if_cas.c revision 1.16
1/*	$NetBSD: if_cas.c,v 1.16 2012/02/02 19:43:05 tls Exp $	*/
2/*	$OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $	*/
3
4/*
5 *
6 * Copyright (C) 2007 Mark Kettenis.
7 * Copyright (C) 2001 Eduardo Horvath.
8 * All rights reserved.
9 *
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34/*
35 * Driver for Sun Cassini ethernet controllers.
36 *
37 * There are basically two variants of this chip: Cassini and
38 * Cassini+.  We can distinguish between the two by revision: 0x10 and
39 * up are Cassini+.  The most important difference is that Cassini+
40 * has a second RX descriptor ring.  Cassini+ will not work without
41 * configuring that second ring.  However, since we don't use it we
42 * don't actually fill the descriptors, and only hand off the first
43 * four to the chip.
44 */
45
46#include <sys/cdefs.h>
47__KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.16 2012/02/02 19:43:05 tls Exp $");
48
49#ifndef _MODULE
50#include "opt_inet.h"
51#endif
52
53#include <sys/param.h>
54#include <sys/systm.h>
55#include <sys/callout.h>
56#include <sys/mbuf.h>
57#include <sys/syslog.h>
58#include <sys/malloc.h>
59#include <sys/kernel.h>
60#include <sys/socket.h>
61#include <sys/ioctl.h>
62#include <sys/errno.h>
63#include <sys/device.h>
64#include <sys/module.h>
65
66#include <machine/endian.h>
67
68#include <net/if.h>
69#include <net/if_dl.h>
70#include <net/if_media.h>
71#include <net/if_ether.h>
72
73#ifdef INET
74#include <netinet/in.h>
75#include <netinet/in_systm.h>
76#include <netinet/in_var.h>
77#include <netinet/ip.h>
78#include <netinet/tcp.h>
79#include <netinet/udp.h>
80#endif
81
82#include <net/bpf.h>
83
84#include <sys/bus.h>
85#include <sys/intr.h>
86
87#include <dev/mii/mii.h>
88#include <dev/mii/miivar.h>
89#include <dev/mii/mii_bitbang.h>
90
91#include <dev/pci/pcivar.h>
92#include <dev/pci/pcireg.h>
93#include <dev/pci/pcidevs.h>
94#include <prop/proplib.h>
95
96#include <dev/pci/if_casreg.h>
97#include <dev/pci/if_casvar.h>
98
99#define TRIES	10000
100
101static bool	cas_estintr(struct cas_softc *sc, int);
102bool		cas_shutdown(device_t, int);
103static bool	cas_suspend(device_t, const pmf_qual_t *);
104static bool	cas_resume(device_t, const pmf_qual_t *);
105static int	cas_detach(device_t, int);
106static void	cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
107
108int		cas_match(device_t, cfdata_t, void *);
109void		cas_attach(device_t, device_t, void *);
110
111
112CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
113    cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
114    DVF_DETACH_SHUTDOWN);
115
116int	cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
117
118void		cas_config(struct cas_softc *, const uint8_t *);
119void		cas_start(struct ifnet *);
120void		cas_stop(struct ifnet *, int);
121int		cas_ioctl(struct ifnet *, u_long, void *);
122void		cas_tick(void *);
123void		cas_watchdog(struct ifnet *);
124int		cas_init(struct ifnet *);
125void		cas_init_regs(struct cas_softc *);
126int		cas_ringsize(int);
127int		cas_cringsize(int);
128int		cas_meminit(struct cas_softc *);
129void		cas_mifinit(struct cas_softc *);
130int		cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
131		    u_int32_t, u_int32_t);
132void		cas_reset(struct cas_softc *);
133int		cas_reset_rx(struct cas_softc *);
134int		cas_reset_tx(struct cas_softc *);
135int		cas_disable_rx(struct cas_softc *);
136int		cas_disable_tx(struct cas_softc *);
137void		cas_rxdrain(struct cas_softc *);
138int		cas_add_rxbuf(struct cas_softc *, int idx);
139void		cas_iff(struct cas_softc *);
140int		cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
141
142/* MII methods & callbacks */
143int		cas_mii_readreg(device_t, int, int);
144void		cas_mii_writereg(device_t, int, int, int);
145void		cas_mii_statchg(device_t);
146int		cas_pcs_readreg(device_t, int, int);
147void		cas_pcs_writereg(device_t, int, int, int);
148
149int		cas_mediachange(struct ifnet *);
150void		cas_mediastatus(struct ifnet *, struct ifmediareq *);
151
152int		cas_eint(struct cas_softc *, u_int);
153int		cas_rint(struct cas_softc *);
154int		cas_tint(struct cas_softc *, u_int32_t);
155int		cas_pint(struct cas_softc *);
156int		cas_intr(void *);
157
158#ifdef CAS_DEBUG
159#define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
160				printf x
161#else
162#define	DPRINTF(sc, x)	/* nothing */
163#endif
164
165int
166cas_match(device_t parent, cfdata_t cf, void *aux)
167{
168	struct pci_attach_args *pa = aux;
169
170	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
171	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
172		return 1;
173
174	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
175	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
176		return 1;
177
178	return 0;
179}
180
181#define	PROMHDR_PTR_DATA	0x18
182#define	PROMDATA_PTR_VPD	0x08
183#define	PROMDATA_DATA2		0x0a
184
185static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
186static const u_int8_t cas_promdat[] = {
187	'P', 'C', 'I', 'R',
188	PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
189	PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
190};
191static const u_int8_t cas_promdat_ns[] = {
192	'P', 'C', 'I', 'R',
193	PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
194	PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
195};
196
197static const u_int8_t cas_promdat2[] = {
198	0x18, 0x00,			/* structure length */
199	0x00,				/* structure revision */
200	0x00,				/* interface revision */
201	PCI_SUBCLASS_NETWORK_ETHERNET,	/* subclass code */
202	PCI_CLASS_NETWORK		/* class code */
203};
204
205int
206cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
207    uint8_t *enaddr)
208{
209	struct pci_vpd_largeres *res;
210	struct pci_vpd *vpd;
211	bus_space_handle_t romh;
212	bus_space_tag_t romt;
213	bus_size_t romsize = 0;
214	u_int8_t buf[32], *desc;
215	pcireg_t address;
216	int dataoff, vpdoff, len;
217	int rv = -1;
218
219	if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
220	    &romt, &romh, NULL, &romsize))
221		return (-1);
222
223	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
224	address |= PCI_MAPREG_ROM_ENABLE;
225	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
226
227	bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
228	if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
229		goto fail;
230
231	dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
232	if (dataoff < 0x1c)
233		goto fail;
234
235	bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
236	if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
237	     bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
238	    bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
239		goto fail;
240
241	vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
242	if (vpdoff < 0x1c)
243		goto fail;
244
245next:
246	bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
247	if (!PCI_VPDRES_ISLARGE(buf[0]))
248		goto fail;
249
250	res = (struct pci_vpd_largeres *)buf;
251	vpdoff += sizeof(*res);
252
253	len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
254	switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
255	case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
256		/* Skip identifier string. */
257		vpdoff += len;
258		goto next;
259
260	case PCI_VPDRES_TYPE_VPD:
261		while (len > 0) {
262			bus_space_read_region_1(romt, romh, vpdoff,
263			     buf, sizeof(buf));
264
265			vpd = (struct pci_vpd *)buf;
266			vpdoff += sizeof(*vpd) + vpd->vpd_len;
267			len -= sizeof(*vpd) + vpd->vpd_len;
268
269			/*
270			 * We're looking for an "Enhanced" VPD...
