if_cas.c revision 1.27
1/*	$NetBSD: if_cas.c,v 1.27 2018/06/26 06:48:01 msaitoh Exp $	*/
2/*	$OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $	*/
3
4/*
5 *
6 * Copyright (C) 2007 Mark Kettenis.
7 * Copyright (C) 2001 Eduardo Horvath.
8 * All rights reserved.
9 *
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34/*
35 * Driver for Sun Cassini ethernet controllers.
36 *
37 * There are basically two variants of this chip: Cassini and
38 * Cassini+.  We can distinguish between the two by revision: 0x10 and
39 * up are Cassini+.  The most important difference is that Cassini+
40 * has a second RX descriptor ring.  Cassini+ will not work without
41 * configuring that second ring.  However, since we don't use it we
42 * don't actually fill the descriptors, and only hand off the first
43 * four to the chip.
44 */
45
46#include <sys/cdefs.h>
47__KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.27 2018/06/26 06:48:01 msaitoh Exp $");
48
49#ifndef _MODULE
50#include "opt_inet.h"
51#endif
52
53#include <sys/param.h>
54#include <sys/systm.h>
55#include <sys/callout.h>
56#include <sys/mbuf.h>
57#include <sys/syslog.h>
58#include <sys/malloc.h>
59#include <sys/kernel.h>
60#include <sys/socket.h>
61#include <sys/ioctl.h>
62#include <sys/errno.h>
63#include <sys/device.h>
64#include <sys/module.h>
65
66#include <machine/endian.h>
67
68#include <net/if.h>
69#include <net/if_dl.h>
70#include <net/if_media.h>
71#include <net/if_ether.h>
72
73#ifdef INET
74#include <netinet/in.h>
75#include <netinet/in_systm.h>
76#include <netinet/in_var.h>
77#include <netinet/ip.h>
78#include <netinet/tcp.h>
79#include <netinet/udp.h>
80#endif
81
82#include <net/bpf.h>
83
84#include <sys/bus.h>
85#include <sys/intr.h>
86#include <sys/rndsource.h>
87
88#include <dev/mii/mii.h>
89#include <dev/mii/miivar.h>
90#include <dev/mii/mii_bitbang.h>
91
92#include <dev/pci/pcivar.h>
93#include <dev/pci/pcireg.h>
94#include <dev/pci/pcidevs.h>
95#include <prop/proplib.h>
96
97#include <dev/pci/if_casreg.h>
98#include <dev/pci/if_casvar.h>
99
100#define TRIES	10000
101
102static bool	cas_estintr(struct cas_softc *sc, int);
103bool		cas_shutdown(device_t, int);
104static bool	cas_suspend(device_t, const pmf_qual_t *);
105static bool	cas_resume(device_t, const pmf_qual_t *);
106static int	cas_detach(device_t, int);
107static void	cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
108
109int		cas_match(device_t, cfdata_t, void *);
110void		cas_attach(device_t, device_t, void *);
111
112
113CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
114    cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
115    DVF_DETACH_SHUTDOWN);
116
117int	cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
118
119void		cas_config(struct cas_softc *, const uint8_t *);
120void		cas_start(struct ifnet *);
121void		cas_stop(struct ifnet *, int);
122int		cas_ioctl(struct ifnet *, u_long, void *);
123void		cas_tick(void *);
124void		cas_watchdog(struct ifnet *);
125int		cas_init(struct ifnet *);
126void		cas_init_regs(struct cas_softc *);
127int		cas_ringsize(int);
128int		cas_cringsize(int);
129int		cas_meminit(struct cas_softc *);
130void		cas_mifinit(struct cas_softc *);
131int		cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
132		    u_int32_t, u_int32_t);
133void		cas_reset(struct cas_softc *);
134int		cas_reset_rx(struct cas_softc *);
135int		cas_reset_tx(struct cas_softc *);
136int		cas_disable_rx(struct cas_softc *);
137int		cas_disable_tx(struct cas_softc *);
138void		cas_rxdrain(struct cas_softc *);
139int		cas_add_rxbuf(struct cas_softc *, int idx);
140void		cas_iff(struct cas_softc *);
141int		cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
142
143/* MII methods & callbacks */
144int		cas_mii_readreg(device_t, int, int);
145void		cas_mii_writereg(device_t, int, int, int);
146void		cas_mii_statchg(struct ifnet *);
147int		cas_pcs_readreg(device_t, int, int);
148void		cas_pcs_writereg(device_t, int, int, int);
149
150int		cas_mediachange(struct ifnet *);
151void		cas_mediastatus(struct ifnet *, struct ifmediareq *);
152
153int		cas_eint(struct cas_softc *, u_int);
154int		cas_rint(struct cas_softc *);
155int		cas_tint(struct cas_softc *, u_int32_t);
156int		cas_pint(struct cas_softc *);
157int		cas_intr(void *);
158
159#ifdef CAS_DEBUG
160#define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
161				printf x
162#else
163#define	DPRINTF(sc, x)	/* nothing */
164#endif
165
166int
167cas_match(device_t parent, cfdata_t cf, void *aux)
168{
169	struct pci_attach_args *pa = aux;
170
171	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
172	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
173		return 1;
174
175	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
176	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
177		return 1;
178
179	return 0;
180}
181
182#define	PROMHDR_PTR_DATA	0x18
183#define	PROMDATA_PTR_VPD	0x08
184#define	PROMDATA_DATA2		0x0a
185
186static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
187static const u_int8_t cas_promdat[] = {
188	'P', 'C', 'I', 'R',
189	PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
190	PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
191};
192static const u_int8_t cas_promdat_ns[] = {
193	'P', 'C', 'I', 'R',
194	PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
195	PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
196};
197
198static const u_int8_t cas_promdat2[] = {
199	0x18, 0x00,			/* structure length */
200	0x00,				/* structure revision */
201	0x00,				/* interface revision */
202	PCI_SUBCLASS_NETWORK_ETHERNET,	/* subclass code */
203	PCI_CLASS_NETWORK		/* class code */
204};
205
206int
207cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
208    uint8_t *enaddr)
209{
210	struct pci_vpd_largeres *res;
211	struct pci_vpd *vpd;
212	bus_space_handle_t romh;
213	bus_space_tag_t romt;
214	bus_size_t romsize = 0;
215	u_int8_t buf[32], *desc;
216	pcireg_t address;
217	int dataoff, vpdoff, len;
218	int rv = -1;
219
220	if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
221	    &romt, &romh, NULL, &romsize))
222		return (-1);
223
224	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
225	address |= PCI_MAPREG_ROM_ENABLE;
226	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
227
228	bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
229	if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
230		goto fail;
231
232	dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
233	if (dataoff < 0x1c)
234		goto fail;
235
236	bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
237	if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
238	     bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
239	    bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
240		goto fail;
241
242	vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
243	if (vpdoff < 0x1c)
244		goto fail;
245
246next:
247	bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
248	if (!PCI_VPDRES_ISLARGE(buf[0]))
249		goto fail;
250
251	res = (struct pci_vpd_largeres *)buf;
252	vpdoff += sizeof(*res);
253
254	len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
255	switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
256	case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
257		/* Skip identifier string. */
258		vpdoff += len;
259		goto next;
260
261	case PCI_VPDRES_TYPE_VPD:
262		while (len > 0) {
263			bus_space_read_region_1(romt, romh, vpdoff,
264			     buf, sizeof(buf));
265
266			vpd = (struct pci_vpd *)buf;
267			vpdoff += sizeof(*vpd) + vpd->vpd_len;
268			len -= sizeof(*vpd) + vpd->vpd_len;
269
270			/*
271			 * We're looking for an "Enhanced" VPD...
