if_cas.c revision 1.21
1/*	$NetBSD: if_cas.c,v 1.21 2014/03/29 19:28:24 christos Exp $	*/
2/*	$OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $	*/
3
4/*
5 *
6 * Copyright (C) 2007 Mark Kettenis.
7 * Copyright (C) 2001 Eduardo Horvath.
8 * All rights reserved.
9 *
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34/*
35 * Driver for Sun Cassini ethernet controllers.
36 *
37 * There are basically two variants of this chip: Cassini and
38 * Cassini+.  We can distinguish between the two by revision: 0x10 and
39 * up are Cassini+.  The most important difference is that Cassini+
40 * has a second RX descriptor ring.  Cassini+ will not work without
41 * configuring that second ring.  However, since we don't use it we
42 * don't actually fill the descriptors, and only hand off the first
43 * four to the chip.
44 */
45
46#include <sys/cdefs.h>
47__KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.21 2014/03/29 19:28:24 christos Exp $");
48
49#ifndef _MODULE
50#include "opt_inet.h"
51#endif
52
53#include <sys/param.h>
54#include <sys/systm.h>
55#include <sys/callout.h>
56#include <sys/mbuf.h>
57#include <sys/syslog.h>
58#include <sys/malloc.h>
59#include <sys/kernel.h>
60#include <sys/socket.h>
61#include <sys/ioctl.h>
62#include <sys/errno.h>
63#include <sys/device.h>
64#include <sys/module.h>
65
66#include <machine/endian.h>
67
68#include <net/if.h>
69#include <net/if_dl.h>
70#include <net/if_media.h>
71#include <net/if_ether.h>
72
73#ifdef INET
74#include <netinet/in.h>
75#include <netinet/in_systm.h>
76#include <netinet/in_var.h>
77#include <netinet/ip.h>
78#include <netinet/tcp.h>
79#include <netinet/udp.h>
80#endif
81
82#include <net/bpf.h>
83
84#include <sys/bus.h>
85#include <sys/intr.h>
86#include <sys/rnd.h>
87
88#include <dev/mii/mii.h>
89#include <dev/mii/miivar.h>
90#include <dev/mii/mii_bitbang.h>
91
92#include <dev/pci/pcivar.h>
93#include <dev/pci/pcireg.h>
94#include <dev/pci/pcidevs.h>
95#include <prop/proplib.h>
96
97#include <dev/pci/if_casreg.h>
98#include <dev/pci/if_casvar.h>
99
100#define TRIES	10000
101
102static bool	cas_estintr(struct cas_softc *sc, int);
103bool		cas_shutdown(device_t, int);
104static bool	cas_suspend(device_t, const pmf_qual_t *);
105static bool	cas_resume(device_t, const pmf_qual_t *);
106static int	cas_detach(device_t, int);
107static void	cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
108
109int		cas_match(device_t, cfdata_t, void *);
110void		cas_attach(device_t, device_t, void *);
111
112
113CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
114    cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
115    DVF_DETACH_SHUTDOWN);
116
117int	cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
118
119void		cas_config(struct cas_softc *, const uint8_t *);
120void		cas_start(struct ifnet *);
121void		cas_stop(struct ifnet *, int);
122int		cas_ioctl(struct ifnet *, u_long, void *);
123void		cas_tick(void *);
124void		cas_watchdog(struct ifnet *);
125int		cas_init(struct ifnet *);
126void		cas_init_regs(struct cas_softc *);
127int		cas_ringsize(int);
128int		cas_cringsize(int);
129int		cas_meminit(struct cas_softc *);
130void		cas_mifinit(struct cas_softc *);
131int		cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
132		    u_int32_t, u_int32_t);
133void		cas_reset(struct cas_softc *);
134int		cas_reset_rx(struct cas_softc *);
135int		cas_reset_tx(struct cas_softc *);
136int		cas_disable_rx(struct cas_softc *);
137int		cas_disable_tx(struct cas_softc *);
138void		cas_rxdrain(struct cas_softc *);
139int		cas_add_rxbuf(struct cas_softc *, int idx);
140void		cas_iff(struct cas_softc *);
141int		cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
142
143/* MII methods & callbacks */
144int		cas_mii_readreg(device_t, int, int);
145void		cas_mii_writereg(device_t, int, int, int);
146void		cas_mii_statchg(struct ifnet *);
147int		cas_pcs_readreg(device_t, int, int);
148void		cas_pcs_writereg(device_t, int, int, int);
149
150int		cas_mediachange(struct ifnet *);
151void		cas_mediastatus(struct ifnet *, struct ifmediareq *);
152
153int		cas_eint(struct cas_softc *, u_int);
154int		cas_rint(struct cas_softc *);
155int		cas_tint(struct cas_softc *, u_int32_t);
156int		cas_pint(struct cas_softc *);
157int		cas_intr(void *);
158
159#ifdef CAS_DEBUG
160#define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
161				printf x
162#else
163#define	DPRINTF(sc, x)	/* nothing */
164#endif
165
166int
167cas_match(device_t parent, cfdata_t cf, void *aux)
168{
169	struct pci_attach_args *pa = aux;
170
171	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
172	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
173		return 1;
174
175	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
176	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
177		return 1;
178
179	return 0;
180}
181
182#define	PROMHDR_PTR_DATA	0x18
183#define	PROMDATA_PTR_VPD	0x08
184#define	PROMDATA_DATA2		0x0a
185
186static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
187static const u_int8_t cas_promdat[] = {
188	'P', 'C', 'I', 'R',
189	PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
190	PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
191};
192static const u_int8_t cas_promdat_ns[] = {
193	'P', 'C', 'I', 'R',
194	PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
195	PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
196};
197
198static const u_int8_t cas_promdat2[] = {
199	0x18, 0x00,			/* structure length */
200	0x00,				/* structure revision */
201	0x00,				/* interface revision */
202	PCI_SUBCLASS_NETWORK_ETHERNET,	/* subclass code */
203	PCI_CLASS_NETWORK		/* class code */
204};
205
206int
207cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
208    uint8_t *enaddr)
209{
210	struct pci_vpd_largeres *res;
211	struct pci_vpd *vpd;
212	bus_space_handle_t romh;
213	bus_space_tag_t romt;
214	bus_size_t romsize = 0;
215	u_int8_t buf[32], *desc;
216	pcireg_t address;
217	int dataoff, vpdoff, len;
218	int rv = -1;
219
220	if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
221	    &romt, &romh, NULL, &romsize))
222		return (-1);
223
224	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
225	address |= PCI_MAPREG_ROM_ENABLE;
226	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
227
228	bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
229	if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
230		goto fail;
231
232	dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
233	if (dataoff < 0x1c)
234		goto fail;
235
236	bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
237	if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
238	     bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
239	    bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
240		goto fail;
241
242	vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
243	if (vpdoff < 0x1c)
244		goto fail;
245
246next:
247	bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
248	if (!PCI_VPDRES_ISLARGE(buf[0]))
249		goto fail;
250
251	res = (struct pci_vpd_largeres *)buf;
252	vpdoff += sizeof(*res);
253
254	len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
255	switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
256	case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
257		/* Skip identifier string. */
258		vpdoff += len;
259		goto next;
260
261	case PCI_VPDRES_TYPE_VPD:
262		while (len > 0) {
263			bus_space_read_region_1(romt, romh, vpdoff,
264			     buf, sizeof(buf));
265
266			vpd = (struct pci_vpd *)buf;
267			vpdoff += sizeof(*vpd) + vpd->vpd_len;
268			len -= sizeof(*vpd) + vpd->vpd_len;
269
270			/*
271			 * We're looking for an "Enhanced" VPD...