271			 */
272			if (vpd->vpd_key0 != 'Z')
273				continue;
274
275			desc = buf + sizeof(*vpd);
276
277			/*
278			 * ...which is an instance property...
279			 */
280			if (desc[0] != 'I')
281				continue;
282			desc += 3;
283
284			/*
285			 * ...that's a byte array with the proper
286			 * length for a MAC address...
287			 */
288			if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
289				continue;
290			desc += 2;
291
292			/*
293			 * ...named "local-mac-address".
294			 */
295			if (strcmp(desc, "local-mac-address") != 0)
296				continue;
297			desc += strlen("local-mac-address") + 1;
298
299			memcpy(enaddr, desc, ETHER_ADDR_LEN);
300			rv = 0;
301		}
302		break;
303
304	default:
305		goto fail;
306	}
307
308 fail:
309	if (romsize != 0)
310		bus_space_unmap(romt, romh, romsize);
311
312	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
313	address &= ~PCI_MAPREG_ROM_ENABLE;
314	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
315
316	return (rv);
317}
318
319void
320cas_attach(device_t parent, device_t self, void *aux)
321{
322	struct pci_attach_args *pa = aux;
323	struct cas_softc *sc = device_private(self);
324	prop_data_t data;
325	uint8_t enaddr[ETHER_ADDR_LEN];
326
327	sc->sc_dev = self;
328	pci_aprint_devinfo(pa, NULL);
329	sc->sc_rev = PCI_REVISION(pa->pa_class);
330	sc->sc_dmatag = pa->pa_dmat;
331
332#define PCI_CAS_BASEADDR	0x10
333	if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
334	    &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
335		aprint_error_dev(sc->sc_dev,
336		    "unable to map device registers\n");
337		return;
338	}
339
340	if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
341	    "mac-address")) != NULL)
342		memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
343	else if (cas_pci_enaddr(sc, pa, enaddr) != 0) {
344		aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
345		memset(enaddr, 0, sizeof(enaddr));
346	}
347
348	sc->sc_burst = 16;	/* XXX */
349
350	sc->sc_att_stage = CAS_ATT_BACKEND_0;
351
352	if (pci_intr_map(pa, &sc->sc_handle) != 0) {
353		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
354		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
355		return;
356	}
357	sc->sc_pc = pa->pa_pc;
358	if (!cas_estintr(sc, CAS_INTR_PCI)) {
359		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
360		aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
361		return;
362	}
363
364	sc->sc_att_stage = CAS_ATT_BACKEND_1;
365
366	/*
367	 * call the main configure
368	 */
369	cas_config(sc, enaddr);
370
371	if (pmf_device_register1(sc->sc_dev,
372	    cas_suspend, cas_resume, cas_shutdown))
373		pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
374	else
375		aprint_error_dev(sc->sc_dev,
376		    "could not establish power handlers\n");
377
378	sc->sc_att_stage = CAS_ATT_FINISHED;
379		/*FALLTHROUGH*/
380}
381
382/*
383 * cas_config:
384 *
385 *	Attach a Cassini interface to the system.
386 */
387void
388cas_config(struct cas_softc *sc, const uint8_t *enaddr)
389{
390	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
391	struct mii_data *mii = &sc->sc_mii;
392	struct mii_softc *child;
393	int i, error;
394
395	/* Make sure the chip is stopped. */
396	ifp->if_softc = sc;
397	cas_reset(sc);
398
399	/*
400	 * Allocate the control data structures, and create and load the
401	 * DMA map for it.
402	 */
403	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
404	    sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
405	    1, &sc->sc_cdnseg, 0)) != 0) {
406		aprint_error_dev(sc->sc_dev,
407		    "unable to allocate control data, error = %d\n",
408		    error);
409		cas_partial_detach(sc, CAS_ATT_0);
410	}
411
412	/* XXX should map this in with correct endianness */
413	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
414	    sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
415	    BUS_DMA_COHERENT)) != 0) {
416		aprint_error_dev(sc->sc_dev,
417		    "unable to map control data, error = %d\n", error);
418		cas_partial_detach(sc, CAS_ATT_1);
419	}
420
421	if ((error = bus_dmamap_create(sc->sc_dmatag,
422	    sizeof(struct cas_control_data), 1,
423	    sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
424		aprint_error_dev(sc->sc_dev,
425		    "unable to create control data DMA map, error = %d\n", error);
426		cas_partial_detach(sc, CAS_ATT_2);
427	}
428
429	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
430	    sc->sc_control_data, sizeof(struct cas_control_data), NULL,
431	    0)) != 0) {
432		aprint_error_dev(sc->sc_dev,
433		    "unable to load control data DMA map, error = %d\n",
434		    error);
435		cas_partial_detach(sc, CAS_ATT_3);
436	}
437
438	memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
439
440	/*
441	 * Create the receive buffer DMA maps.
442	 */
443	for (i = 0; i < CAS_NRXDESC; i++) {
444		bus_dma_segment_t seg;
445		char *kva;
446		int rseg;
447
448		if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
449		    CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
450			aprint_error_dev(sc->sc_dev,
451			    "unable to alloc rx DMA mem %d, error = %d\n",
452			    i, error);
453			cas_partial_detach(sc, CAS_ATT_5);
454		}
455		sc->sc_rxsoft[i].rxs_dmaseg = seg;
456
457		if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
458		    CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
459			aprint_error_dev(sc->sc_dev,
460			    "unable to alloc rx DMA mem %d, error = %d\n",
461			    i, error);
462			cas_partial_detach(sc, CAS_ATT_5);
463		}
464		sc->sc_rxsoft[i].rxs_kva = kva;
465
466		if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
467		    CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
468			aprint_error_dev(sc->sc_dev,
469			    "unable to create rx DMA map %d, error = %d\n",
470			    i, error);
471			cas_partial_detach(sc, CAS_ATT_5);
472		}
473
474		if ((error = bus_dmamap_load(sc->sc_dmatag,
475		   sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
476		   BUS_DMA_NOWAIT)) != 0) {
477			aprint_error_dev(sc->sc_dev,
478			    "unable to load rx DMA map %d, error = %d\n",
479			    i, error);
480			cas_partial_detach(sc, CAS_ATT_5);
481		}
482	}
483
484	/*
485	 * Create the transmit buffer DMA maps.
486	 */
487	for (i = 0; i < CAS_NTXDESC; i++) {
488		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
489		    CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
490		    &sc->sc_txd[i].sd_map)) != 0) {
491			aprint_error_dev(sc->sc_dev,
492			    "unable to create tx DMA map %d, error = %d\n",
493			    i, error);
494			cas_partial_detach(sc, CAS_ATT_6);
495		}
496		sc->sc_txd[i].sd_mbuf = NULL;
497	}
498
499	/*
500	 * From this point forward, the attachment cannot fail.  A failure
501	 * before this point releases all resources that may have been
502	 * allocated.
