
2180			break;
2181		}
2182
2183		IFQ_DEQUEUE(&ifp->if_snd, m);
2184		ifp->if_timer = 5;
2185	}
2186
2187	sc->sc_tx_prod = bix;
2188}
2189
2190MODULE(MODULE_CLASS_DRIVER, if_cas, "pci");
2191
2192#ifdef _MODULE
2193#include "ioconf.c"
2194#endif
2195
2196static int
2197if_cas_modcmd(modcmd_t cmd, void *opaque)
2198{
2199	int error = 0;
2200
2201	switch (cmd) {
2202	case MODULE_CMD_INIT:
2203#ifdef _MODULE
2204		error = config_init_component(cfdriver_ioconf_cas,
2205		    cfattach_ioconf_cas, cfdata_ioconf_cas);
2206#endif
2207		return error;
2208	case MODULE_CMD_FINI:
2209#ifdef _MODULE
2210		error = config_fini_component(cfdriver_ioconf_cas,
2211		    cfattach_ioconf_cas, cfdata_ioconf_cas);
2212#endif
2213		return error;
2214	default:
2215		return ENOTTY;
2216	}
2217}
2218