if_cas.c revision 1.10
1/*	$NetBSD: if_cas.c,v 1.10 2010/07/14 04:50:28 jnemeth Exp $	*/
2/*	$OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $	*/
3
4/*
5 *
6 * Copyright (C) 2007 Mark Kettenis.
7 * Copyright (C) 2001 Eduardo Horvath.
8 * All rights reserved.
9 *
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34/*
35 * Driver for Sun Cassini ethernet controllers.
36 *
37 * There are basically two variants of this chip: Cassini and
38 * Cassini+.  We can distinguish between the two by revision: 0x10 and
39 * up are Cassini+.  The most important difference is that Cassini+
40 * has a second RX descriptor ring.  Cassini+ will not work without
41 * configuring that second ring.  However, since we don't use it we
42 * don't actually fill the descriptors, and only hand off the first
43 * four to the chip.
44 */
45
46#include <sys/cdefs.h>
47__KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.10 2010/07/14 04:50:28 jnemeth Exp $");
48
49#include "opt_inet.h"
50
51#include <sys/param.h>
52#include <sys/systm.h>
53#include <sys/callout.h>
54#include <sys/mbuf.h>
55#include <sys/syslog.h>
56#include <sys/malloc.h>
57#include <sys/kernel.h>
58#include <sys/socket.h>
59#include <sys/ioctl.h>
60#include <sys/errno.h>
61#include <sys/device.h>
62
63#include <machine/endian.h>
64
65#include <uvm/uvm_extern.h>
66
67#include <net/if.h>
68#include <net/if_dl.h>
69#include <net/if_media.h>
70#include <net/if_ether.h>
71
72#ifdef INET
73#include <netinet/in.h>
74#include <netinet/in_systm.h>
75#include <netinet/in_var.h>
76#include <netinet/ip.h>
77#include <netinet/tcp.h>
78#include <netinet/udp.h>
79#endif
80
81#include <net/bpf.h>
82
83#include <sys/bus.h>
84#include <sys/intr.h>
85
86#include <dev/mii/mii.h>
87#include <dev/mii/miivar.h>
88#include <dev/mii/mii_bitbang.h>
89
90#include <dev/pci/pcivar.h>
91#include <dev/pci/pcireg.h>
92#include <dev/pci/pcidevs.h>
93#include <prop/proplib.h>
94
95#include <dev/pci/if_casreg.h>
96#include <dev/pci/if_casvar.h>
97
98#define TRIES	10000
99
100static bool	cas_estintr(struct cas_softc *sc, int);
101bool		cas_shutdown(device_t, int);
102static bool	cas_suspend(device_t, const pmf_qual_t *);
103static bool	cas_resume(device_t, const pmf_qual_t *);
104static int	cas_detach(device_t, int);
105static void	cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
106
107int		cas_match(device_t, cfdata_t, void *);
108void		cas_attach(device_t, device_t, void *);
109
110
111CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
112    cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
113    DVF_DETACH_SHUTDOWN);
114
115int	cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
116
117void		cas_config(struct cas_softc *, const uint8_t *);
118void		cas_start(struct ifnet *);
119void		cas_stop(struct ifnet *, int);
120int		cas_ioctl(struct ifnet *, u_long, void *);
121void		cas_tick(void *);
122void		cas_watchdog(struct ifnet *);
123int		cas_init(struct ifnet *);
124void		cas_init_regs(struct cas_softc *);
125int		cas_ringsize(int);
126int		cas_cringsize(int);
127int		cas_meminit(struct cas_softc *);
128void		cas_mifinit(struct cas_softc *);
129int		cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
130		    u_int32_t, u_int32_t);
131void		cas_reset(struct cas_softc *);
132int		cas_reset_rx(struct cas_softc *);
133int		cas_reset_tx(struct cas_softc *);
134int		cas_disable_rx(struct cas_softc *);
135int		cas_disable_tx(struct cas_softc *);
136void		cas_rxdrain(struct cas_softc *);
137int		cas_add_rxbuf(struct cas_softc *, int idx);
138void		cas_iff(struct cas_softc *);
139int		cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
140
141/* MII methods & callbacks */
142int		cas_mii_readreg(device_t, int, int);
143void		cas_mii_writereg(device_t, int, int, int);
144void		cas_mii_statchg(device_t);
145int		cas_pcs_readreg(device_t, int, int);
146void		cas_pcs_writereg(device_t, int, int, int);
147
148int		cas_mediachange(struct ifnet *);
149void		cas_mediastatus(struct ifnet *, struct ifmediareq *);
150
151int		cas_eint(struct cas_softc *, u_int);
152int		cas_rint(struct cas_softc *);
153int		cas_tint(struct cas_softc *, u_int32_t);
154int		cas_pint(struct cas_softc *);
155int		cas_intr(void *);
156
157#ifdef CAS_DEBUG
158#define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
159				printf x
160#else
161#define	DPRINTF(sc, x)	/* nothing */
162#endif
163
164int
165cas_match(device_t parent, cfdata_t cf, void *aux)
166{
167	struct pci_attach_args *pa = aux;
168
169	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
170	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
171		return 1;
172
173	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
174	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
175		return 1;
176
177	return 0;
178}
179
180#define	PROMHDR_PTR_DATA	0x18
181#define	PROMDATA_PTR_VPD	0x08
182#define	PROMDATA_DATA2		0x0a
183
184static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
185static const u_int8_t cas_promdat[] = {
186	'P', 'C', 'I', 'R',