503	 */
504
505	/* Announce ourselves. */
506	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
507	    ether_sprintf(enaddr));
508	aprint_naive(": Ethernet controller\n");
509
510	/* Get RX FIFO size */
511	sc->sc_rxfifosize = 16 * 1024;
512
513	/* Initialize ifnet structure. */
514	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
515	ifp->if_softc = sc;
516	ifp->if_flags =
517	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
518	ifp->if_start = cas_start;
519	ifp->if_ioctl = cas_ioctl;
520	ifp->if_watchdog = cas_watchdog;
521	ifp->if_stop = cas_stop;
522	ifp->if_init = cas_init;
523	IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
524	IFQ_SET_READY(&ifp->if_snd);
525
526	/* Initialize ifmedia structures and MII info */
527	mii->mii_ifp = ifp;
528	mii->mii_readreg = cas_mii_readreg;
529	mii->mii_writereg = cas_mii_writereg;
530	mii->mii_statchg = cas_mii_statchg;
531
532	ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
533	sc->sc_ethercom.ec_mii = mii;
534
535	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
536
537	cas_mifinit(sc);
538
539	if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
540		sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
541		bus_space_write_4(sc->sc_memt, sc->sc_memh,
542	            CAS_MIF_CONFIG, sc->sc_mif_config);
543	}
544
545	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
546	    MII_OFFSET_ANY, 0);
547
548	child = LIST_FIRST(&mii->mii_phys);
549	if (child == NULL &&
550	    sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
551		/*
552		 * Try the external PCS SERDES if we didn't find any
553		 * MII devices.
554		 */
555		bus_space_write_4(sc->sc_memt, sc->sc_memh,
556		    CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
557
558		bus_space_write_4(sc->sc_memt, sc->sc_memh,
559		     CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
560
561		mii->mii_readreg = cas_pcs_readreg;
562		mii->mii_writereg = cas_pcs_writereg;
563
564		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
565		    MII_OFFSET_ANY, MIIF_NOISOLATE);
566	}
567
568	child = LIST_FIRST(&mii->mii_phys);
569	if (child == NULL) {
570		/* No PHY attached */
571		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
572		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
573	} else {
574		/*
575		 * Walk along the list of attached MII devices and
576		 * establish an `MII instance' to `phy number'
577		 * mapping. We'll use this mapping in media change
578		 * requests to determine which phy to use to program
579		 * the MIF configuration register.
580		 */
581		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
582			/*
583			 * Note: we support just two PHYs: the built-in
584			 * internal device and an external on the MII
585			 * connector.
586			 */
587			if (child->mii_phy > 1 || child->mii_inst > 1) {
588				aprint_error_dev(sc->sc_dev,
589				    "cannot accommodate MII device %s"
590				    " at phy %d, instance %d\n",
591				    device_xname(child->mii_dev),
592				    child->mii_phy, child->mii_inst);
593				continue;
594			}
595
596			sc->sc_phys[child->mii_inst] = child->mii_phy;
597		}
598
599		/*
600		 * XXX - we can really do the following ONLY if the
601		 * phy indeed has the auto negotiation capability!!
602		 */
603		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
604	}
605
606	/* claim 802.1q capability */
607	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
608
609	/* Attach the interface. */
610	if_attach(ifp);
611	ether_ifattach(ifp, enaddr);
612
613	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
614			  RND_TYPE_NET, 0);
615
616	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
617	    NULL, device_xname(sc->sc_dev), "interrupts");
618
619	callout_init(&sc->sc_tick_ch, 0);
620
621	return;
622}
623
624int
625cas_detach(device_t self, int flags)
626{
627	int i;
628	struct cas_softc *sc = device_private(self);
629	bus_space_tag_t t = sc->sc_memt;
630	bus_space_handle_t h = sc->sc_memh;
631	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
632
633	/*
634	 * Free any resources we've allocated during the failed attach
635	 * attempt.  Do this in reverse order and fall through.
636	 */
637	switch (sc->sc_att_stage) {
638	case CAS_ATT_FINISHED:
639		bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
640		pmf_device_deregister(self);
641		cas_stop(&sc->sc_ethercom.ec_if, 1);
642		evcnt_detach(&sc->sc_ev_intr);
643
644		rnd_detach_source(&sc->rnd_source);
645
646		ether_ifdetach(ifp);
647		if_detach(ifp);
648		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
649
650		callout_destroy(&sc->sc_tick_ch);
651
652		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
653
654		/*FALLTHROUGH*/
655	case CAS_ATT_MII:
656	case CAS_ATT_7:
657	case CAS_ATT_6:
658		for (i = 0; i < CAS_NTXDESC; i++) {
659			if (sc->sc_txd[i].sd_map != NULL)
660				bus_dmamap_destroy(sc->sc_dmatag,
661				    sc->sc_txd[i].sd_map);
662		}
663		/*FALLTHROUGH*/
664	case CAS_ATT_5:
665		for (i = 0; i < CAS_NRXDESC; i++) {
666			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
667				bus_dmamap_unload(sc->sc_dmatag,
668				    sc->sc_rxsoft[i].rxs_dmamap);
669			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
670				bus_dmamap_destroy(sc->sc_dmatag,
671				    sc->sc_rxsoft[i].rxs_dmamap);
672			if (sc->sc_rxsoft[i].rxs_kva != NULL)
673				bus_dmamem_unmap(sc->sc_dmatag,
674				    sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
675			/* XXX   need to check that bus_dmamem_alloc suceeded
676			if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
677			*/
678				bus_dmamem_free(sc->sc_dmatag,
679				    &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
680		}
681		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
682		/*FALLTHROUGH*/
683	case CAS_ATT_4:
684	case CAS_ATT_3:
685		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
686		/*FALLTHROUGH*/
687	case CAS_ATT_2:
688		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
689		    sizeof(struct cas_control_data));
690		/*FALLTHROUGH*/
691	case CAS_ATT_1:
692		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
693		/*FALLTHROUGH*/
694	case CAS_ATT_0:
695		sc->sc_att_stage = CAS_ATT_0;
696		/*FALLTHROUGH*/
697	case CAS_ATT_BACKEND_2:
698	case CAS_ATT_BACKEND_1:
699		if (sc->sc_ih != NULL) {
700			pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
701			sc->sc_ih = NULL;
702		}
703		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
704		/*FALLTHROUGH*/
705	case CAS_ATT_BACKEND_0:
706		break;
707	}
708	return 0;
709}
710
711static void
712cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
713{
714	cfattach_t ca = device_cfattach(sc->sc_dev);
715
716	sc->sc_att_stage = stage;
717	(*ca->ca_detach)(sc->sc_dev, 0);
718}
719
720void
721cas_tick(void *arg)
722{
723	struct cas_softc *sc = arg;
724	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
725	bus_space_tag_t t = sc->sc_memt;
726	bus_space_handle_t mac = sc->sc_memh;
727	int s;
728	u_int32_t v;
729
730	/* unload collisions counters */
731	v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
732	    bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
733	ifp->if_collisions += v +
734	    bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
735	    bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
736	ifp->if_oerrors += v;
737
738	/* read error counters */
739	ifp->if_ierrors +=
740	    bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
741	    bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
742	    bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
743	    bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
744
745	/* clear the hardware counters */
746	bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
747	bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
748	bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
749	bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
750	bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
751	bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
752	bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
753	bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
754
755	s = splnet();
756	mii_tick(&sc->sc_mii);
757	splx(s);
758
759	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
760}
761
762int
763cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
764    u_int32_t clr, u_int32_t set)
765{
766	int i;
767	u_int32_t reg;
768
769	for (i = TRIES; i--; DELAY(100)) {
770		reg = bus_space_read_4(sc->sc_memt, h, r);
771		if ((reg & clr) == 0 && (reg & set) == set)
772			return (1);
773	}
774
775	return (0);
776}
777
778void
779cas_reset(struct cas_softc *sc)
780{
781	bus_space_tag_t t = sc->sc_memt;
782	bus_space_handle_t h = sc->sc_memh;
783	int s;
784
785	s = splnet();
786	DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
787	cas_reset_rx(sc);
788	cas_reset_tx(sc);
789
790	/* Disable interrupts */
791	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
792
793	/* Do a full reset */
794	bus_space_write_4(t, h, CAS_RESET,
795	    CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
796	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
797		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
798	splx(s);
799}
800
801
802/*
803 * cas_rxdrain:
804 *
805 *	Drain the receive queue.