272			 */
273			if (vpd->vpd_key0 != 'Z')
274				continue;
275
276			desc = buf + sizeof(*vpd);
277
278			/*
279			 * ...which is an instance property...
280			 */
281			if (desc[0] != 'I')
282				continue;
283			desc += 3;
284
285			/*
286			 * ...that's a byte array with the proper
287			 * length for a MAC address...
288			 */
289			if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
290				continue;
291			desc += 2;
292
293			/*
294			 * ...named "local-mac-address".
295			 */
296			if (strcmp(desc, "local-mac-address") != 0)
297				continue;
298			desc += strlen("local-mac-address") + 1;
299
300			memcpy(enaddr, desc, ETHER_ADDR_LEN);
301			rv = 0;
302		}
303		break;
304
305	default:
306		goto fail;
307	}
308
309 fail:
310	if (romsize != 0)
311		bus_space_unmap(romt, romh, romsize);
312
313	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
314	address &= ~PCI_MAPREG_ROM_ENABLE;
315	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
316
317	return (rv);
318}
319
320void
321cas_attach(device_t parent, device_t self, void *aux)
322{
323	struct pci_attach_args *pa = aux;
324	struct cas_softc *sc = device_private(self);
325	prop_data_t data;
326	uint8_t enaddr[ETHER_ADDR_LEN];
327
328	sc->sc_dev = self;
329	pci_aprint_devinfo(pa, NULL);
330	sc->sc_rev = PCI_REVISION(pa->pa_class);
331	sc->sc_dmatag = pa->pa_dmat;
332
333#define PCI_CAS_BASEADDR	0x10
334	if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
335	    &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
336		aprint_error_dev(sc->sc_dev,
337		    "unable to map device registers\n");
338		return;
339	}
340
341	if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
342	    "mac-address")) != NULL)
343		memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
344	else if (cas_pci_enaddr(sc, pa, enaddr) != 0) {
345		aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
346		memset(enaddr, 0, sizeof(enaddr));
347	}
348
349	sc->sc_burst = 16;	/* XXX */
350
351	sc->sc_att_stage = CAS_ATT_BACKEND_0;
352
353	if (pci_intr_map(pa, &sc->sc_handle) != 0) {
354		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
355		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
356		return;
357	}
358	sc->sc_pc = pa->pa_pc;
359	if (!cas_estintr(sc, CAS_INTR_PCI)) {
360		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
361		aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
362		return;
363	}
364
365	sc->sc_att_stage = CAS_ATT_BACKEND_1;
366
367	/*
368	 * call the main configure
369	 */
370	cas_config(sc, enaddr);
371
372	if (pmf_device_register1(sc->sc_dev,
373	    cas_suspend, cas_resume, cas_shutdown))
374		pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
375	else
376		aprint_error_dev(sc->sc_dev,
377		    "could not establish power handlers\n");
378
379	sc->sc_att_stage = CAS_ATT_FINISHED;
380		/*FALLTHROUGH*/
381}
382
383/*
384 * cas_config:
385 *
386 *	Attach a Cassini interface to the system.
387 */
388void
389cas_config(struct cas_softc *sc, const uint8_t *enaddr)
390{
391	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
392	struct mii_data *mii = &sc->sc_mii;
393	struct mii_softc *child;
394	int i, error;
395
396	/* Make sure the chip is stopped. */
397	ifp->if_softc = sc;
398	cas_reset(sc);
399
400	/*
401	 * Allocate the control data structures, and create and load the
402	 * DMA map for it.
403	 */
404	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
405	    sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
406	    1, &sc->sc_cdnseg, 0)) != 0) {
407		aprint_error_dev(sc->sc_dev,
408		    "unable to allocate control data, error = %d\n",
409		    error);
410		cas_partial_detach(sc, CAS_ATT_0);
411	}
412
413	/* XXX should map this in with correct endianness */
414	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
415	    sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
416	    BUS_DMA_COHERENT)) != 0) {
417		aprint_error_dev(sc->sc_dev,
418		    "unable to map control data, error = %d\n", error);
419		cas_partial_detach(sc, CAS_ATT_1);
420	}
421
422	if ((error = bus_dmamap_create(sc->sc_dmatag,
423	    sizeof(struct cas_control_data), 1,
424	    sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
425		aprint_error_dev(sc->sc_dev,
426		    "unable to create control data DMA map, error = %d\n", error);
427		cas_partial_detach(sc, CAS_ATT_2);
428	}
429
430	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
431	    sc->sc_control_data, sizeof(struct cas_control_data), NULL,
432	    0)) != 0) {
433		aprint_error_dev(sc->sc_dev,
434		    "unable to load control data DMA map, error = %d\n",
435		    error);
436		cas_partial_detach(sc, CAS_ATT_3);
437	}
438
439	memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
440
441	/*
442	 * Create the receive buffer DMA maps.
443	 */
444	for (i = 0; i < CAS_NRXDESC; i++) {
445		bus_dma_segment_t seg;
446		char *kva;
447		int rseg;
448
449		if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
450		    CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
451			aprint_error_dev(sc->sc_dev,
452			    "unable to alloc rx DMA mem %d, error = %d\n",
453			    i, error);
454			cas_partial_detach(sc, CAS_ATT_5);
455		}
456		sc->sc_rxsoft[i].rxs_dmaseg = seg;
457
458		if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
459		    CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
460			aprint_error_dev(sc->sc_dev,
461			    "unable to alloc rx DMA mem %d, error = %d\n",
462			    i, error);
463			cas_partial_detach(sc, CAS_ATT_5);
464		}
465		sc->sc_rxsoft[i].rxs_kva = kva;
466
467		if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
468		    CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
469			aprint_error_dev(sc->sc_dev,
470			    "unable to create rx DMA map %d, error = %d\n",
471			    i, error);
472			cas_partial_detach(sc, CAS_ATT_5);
473		}
474
475		if ((error = bus_dmamap_load(sc->sc_dmatag,
476		   sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
477		   BUS_DMA_NOWAIT)) != 0) {
478			aprint_error_dev(sc->sc_dev,
479			    "unable to load rx DMA map %d, error = %d\n",
480			    i, error);
481			cas_partial_detach(sc, CAS_ATT_5);
482		}
483	}
484
485	/*
486	 * Create the transmit buffer DMA maps.
487	 */
488	for (i = 0; i < CAS_NTXDESC; i++) {
489		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
490		    CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
491		    &sc->sc_txd[i].sd_map)) != 0) {
492			aprint_error_dev(sc->sc_dev,
493			    "unable to create tx DMA map %d, error = %d\n",
494			    i, error);
495			cas_partial_detach(sc, CAS_ATT_6);
496		}
497		sc->sc_txd[i].sd_mbuf = NULL;
498	}
499
500	/*
501	 * From this point forward, the attachment cannot fail.  A failure
502	 * before this point releases all resources that may have been
503	 * allocated.