272			 */
273			if (vpd->vpd_key0 != 'Z')
274				continue;
275
276			desc = buf + sizeof(*vpd);
277
278			/*
279			 * ...which is an instance property...
280			 */
281			if (desc[0] != 'I')
282				continue;
283			desc += 3;
284
285			/*
286			 * ...that's a byte array with the proper
287			 * length for a MAC address...
288			 */
289			if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
290				continue;
291			desc += 2;
292
293			/*
294			 * ...named "local-mac-address".
295			 */
296			if (strcmp(desc, "local-mac-address") != 0)
297				continue;
298			desc += strlen("local-mac-address") + 1;
299
300			memcpy(enaddr, desc, ETHER_ADDR_LEN);
301			rv = 0;
302		}
303		break;
304
305	default:
306		goto fail;
307	}
308
309 fail:
310	if (romsize != 0)
311		bus_space_unmap(romt, romh, romsize);
312
313	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
314	address &= ~PCI_MAPREG_ROM_ENABLE;
315	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
316
317	return (rv);
318}
319
320void
321cas_attach(device_t parent, device_t self, void *aux)
322{
323	struct pci_attach_args *pa = aux;
324	struct cas_softc *sc = device_private(self);
325	prop_data_t data;
326	uint8_t enaddr[ETHER_ADDR_LEN];
327
328	sc->sc_dev = self;
329	pci_aprint_devinfo(pa, NULL);
330	sc->sc_rev = PCI_REVISION(pa->pa_class);
331	sc->sc_dmatag = pa->pa_dmat;
332
333#define PCI_CAS_BASEADDR	0x10
334	if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
335	    &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
336		aprint_error_dev(sc->sc_dev,
337		    "unable to map device registers\n");
338		return;
339	}
340
341	if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
342	    "mac-address")) != NULL)
343		memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
344	else if (cas_pci_enaddr(sc, pa, enaddr) != 0) {
345		aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
346		memset(enaddr, 0, sizeof(enaddr));
347	}
348
349	sc->sc_burst = 16;	/* XXX */
350
351	sc->sc_att_stage = CAS_ATT_BACKEND_0;
352
353	if (pci_intr_map(pa, &sc->sc_handle) != 0) {
354		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
355		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
356		return;
357	}
358	sc->sc_pc = pa->pa_pc;
359	if (!cas_estintr(sc, CAS_INTR_PCI)) {
360		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
361		aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
362		return;
363	}
364
365	sc->sc_att_stage = CAS_ATT_BACKEND_1;
366
367	/*
368	 * call the main configure
369	 */
370	cas_config(sc, enaddr);
371
372	if (pmf_device_register1(sc->sc_dev,
373	    cas_suspend, cas_resume, cas_shutdown))
374		pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
375	else
376		aprint_error_dev(sc->sc_dev,
377		    "could not establish power handlers\n");
378
379	sc->sc_att_stage = CAS_ATT_FINISHED;
380		/*FALLTHROUGH*/
381}
382
383/*
384 * cas_config:
385 *
386 *	Attach a Cassini interface to the system.
387 */
388void
389cas_config(struct cas_softc *sc, const uint8_t *enaddr)
390{
391	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
392	struct mii_data *mii = &sc->sc_mii;
393	struct mii_softc *child;
394	int i, error;
395
396	/* Make sure the chip is stopped. */
397	ifp->if_softc = sc;
398	cas_reset(sc);
399
400	/*
401	 * Allocate the control data structures, and create and load the
402	 * DMA map for it.
403	 */
404	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
405	    sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
406	    1, &sc->sc_cdnseg, 0)) != 0) {
407		aprint_error_dev(sc->sc_dev,
408		    "unable to allocate control data, error = %d\n",
409		    error);
410		cas_partial_detach(sc, CAS_ATT_0);
411	}
412
413	/* XXX should map this in with correct endianness */
414	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
415	    sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
416	    BUS_DMA_COHERENT)) != 0) {
417		aprint_error_dev(sc->sc_dev,
418		    "unable to map control data, error = %d\n", error);
419		cas_partial_detach(sc, CAS_ATT_1);
420	}
421
422	if ((error = bus_dmamap_create(sc->sc_dmatag,
423	    sizeof(struct cas_control_data), 1,
424	    sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
425		aprint_error_dev(sc->sc_dev,
426		    "unable to create control data DMA map, error = %d\n", error);
427		cas_partial_detach(sc, CAS_ATT_2);
428	}
429
430	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
431	    sc->sc_control_data, sizeof(struct cas_control_data), NULL,
432	    0)) != 0) {
433		aprint_error_dev(sc->sc_dev,
434		    "unable to load control data DMA map, error = %d\n",
435		    error);
436		cas_partial_detach(sc, CAS_ATT_3);
437	}
438
439	memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
440
441	/*
442	 * Create the receive buffer DMA maps.
443	 */
444	for (i = 0; i < CAS_NRXDESC; i++) {
445		bus_dma_segment_t seg;
446		char *kva;
447		int rseg;
448
449		if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
450		    CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
451			aprint_error_dev(sc->sc_dev,
452			    "unable to alloc rx DMA mem %d, error = %d\n",
453			    i, error);
454			cas_partial_detach(sc, CAS_ATT_5);
455		}
456		sc->sc_rxsoft[i].rxs_dmaseg = seg;
457
458		if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
459		    CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
460			aprint_error_dev(sc->sc_dev,
461			    "unable to alloc rx DMA mem %d, error = %d\n",
462			    i, error);
463			cas_partial_detach(sc, CAS_ATT_5);
464		}
465		sc->sc_rxsoft[i].rxs_kva = kva;
466
467		if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
468		    CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
469			aprint_error_dev(sc->sc_dev,
470			    "unable to create rx DMA map %d, error = %d\n",
471			    i, error);
472			cas_partial_detach(sc, CAS_ATT_5);
473		}
474
475		if ((error = bus_dmamap_load(sc->sc_dmatag,
476		   sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
477		   BUS_DMA_NOWAIT)) != 0) {
478			aprint_error_dev(sc->sc_dev,
479			    "unable to load rx DMA map %d, error = %d\n",
480			    i, error);
481			cas_partial_detach(sc, CAS_ATT_5);
482		}
483	}
484
485	/*
486	 * Create the transmit buffer DMA maps.
487	 */
488	for (i = 0; i < CAS_NTXDESC; i++) {
489		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
490		    CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
491		    &sc->sc_txd[i].sd_map)) != 0) {
492			aprint_error_dev(sc->sc_dev,
493			    "unable to create tx DMA map %d, error = %d\n",
494			    i, error);
495			cas_partial_detach(sc, CAS_ATT_6);
496		}
497		sc->sc_txd[i].sd_mbuf = NULL;
498	}
499
500	/*
501	 * From this point forward, the attachment cannot fail.  A failure
502	 * before this point releases all resources that may have been
503	 * allocated.