806 */
807void
808cas_rxdrain(struct cas_softc *sc)
809{
810	/* Nothing to do yet. */
811}
812
813/*
814 * Reset the whole thing.
815 */
816void
817cas_stop(struct ifnet *ifp, int disable)
818{
819	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
820	struct cas_sxd *sd;
821	u_int32_t i;
822
823	DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
824
825	callout_stop(&sc->sc_tick_ch);
826
827	/*
828	 * Mark the interface down and cancel the watchdog timer.
829	 */
830	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
831	ifp->if_timer = 0;
832
833	mii_down(&sc->sc_mii);
834
835	cas_reset_rx(sc);
836	cas_reset_tx(sc);
837
838	/*
839	 * Release any queued transmit buffers.
840	 */
841	for (i = 0; i < CAS_NTXDESC; i++) {
842		sd = &sc->sc_txd[i];
843		if (sd->sd_mbuf != NULL) {
844			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
845			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
846			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
847			m_freem(sd->sd_mbuf);
848			sd->sd_mbuf = NULL;
849		}
850	}
851	sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
852
853	if (disable)
854		cas_rxdrain(sc);
855}
856
857
858/*
859 * Reset the receiver
860 */
861int
862cas_reset_rx(struct cas_softc *sc)
863{
864	bus_space_tag_t t = sc->sc_memt;
865	bus_space_handle_t h = sc->sc_memh;
866
867	/*
868	 * Resetting while DMA is in progress can cause a bus hang, so we
869	 * disable DMA first.
870	 */
871	cas_disable_rx(sc);
872	bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
873	/* Wait till it finishes */
874	if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
875		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
876	/* Wait 5ms extra. */
877	delay(5000);
878
879	/* Finally, reset the ERX */
880	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
881	/* Wait till it finishes */
882	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
883		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
884		return (1);
885	}
886	return (0);
887}
888
889
890/*
891 * Reset the transmitter
892 */
893int
894cas_reset_tx(struct cas_softc *sc)
895{
896	bus_space_tag_t t = sc->sc_memt;
897	bus_space_handle_t h = sc->sc_memh;
898
899	/*
900	 * Resetting while DMA is in progress can cause a bus hang, so we
901	 * disable DMA first.
902	 */
903	cas_disable_tx(sc);
904	bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
905	/* Wait till it finishes */
906	if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
907		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
908	/* Wait 5ms extra. */
909	delay(5000);
910
911	/* Finally, reset the ETX */
912	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
913	/* Wait till it finishes */
914	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
915		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
916		return (1);
917	}
918	return (0);
919}
920
921/*
922 * Disable receiver.
923 */
924int
925cas_disable_rx(struct cas_softc *sc)
926{
927	bus_space_tag_t t = sc->sc_memt;
928	bus_space_handle_t h = sc->sc_memh;
929	u_int32_t cfg;
930
931	/* Flip the enable bit */
932	cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
933	cfg &= ~CAS_MAC_RX_ENABLE;
934	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
935
936	/* Wait for it to finish */
937	return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
938}
939
940/*
941 * Disable transmitter.
942 */
943int
944cas_disable_tx(struct cas_softc *sc)
945{
946	bus_space_tag_t t = sc->sc_memt;
947	bus_space_handle_t h = sc->sc_memh;
948	u_int32_t cfg;
949
950	/* Flip the enable bit */
951	cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
952	cfg &= ~CAS_MAC_TX_ENABLE;
953	bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
954
955	/* Wait for it to finish */
956	return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
957}
958
959/*
960 * Initialize interface.
961 */
962int
963cas_meminit(struct cas_softc *sc)
964{
965	struct cas_rxsoft *rxs;
966	int i, error;
967
968	rxs = (void *)&error;
969
970	/*
971	 * Initialize the transmit descriptor ring.
972	 */
973	for (i = 0; i < CAS_NTXDESC; i++) {
974		sc->sc_txdescs[i].cd_flags = 0;
975		sc->sc_txdescs[i].cd_addr = 0;
976	}
977	CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
978	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
979
980	/*
981	 * Initialize the receive descriptor and receive job
982	 * descriptor rings.
983	 */
984	for (i = 0; i < CAS_NRXDESC; i++)
985		CAS_INIT_RXDESC(sc, i, i);
986	sc->sc_rxdptr = 0;
987	sc->sc_rxptr = 0;
988
989	/*
990	 * Initialize the receive completion ring.
991	 */
992	for (i = 0; i < CAS_NRXCOMP; i++) {
993		sc->sc_rxcomps[i].cc_word[0] = 0;
994		sc->sc_rxcomps[i].cc_word[1] = 0;
995		sc->sc_rxcomps[i].cc_word[2] = 0;
996		sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
997		CAS_CDRXCSYNC(sc, i,
998		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
999	}
1000
1001	return (0);
1002}
1003
1004int
1005cas_ringsize(int sz)
1006{
1007	switch (sz) {
1008	case 32:
1009		return CAS_RING_SZ_32;
1010	case 64:
1011		return CAS_RING_SZ_64;
1012	case 128:
1013		return CAS_RING_SZ_128;
1014	case 256:
1015		return CAS_RING_SZ_256;
1016	case 512:
1017		return CAS_RING_SZ_512;
1018	case 1024:
1019		return CAS_RING_SZ_1024;
1020	case 2048:
1021		return CAS_RING_SZ_2048;
1022	case 4096:
1023		return CAS_RING_SZ_4096;
1024	case 8192:
1025		return CAS_RING_SZ_8192;
1026	default:
1027		aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1028		    sz);
1029		return CAS_RING_SZ_32;
1030	}
1031}
1032
1033int
1034cas_cringsize(int sz)
1035{
1036	int i;
1037
1038	for (i = 0; i < 9; i++)
1039		if (sz == (128 << i))
1040			return i;
1041
1042	aprint_error("cas: invalid completion ring size %d\n", sz);
1043	return 128;
1044}
1045
1046/*
1047 * Initialization of interface; set up initialization block
1048 * and transmit/receive descriptor rings.