504	 */
505
506	/* Announce ourselves. */
507	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
508	    ether_sprintf(enaddr));
509	aprint_naive(": Ethernet controller\n");
510
511	/* Get RX FIFO size */
512	sc->sc_rxfifosize = 16 * 1024;
513
514	/* Initialize ifnet structure. */
515	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
516	ifp->if_softc = sc;
517	ifp->if_flags =
518	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
519	ifp->if_start = cas_start;
520	ifp->if_ioctl = cas_ioctl;
521	ifp->if_watchdog = cas_watchdog;
522	ifp->if_stop = cas_stop;
523	ifp->if_init = cas_init;
524	IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
525	IFQ_SET_READY(&ifp->if_snd);
526
527	/* Initialize ifmedia structures and MII info */
528	mii->mii_ifp = ifp;
529	mii->mii_readreg = cas_mii_readreg;
530	mii->mii_writereg = cas_mii_writereg;
531	mii->mii_statchg = cas_mii_statchg;
532
533	ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
534	sc->sc_ethercom.ec_mii = mii;
535
536	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
537
538	cas_mifinit(sc);
539
540	if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
541		sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
542		bus_space_write_4(sc->sc_memt, sc->sc_memh,
543	            CAS_MIF_CONFIG, sc->sc_mif_config);
544	}
545
546	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
547	    MII_OFFSET_ANY, 0);
548
549	child = LIST_FIRST(&mii->mii_phys);
550	if (child == NULL &&
551	    sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
552		/*
553		 * Try the external PCS SERDES if we didn't find any
554		 * MII devices.
555		 */
556		bus_space_write_4(sc->sc_memt, sc->sc_memh,
557		    CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
558
559		bus_space_write_4(sc->sc_memt, sc->sc_memh,
560		     CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
561
562		mii->mii_readreg = cas_pcs_readreg;
563		mii->mii_writereg = cas_pcs_writereg;
564
565		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
566		    MII_OFFSET_ANY, MIIF_NOISOLATE);
567	}
568
569	child = LIST_FIRST(&mii->mii_phys);
570	if (child == NULL) {
571		/* No PHY attached */
572		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
573		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
574	} else {
575		/*
576		 * Walk along the list of attached MII devices and
577		 * establish an `MII instance' to `phy number'
578		 * mapping. We'll use this mapping in media change
579		 * requests to determine which phy to use to program
580		 * the MIF configuration register.
581		 */
582		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
583			/*
584			 * Note: we support just two PHYs: the built-in
585			 * internal device and an external on the MII
586			 * connector.
587			 */
588			if (child->mii_phy > 1 || child->mii_inst > 1) {
589				aprint_error_dev(sc->sc_dev,
590				    "cannot accommodate MII device %s"
591				    " at phy %d, instance %d\n",
592				    device_xname(child->mii_dev),
593				    child->mii_phy, child->mii_inst);
594				continue;
595			}
596
597			sc->sc_phys[child->mii_inst] = child->mii_phy;
598		}
599
600		/*
601		 * XXX - we can really do the following ONLY if the
602		 * phy indeed has the auto negotiation capability!!
603		 */
604		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
605	}
606
607	/* claim 802.1q capability */
608	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
609
610	/* Attach the interface. */
611	if_attach(ifp);
612	if_deferred_start_init(ifp, NULL);
613	ether_ifattach(ifp, enaddr);
614
615	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
616			  RND_TYPE_NET, RND_FLAG_DEFAULT);
617
618	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
619	    NULL, device_xname(sc->sc_dev), "interrupts");
620
621	callout_init(&sc->sc_tick_ch, 0);
622
623	return;
624}
625
626int
627cas_detach(device_t self, int flags)
628{
629	int i;
630	struct cas_softc *sc = device_private(self);
631	bus_space_tag_t t = sc->sc_memt;
632	bus_space_handle_t h = sc->sc_memh;
633	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
634
635	/*
636	 * Free any resources we've allocated during the failed attach
637	 * attempt.  Do this in reverse order and fall through.
638	 */
639	switch (sc->sc_att_stage) {
640	case CAS_ATT_FINISHED:
641		bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
642		pmf_device_deregister(self);
643		cas_stop(&sc->sc_ethercom.ec_if, 1);
644		evcnt_detach(&sc->sc_ev_intr);
645
646		rnd_detach_source(&sc->rnd_source);
647
648		ether_ifdetach(ifp);
649		if_detach(ifp);
650		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
651
652		callout_destroy(&sc->sc_tick_ch);
653
654		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
655
656		/*FALLTHROUGH*/
657	case CAS_ATT_MII:
658	case CAS_ATT_7:
659	case CAS_ATT_6:
660		for (i = 0; i < CAS_NTXDESC; i++) {
661			if (sc->sc_txd[i].sd_map != NULL)
662				bus_dmamap_destroy(sc->sc_dmatag,
663				    sc->sc_txd[i].sd_map);
664		}
665		/*FALLTHROUGH*/
666	case CAS_ATT_5:
667		for (i = 0; i < CAS_NRXDESC; i++) {
668			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
669				bus_dmamap_unload(sc->sc_dmatag,
670				    sc->sc_rxsoft[i].rxs_dmamap);
671			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
672				bus_dmamap_destroy(sc->sc_dmatag,
673				    sc->sc_rxsoft[i].rxs_dmamap);
674			if (sc->sc_rxsoft[i].rxs_kva != NULL)
675				bus_dmamem_unmap(sc->sc_dmatag,
676				    sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
677			/* XXX   need to check that bus_dmamem_alloc suceeded
678			if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
679			*/
680				bus_dmamem_free(sc->sc_dmatag,
681				    &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
682		}
683		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
684		/*FALLTHROUGH*/
685	case CAS_ATT_4:
686	case CAS_ATT_3:
687		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
688		/*FALLTHROUGH*/
689	case CAS_ATT_2:
690		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
691		    sizeof(struct cas_control_data));
692		/*FALLTHROUGH*/
693	case CAS_ATT_1:
694		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
695		/*FALLTHROUGH*/
696	case CAS_ATT_0:
697		sc->sc_att_stage = CAS_ATT_0;
698		/*FALLTHROUGH*/
699	case CAS_ATT_BACKEND_2:
700	case CAS_ATT_BACKEND_1:
701		if (sc->sc_ih != NULL) {
702			pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
703			sc->sc_ih = NULL;
704		}
705		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
706		/*FALLTHROUGH*/
707	case CAS_ATT_BACKEND_0:
708		break;
709	}
710	return 0;
711}
712
713static void
714cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
715{
716	cfattach_t ca = device_cfattach(sc->sc_dev);
717
718	sc->sc_att_stage = stage;
719	(*ca->ca_detach)(sc->sc_dev, 0);
720}
721
722void
723cas_tick(void *arg)
724{
725	struct cas_softc *sc = arg;
726	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
727	bus_space_tag_t t = sc->sc_memt;
728	bus_space_handle_t mac = sc->sc_memh;
729	int s;
730	u_int32_t v;
731
732	/* unload collisions counters */
733	v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
734	    bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
735	ifp->if_collisions += v +
736	    bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
737	    bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
738	ifp->if_oerrors += v;
739
740	/* read error counters */
741	ifp->if_ierrors +=
742	    bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
743	    bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
744	    bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
745	    bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
746
747	/* clear the hardware counters */
748	bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
749	bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
750	bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
751	bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
752	bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
753	bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
754	bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
755	bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
756
757	s = splnet();
758	mii_tick(&sc->sc_mii);
759	splx(s);
760
761	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
762}
763
764int
765cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
766    u_int32_t clr, u_int32_t set)
767{
768	int i;
769	u_int32_t reg;
770
771	for (i = TRIES; i--; DELAY(100)) {
772		reg = bus_space_read_4(sc->sc_memt, h, r);
773		if ((reg & clr) == 0 && (reg & set) == set)
774			return (1);
775	}
776
777	return (0);
778}
779
780void
781cas_reset(struct cas_softc *sc)
782{
783	bus_space_tag_t t = sc->sc_memt;
784	bus_space_handle_t h = sc->sc_memh;
785	int s;
786
787	s = splnet();
788	DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
789	cas_reset_rx(sc);
790	cas_reset_tx(sc);
791
792	/* Disable interrupts */
793	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
794
795	/* Do a full reset */
796	bus_space_write_4(t, h, CAS_RESET,
797	    CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
798	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
799		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
800	splx(s);
801}
802
803
804/*
805 * cas_rxdrain:
806 *
807 *	Drain the receive queue.