504	 */
505
506	/* Announce ourselves. */
507	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
508	    ether_sprintf(enaddr));
509	aprint_naive(": Ethernet controller\n");
510
511	/* Get RX FIFO size */
512	sc->sc_rxfifosize = 16 * 1024;
513
514	/* Initialize ifnet structure. */
515	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
516	ifp->if_softc = sc;
517	ifp->if_flags =
518	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
519	ifp->if_start = cas_start;
520	ifp->if_ioctl = cas_ioctl;
521	ifp->if_watchdog = cas_watchdog;
522	ifp->if_stop = cas_stop;
523	ifp->if_init = cas_init;
524	IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
525	IFQ_SET_READY(&ifp->if_snd);
526
527	/* Initialize ifmedia structures and MII info */
528	mii->mii_ifp = ifp;
529	mii->mii_readreg = cas_mii_readreg;
530	mii->mii_writereg = cas_mii_writereg;
531	mii->mii_statchg = cas_mii_statchg;
532
533	ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
534	sc->sc_ethercom.ec_mii = mii;
535
536	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
537
538	cas_mifinit(sc);
539
540	if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
541		sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
542		bus_space_write_4(sc->sc_memt, sc->sc_memh,
543	            CAS_MIF_CONFIG, sc->sc_mif_config);
544	}
545
546	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
547	    MII_OFFSET_ANY, 0);
548
549	child = LIST_FIRST(&mii->mii_phys);
550	if (child == NULL &&
551	    sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
552		/*
553		 * Try the external PCS SERDES if we didn't find any
554		 * MII devices.
555		 */
556		bus_space_write_4(sc->sc_memt, sc->sc_memh,
557		    CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
558
559		bus_space_write_4(sc->sc_memt, sc->sc_memh,
560		     CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
561
562		mii->mii_readreg = cas_pcs_readreg;
563		mii->mii_writereg = cas_pcs_writereg;
564
565		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
566		    MII_OFFSET_ANY, MIIF_NOISOLATE);
567	}
568
569	child = LIST_FIRST(&mii->mii_phys);
570	if (child == NULL) {
571		/* No PHY attached */
572		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
573		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
574	} else {
575		/*
576		 * Walk along the list of attached MII devices and
577		 * establish an `MII instance' to `phy number'
578		 * mapping. We'll use this mapping in media change
579		 * requests to determine which phy to use to program
580		 * the MIF configuration register.
581		 */
582		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
583			/*
584			 * Note: we support just two PHYs: the built-in
585			 * internal device and an external on the MII
586			 * connector.
587			 */
588			if (child->mii_phy > 1 || child->mii_inst > 1) {
589				aprint_error_dev(sc->sc_dev,
590				    "cannot accommodate MII device %s"
591				    " at phy %d, instance %d\n",
592				    device_xname(child->mii_dev),
593				    child->mii_phy, child->mii_inst);
594				continue;
595			}
596
597			sc->sc_phys[child->mii_inst] = child->mii_phy;
598		}
599
600		/*
601		 * XXX - we can really do the following ONLY if the
602		 * phy indeed has the auto negotiation capability!!
603		 */
604		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
605	}
606
607	/* claim 802.1q capability */
608	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
609
610	/* Attach the interface. */
611	if_attach(ifp);
612	ether_ifattach(ifp, enaddr);
613
614	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
615			  RND_TYPE_NET, 0);
616
617	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
618	    NULL, device_xname(sc->sc_dev), "interrupts");
619
620	callout_init(&sc->sc_tick_ch, 0);
621
622	return;
623}
624
625int
626cas_detach(device_t self, int flags)
627{
628	int i;
629	struct cas_softc *sc = device_private(self);
630	bus_space_tag_t t = sc->sc_memt;
631	bus_space_handle_t h = sc->sc_memh;
632	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
633
634	/*
635	 * Free any resources we've allocated during the failed attach
636	 * attempt.  Do this in reverse order and fall through.
637	 */
638	switch (sc->sc_att_stage) {
639	case CAS_ATT_FINISHED:
640		bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
641		pmf_device_deregister(self);
642		cas_stop(&sc->sc_ethercom.ec_if, 1);
643		evcnt_detach(&sc->sc_ev_intr);
644
645		rnd_detach_source(&sc->rnd_source);
646
647		ether_ifdetach(ifp);
648		if_detach(ifp);
649		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
650
651		callout_destroy(&sc->sc_tick_ch);
652
653		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
654
655		/*FALLTHROUGH*/
656	case CAS_ATT_MII:
657	case CAS_ATT_7:
658	case CAS_ATT_6:
659		for (i = 0; i < CAS_NTXDESC; i++) {
660			if (sc->sc_txd[i].sd_map != NULL)
661				bus_dmamap_destroy(sc->sc_dmatag,
662				    sc->sc_txd[i].sd_map);
663		}
664		/*FALLTHROUGH*/
665	case CAS_ATT_5:
666		for (i = 0; i < CAS_NRXDESC; i++) {
667			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
668				bus_dmamap_unload(sc->sc_dmatag,
669				    sc->sc_rxsoft[i].rxs_dmamap);
670			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
671				bus_dmamap_destroy(sc->sc_dmatag,
672				    sc->sc_rxsoft[i].rxs_dmamap);
673			if (sc->sc_rxsoft[i].rxs_kva != NULL)
674				bus_dmamem_unmap(sc->sc_dmatag,
675				    sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
676			/* XXX   need to check that bus_dmamem_alloc suceeded
677			if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
678			*/
679				bus_dmamem_free(sc->sc_dmatag,
680				    &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
681		}
682		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
683		/*FALLTHROUGH*/
684	case CAS_ATT_4:
685	case CAS_ATT_3:
686		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
687		/*FALLTHROUGH*/
688	case CAS_ATT_2:
689		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
690		    sizeof(struct cas_control_data));
691		/*FALLTHROUGH*/
692	case CAS_ATT_1:
693		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
694		/*FALLTHROUGH*/
695	case CAS_ATT_0:
696		sc->sc_att_stage = CAS_ATT_0;
697		/*FALLTHROUGH*/
698	case CAS_ATT_BACKEND_2:
699	case CAS_ATT_BACKEND_1:
700		if (sc->sc_ih != NULL) {
701			pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
702			sc->sc_ih = NULL;
703		}
704		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
705		/*FALLTHROUGH*/
706	case CAS_ATT_BACKEND_0:
707		break;
708	}
709	return 0;
710}
711
712static void
713cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
714{
715	cfattach_t ca = device_cfattach(sc->sc_dev);
716
717	sc->sc_att_stage = stage;
718	(*ca->ca_detach)(sc->sc_dev, 0);
719}
720
721void
722cas_tick(void *arg)
723{
724	struct cas_softc *sc = arg;
725	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
726	bus_space_tag_t t = sc->sc_memt;
727	bus_space_handle_t mac = sc->sc_memh;
728	int s;
729	u_int32_t v;
730
731	/* unload collisions counters */
732	v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
733	    bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
734	ifp->if_collisions += v +
735	    bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
736	    bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
737	ifp->if_oerrors += v;
738
739	/* read error counters */
740	ifp->if_ierrors +=
741	    bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
742	    bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
743	    bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
744	    bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
745
746	/* clear the hardware counters */
747	bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
748	bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
749	bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
750	bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
751	bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
752	bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
753	bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
754	bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
755
756	s = splnet();
757	mii_tick(&sc->sc_mii);
758	splx(s);
759
760	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
761}
762
763int
764cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
765    u_int32_t clr, u_int32_t set)
766{
767	int i;
768	u_int32_t reg;
769
770	for (i = TRIES; i--; DELAY(100)) {
771		reg = bus_space_read_4(sc->sc_memt, h, r);
772		if ((reg & clr) == 0 && (reg & set) == set)
773			return (1);
774	}
775
776	return (0);
777}
778
779void
780cas_reset(struct cas_softc *sc)
781{
782	bus_space_tag_t t = sc->sc_memt;
783	bus_space_handle_t h = sc->sc_memh;
784	int s;
785
786	s = splnet();
787	DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
788	cas_reset_rx(sc);
789	cas_reset_tx(sc);
790
791	/* Disable interrupts */
792	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
793
794	/* Do a full reset */
795	bus_space_write_4(t, h, CAS_RESET,
796	    CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
797	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
798		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
799	splx(s);
800}
801
802
803/*
804 * cas_rxdrain:
805 *
806 *	Drain the receive queue.