1049 */
1050int
1051cas_init(struct ifnet *ifp)
1052{
1053	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1054	bus_space_tag_t t = sc->sc_memt;
1055	bus_space_handle_t h = sc->sc_memh;
1056	int s;
1057	u_int max_frame_size;
1058	u_int32_t v;
1059
1060	s = splnet();
1061
1062	DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1063	/*
1064	 * Initialization sequence. The numbered steps below correspond
1065	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1066	 * Channel Engine manual (part of the PCIO manual).
1067	 * See also the STP2002-STQ document from Sun Microsystems.
1068	 */
1069
1070	/* step 1 & 2. Reset the Ethernet Channel */
1071	cas_stop(ifp, 0);
1072	cas_reset(sc);
1073	DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1074
1075	/* Re-initialize the MIF */
1076	cas_mifinit(sc);
1077
1078	/* step 3. Setup data structures in host memory */
1079	cas_meminit(sc);
1080
1081	/* step 4. TX MAC registers & counters */
1082	cas_init_regs(sc);
1083	max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1084	v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1085	bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1086
1087	/* step 5. RX MAC registers & counters */
1088	cas_iff(sc);
1089
1090	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1091	KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1092	bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1093	    (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1094	bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1095
1096	KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1097	bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1098	    (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1099	bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1100
1101	KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1102	bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1103	    (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1104	bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1105
1106	if (CAS_PLUS(sc)) {
1107		KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1108		bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1109		    (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1110		bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1111		    CAS_CDRXADDR2(sc, 0));
1112	}
1113
1114	/* step 8. Global Configuration & Interrupt Mask */
1115	cas_estintr(sc, CAS_INTR_REG);
1116
1117	/* step 9. ETX Configuration: use mostly default values */
1118
1119	/* Enable DMA */
1120	v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1121	bus_space_write_4(t, h, CAS_TX_CONFIG,
1122	    v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1123	bus_space_write_4(t, h, CAS_TX_KICK, 0);
1124
1125	/* step 10. ERX Configuration */
1126
1127	/* Encode Receive Descriptor ring size */
1128	v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1129	if (CAS_PLUS(sc))
1130		v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1131
1132	/* Encode Receive Completion ring size */
1133	v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1134
1135	/* Enable DMA */
1136	bus_space_write_4(t, h, CAS_RX_CONFIG,
1137	    v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1138
1139	/*
1140	 * The following value is for an OFF Threshold of about 3/4 full
1141	 * and an ON Threshold of 1/4 full.
1142	 */
1143	bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1144	    (3 * sc->sc_rxfifosize / 256) |
1145	    ((sc->sc_rxfifosize / 256) << 12));
1146	bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1147
1148	/* step 11. Configure Media */
1149	mii_ifmedia_change(&sc->sc_mii);
1150
1151	/* step 12. RX_MAC Configuration Register */
1152	v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1153	v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1154	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1155
1156	/* step 14. Issue Transmit Pending command */
1157
1158	/* step 15.  Give the receiver a swift kick */
1159	bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1160	if (CAS_PLUS(sc))
1161		bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1162
1163	/* Start the one second timer. */
1164	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1165
1166	ifp->if_flags |= IFF_RUNNING;
1167	ifp->if_flags &= ~IFF_OACTIVE;
1168	ifp->if_timer = 0;
1169	splx(s);
1170
1171	return (0);
1172}
1173
1174void
1175cas_init_regs(struct cas_softc *sc)
1176{
1177	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1178	bus_space_tag_t t = sc->sc_memt;
1179	bus_space_handle_t h = sc->sc_memh;
1180	const u_char *laddr = CLLADDR(ifp->if_sadl);
1181	u_int32_t v, r;
1182
1183	/* These regs are not cleared on reset */
1184	sc->sc_inited = 0;
1185	if (!sc->sc_inited) {
1186		/* Load recommended values  */
1187		bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1188		bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1189		bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1190
1191		bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1192		/* Max frame and max burst size */
1193		v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1194		bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1195
1196		bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1197		bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1198		bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1199		bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1200		bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1201		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1202
1203		/* Secondary MAC addresses set to 0:0:0:0:0:0 */
1204		for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1205			bus_space_write_4(t, h, r, 0);
1206
1207		/* MAC control addr set to 0:1:c2:0:1:80 */
1208		bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1209		bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1210		bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1211
1212		/* MAC filter addr set to 0:0:0:0:0:0 */
1213		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1214		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1215		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1216
1217		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1218		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1219
1220		/* Hash table initialized to 0 */
1221		for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1222			bus_space_write_4(t, h, r, 0);
1223
1224		sc->sc_inited = 1;
1225	}
1226
1227	/* Counters need to be zeroed */
1228	bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1229	bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1230	bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1231	bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1232	bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1233	bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1234	bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1235	bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1236	bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1237	bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1238	bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1239
1240	/* Un-pause stuff */
1241	bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1242
1243	/*
1244	 * Set the station address.
1245	 */
1246	bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1247	bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1248	bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1249}
1250
1251/*
1252 * Receive interrupt.
1253 */
1254int
1255cas_rint(struct cas_softc *sc)
1256{
1257	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1258	bus_space_tag_t t = sc->sc_memt;
1259	bus_space_handle_t h = sc->sc_memh;
1260	struct cas_rxsoft *rxs;
1261	struct mbuf *m;
1262	u_int64_t word[4];
1263	int len, off, idx;
1264	int i, skip;
1265	void *cp;
1266
1267	for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1268		CAS_CDRXCSYNC(sc, i,
1269		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1270
1271		word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1272		word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1273		word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1274		word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1275
1276		/* Stop if the hardware still owns the descriptor. */
1277		if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1278			break;
1279
1280		len = CAS_RC1_HDR_LEN(word[1]);
1281		if (len > 0) {
1282			off = CAS_RC1_HDR_OFF(word[1]);
1283			idx = CAS_RC1_HDR_IDX(word[1]);
1284			rxs = &sc->sc_rxsoft[idx];
1285
1286			DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1287			    idx, off, len));
1288
1289			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1290			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1291
1292			cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1293			m = m_devget(cp, len, 0, ifp, NULL);
1294
1295			if (word[0] & CAS_RC0_RELEASE_HDR)
1296				cas_add_rxbuf(sc, idx);
1297
1298			if (m != NULL) {
1299
1300				/*
1301				 * Pass this up to any BPF listeners, but only
1302				 * pass it up the stack if its for us.
1303				 */
1304				bpf_mtap(ifp, m);
1305
1306				ifp->if_ipackets++;
1307				m->m_pkthdr.csum_flags = 0;
1308				(*ifp->if_input)(ifp, m);
1309			} else
1310				ifp->if_ierrors++;
1311		}
1312
1313		len = CAS_RC0_DATA_LEN(word[0]);
1314		if (len > 0) {
1315			off = CAS_RC0_DATA_OFF(word[0]);
1316			idx = CAS_RC0_DATA_IDX(word[0]);
1317			rxs = &sc->sc_rxsoft[idx];
1318
1319			DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1320			    idx, off, len));
1321
1322			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1323			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1324
1325			/* XXX We should not be copying the packet here. */
1326			cp = rxs->rxs_kva + off + ETHER_ALIGN;
1327			m = m_devget(cp, len, 0, ifp, NULL);
1328
1329			if (word[0] & CAS_RC0_RELEASE_DATA)
1330				cas_add_rxbuf(sc, idx);
1331
1332			if (m != NULL) {
1333				/*
1334				 * Pass this up to any BPF listeners, but only
1335				 * pass it up the stack if its for us.