808 */
809void
810cas_rxdrain(struct cas_softc *sc)
811{
812	/* Nothing to do yet. */
813}
814
815/*
816 * Reset the whole thing.
817 */
818void
819cas_stop(struct ifnet *ifp, int disable)
820{
821	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
822	struct cas_sxd *sd;
823	u_int32_t i;
824
825	DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
826
827	callout_stop(&sc->sc_tick_ch);
828
829	/*
830	 * Mark the interface down and cancel the watchdog timer.
831	 */
832	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
833	ifp->if_timer = 0;
834
835	mii_down(&sc->sc_mii);
836
837	cas_reset_rx(sc);
838	cas_reset_tx(sc);
839
840	/*
841	 * Release any queued transmit buffers.
842	 */
843	for (i = 0; i < CAS_NTXDESC; i++) {
844		sd = &sc->sc_txd[i];
845		if (sd->sd_mbuf != NULL) {
846			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
847			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
848			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
849			m_freem(sd->sd_mbuf);
850			sd->sd_mbuf = NULL;
851		}
852	}
853	sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
854
855	if (disable)
856		cas_rxdrain(sc);
857}
858
859
860/*
861 * Reset the receiver
862 */
863int
864cas_reset_rx(struct cas_softc *sc)
865{
866	bus_space_tag_t t = sc->sc_memt;
867	bus_space_handle_t h = sc->sc_memh;
868
869	/*
870	 * Resetting while DMA is in progress can cause a bus hang, so we
871	 * disable DMA first.
872	 */
873	cas_disable_rx(sc);
874	bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
875	/* Wait till it finishes */
876	if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
877		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
878	/* Wait 5ms extra. */
879	delay(5000);
880
881	/* Finally, reset the ERX */
882	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
883	/* Wait till it finishes */
884	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
885		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
886		return (1);
887	}
888	return (0);
889}
890
891
892/*
893 * Reset the transmitter
894 */
895int
896cas_reset_tx(struct cas_softc *sc)
897{
898	bus_space_tag_t t = sc->sc_memt;
899	bus_space_handle_t h = sc->sc_memh;
900
901	/*
902	 * Resetting while DMA is in progress can cause a bus hang, so we
903	 * disable DMA first.
904	 */
905	cas_disable_tx(sc);
906	bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
907	/* Wait till it finishes */
908	if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
909		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
910	/* Wait 5ms extra. */
911	delay(5000);
912
913	/* Finally, reset the ETX */
914	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
915	/* Wait till it finishes */
916	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
917		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
918		return (1);
919	}
920	return (0);
921}
922
923/*
924 * Disable receiver.
925 */
926int
927cas_disable_rx(struct cas_softc *sc)
928{
929	bus_space_tag_t t = sc->sc_memt;
930	bus_space_handle_t h = sc->sc_memh;
931	u_int32_t cfg;
932
933	/* Flip the enable bit */
934	cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
935	cfg &= ~CAS_MAC_RX_ENABLE;
936	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
937
938	/* Wait for it to finish */
939	return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
940}
941
942/*
943 * Disable transmitter.
944 */
945int
946cas_disable_tx(struct cas_softc *sc)
947{
948	bus_space_tag_t t = sc->sc_memt;
949	bus_space_handle_t h = sc->sc_memh;
950	u_int32_t cfg;
951
952	/* Flip the enable bit */
953	cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
954	cfg &= ~CAS_MAC_TX_ENABLE;
955	bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
956
957	/* Wait for it to finish */
958	return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
959}
960
961/*
962 * Initialize interface.
963 */
964int
965cas_meminit(struct cas_softc *sc)
966{
967	int i;
968
969	/*
970	 * Initialize the transmit descriptor ring.
971	 */
972	for (i = 0; i < CAS_NTXDESC; i++) {
973		sc->sc_txdescs[i].cd_flags = 0;
974		sc->sc_txdescs[i].cd_addr = 0;
975	}
976	CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
977	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
978
979	/*
980	 * Initialize the receive descriptor and receive job
981	 * descriptor rings.
982	 */
983	for (i = 0; i < CAS_NRXDESC; i++)
984		CAS_INIT_RXDESC(sc, i, i);
985	sc->sc_rxdptr = 0;
986	sc->sc_rxptr = 0;
987
988	/*
989	 * Initialize the receive completion ring.
990	 */
991	for (i = 0; i < CAS_NRXCOMP; i++) {
992		sc->sc_rxcomps[i].cc_word[0] = 0;
993		sc->sc_rxcomps[i].cc_word[1] = 0;
994		sc->sc_rxcomps[i].cc_word[2] = 0;
995		sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
996		CAS_CDRXCSYNC(sc, i,
997		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
998	}
999
1000	return (0);
1001}
1002
1003int
1004cas_ringsize(int sz)
1005{
1006	switch (sz) {
1007	case 32:
1008		return CAS_RING_SZ_32;
1009	case 64:
1010		return CAS_RING_SZ_64;
1011	case 128:
1012		return CAS_RING_SZ_128;
1013	case 256:
1014		return CAS_RING_SZ_256;
1015	case 512:
1016		return CAS_RING_SZ_512;
1017	case 1024:
1018		return CAS_RING_SZ_1024;
1019	case 2048:
1020		return CAS_RING_SZ_2048;
1021	case 4096:
1022		return CAS_RING_SZ_4096;
1023	case 8192:
1024		return CAS_RING_SZ_8192;
1025	default:
1026		aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1027		    sz);
1028		return CAS_RING_SZ_32;
1029	}
1030}
1031
1032int
1033cas_cringsize(int sz)
1034{
1035	int i;
1036
1037	for (i = 0; i < 9; i++)
1038		if (sz == (128 << i))
1039			return i;
1040
1041	aprint_error("cas: invalid completion ring size %d\n", sz);
1042	return 128;
1043}
1044
1045/*
1046 * Initialization of interface; set up initialization block
1047 * and transmit/receive descriptor rings.