807 */
808void
809cas_rxdrain(struct cas_softc *sc)
810{
811	/* Nothing to do yet. */
812}
813
814/*
815 * Reset the whole thing.
816 */
817void
818cas_stop(struct ifnet *ifp, int disable)
819{
820	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
821	struct cas_sxd *sd;
822	u_int32_t i;
823
824	DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
825
826	callout_stop(&sc->sc_tick_ch);
827
828	/*
829	 * Mark the interface down and cancel the watchdog timer.
830	 */
831	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
832	ifp->if_timer = 0;
833
834	mii_down(&sc->sc_mii);
835
836	cas_reset_rx(sc);
837	cas_reset_tx(sc);
838
839	/*
840	 * Release any queued transmit buffers.
841	 */
842	for (i = 0; i < CAS_NTXDESC; i++) {
843		sd = &sc->sc_txd[i];
844		if (sd->sd_mbuf != NULL) {
845			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
846			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
847			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
848			m_freem(sd->sd_mbuf);
849			sd->sd_mbuf = NULL;
850		}
851	}
852	sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
853
854	if (disable)
855		cas_rxdrain(sc);
856}
857
858
859/*
860 * Reset the receiver
861 */
862int
863cas_reset_rx(struct cas_softc *sc)
864{
865	bus_space_tag_t t = sc->sc_memt;
866	bus_space_handle_t h = sc->sc_memh;
867
868	/*
869	 * Resetting while DMA is in progress can cause a bus hang, so we
870	 * disable DMA first.
871	 */
872	cas_disable_rx(sc);
873	bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
874	/* Wait till it finishes */
875	if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
876		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
877	/* Wait 5ms extra. */
878	delay(5000);
879
880	/* Finally, reset the ERX */
881	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
882	/* Wait till it finishes */
883	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
884		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
885		return (1);
886	}
887	return (0);
888}
889
890
891/*
892 * Reset the transmitter
893 */
894int
895cas_reset_tx(struct cas_softc *sc)
896{
897	bus_space_tag_t t = sc->sc_memt;
898	bus_space_handle_t h = sc->sc_memh;
899
900	/*
901	 * Resetting while DMA is in progress can cause a bus hang, so we
902	 * disable DMA first.
903	 */
904	cas_disable_tx(sc);
905	bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
906	/* Wait till it finishes */
907	if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
908		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
909	/* Wait 5ms extra. */
910	delay(5000);
911
912	/* Finally, reset the ETX */
913	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
914	/* Wait till it finishes */
915	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
916		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
917		return (1);
918	}
919	return (0);
920}
921
922/*
923 * Disable receiver.
924 */
925int
926cas_disable_rx(struct cas_softc *sc)
927{
928	bus_space_tag_t t = sc->sc_memt;
929	bus_space_handle_t h = sc->sc_memh;
930	u_int32_t cfg;
931
932	/* Flip the enable bit */
933	cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
934	cfg &= ~CAS_MAC_RX_ENABLE;
935	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
936
937	/* Wait for it to finish */
938	return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
939}
940
941/*
942 * Disable transmitter.
943 */
944int
945cas_disable_tx(struct cas_softc *sc)
946{
947	bus_space_tag_t t = sc->sc_memt;
948	bus_space_handle_t h = sc->sc_memh;
949	u_int32_t cfg;
950
951	/* Flip the enable bit */
952	cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
953	cfg &= ~CAS_MAC_TX_ENABLE;
954	bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
955
956	/* Wait for it to finish */
957	return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
958}
959
960/*
961 * Initialize interface.
962 */
963int
964cas_meminit(struct cas_softc *sc)
965{
966	int i;
967
968	/*
969	 * Initialize the transmit descriptor ring.
970	 */
971	for (i = 0; i < CAS_NTXDESC; i++) {
972		sc->sc_txdescs[i].cd_flags = 0;
973		sc->sc_txdescs[i].cd_addr = 0;
974	}
975	CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
976	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
977
978	/*
979	 * Initialize the receive descriptor and receive job
980	 * descriptor rings.
981	 */
982	for (i = 0; i < CAS_NRXDESC; i++)
983		CAS_INIT_RXDESC(sc, i, i);
984	sc->sc_rxdptr = 0;
985	sc->sc_rxptr = 0;
986
987	/*
988	 * Initialize the receive completion ring.
989	 */
990	for (i = 0; i < CAS_NRXCOMP; i++) {
991		sc->sc_rxcomps[i].cc_word[0] = 0;
992		sc->sc_rxcomps[i].cc_word[1] = 0;
993		sc->sc_rxcomps[i].cc_word[2] = 0;
994		sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
995		CAS_CDRXCSYNC(sc, i,
996		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
997	}
998
999	return (0);
1000}
1001
1002int
1003cas_ringsize(int sz)
1004{
1005	switch (sz) {
1006	case 32:
1007		return CAS_RING_SZ_32;
1008	case 64:
1009		return CAS_RING_SZ_64;
1010	case 128:
1011		return CAS_RING_SZ_128;
1012	case 256:
1013		return CAS_RING_SZ_256;
1014	case 512:
1015		return CAS_RING_SZ_512;
1016	case 1024:
1017		return CAS_RING_SZ_1024;
1018	case 2048:
1019		return CAS_RING_SZ_2048;
1020	case 4096:
1021		return CAS_RING_SZ_4096;
1022	case 8192:
1023		return CAS_RING_SZ_8192;
1024	default:
1025		aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1026		    sz);
1027		return CAS_RING_SZ_32;
1028	}
1029}
1030
1031int
1032cas_cringsize(int sz)
1033{
1034	int i;
1035
1036	for (i = 0; i < 9; i++)
1037		if (sz == (128 << i))
1038			return i;
1039
1040	aprint_error("cas: invalid completion ring size %d\n", sz);
1041	return 128;
1042}
1043
1044/*
1045 * Initialization of interface; set up initialization block
1046 * and transmit/receive descriptor rings.
1047 */
1048int
1049cas_init(struct ifnet *ifp)
1050{
1051	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1052	bus_space_tag_t t = sc->sc_memt;
1053	bus_space_handle_t h = sc->sc_memh;
1054	int s;
1055	u_int max_frame_size;
1056	u_int32_t v;
1057
1058	s = splnet();
1059
1060	DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1061	/*
1062	 * Initialization sequence. The numbered steps below correspond
1063	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1064	 * Channel Engine manual (part of the PCIO manual).