1336				 */
1337				bpf_mtap(ifp, m);
1338
1339				ifp->if_ipackets++;
1340				m->m_pkthdr.csum_flags = 0;
1341				(*ifp->if_input)(ifp, m);
1342			} else
1343				ifp->if_ierrors++;
1344		}
1345
1346		if (word[0] & CAS_RC0_SPLIT)
1347			aprint_error_dev(sc->sc_dev, "split packet\n");
1348
1349		skip = CAS_RC0_SKIP(word[0]);
1350	}
1351
1352	while (sc->sc_rxptr != i) {
1353		sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1354		sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1355		sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1356		sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1357		    CAS_DMA_WRITE(CAS_RC3_OWN);
1358		CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1359		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1360
1361		sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1362	}
1363
1364	bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1365
1366	DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1367		sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1368
1369	return (1);
1370}
1371
1372/*
1373 * cas_add_rxbuf:
1374 *
1375 *	Add a receive buffer to the indicated descriptor.
1376 */
1377int
1378cas_add_rxbuf(struct cas_softc *sc, int idx)
1379{
1380	bus_space_tag_t t = sc->sc_memt;
1381	bus_space_handle_t h = sc->sc_memh;
1382
1383	CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1384
1385	if ((sc->sc_rxdptr % 4) == 0)
1386		bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1387
1388	if (++sc->sc_rxdptr == CAS_NRXDESC)
1389		sc->sc_rxdptr = 0;
1390
1391	return (0);
1392}
1393
1394int
1395cas_eint(struct cas_softc *sc, u_int status)
1396{
1397	char bits[128];
1398	if ((status & CAS_INTR_MIF) != 0) {
1399		DPRINTF(sc, ("%s: link status changed\n",
1400		    device_xname(sc->sc_dev)));
1401		return (1);
1402	}
1403
1404	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1405	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1406	return (1);
1407}
1408
1409int
1410cas_pint(struct cas_softc *sc)
1411{
1412	bus_space_tag_t t = sc->sc_memt;
1413	bus_space_handle_t seb = sc->sc_memh;
1414	u_int32_t status;
1415
1416	status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1417	status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1418#ifdef CAS_DEBUG
1419	if (status)
1420		printf("%s: link status changed\n", device_xname(sc->sc_dev));
1421#endif
1422	return (1);
1423}
1424
1425int
1426cas_intr(void *v)
1427{
1428	struct cas_softc *sc = (struct cas_softc *)v;
1429	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1430	bus_space_tag_t t = sc->sc_memt;
1431	bus_space_handle_t seb = sc->sc_memh;
1432	u_int32_t status;
1433	int r = 0;
1434#ifdef CAS_DEBUG
1435	char bits[128];
1436#endif
1437
1438	sc->sc_ev_intr.ev_count++;
1439
1440	status = bus_space_read_4(t, seb, CAS_STATUS);
1441#ifdef CAS_DEBUG
1442	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1443#endif
1444	DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1445		device_xname(sc->sc_dev), (status>>19), bits));
1446
1447	if ((status & CAS_INTR_PCS) != 0)
1448		r |= cas_pint(sc);
1449
1450	if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1451	    CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1452		r |= cas_eint(sc, status);
1453
1454	if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1455		r |= cas_tint(sc, status);
1456
1457	if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1458		r |= cas_rint(sc);
1459
1460	/* We should eventually do more than just print out error stats. */
1461	if (status & CAS_INTR_TX_MAC) {
1462		int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1463#ifdef CAS_DEBUG
1464		if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1465			printf("%s: MAC tx fault, status %x\n",
1466			    device_xname(sc->sc_dev), txstat);
1467#endif
1468		if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1469			cas_init(ifp);
1470	}
1471	if (status & CAS_INTR_RX_MAC) {
1472		int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1473#ifdef CAS_DEBUG
1474		if (rxstat & ~CAS_MAC_RX_DONE)
1475			printf("%s: MAC rx fault, status %x\n",
1476			    device_xname(sc->sc_dev), rxstat);
1477#endif
1478		/*
1479		 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1480		 * due to a silicon bug so handle them silently.
1481		 */
1482		if (rxstat & CAS_MAC_RX_OVERFLOW) {
1483			ifp->if_ierrors++;
1484			cas_init(ifp);
1485		}
1486#ifdef CAS_DEBUG
1487		else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1488			printf("%s: MAC rx fault, status %x\n",
1489			    device_xname(sc->sc_dev), rxstat);
1490#endif
1491	}
1492	rnd_add_uint32(&sc->rnd_source, status);
1493	return (r);
1494}
1495
1496
1497void
1498cas_watchdog(struct ifnet *ifp)
1499{
1500	struct cas_softc *sc = ifp->if_softc;
1501
1502	DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1503		"CAS_MAC_RX_CONFIG %x\n",
1504		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1505		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1506		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1507
1508	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1509	++ifp->if_oerrors;
1510
1511	/* Try to get more packets going. */
1512	cas_init(ifp);
1513}
1514
1515/*
1516 * Initialize the MII Management Interface
1517 */
1518void
1519cas_mifinit(struct cas_softc *sc)
1520{
1521	bus_space_tag_t t = sc->sc_memt;
1522	bus_space_handle_t mif = sc->sc_memh;
1523
1524	/* Configure the MIF in frame mode */
1525	sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1526	sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1527	bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1528}
1529
1530/*
1531 * MII interface
1532 *
1533 * The Cassini MII interface supports at least three different operating modes:
1534 *
1535 * Bitbang mode is implemented using data, clock and output enable registers.
1536 *
1537 * Frame mode is implemented by loading a complete frame into the frame
1538 * register and polling the valid bit for completion.
1539 *
1540 * Polling mode uses the frame register but completion is indicated by
1541 * an interrupt.