1048 */
1049int
1050cas_init(struct ifnet *ifp)
1051{
1052	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1053	bus_space_tag_t t = sc->sc_memt;
1054	bus_space_handle_t h = sc->sc_memh;
1055	int s;
1056	u_int max_frame_size;
1057	u_int32_t v;
1058
1059	s = splnet();
1060
1061	DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1062	/*
1063	 * Initialization sequence. The numbered steps below correspond
1064	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1065	 * Channel Engine manual (part of the PCIO manual).
1066	 * See also the STP2002-STQ document from Sun Microsystems.
1067	 */
1068
1069	/* step 1 & 2. Reset the Ethernet Channel */
1070	cas_stop(ifp, 0);
1071	cas_reset(sc);
1072	DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1073
1074	/* Re-initialize the MIF */
1075	cas_mifinit(sc);
1076
1077	/* step 3. Setup data structures in host memory */
1078	cas_meminit(sc);
1079
1080	/* step 4. TX MAC registers & counters */
1081	cas_init_regs(sc);
1082	max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1083	v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1084	bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1085
1086	/* step 5. RX MAC registers & counters */
1087	cas_iff(sc);
1088
1089	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1090	KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1091	bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1092	    (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1093	bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1094
1095	KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1096	bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1097	    (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1098	bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1099
1100	KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1101	bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1102	    (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1103	bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1104
1105	if (CAS_PLUS(sc)) {
1106		KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1107		bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1108		    (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1109		bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1110		    CAS_CDRXADDR2(sc, 0));
1111	}
1112
1113	/* step 8. Global Configuration & Interrupt Mask */
1114	cas_estintr(sc, CAS_INTR_REG);
1115
1116	/* step 9. ETX Configuration: use mostly default values */
1117
1118	/* Enable DMA */
1119	v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1120	bus_space_write_4(t, h, CAS_TX_CONFIG,
1121	    v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1122	bus_space_write_4(t, h, CAS_TX_KICK, 0);
1123
1124	/* step 10. ERX Configuration */
1125
1126	/* Encode Receive Descriptor ring size */
1127	v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1128	if (CAS_PLUS(sc))
1129		v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1130
1131	/* Encode Receive Completion ring size */
1132	v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1133
1134	/* Enable DMA */
1135	bus_space_write_4(t, h, CAS_RX_CONFIG,
1136	    v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1137
1138	/*
1139	 * The following value is for an OFF Threshold of about 3/4 full
1140	 * and an ON Threshold of 1/4 full.
1141	 */
1142	bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1143	    (3 * sc->sc_rxfifosize / 256) |
1144	    ((sc->sc_rxfifosize / 256) << 12));
1145	bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1146
1147	/* step 11. Configure Media */
1148	mii_ifmedia_change(&sc->sc_mii);
1149
1150	/* step 12. RX_MAC Configuration Register */
1151	v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1152	v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1153	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1154
1155	/* step 14. Issue Transmit Pending command */
1156
1157	/* step 15.  Give the receiver a swift kick */
1158	bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1159	if (CAS_PLUS(sc))
1160		bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1161
1162	/* Start the one second timer. */
1163	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1164
1165	ifp->if_flags |= IFF_RUNNING;
1166	ifp->if_flags &= ~IFF_OACTIVE;
1167	ifp->if_timer = 0;
1168	splx(s);
1169
1170	return (0);
1171}
1172
1173void
1174cas_init_regs(struct cas_softc *sc)
1175{
1176	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1177	bus_space_tag_t t = sc->sc_memt;
1178	bus_space_handle_t h = sc->sc_memh;
1179	const u_char *laddr = CLLADDR(ifp->if_sadl);
1180	u_int32_t v, r;
1181
1182	/* These regs are not cleared on reset */
1183	sc->sc_inited = 0;
1184	if (!sc->sc_inited) {
1185		/* Load recommended values  */
1186		bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1187		bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1188		bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1189
1190		bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1191		/* Max frame and max burst size */
1192		v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1193		bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1194
1195		bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1196		bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1197		bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1198		bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1199		bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1200		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1201
1202		/* Secondary MAC addresses set to 0:0:0:0:0:0 */
1203		for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1204			bus_space_write_4(t, h, r, 0);
1205
1206		/* MAC control addr set to 0:1:c2:0:1:80 */
1207		bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1208		bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1209		bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1210
1211		/* MAC filter addr set to 0:0:0:0:0:0 */
1212		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1213		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1214		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1215
1216		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1217		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1218
1219		/* Hash table initialized to 0 */
1220		for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1221			bus_space_write_4(t, h, r, 0);
1222
1223		sc->sc_inited = 1;
1224	}
1225
1226	/* Counters need to be zeroed */
1227	bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1228	bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1229	bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1230	bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1231	bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1232	bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1233	bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1234	bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1235	bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1236	bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1237	bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1238
1239	/* Un-pause stuff */
1240	bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1241
1242	/*
1243	 * Set the station address.
1244	 */
1245	bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1246	bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1247	bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1248}
1249
1250/*
1251 * Receive interrupt.
1252 */
1253int
1254cas_rint(struct cas_softc *sc)
1255{
1256	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1257	bus_space_tag_t t = sc->sc_memt;
1258	bus_space_handle_t h = sc->sc_memh;
1259	struct cas_rxsoft *rxs;
1260	struct mbuf *m;
1261	u_int64_t word[4];
1262	int len, off, idx;
1263	int i, skip;
1264	void *cp;
1265
1266	for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1267		CAS_CDRXCSYNC(sc, i,
1268		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1269
1270		word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1271		word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1272		word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1273		word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1274
1275		/* Stop if the hardware still owns the descriptor. */
1276		if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1277			break;
1278
1279		len = CAS_RC1_HDR_LEN(word[1]);
1280		if (len > 0) {
1281			off = CAS_RC1_HDR_OFF(word[1]);
1282			idx = CAS_RC1_HDR_IDX(word[1]);
1283			rxs = &sc->sc_rxsoft[idx];
1284
1285			DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1286			    idx, off, len));
1287
1288			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1289			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1290
1291			cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1292			m = m_devget(cp, len, 0, ifp, NULL);
1293
1294			if (word[0] & CAS_RC0_RELEASE_HDR)
1295				cas_add_rxbuf(sc, idx);
1296
1297			if (m != NULL) {
1298
1299				/*
1300				 * Pass this up to any BPF listeners, but only
1301				 * pass it up the stack if its for us.
1302				 */
1303				m->m_pkthdr.csum_flags = 0;
1304				if_percpuq_enqueue(ifp->if_percpuq, m);
1305			} else
1306				ifp->if_ierrors++;
1307		}
1308
1309		len = CAS_RC0_DATA_LEN(word[0]);
1310		if (len > 0) {
1311			off = CAS_RC0_DATA_OFF(word[0]);
1312			idx = CAS_RC0_DATA_IDX(word[0]);
1313			rxs = &sc->sc_rxsoft[idx];
1314
1315			DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1316			    idx, off, len));
1317
1318			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1319			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1320
1321			/* XXX We should not be copying the packet here. */
1322			cp = rxs->rxs_kva + off + ETHER_ALIGN;
1323			m = m_devget(cp, len, 0, ifp, NULL);
1324
1325			if (word[0] & CAS_RC0_RELEASE_DATA)
1326				cas_add_rxbuf(sc, idx);
1327
1328			if (m != NULL) {
1329				/*
1330				 * Pass this up to any BPF listeners, but only
1331				 * pass it up the stack if its for us.