1065	 * See also the STP2002-STQ document from Sun Microsystems.
1066	 */
1067
1068	/* step 1 & 2. Reset the Ethernet Channel */
1069	cas_stop(ifp, 0);
1070	cas_reset(sc);
1071	DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1072
1073	/* Re-initialize the MIF */
1074	cas_mifinit(sc);
1075
1076	/* step 3. Setup data structures in host memory */
1077	cas_meminit(sc);
1078
1079	/* step 4. TX MAC registers & counters */
1080	cas_init_regs(sc);
1081	max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1082	v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1083	bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1084
1085	/* step 5. RX MAC registers & counters */
1086	cas_iff(sc);
1087
1088	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1089	KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1090	bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1091	    (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1092	bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1093
1094	KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1095	bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1096	    (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1097	bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1098
1099	KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1100	bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1101	    (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1102	bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1103
1104	if (CAS_PLUS(sc)) {
1105		KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1106		bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1107		    (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1108		bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1109		    CAS_CDRXADDR2(sc, 0));
1110	}
1111
1112	/* step 8. Global Configuration & Interrupt Mask */
1113	cas_estintr(sc, CAS_INTR_REG);
1114
1115	/* step 9. ETX Configuration: use mostly default values */
1116
1117	/* Enable DMA */
1118	v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1119	bus_space_write_4(t, h, CAS_TX_CONFIG,
1120	    v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1121	bus_space_write_4(t, h, CAS_TX_KICK, 0);
1122
1123	/* step 10. ERX Configuration */
1124
1125	/* Encode Receive Descriptor ring size */
1126	v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1127	if (CAS_PLUS(sc))
1128		v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1129
1130	/* Encode Receive Completion ring size */
1131	v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1132
1133	/* Enable DMA */
1134	bus_space_write_4(t, h, CAS_RX_CONFIG,
1135	    v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1136
1137	/*
1138	 * The following value is for an OFF Threshold of about 3/4 full
1139	 * and an ON Threshold of 1/4 full.
1140	 */
1141	bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1142	    (3 * sc->sc_rxfifosize / 256) |
1143	    ((sc->sc_rxfifosize / 256) << 12));
1144	bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1145
1146	/* step 11. Configure Media */
1147	mii_ifmedia_change(&sc->sc_mii);
1148
1149	/* step 12. RX_MAC Configuration Register */
1150	v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1151	v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1152	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1153
1154	/* step 14. Issue Transmit Pending command */
1155
1156	/* step 15.  Give the receiver a swift kick */
1157	bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1158	if (CAS_PLUS(sc))
1159		bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1160
1161	/* Start the one second timer. */
1162	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1163
1164	ifp->if_flags |= IFF_RUNNING;
1165	ifp->if_flags &= ~IFF_OACTIVE;
1166	ifp->if_timer = 0;
1167	splx(s);
1168
1169	return (0);
1170}
1171
1172void
1173cas_init_regs(struct cas_softc *sc)
1174{
1175	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1176	bus_space_tag_t t = sc->sc_memt;
1177	bus_space_handle_t h = sc->sc_memh;
1178	const u_char *laddr = CLLADDR(ifp->if_sadl);
1179	u_int32_t v, r;
1180
1181	/* These regs are not cleared on reset */
1182	sc->sc_inited = 0;
1183	if (!sc->sc_inited) {
1184		/* Load recommended values  */
1185		bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1186		bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1187		bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1188
1189		bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1190		/* Max frame and max burst size */
1191		v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1192		bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1193
1194		bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1195		bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1196		bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1197		bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1198		bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1199		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1200
1201		/* Secondary MAC addresses set to 0:0:0:0:0:0 */
1202		for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1203			bus_space_write_4(t, h, r, 0);
1204
1205		/* MAC control addr set to 0:1:c2:0:1:80 */
1206		bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1207		bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1208		bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1209
1210		/* MAC filter addr set to 0:0:0:0:0:0 */
1211		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1212		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1213		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1214
1215		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1216		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1217
1218		/* Hash table initialized to 0 */
1219		for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1220			bus_space_write_4(t, h, r, 0);
1221
1222		sc->sc_inited = 1;
1223	}
1224
1225	/* Counters need to be zeroed */
1226	bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1227	bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1228	bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1229	bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1230	bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1231	bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1232	bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1233	bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1234	bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1235	bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1236	bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1237
1238	/* Un-pause stuff */
1239	bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1240
1241	/*
1242	 * Set the station address.
1243	 */
1244	bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1245	bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1246	bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1247}
1248
1249/*
1250 * Receive interrupt.
1251 */
1252int
1253cas_rint(struct cas_softc *sc)
1254{
1255	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1256	bus_space_tag_t t = sc->sc_memt;
1257	bus_space_handle_t h = sc->sc_memh;
1258	struct cas_rxsoft *rxs;
1259	struct mbuf *m;
1260	u_int64_t word[4];
1261	int len, off, idx;
1262	int i, skip;
1263	void *cp;
1264
1265	for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1266		CAS_CDRXCSYNC(sc, i,
1267		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1268
1269		word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1270		word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1271		word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1272		word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1273
1274		/* Stop if the hardware still owns the descriptor. */
1275		if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1276			break;
1277
1278		len = CAS_RC1_HDR_LEN(word[1]);
1279		if (len > 0) {
1280			off = CAS_RC1_HDR_OFF(word[1]);
1281			idx = CAS_RC1_HDR_IDX(word[1]);
1282			rxs = &sc->sc_rxsoft[idx];
1283
1284			DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1285			    idx, off, len));
1286
1287			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1288			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1289
1290			cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1291			m = m_devget(cp, len, 0, ifp, NULL);
1292
1293			if (word[0] & CAS_RC0_RELEASE_HDR)
1294				cas_add_rxbuf(sc, idx);
1295
1296			if (m != NULL) {
1297
1298				/*
1299				 * Pass this up to any BPF listeners, but only
1300				 * pass it up the stack if its for us.
1301				 */
1302				bpf_mtap(ifp, m);
1303
1304				ifp->if_ipackets++;
1305				m->m_pkthdr.csum_flags = 0;
1306				(*ifp->if_input)(ifp, m);
1307			} else
1308				ifp->if_ierrors++;
1309		}
1310
1311		len = CAS_RC0_DATA_LEN(word[0]);
1312		if (len > 0) {
1313			off = CAS_RC0_DATA_OFF(word[0]);
1314			idx = CAS_RC0_DATA_IDX(word[0]);
1315			rxs = &sc->sc_rxsoft[idx];
1316
1317			DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1318			    idx, off, len));
1319
1320			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1321			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1322
1323			/* XXX We should not be copying the packet here. */
1324			cp = rxs->rxs_kva + off + ETHER_ALIGN;
1325			m = m_devget(cp, len, 0, ifp, NULL);
1326
1327			if (word[0] & CAS_RC0_RELEASE_DATA)
1328				cas_add_rxbuf(sc, idx);
1329
1330			if (m != NULL) {
1331				/*
1332				 * Pass this up to any BPF listeners, but only
1333				 * pass it up the stack if its for us.