1542 *
1543 */
1544int
1545cas_mii_readreg(device_t self, int phy, int reg)
1546{
1547	struct cas_softc *sc = device_private(self);
1548	bus_space_tag_t t = sc->sc_memt;
1549	bus_space_handle_t mif = sc->sc_memh;
1550	int n;
1551	u_int32_t v;
1552
1553#ifdef CAS_DEBUG
1554	if (sc->sc_debug)
1555		printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1556#endif
1557
1558	/* Construct the frame command */
1559	v = (reg << CAS_MIF_REG_SHIFT)	| (phy << CAS_MIF_PHY_SHIFT) |
1560		CAS_MIF_FRAME_READ;
1561
1562	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1563	for (n = 0; n < 100; n++) {
1564		DELAY(1);
1565		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1566		if (v & CAS_MIF_FRAME_TA0)
1567			return (v & CAS_MIF_FRAME_DATA);
1568	}
1569
1570	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1571	return (0);
1572}
1573
1574void
1575cas_mii_writereg(device_t self, int phy, int reg, int val)
1576{
1577	struct cas_softc *sc = device_private(self);
1578	bus_space_tag_t t = sc->sc_memt;
1579	bus_space_handle_t mif = sc->sc_memh;
1580	int n;
1581	u_int32_t v;
1582
1583#ifdef CAS_DEBUG
1584	if (sc->sc_debug)
1585		printf("cas_mii_writereg: phy %d reg %d val %x\n",
1586			phy, reg, val);
1587#endif
1588
1589	/* Construct the frame command */
1590	v = CAS_MIF_FRAME_WRITE			|
1591	    (phy << CAS_MIF_PHY_SHIFT)		|
1592	    (reg << CAS_MIF_REG_SHIFT)		|
1593	    (val & CAS_MIF_FRAME_DATA);
1594
1595	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1596	for (n = 0; n < 100; n++) {
1597		DELAY(1);
1598		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1599		if (v & CAS_MIF_FRAME_TA0)
1600			return;
1601	}
1602
1603	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1604}
1605
1606void
1607cas_mii_statchg(device_t self)
1608{
1609	struct cas_softc *sc = device_private(self);
1610#ifdef CAS_DEBUG
1611	int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1612#endif
1613	bus_space_tag_t t = sc->sc_memt;
1614	bus_space_handle_t mac = sc->sc_memh;
1615	u_int32_t v;
1616
1617#ifdef CAS_DEBUG
1618	if (sc->sc_debug)
1619		printf("cas_mii_statchg: status change: phy = %d\n",
1620		    sc->sc_phys[instance]);
1621#endif
1622
1623	/* Set tx full duplex options */
1624	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1625	delay(10000); /* reg must be cleared and delay before changing. */
1626	v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1627		CAS_MAC_TX_ENABLE;
1628	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1629		v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1630	}
1631	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1632
1633	/* XIF Configuration */
1634	v = CAS_MAC_XIF_TX_MII_ENA;
1635	v |= CAS_MAC_XIF_LINK_LED;
1636
1637	/* MII needs echo disable if half duplex. */
1638	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1639		/* turn on full duplex LED */
1640		v |= CAS_MAC_XIF_FDPLX_LED;
1641	else
1642		/* half duplex -- disable echo */
1643		v |= CAS_MAC_XIF_ECHO_DISABL;
1644
1645	switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1646	case IFM_1000_T:  /* Gigabit using GMII interface */
1647	case IFM_1000_SX:
1648		v |= CAS_MAC_XIF_GMII_MODE;
1649		break;
1650	default:
1651		v &= ~CAS_MAC_XIF_GMII_MODE;
1652	}
1653	bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1654}
1655
1656int
1657cas_pcs_readreg(device_t self, int phy, int reg)
1658{
1659	struct cas_softc *sc = device_private(self);
1660	bus_space_tag_t t = sc->sc_memt;
1661	bus_space_handle_t pcs = sc->sc_memh;
1662
1663#ifdef CAS_DEBUG
1664	if (sc->sc_debug)
1665		printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1666#endif
1667
1668	if (phy != CAS_PHYAD_EXTERNAL)
1669		return (0);
1670
1671	switch (reg) {
1672	case MII_BMCR:
1673		reg = CAS_MII_CONTROL;
1674		break;
1675	case MII_BMSR:
1676		reg = CAS_MII_STATUS;
1677		break;
1678	case MII_ANAR:
1679		reg = CAS_MII_ANAR;
1680		break;
1681	case MII_ANLPAR:
1682		reg = CAS_MII_ANLPAR;
1683		break;
1684	case MII_EXTSR:
1685		return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1686	default:
1687		return (0);
1688	}
1689
1690	return bus_space_read_4(t, pcs, reg);
1691}
1692
1693void
1694cas_pcs_writereg(device_t self, int phy, int reg, int val)
1695{
1696	struct cas_softc *sc = device_private(self);
1697	bus_space_tag_t t = sc->sc_memt;
1698	bus_space_handle_t pcs = sc->sc_memh;
1699	int reset = 0;
1700
1701#ifdef CAS_DEBUG
1702	if (sc->sc_debug)
1703		printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1704			phy, reg, val);
1705#endif
1706
1707	if (phy != CAS_PHYAD_EXTERNAL)
1708		return;
1709
1710	if (reg == MII_ANAR)
1711		bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1712
1713	switch (reg) {
1714	case MII_BMCR:
1715		reset = (val & CAS_MII_CONTROL_RESET);
1716		reg = CAS_MII_CONTROL;
1717		break;
1718	case MII_BMSR:
1719		reg = CAS_MII_STATUS;
1720		break;
1721	case MII_ANAR:
1722		reg = CAS_MII_ANAR;
1723		break;
1724	case MII_ANLPAR:
1725		reg = CAS_MII_ANLPAR;
1726		break;
1727	default:
1728		return;
1729	}
1730
1731	bus_space_write_4(t, pcs, reg, val);
1732
1733	if (reset)
1734		cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1735
1736	if (reg == CAS_MII_ANAR || reset)
1737		bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1738		    CAS_MII_CONFIG_ENABLE);
1739}
1740
1741int
1742cas_mediachange(struct ifnet *ifp)
1743{
1744	struct cas_softc *sc = ifp->if_softc;
1745	struct mii_data *mii = &sc->sc_mii;
1746
1747	if (mii->mii_instance) {
1748		struct mii_softc *miisc;
1749		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1750			mii_phy_reset(miisc);
1751	}
1752
1753	return (mii_mediachg(&sc->sc_mii));
1754}
1755
1756void
1757cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1758{
1759	struct cas_softc *sc = ifp->if_softc;
1760
1761	mii_pollstat(&sc->sc_mii);
1762	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1763	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1764}
1765
1766/*
1767 * Process an ioctl request.
1768 */
1769int
1770cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1771{
1772	struct cas_softc *sc = ifp->if_softc;
1773	int s, error = 0;
1774
1775	s = splnet();
1776
1777	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1778		error = 0;
1779		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1780			;
1781		else if (ifp->if_flags & IFF_RUNNING) {
1782			/*
1783			 * Multicast list has changed; set the hardware filter
1784			 * accordingly.