1332				 */
1333				m->m_pkthdr.csum_flags = 0;
1334				if_percpuq_enqueue(ifp->if_percpuq, m);
1335			} else
1336				ifp->if_ierrors++;
1337		}
1338
1339		if (word[0] & CAS_RC0_SPLIT)
1340			aprint_error_dev(sc->sc_dev, "split packet\n");
1341
1342		skip = CAS_RC0_SKIP(word[0]);
1343	}
1344
1345	while (sc->sc_rxptr != i) {
1346		sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1347		sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1348		sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1349		sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1350		    CAS_DMA_WRITE(CAS_RC3_OWN);
1351		CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1352		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1353
1354		sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1355	}
1356
1357	bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1358
1359	DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1360		sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1361
1362	return (1);
1363}
1364
1365/*
1366 * cas_add_rxbuf:
1367 *
1368 *	Add a receive buffer to the indicated descriptor.
1369 */
1370int
1371cas_add_rxbuf(struct cas_softc *sc, int idx)
1372{
1373	bus_space_tag_t t = sc->sc_memt;
1374	bus_space_handle_t h = sc->sc_memh;
1375
1376	CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1377
1378	if ((sc->sc_rxdptr % 4) == 0)
1379		bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1380
1381	if (++sc->sc_rxdptr == CAS_NRXDESC)
1382		sc->sc_rxdptr = 0;
1383
1384	return (0);
1385}
1386
1387int
1388cas_eint(struct cas_softc *sc, u_int status)
1389{
1390	char bits[128];
1391	if ((status & CAS_INTR_MIF) != 0) {
1392		DPRINTF(sc, ("%s: link status changed\n",
1393		    device_xname(sc->sc_dev)));
1394		return (1);
1395	}
1396
1397	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1398	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1399	return (1);
1400}
1401
1402int
1403cas_pint(struct cas_softc *sc)
1404{
1405	bus_space_tag_t t = sc->sc_memt;
1406	bus_space_handle_t seb = sc->sc_memh;
1407	u_int32_t status;
1408
1409	status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1410	status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1411#ifdef CAS_DEBUG
1412	if (status)
1413		printf("%s: link status changed\n", device_xname(sc->sc_dev));
1414#endif
1415	return (1);
1416}
1417
1418int
1419cas_intr(void *v)
1420{
1421	struct cas_softc *sc = (struct cas_softc *)v;
1422	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1423	bus_space_tag_t t = sc->sc_memt;
1424	bus_space_handle_t seb = sc->sc_memh;
1425	u_int32_t status;
1426	int r = 0;
1427#ifdef CAS_DEBUG
1428	char bits[128];
1429#endif
1430
1431	sc->sc_ev_intr.ev_count++;
1432
1433	status = bus_space_read_4(t, seb, CAS_STATUS);
1434#ifdef CAS_DEBUG
1435	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1436#endif
1437	DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1438		device_xname(sc->sc_dev), (status>>19), bits));
1439
1440	if ((status & CAS_INTR_PCS) != 0)
1441		r |= cas_pint(sc);
1442
1443	if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1444	    CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1445		r |= cas_eint(sc, status);
1446
1447	if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1448		r |= cas_tint(sc, status);
1449
1450	if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1451		r |= cas_rint(sc);
1452
1453	/* We should eventually do more than just print out error stats. */
1454	if (status & CAS_INTR_TX_MAC) {
1455		int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1456#ifdef CAS_DEBUG
1457		if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1458			printf("%s: MAC tx fault, status %x\n",
1459			    device_xname(sc->sc_dev), txstat);
1460#endif
1461		if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1462			cas_init(ifp);
1463	}
1464	if (status & CAS_INTR_RX_MAC) {
1465		int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1466#ifdef CAS_DEBUG
1467		if (rxstat & ~CAS_MAC_RX_DONE)
1468			printf("%s: MAC rx fault, status %x\n",
1469			    device_xname(sc->sc_dev), rxstat);
1470#endif
1471		/*
1472		 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1473		 * due to a silicon bug so handle them silently.
1474		 */
1475		if (rxstat & CAS_MAC_RX_OVERFLOW) {
1476			ifp->if_ierrors++;
1477			cas_init(ifp);
1478		}
1479#ifdef CAS_DEBUG
1480		else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1481			printf("%s: MAC rx fault, status %x\n",
1482			    device_xname(sc->sc_dev), rxstat);
1483#endif
1484	}
1485	rnd_add_uint32(&sc->rnd_source, status);
1486	return (r);
1487}
1488
1489
1490void
1491cas_watchdog(struct ifnet *ifp)
1492{
1493	struct cas_softc *sc = ifp->if_softc;
1494
1495	DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1496		"CAS_MAC_RX_CONFIG %x\n",
1497		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1498		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1499		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1500
1501	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1502	++ifp->if_oerrors;
1503
1504	/* Try to get more packets going. */
1505	cas_init(ifp);
1506}
1507
1508/*
1509 * Initialize the MII Management Interface
1510 */
1511void
1512cas_mifinit(struct cas_softc *sc)
1513{
1514	bus_space_tag_t t = sc->sc_memt;
1515	bus_space_handle_t mif = sc->sc_memh;
1516
1517	/* Configure the MIF in frame mode */
1518	sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1519	sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1520	bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1521}
1522
1523/*
1524 * MII interface
1525 *
1526 * The Cassini MII interface supports at least three different operating modes:
1527 *
1528 * Bitbang mode is implemented using data, clock and output enable registers.
1529 *
1530 * Frame mode is implemented by loading a complete frame into the frame
1531 * register and polling the valid bit for completion.
1532 *
1533 * Polling mode uses the frame register but completion is indicated by
1534 * an interrupt.