1334				 */
1335				bpf_mtap(ifp, m);
1336
1337				ifp->if_ipackets++;
1338				m->m_pkthdr.csum_flags = 0;
1339				(*ifp->if_input)(ifp, m);
1340			} else
1341				ifp->if_ierrors++;
1342		}
1343
1344		if (word[0] & CAS_RC0_SPLIT)
1345			aprint_error_dev(sc->sc_dev, "split packet\n");
1346
1347		skip = CAS_RC0_SKIP(word[0]);
1348	}
1349
1350	while (sc->sc_rxptr != i) {
1351		sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1352		sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1353		sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1354		sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1355		    CAS_DMA_WRITE(CAS_RC3_OWN);
1356		CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1357		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1358
1359		sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1360	}
1361
1362	bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1363
1364	DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1365		sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1366
1367	return (1);
1368}
1369
1370/*
1371 * cas_add_rxbuf:
1372 *
1373 *	Add a receive buffer to the indicated descriptor.
1374 */
1375int
1376cas_add_rxbuf(struct cas_softc *sc, int idx)
1377{
1378	bus_space_tag_t t = sc->sc_memt;
1379	bus_space_handle_t h = sc->sc_memh;
1380
1381	CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1382
1383	if ((sc->sc_rxdptr % 4) == 0)
1384		bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1385
1386	if (++sc->sc_rxdptr == CAS_NRXDESC)
1387		sc->sc_rxdptr = 0;
1388
1389	return (0);
1390}
1391
1392int
1393cas_eint(struct cas_softc *sc, u_int status)
1394{
1395	char bits[128];
1396	if ((status & CAS_INTR_MIF) != 0) {
1397		DPRINTF(sc, ("%s: link status changed\n",
1398		    device_xname(sc->sc_dev)));
1399		return (1);
1400	}
1401
1402	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1403	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1404	return (1);
1405}
1406
1407int
1408cas_pint(struct cas_softc *sc)
1409{
1410	bus_space_tag_t t = sc->sc_memt;
1411	bus_space_handle_t seb = sc->sc_memh;
1412	u_int32_t status;
1413
1414	status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1415	status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1416#ifdef CAS_DEBUG
1417	if (status)
1418		printf("%s: link status changed\n", device_xname(sc->sc_dev));
1419#endif
1420	return (1);
1421}
1422
1423int
1424cas_intr(void *v)
1425{
1426	struct cas_softc *sc = (struct cas_softc *)v;
1427	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1428	bus_space_tag_t t = sc->sc_memt;
1429	bus_space_handle_t seb = sc->sc_memh;
1430	u_int32_t status;
1431	int r = 0;
1432#ifdef CAS_DEBUG
1433	char bits[128];
1434#endif
1435
1436	sc->sc_ev_intr.ev_count++;
1437
1438	status = bus_space_read_4(t, seb, CAS_STATUS);
1439#ifdef CAS_DEBUG
1440	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1441#endif
1442	DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1443		device_xname(sc->sc_dev), (status>>19), bits));
1444
1445	if ((status & CAS_INTR_PCS) != 0)
1446		r |= cas_pint(sc);
1447
1448	if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1449	    CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1450		r |= cas_eint(sc, status);
1451
1452	if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1453		r |= cas_tint(sc, status);
1454
1455	if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1456		r |= cas_rint(sc);
1457
1458	/* We should eventually do more than just print out error stats. */
1459	if (status & CAS_INTR_TX_MAC) {
1460		int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1461#ifdef CAS_DEBUG
1462		if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1463			printf("%s: MAC tx fault, status %x\n",
1464			    device_xname(sc->sc_dev), txstat);
1465#endif
1466		if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1467			cas_init(ifp);
1468	}
1469	if (status & CAS_INTR_RX_MAC) {
1470		int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1471#ifdef CAS_DEBUG
1472		if (rxstat & ~CAS_MAC_RX_DONE)
1473			printf("%s: MAC rx fault, status %x\n",
1474			    device_xname(sc->sc_dev), rxstat);
1475#endif
1476		/*
1477		 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1478		 * due to a silicon bug so handle them silently.
1479		 */
1480		if (rxstat & CAS_MAC_RX_OVERFLOW) {
1481			ifp->if_ierrors++;
1482			cas_init(ifp);
1483		}
1484#ifdef CAS_DEBUG
1485		else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1486			printf("%s: MAC rx fault, status %x\n",
1487			    device_xname(sc->sc_dev), rxstat);
1488#endif
1489	}
1490	rnd_add_uint32(&sc->rnd_source, status);
1491	return (r);
1492}
1493
1494
1495void
1496cas_watchdog(struct ifnet *ifp)
1497{
1498	struct cas_softc *sc = ifp->if_softc;
1499
1500	DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1501		"CAS_MAC_RX_CONFIG %x\n",
1502		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1503		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1504		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1505
1506	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1507	++ifp->if_oerrors;
1508
1509	/* Try to get more packets going. */
1510	cas_init(ifp);
1511}
1512
1513/*
1514 * Initialize the MII Management Interface
1515 */
1516void
1517cas_mifinit(struct cas_softc *sc)
1518{
1519	bus_space_tag_t t = sc->sc_memt;
1520	bus_space_handle_t mif = sc->sc_memh;
1521
1522	/* Configure the MIF in frame mode */
1523	sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1524	sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1525	bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1526}
1527
1528/*
1529 * MII interface
1530 *
1531 * The Cassini MII interface supports at least three different operating modes:
1532 *
1533 * Bitbang mode is implemented using data, clock and output enable registers.
1534 *
1535 * Frame mode is implemented by loading a complete frame into the frame
1536 * register and polling the valid bit for completion.
1537 *
1538 * Polling mode uses the frame register but completion is indicated by
1539 * an interrupt.