1785			 */
1786			cas_iff(sc);
1787		}
1788	}
1789
1790	splx(s);
1791	return (error);
1792}
1793
1794static bool
1795cas_suspend(device_t self, const pmf_qual_t *qual)
1796{
1797	struct cas_softc *sc = device_private(self);
1798	bus_space_tag_t t = sc->sc_memt;
1799	bus_space_handle_t h = sc->sc_memh;
1800
1801	bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1802	if (sc->sc_ih != NULL) {
1803		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1804		sc->sc_ih = NULL;
1805	}
1806
1807	return true;
1808}
1809
1810static bool
1811cas_resume(device_t self, const pmf_qual_t *qual)
1812{
1813	struct cas_softc *sc = device_private(self);
1814
1815	return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1816}
1817
1818static bool
1819cas_estintr(struct cas_softc *sc, int what)
1820{
1821	bus_space_tag_t t = sc->sc_memt;
1822	bus_space_handle_t h = sc->sc_memh;
1823	const char *intrstr = NULL;
1824
1825	/* PCI interrupts */
1826	if (what & CAS_INTR_PCI) {
1827		intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle);
1828		sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1829		    IPL_NET, cas_intr, sc);
1830		if (sc->sc_ih == NULL) {
1831			aprint_error_dev(sc->sc_dev,
1832			    "unable to establish interrupt");
1833			if (intrstr != NULL)
1834				aprint_error(" at %s", intrstr);
1835			aprint_error("\n");
1836			return false;
1837		}
1838
1839		aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1840	}
1841
1842	/* Interrupt register */
1843	if (what & CAS_INTR_REG) {
1844		bus_space_write_4(t, h, CAS_INTMASK,
1845		    ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1846		    CAS_INTR_TX_TAG_ERR|
1847		    CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1848		    CAS_INTR_RX_TAG_ERR|
1849		    CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1850		    CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1851		    CAS_INTR_BERR));
1852		bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1853		    CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1854		bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1855		bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1856	}
1857	return true;
1858}
1859
1860bool
1861cas_shutdown(device_t self, int howto)
1862{
1863	struct cas_softc *sc = device_private(self);
1864	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1865
1866	cas_stop(ifp, 1);
1867
1868	return true;
1869}
1870
1871void
1872cas_iff(struct cas_softc *sc)
1873{
1874	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1875	struct ethercom *ec = &sc->sc_ethercom;
1876	struct ether_multi *enm;
1877	struct ether_multistep step;
1878	bus_space_tag_t t = sc->sc_memt;
1879	bus_space_handle_t h = sc->sc_memh;
1880	u_int32_t crc, hash[16], rxcfg;
1881	int i;
1882
1883	rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1884	rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1885	    CAS_MAC_RX_PROMISC_GRP);
1886	ifp->if_flags &= ~IFF_ALLMULTI;
1887
1888	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1889		ifp->if_flags |= IFF_ALLMULTI;
1890		if (ifp->if_flags & IFF_PROMISC)
1891			rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1892		else
1893			rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1894        } else {
1895		/*
1896		 * Set up multicast address filter by passing all multicast
1897		 * addresses through a crc generator, and then using the
1898		 * high order 8 bits as an index into the 256 bit logical
1899		 * address filter.  The high order 4 bits selects the word,
1900		 * while the other 4 bits select the bit within the word
1901		 * (where bit 0 is the MSB).
1902		 */
1903
1904		rxcfg |= CAS_MAC_RX_HASH_FILTER;
1905
1906		/* Clear hash table */
1907		for (i = 0; i < 16; i++)
1908			hash[i] = 0;
1909
1910		ETHER_FIRST_MULTI(step, ec, enm);
1911		while (enm != NULL) {
1912                        crc = ether_crc32_le(enm->enm_addrlo,
1913                            ETHER_ADDR_LEN);
1914
1915                        /* Just want the 8 most significant bits. */
1916                        crc >>= 24;
1917
1918                        /* Set the corresponding bit in the filter. */
1919                        hash[crc >> 4] |= 1 << (15 - (crc & 15));
1920
1921			ETHER_NEXT_MULTI(step, enm);
1922		}
1923
1924		/* Now load the hash table into the chip (if we are using it) */
1925		for (i = 0; i < 16; i++) {
1926			bus_space_write_4(t, h,
1927			    CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1928			    hash[i]);
1929		}
1930	}
1931
1932	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1933}
1934
1935int
1936cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1937{
1938	u_int64_t flags;
1939	u_int32_t cur, frag, i;
1940	bus_dmamap_t map;
1941
1942	cur = frag = *bixp;
1943	map = sc->sc_txd[cur].sd_map;
1944
1945	if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1946	    BUS_DMA_NOWAIT) != 0) {
1947		return (ENOBUFS);
1948	}
1949
1950	if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1951		bus_dmamap_unload(sc->sc_dmatag, map);
1952		return (ENOBUFS);
1953	}
1954
1955	bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1956	    BUS_DMASYNC_PREWRITE);
1957
1958	for (i = 0; i < map->dm_nsegs; i++) {
1959		sc->sc_txdescs[frag].cd_addr =
1960		    CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1961		flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1962		    (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1963		    ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1964		sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1965		bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1966		    CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1967		    BUS_DMASYNC_PREWRITE);
1968		cur = frag;
1969		if (++frag == CAS_NTXDESC)
1970			frag = 0;
1971	}
1972
1973	sc->sc_tx_cnt += map->dm_nsegs;
1974	sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1975	sc->sc_txd[cur].sd_map = map;
1976	sc->sc_txd[cur].sd_mbuf = mhead;
1977
1978	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1979
1980	*bixp = frag;
1981
1982	/* sync descriptors */
1983
1984	return (0);
1985}
1986
1987/*
1988 * Transmit interrupt.
1989 */
1990int
1991cas_tint(struct cas_softc *sc, u_int32_t status)
1992{
1993	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1994	struct cas_sxd *sd;
1995	u_int32_t cons, comp;
1996
1997	comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
1998	cons = sc->sc_tx_cons;
1999	while (cons != comp) {
2000		sd = &sc->sc_txd[cons];
2001		if (sd->sd_mbuf != NULL) {
2002			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2003			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2004			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2005			m_freem(sd->sd_mbuf);
2006			sd->sd_mbuf = NULL;
2007			ifp->if_opackets++;
2008		}
2009		sc->sc_tx_cnt--;
2010		if (++cons == CAS_NTXDESC)
2011			cons = 0;
2012	}
2013	sc->sc_tx_cons = cons;
2014
2015	if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2016		ifp->if_flags &= ~IFF_OACTIVE;
2017	if (sc->sc_tx_cnt == 0)
2018		ifp->if_timer = 0;
2019
2020	cas_start(ifp);
2021
2022	return (1);
2023}
2024
2025void
2026cas_start(struct ifnet *ifp)
2027{
2028	struct cas_softc *sc = ifp->if_softc;
2029	struct mbuf *m;
2030	u_int32_t bix;
2031
2032	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2033		return;
2034
2035	bix = sc->sc_tx_prod;
2036	while (sc->sc_txd[bix].sd_mbuf == NULL) {
2037		IFQ_POLL(&ifp->if_snd, m);
2038		if (m == NULL)
2039			break;
2040
2041		/*
2042		 * If BPF is listening on this interface, let it see the
2043		 * packet before we commit it to the wire.
2044		 */
2045		bpf_mtap(ifp, m);
2046
2047		/*
2048		 * Encapsulate this packet and start it going...
2049		 * or fail...
2050		 */
2051		if (cas_encap(sc, m, &bix)) {
2052			ifp->if_flags |= IFF_OACTIVE;
2053			break;
2054		}
2055
2056		IFQ_DEQUEUE(&ifp->if_snd, m);
2057		ifp->if_timer = 5;
2058	}
2059
2060	sc->sc_tx_prod = bix;
2061}
2062
2063MODULE(MODULE_CLASS_DRIVER, if_cas, "pci");
2064
2065#ifdef _MODULE
2066#include "ioconf.c"
2067#endif
2068
2069static int
2070if_cas_modcmd(modcmd_t cmd, void *opaque)
2071{
2072	int error = 0;
2073
2074	switch (cmd) {
2075	case MODULE_CMD_INIT:
2076#ifdef _MODULE
2077		error = config_init_component(cfdriver_ioconf_cas,
2078		    cfattach_ioconf_cas, cfdata_ioconf_cas);
2079#endif
2080		return error;
2081	case MODULE_CMD_FINI:
2082#ifdef _MODULE
2083		error = config_fini_component(cfdriver_ioconf_cas,
2084		    cfattach_ioconf_cas, cfdata_ioconf_cas);
2085#endif
2086		return error;
2087	default:
2088		return ENOTTY;
2089	}
2090}
2091