1535 *
1536 */
1537int
1538cas_mii_readreg(device_t self, int phy, int reg)
1539{
1540	struct cas_softc *sc = device_private(self);
1541	bus_space_tag_t t = sc->sc_memt;
1542	bus_space_handle_t mif = sc->sc_memh;
1543	int n;
1544	u_int32_t v;
1545
1546#ifdef CAS_DEBUG
1547	if (sc->sc_debug)
1548		printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1549#endif
1550
1551	/* Construct the frame command */
1552	v = (reg << CAS_MIF_REG_SHIFT)	| (phy << CAS_MIF_PHY_SHIFT) |
1553		CAS_MIF_FRAME_READ;
1554
1555	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1556	for (n = 0; n < 100; n++) {
1557		DELAY(1);
1558		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1559		if (v & CAS_MIF_FRAME_TA0)
1560			return (v & CAS_MIF_FRAME_DATA);
1561	}
1562
1563	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1564	return (0);
1565}
1566
1567void
1568cas_mii_writereg(device_t self, int phy, int reg, int val)
1569{
1570	struct cas_softc *sc = device_private(self);
1571	bus_space_tag_t t = sc->sc_memt;
1572	bus_space_handle_t mif = sc->sc_memh;
1573	int n;
1574	u_int32_t v;
1575
1576#ifdef CAS_DEBUG
1577	if (sc->sc_debug)
1578		printf("cas_mii_writereg: phy %d reg %d val %x\n",
1579			phy, reg, val);
1580#endif
1581
1582	/* Construct the frame command */
1583	v = CAS_MIF_FRAME_WRITE			|
1584	    (phy << CAS_MIF_PHY_SHIFT)		|
1585	    (reg << CAS_MIF_REG_SHIFT)		|
1586	    (val & CAS_MIF_FRAME_DATA);
1587
1588	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1589	for (n = 0; n < 100; n++) {
1590		DELAY(1);
1591		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1592		if (v & CAS_MIF_FRAME_TA0)
1593			return;
1594	}
1595
1596	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1597}
1598
1599void
1600cas_mii_statchg(struct ifnet *ifp)
1601{
1602	struct cas_softc *sc = ifp->if_softc;
1603#ifdef CAS_DEBUG
1604	int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1605#endif
1606	bus_space_tag_t t = sc->sc_memt;
1607	bus_space_handle_t mac = sc->sc_memh;
1608	u_int32_t v;
1609
1610#ifdef CAS_DEBUG
1611	if (sc->sc_debug)
1612		printf("cas_mii_statchg: status change: phy = %d\n",
1613		    sc->sc_phys[instance]);
1614#endif
1615
1616	/* Set tx full duplex options */
1617	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1618	delay(10000); /* reg must be cleared and delay before changing. */
1619	v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1620		CAS_MAC_TX_ENABLE;
1621	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1622		v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1623	}
1624	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1625
1626	/* XIF Configuration */
1627	v = CAS_MAC_XIF_TX_MII_ENA;
1628	v |= CAS_MAC_XIF_LINK_LED;
1629
1630	/* MII needs echo disable if half duplex. */
1631	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1632		/* turn on full duplex LED */
1633		v |= CAS_MAC_XIF_FDPLX_LED;
1634	else
1635		/* half duplex -- disable echo */
1636		v |= CAS_MAC_XIF_ECHO_DISABL;
1637
1638	switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1639	case IFM_1000_T:  /* Gigabit using GMII interface */
1640	case IFM_1000_SX:
1641		v |= CAS_MAC_XIF_GMII_MODE;
1642		break;
1643	default:
1644		v &= ~CAS_MAC_XIF_GMII_MODE;
1645	}
1646	bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1647}
1648
1649int
1650cas_pcs_readreg(device_t self, int phy, int reg)
1651{
1652	struct cas_softc *sc = device_private(self);
1653	bus_space_tag_t t = sc->sc_memt;
1654	bus_space_handle_t pcs = sc->sc_memh;
1655
1656#ifdef CAS_DEBUG
1657	if (sc->sc_debug)
1658		printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1659#endif
1660
1661	if (phy != CAS_PHYAD_EXTERNAL)
1662		return (0);
1663
1664	switch (reg) {
1665	case MII_BMCR:
1666		reg = CAS_MII_CONTROL;
1667		break;
1668	case MII_BMSR:
1669		reg = CAS_MII_STATUS;
1670		break;
1671	case MII_ANAR:
1672		reg = CAS_MII_ANAR;
1673		break;
1674	case MII_ANLPAR:
1675		reg = CAS_MII_ANLPAR;
1676		break;
1677	case MII_EXTSR:
1678		return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1679	default:
1680		return (0);
1681	}
1682
1683	return bus_space_read_4(t, pcs, reg);
1684}
1685
1686void
1687cas_pcs_writereg(device_t self, int phy, int reg, int val)
1688{
1689	struct cas_softc *sc = device_private(self);
1690	bus_space_tag_t t = sc->sc_memt;
1691	bus_space_handle_t pcs = sc->sc_memh;
1692	int reset = 0;
1693
1694#ifdef CAS_DEBUG
1695	if (sc->sc_debug)
1696		printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1697			phy, reg, val);
1698#endif
1699
1700	if (phy != CAS_PHYAD_EXTERNAL)
1701		return;
1702
1703	if (reg == MII_ANAR)
1704		bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1705
1706	switch (reg) {
1707	case MII_BMCR:
1708		reset = (val & CAS_MII_CONTROL_RESET);
1709		reg = CAS_MII_CONTROL;
1710		break;
1711	case MII_BMSR:
1712		reg = CAS_MII_STATUS;
1713		break;
1714	case MII_ANAR:
1715		reg = CAS_MII_ANAR;
1716		break;
1717	case MII_ANLPAR:
1718		reg = CAS_MII_ANLPAR;
1719		break;
1720	default:
1721		return;
1722	}
1723
1724	bus_space_write_4(t, pcs, reg, val);
1725
1726	if (reset)
1727		cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1728
1729	if (reg == CAS_MII_ANAR || reset)
1730		bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1731		    CAS_MII_CONFIG_ENABLE);
1732}
1733
1734int
1735cas_mediachange(struct ifnet *ifp)
1736{
1737	struct cas_softc *sc = ifp->if_softc;
1738	struct mii_data *mii = &sc->sc_mii;
1739
1740	if (mii->mii_instance) {
1741		struct mii_softc *miisc;
1742		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1743			mii_phy_reset(miisc);
1744	}
1745
1746	return (mii_mediachg(&sc->sc_mii));
1747}
1748
1749void
1750cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1751{
1752	struct cas_softc *sc = ifp->if_softc;
1753
1754	mii_pollstat(&sc->sc_mii);
1755	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1756	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1757}
1758
1759/*
1760 * Process an ioctl request.
1761 */
1762int
1763cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1764{
1765	struct cas_softc *sc = ifp->if_softc;
1766	int s, error = 0;
1767
1768	s = splnet();
1769
1770	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1771		error = 0;
1772		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1773			;
1774		else if (ifp->if_flags & IFF_RUNNING) {
1775			/*
1776			 * Multicast list has changed; set the hardware filter
1777			 * accordingly.