1540 *
1541 */
1542int
1543cas_mii_readreg(device_t self, int phy, int reg)
1544{
1545	struct cas_softc *sc = device_private(self);
1546	bus_space_tag_t t = sc->sc_memt;
1547	bus_space_handle_t mif = sc->sc_memh;
1548	int n;
1549	u_int32_t v;
1550
1551#ifdef CAS_DEBUG
1552	if (sc->sc_debug)
1553		printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1554#endif
1555
1556	/* Construct the frame command */
1557	v = (reg << CAS_MIF_REG_SHIFT)	| (phy << CAS_MIF_PHY_SHIFT) |
1558		CAS_MIF_FRAME_READ;
1559
1560	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1561	for (n = 0; n < 100; n++) {
1562		DELAY(1);
1563		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1564		if (v & CAS_MIF_FRAME_TA0)
1565			return (v & CAS_MIF_FRAME_DATA);
1566	}
1567
1568	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1569	return (0);
1570}
1571
1572void
1573cas_mii_writereg(device_t self, int phy, int reg, int val)
1574{
1575	struct cas_softc *sc = device_private(self);
1576	bus_space_tag_t t = sc->sc_memt;
1577	bus_space_handle_t mif = sc->sc_memh;
1578	int n;
1579	u_int32_t v;
1580
1581#ifdef CAS_DEBUG
1582	if (sc->sc_debug)
1583		printf("cas_mii_writereg: phy %d reg %d val %x\n",
1584			phy, reg, val);
1585#endif
1586
1587	/* Construct the frame command */
1588	v = CAS_MIF_FRAME_WRITE			|
1589	    (phy << CAS_MIF_PHY_SHIFT)		|
1590	    (reg << CAS_MIF_REG_SHIFT)		|
1591	    (val & CAS_MIF_FRAME_DATA);
1592
1593	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1594	for (n = 0; n < 100; n++) {
1595		DELAY(1);
1596		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1597		if (v & CAS_MIF_FRAME_TA0)
1598			return;
1599	}
1600
1601	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1602}
1603
1604void
1605cas_mii_statchg(struct ifnet *ifp)
1606{
1607	struct cas_softc *sc = ifp->if_softc;
1608#ifdef CAS_DEBUG
1609	int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1610#endif
1611	bus_space_tag_t t = sc->sc_memt;
1612	bus_space_handle_t mac = sc->sc_memh;
1613	u_int32_t v;
1614
1615#ifdef CAS_DEBUG
1616	if (sc->sc_debug)
1617		printf("cas_mii_statchg: status change: phy = %d\n",
1618		    sc->sc_phys[instance]);
1619#endif
1620
1621	/* Set tx full duplex options */
1622	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1623	delay(10000); /* reg must be cleared and delay before changing. */
1624	v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1625		CAS_MAC_TX_ENABLE;
1626	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1627		v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1628	}
1629	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1630
1631	/* XIF Configuration */
1632	v = CAS_MAC_XIF_TX_MII_ENA;
1633	v |= CAS_MAC_XIF_LINK_LED;
1634
1635	/* MII needs echo disable if half duplex. */
1636	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1637		/* turn on full duplex LED */
1638		v |= CAS_MAC_XIF_FDPLX_LED;
1639	else
1640		/* half duplex -- disable echo */
1641		v |= CAS_MAC_XIF_ECHO_DISABL;
1642
1643	switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1644	case IFM_1000_T:  /* Gigabit using GMII interface */
1645	case IFM_1000_SX:
1646		v |= CAS_MAC_XIF_GMII_MODE;
1647		break;
1648	default:
1649		v &= ~CAS_MAC_XIF_GMII_MODE;
1650	}
1651	bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1652}
1653
1654int
1655cas_pcs_readreg(device_t self, int phy, int reg)
1656{
1657	struct cas_softc *sc = device_private(self);
1658	bus_space_tag_t t = sc->sc_memt;
1659	bus_space_handle_t pcs = sc->sc_memh;
1660
1661#ifdef CAS_DEBUG
1662	if (sc->sc_debug)
1663		printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1664#endif
1665
1666	if (phy != CAS_PHYAD_EXTERNAL)
1667		return (0);
1668
1669	switch (reg) {
1670	case MII_BMCR:
1671		reg = CAS_MII_CONTROL;
1672		break;
1673	case MII_BMSR:
1674		reg = CAS_MII_STATUS;
1675		break;
1676	case MII_ANAR:
1677		reg = CAS_MII_ANAR;
1678		break;
1679	case MII_ANLPAR:
1680		reg = CAS_MII_ANLPAR;
1681		break;
1682	case MII_EXTSR:
1683		return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1684	default:
1685		return (0);
1686	}
1687
1688	return bus_space_read_4(t, pcs, reg);
1689}
1690
1691void
1692cas_pcs_writereg(device_t self, int phy, int reg, int val)
1693{
1694	struct cas_softc *sc = device_private(self);
1695	bus_space_tag_t t = sc->sc_memt;
1696	bus_space_handle_t pcs = sc->sc_memh;
1697	int reset = 0;
1698
1699#ifdef CAS_DEBUG
1700	if (sc->sc_debug)
1701		printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1702			phy, reg, val);
1703#endif
1704
1705	if (phy != CAS_PHYAD_EXTERNAL)
1706		return;
1707
1708	if (reg == MII_ANAR)
1709		bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1710
1711	switch (reg) {
1712	case MII_BMCR:
1713		reset = (val & CAS_MII_CONTROL_RESET);
1714		reg = CAS_MII_CONTROL;
1715		break;
1716	case MII_BMSR:
1717		reg = CAS_MII_STATUS;
1718		break;
1719	case MII_ANAR:
1720		reg = CAS_MII_ANAR;
1721		break;
1722	case MII_ANLPAR:
1723		reg = CAS_MII_ANLPAR;
1724		break;
1725	default:
1726		return;
1727	}
1728
1729	bus_space_write_4(t, pcs, reg, val);
1730
1731	if (reset)
1732		cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1733
1734	if (reg == CAS_MII_ANAR || reset)
1735		bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1736		    CAS_MII_CONFIG_ENABLE);
1737}
1738
1739int
1740cas_mediachange(struct ifnet *ifp)
1741{
1742	struct cas_softc *sc = ifp->if_softc;
1743	struct mii_data *mii = &sc->sc_mii;
1744
1745	if (mii->mii_instance) {
1746		struct mii_softc *miisc;
1747		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1748			mii_phy_reset(miisc);
1749	}
1750
1751	return (mii_mediachg(&sc->sc_mii));
1752}
1753
1754void
1755cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1756{
1757	struct cas_softc *sc = ifp->if_softc;
1758
1759	mii_pollstat(&sc->sc_mii);
1760	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1761	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1762}
1763
1764/*
1765 * Process an ioctl request.
1766 */
1767int
1768cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1769{
1770	struct cas_softc *sc = ifp->if_softc;
1771	int s, error = 0;
1772
1773	s = splnet();
1774
1775	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1776		error = 0;
1777		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1778			;
1779		else if (ifp->if_flags & IFF_RUNNING) {
1780			/*
1781			 * Multicast list has changed; set the hardware filter
1782			 * accordingly.
1783			 */
1784			cas_iff(sc);
1785		}
1786	}
1787
1788	splx(s);
1789	return (error);
1790}
1791
1792static bool
1793cas_suspend(device_t self, const pmf_qual_t *qual)
1794{
1795	struct cas_softc *sc = device_private(self);
1796	bus_space_tag_t t = sc->sc_memt;
1797	bus_space_handle_t h = sc->sc_memh;
1798
1799	bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1800	if (sc->sc_ih != NULL) {
1801		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1802		sc->sc_ih = NULL;
1803	}
1804
1805	return true;
1806}
1807
1808static bool
1809cas_resume(device_t self, const pmf_qual_t *qual)
1810{
1811	struct cas_softc *sc = device_private(self);
1812
1813	return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1814}
1815
1816static bool
1817cas_estintr(struct cas_softc *sc, int what)
1818{
1819	bus_space_tag_t t = sc->sc_memt;
1820	bus_space_handle_t h = sc->sc_memh;
1821	const char *intrstr = NULL;
1822	char intrbuf[PCI_INTRSTR_LEN];
1823
1824	/* PCI interrupts */
1825	if (what & CAS_INTR_PCI) {
1826		intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle, intrbuf, sizeof(intrbuf));
1827		sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1828		    IPL_NET, cas_intr, sc);
1829		if (sc->sc_ih == NULL) {
1830			aprint_error_dev(sc->sc_dev,
1831			    "unable to establish interrupt");
1832			if (intrstr != NULL)
1833				aprint_error(" at %s", intrstr);
1834			aprint_error("\n");
1835			return false;
1836		}
1837
1838		aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1839	}
1840
1841	/* Interrupt register */
1842	if (what & CAS_INTR_REG) {
1843		bus_space_write_4(t, h, CAS_INTMASK,
1844		    ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1845		    CAS_INTR_TX_TAG_ERR|
1846		    CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1847		    CAS_INTR_RX_TAG_ERR|
1848		    CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1849		    CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1850		    CAS_INTR_BERR));
1851		bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1852		    CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1853		bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1854		bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1855	}
1856	return true;
1857}
1858
1859bool
1860cas_shutdown(device_t self, int howto)
1861{
1862	struct cas_softc *sc = device_private(self);
1863	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1864
1865	cas_stop(ifp, 1);
1866
1867	return true;
1868}
1869
1870void
1871cas_iff(struct cas_softc *sc)
1872{
1873	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1874	struct ethercom *ec = &sc->sc_ethercom;
1875	struct ether_multi *enm;
1876	struct ether_multistep step;
1877	bus_space_tag_t t = sc->sc_memt;
1878	bus_space_handle_t h = sc->sc_memh;
1879	u_int32_t crc, hash[16], rxcfg;
1880	int i;
1881
1882	rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1883	rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1884	    CAS_MAC_RX_PROMISC_GRP);
1885	ifp->if_flags &= ~IFF_ALLMULTI;
1886
1887	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1888		ifp->if_flags |= IFF_ALLMULTI;
1889		if (ifp->if_flags & IFF_PROMISC)
1890			rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1891		else
1892			rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1893        } else {
1894		/*
1895		 * Set up multicast address filter by passing all multicast
1896		 * addresses through a crc generator, and then using the
1897		 * high order 8 bits as an index into the 256 bit logical
1898		 * address filter.  The high order 4 bits selects the word,
1899		 * while the other 4 bits select the bit within the word
1900		 * (where bit 0 is the MSB).
1901		 */
1902
1903		rxcfg |= CAS_MAC_RX_HASH_FILTER;
1904
1905		/* Clear hash table */
1906		for (i = 0; i < 16; i++)
1907			hash[i] = 0;
1908
1909		ETHER_FIRST_MULTI(step, ec, enm);
1910		while (enm != NULL) {
1911                        crc = ether_crc32_le(enm->enm_addrlo,
1912                            ETHER_ADDR_LEN);
1913
1914                        /* Just want the 8 most significant bits. */
1915                        crc >>= 24;
1916
1917                        /* Set the corresponding bit in the filter. */
1918                        hash[crc >> 4] |= 1 << (15 - (crc & 15));
1919
1920			ETHER_NEXT_MULTI(step, enm);
1921		}
1922
1923		/* Now load the hash table into the chip (if we are using it) */
1924		for (i = 0; i < 16; i++) {
1925			bus_space_write_4(t, h,
1926			    CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1927			    hash[i]);
1928		}
1929	}
1930
1931	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1932}
1933
1934int
1935cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1936{
1937	u_int64_t flags;
1938	u_int32_t cur, frag, i;
1939	bus_dmamap_t map;
1940
1941	cur = frag = *bixp;
1942	map = sc->sc_txd[cur].sd_map;
1943
1944	if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1945	    BUS_DMA_NOWAIT) != 0) {
1946		return (ENOBUFS);
1947	}
1948
1949	if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1950		bus_dmamap_unload(sc->sc_dmatag, map);
1951		return (ENOBUFS);
1952	}
1953
1954	bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1955	    BUS_DMASYNC_PREWRITE);
1956
1957	for (i = 0; i < map->dm_nsegs; i++) {
1958		sc->sc_txdescs[frag].cd_addr =
1959		    CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1960		flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1961		    (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1962		    ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1963		sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1964		bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1965		    CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1966		    BUS_DMASYNC_PREWRITE);
1967		cur = frag;
1968		if (++frag == CAS_NTXDESC)
1969			frag = 0;
1970	}
1971
1972	sc->sc_tx_cnt += map->dm_nsegs;
1973	sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1974	sc->sc_txd[cur].sd_map = map;
1975	sc->sc_txd[cur].sd_mbuf = mhead;
1976
1977	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1978
1979	*bixp = frag;
1980
1981	/* sync descriptors */
1982
1983	return (0);
1984}
1985
1986/*
1987 * Transmit interrupt.
1988 */
1989int
1990cas_tint(struct cas_softc *sc, u_int32_t status)
1991{
1992	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1993	struct cas_sxd *sd;
1994	u_int32_t cons, comp;
1995
1996	comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
1997	cons = sc->sc_tx_cons;
1998	while (cons != comp) {
1999		sd = &sc->sc_txd[cons];
2000		if (sd->sd_mbuf != NULL) {
2001			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2002			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2003			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2004			m_freem(sd->sd_mbuf);
2005			sd->sd_mbuf = NULL;
2006			ifp->if_opackets++;
2007		}
2008		sc->sc_tx_cnt--;
2009		if (++cons == CAS_NTXDESC)
2010			cons = 0;
2011	}
2012	sc->sc_tx_cons = cons;
2013
2014	if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2015		ifp->if_flags &= ~IFF_OACTIVE;
2016	if (sc->sc_tx_cnt == 0)
2017		ifp->if_timer = 0;
2018
2019	cas_start(ifp);
2020
2021	return (1);
2022}
2023
2024void
2025cas_start(struct ifnet *ifp)
2026{
2027	struct cas_softc *sc = ifp->if_softc;
2028	struct mbuf *m;
2029	u_int32_t bix;
2030
2031	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2032		return;
2033
2034	bix = sc->sc_tx_prod;
2035	while (sc->sc_txd[bix].sd_mbuf == NULL) {
2036		IFQ_POLL(&ifp->if_snd, m);
2037		if (m == NULL)
2038			break;
2039
2040		/*
2041		 * If BPF is listening on this interface, let it see the
2042		 * packet before we commit it to the wire.
2043		 */
2044		bpf_mtap(ifp, m);
2045
2046		/*
2047		 * Encapsulate this packet and start it going...
2048		 * or fail...
2049		 */
2050		if (cas_encap(sc, m, &bix)) {
2051			ifp->if_flags |= IFF_OACTIVE;
2052			break;
2053		}
2054
2055		IFQ_DEQUEUE(&ifp->if_snd, m);
2056		ifp->if_timer = 5;
2057	}
2058
2059	sc->sc_tx_prod = bix;
2060}
2061
2062MODULE(MODULE_CLASS_DRIVER, if_cas, "pci");
2063
2064#ifdef _MODULE
2065#include "ioconf.c"
2066#endif
2067
2068static int
2069if_cas_modcmd(modcmd_t cmd, void *opaque)
2070{
2071	int error = 0;
2072
2073	switch (cmd) {
2074	case MODULE_CMD_INIT:
2075#ifdef _MODULE
2076		error = config_init_component(cfdriver_ioconf_cas,
2077		    cfattach_ioconf_cas, cfdata_ioconf_cas);
2078#endif
2079		return error;
2080	case MODULE_CMD_FINI:
2081#ifdef _MODULE
2082		error = config_fini_component(cfdriver_ioconf_cas,
2083		    cfattach_ioconf_cas, cfdata_ioconf_cas);
2084#endif
2085		return error;
2086	default:
2087		return ENOTTY;
2088	}
2089}
2090