1778			 */
1779			cas_iff(sc);
1780		}
1781	}
1782
1783	splx(s);
1784	return (error);
1785}
1786
1787static bool
1788cas_suspend(device_t self, const pmf_qual_t *qual)
1789{
1790	struct cas_softc *sc = device_private(self);
1791	bus_space_tag_t t = sc->sc_memt;
1792	bus_space_handle_t h = sc->sc_memh;
1793
1794	bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1795	if (sc->sc_ih != NULL) {
1796		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1797		sc->sc_ih = NULL;
1798	}
1799
1800	return true;
1801}
1802
1803static bool
1804cas_resume(device_t self, const pmf_qual_t *qual)
1805{
1806	struct cas_softc *sc = device_private(self);
1807
1808	return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1809}
1810
1811static bool
1812cas_estintr(struct cas_softc *sc, int what)
1813{
1814	bus_space_tag_t t = sc->sc_memt;
1815	bus_space_handle_t h = sc->sc_memh;
1816	const char *intrstr = NULL;
1817	char intrbuf[PCI_INTRSTR_LEN];
1818
1819	/* PCI interrupts */
1820	if (what & CAS_INTR_PCI) {
1821		intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle, intrbuf, sizeof(intrbuf));
1822		sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1823		    IPL_NET, cas_intr, sc);
1824		if (sc->sc_ih == NULL) {
1825			aprint_error_dev(sc->sc_dev,
1826			    "unable to establish interrupt");
1827			if (intrstr != NULL)
1828				aprint_error(" at %s", intrstr);
1829			aprint_error("\n");
1830			return false;
1831		}
1832
1833		aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1834	}
1835
1836	/* Interrupt register */
1837	if (what & CAS_INTR_REG) {
1838		bus_space_write_4(t, h, CAS_INTMASK,
1839		    ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1840		    CAS_INTR_TX_TAG_ERR|
1841		    CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1842		    CAS_INTR_RX_TAG_ERR|
1843		    CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1844		    CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1845		    CAS_INTR_BERR));
1846		bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1847		    CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1848		bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1849		bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1850	}
1851	return true;
1852}
1853
1854bool
1855cas_shutdown(device_t self, int howto)
1856{
1857	struct cas_softc *sc = device_private(self);
1858	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1859
1860	cas_stop(ifp, 1);
1861
1862	return true;
1863}
1864
1865void
1866cas_iff(struct cas_softc *sc)
1867{
1868	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1869	struct ethercom *ec = &sc->sc_ethercom;
1870	struct ether_multi *enm;
1871	struct ether_multistep step;
1872	bus_space_tag_t t = sc->sc_memt;
1873	bus_space_handle_t h = sc->sc_memh;
1874	u_int32_t crc, hash[16], rxcfg;
1875	int i;
1876
1877	rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1878	rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1879	    CAS_MAC_RX_PROMISC_GRP);
1880	ifp->if_flags &= ~IFF_ALLMULTI;
1881
1882	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1883		ifp->if_flags |= IFF_ALLMULTI;
1884		if (ifp->if_flags & IFF_PROMISC)
1885			rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1886		else
1887			rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1888        } else {
1889		/*
1890		 * Set up multicast address filter by passing all multicast
1891		 * addresses through a crc generator, and then using the
1892		 * high order 8 bits as an index into the 256 bit logical
1893		 * address filter.  The high order 4 bits selects the word,
1894		 * while the other 4 bits select the bit within the word
1895		 * (where bit 0 is the MSB).
1896		 */
1897
1898		rxcfg |= CAS_MAC_RX_HASH_FILTER;
1899
1900		/* Clear hash table */
1901		for (i = 0; i < 16; i++)
1902			hash[i] = 0;
1903
1904		ETHER_FIRST_MULTI(step, ec, enm);
1905		while (enm != NULL) {
1906                        crc = ether_crc32_le(enm->enm_addrlo,
1907                            ETHER_ADDR_LEN);
1908
1909                        /* Just want the 8 most significant bits. */
1910                        crc >>= 24;
1911
1912                        /* Set the corresponding bit in the filter. */
1913                        hash[crc >> 4] |= 1 << (15 - (crc & 15));
1914
1915			ETHER_NEXT_MULTI(step, enm);
1916		}
1917
1918		/* Now load the hash table into the chip (if we are using it) */
1919		for (i = 0; i < 16; i++) {
1920			bus_space_write_4(t, h,
1921			    CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1922			    hash[i]);
1923		}
1924	}
1925
1926	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1927}
1928
1929int
1930cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1931{
1932	u_int64_t flags;
1933	u_int32_t cur, frag, i;
1934	bus_dmamap_t map;
1935
1936	cur = frag = *bixp;
1937	map = sc->sc_txd[cur].sd_map;
1938
1939	if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1940	    BUS_DMA_NOWAIT) != 0) {
1941		return (ENOBUFS);
1942	}
1943
1944	if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1945		bus_dmamap_unload(sc->sc_dmatag, map);
1946		return (ENOBUFS);
1947	}
1948
1949	bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1950	    BUS_DMASYNC_PREWRITE);
1951
1952	for (i = 0; i < map->dm_nsegs; i++) {
1953		sc->sc_txdescs[frag].cd_addr =
1954		    CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1955		flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1956		    (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1957		    ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1958		sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1959		bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1960		    CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1961		    BUS_DMASYNC_PREWRITE);
1962		cur = frag;
1963		if (++frag == CAS_NTXDESC)
1964			frag = 0;
1965	}
1966
1967	sc->sc_tx_cnt += map->dm_nsegs;
1968	sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1969	sc->sc_txd[cur].sd_map = map;
1970	sc->sc_txd[cur].sd_mbuf = mhead;
1971
1972	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1973
1974	*bixp = frag;
1975
1976	/* sync descriptors */
1977
1978	return (0);
1979}
1980
1981/*
1982 * Transmit interrupt.
1983 */
1984int
1985cas_tint(struct cas_softc *sc, u_int32_t status)
1986{
1987	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1988	struct cas_sxd *sd;
1989	u_int32_t cons, comp;
1990
1991	comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
1992	cons = sc->sc_tx_cons;
1993	while (cons != comp) {
1994		sd = &sc->sc_txd[cons];
1995		if (sd->sd_mbuf != NULL) {
1996			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
1997			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1998			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
1999			m_freem(sd->sd_mbuf);
2000			sd->sd_mbuf = NULL;
2001			ifp->if_opackets++;
2002		}
2003		sc->sc_tx_cnt--;
2004		if (++cons == CAS_NTXDESC)
2005			cons = 0;
2006	}
2007	sc->sc_tx_cons = cons;
2008
2009	if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2010		ifp->if_flags &= ~IFF_OACTIVE;
2011	if (sc->sc_tx_cnt == 0)
2012		ifp->if_timer = 0;
2013
2014	if_schedule_deferred_start(ifp);
2015
2016	return (1);
2017}
2018
2019void
2020cas_start(struct ifnet *ifp)
2021{
2022	struct cas_softc *sc = ifp->if_softc;
2023	struct mbuf *m;
2024	u_int32_t bix;
2025
2026	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2027		return;
2028
2029	bix = sc->sc_tx_prod;
2030	while (sc->sc_txd[bix].sd_mbuf == NULL) {
2031		IFQ_POLL(&ifp->if_snd, m);
2032		if (m == NULL)
2033			break;
2034
2035		/*
2036		 * If BPF is listening on this interface, let it see the
2037		 * packet before we commit it to the wire.
2038		 */
2039		bpf_mtap(ifp, m, BPF_D_OUT);
2040
2041		/*
2042		 * Encapsulate this packet and start it going...
2043		 * or fail...
2044		 */
2045		if (cas_encap(sc, m, &bix)) {
2046			ifp->if_flags |= IFF_OACTIVE;
2047			break;
2048		}
2049
2050		IFQ_DEQUEUE(&ifp->if_snd, m);
2051		ifp->if_timer = 5;
2052	}
2053
2054	sc->sc_tx_prod = bix;
2055}
2056
2057MODULE(MODULE_CLASS_DRIVER, if_cas, "pci");
2058
2059#ifdef _MODULE
2060#include "ioconf.c"
2061#endif
2062
2063static int
2064if_cas_modcmd(modcmd_t cmd, void *opaque)
2065{
2066	int error = 0;
2067
2068	switch (cmd) {
2069	case MODULE_CMD_INIT:
2070#ifdef _MODULE
2071		error = config_init_component(cfdriver_ioconf_cas,
2072		    cfattach_ioconf_cas, cfdata_ioconf_cas);
2073#endif
2074		return error;
2075	case MODULE_CMD_FINI:
2076#ifdef _MODULE
2077		error = config_fini_component(cfdriver_ioconf_cas,
2078		    cfattach_ioconf_cas, cfdata_ioconf_cas);
2079#endif
2080		return error;
2081	default:
2082		return ENOTTY;
2083	}
2084}
2085