187	PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
188	PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
189};
190
191static const u_int8_t cas_promdat2[] = {
192	0x18, 0x00,			/* structure length */
193	0x00,				/* structure revision */
194	0x00,				/* interface revision */
195	PCI_SUBCLASS_NETWORK_ETHERNET,	/* subclass code */
196	PCI_CLASS_NETWORK		/* class code */
197};
198
199int
200cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
201    uint8_t *enaddr)
202{
203	struct pci_vpd_largeres *res;
204	struct pci_vpd *vpd;
205	bus_space_handle_t romh;
206	bus_space_tag_t romt;
207	bus_size_t romsize = 0;
208	u_int8_t buf[32], *desc;
209	pcireg_t address;
210	int dataoff, vpdoff, len;
211	int rv = -1;
212
213	if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
214	    &romt, &romh, NULL, &romsize))
215		return (-1);
216
217	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
218	address |= PCI_MAPREG_ROM_ENABLE;
219	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
220
221	bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
222	if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
223		goto fail;
224
225	dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
226	if (dataoff < 0x1c)
227		goto fail;
228
229	bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
230	if (bcmp(buf, cas_promdat, sizeof(cas_promdat)) ||
231	    bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
232		goto fail;
233
234	vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
235	if (vpdoff < 0x1c)
236		goto fail;
237
238next:
239	bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
240	if (!PCI_VPDRES_ISLARGE(buf[0]))
241		goto fail;
242
243	res = (struct pci_vpd_largeres *)buf;
244	vpdoff += sizeof(*res);
245
246	len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
247	switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
248	case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
249		/* Skip identifier string. */
250		vpdoff += len;
251		goto next;
252
253	case PCI_VPDRES_TYPE_VPD:
254		while (len > 0) {
255			bus_space_read_region_1(romt, romh, vpdoff,
256			     buf, sizeof(buf));
257
258			vpd = (struct pci_vpd *)buf;
259			vpdoff += sizeof(*vpd) + vpd->vpd_len;
260			len -= sizeof(*vpd) + vpd->vpd_len;
261
262			/*
263			 * We're looking for an "Enhanced" VPD...
264			 */
265			if (vpd->vpd_key0 != 'Z')
266				continue;
267
268			desc = buf + sizeof(*vpd);
269
270			/*
271			 * ...which is an instance property...
272			 */
273			if (desc[0] != 'I')
274				continue;
275			desc += 3;
276
277			/*
278			 * ...that's a byte array with the proper
279			 * length for a MAC address...
280			 */
281			if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
282				continue;
283			desc += 2;
284
285			/*
286			 * ...named "local-mac-address".
287			 */
288			if (strcmp(desc, "local-mac-address") != 0)
289				continue;
290			desc += strlen("local-mac-address") + 1;
291
292			memcpy(enaddr, desc, ETHER_ADDR_LEN);
293			rv = 0;
294		}
295		break;
296
297	default:
298		goto fail;
299	}
300
301 fail:
302	if (romsize != 0)
303		bus_space_unmap(romt, romh, romsize);
304
305	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
306	address &= ~PCI_MAPREG_ROM_ENABLE;
307	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
308
309	return (rv);
310}
311
312void
313cas_attach(device_t parent, device_t self, void *aux)
314{
315	struct pci_attach_args *pa = aux;
316	struct cas_softc *sc = device_private(self);
317	char devinfo[256];
318	prop_data_t data;
319	uint8_t enaddr[ETHER_ADDR_LEN];
320
321	sc->sc_dev = self;
322	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
323	sc->sc_rev = PCI_REVISION(pa->pa_class);
324	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, sc->sc_rev);
325	sc->sc_dmatag = pa->pa_dmat;
326
327#define PCI_CAS_BASEADDR	0x10
328	if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
329	    &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
330		aprint_error_dev(sc->sc_dev,
331		    "unable to map device registers\n");
332		return;
333	}
334
335	if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
336	    "mac-address")) != NULL)
337		memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
338	else if (cas_pci_enaddr(sc, pa, enaddr) != 0) {
339		aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
340		memset(enaddr, 0, sizeof(enaddr));
341	}
342
343	sc->sc_burst = 16;	/* XXX */
344
345	sc->sc_att_stage = CAS_ATT_BACKEND_0;
346
347	if (pci_intr_map(pa, &sc->sc_handle) != 0) {
348		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
349		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
350		return;
351	}
352	sc->sc_pc = pa->pa_pc;
353	if (!cas_estintr(sc, CAS_INTR_PCI)) {
354		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
355		aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
356		return;
357	}
358
359	sc->sc_att_stage = CAS_ATT_BACKEND_1;
360
361	/*
362	 * call the main configure
363	 */
364	cas_config(sc, enaddr);
365
366	if (pmf_device_register1(sc->sc_dev,
367	    cas_suspend, cas_resume, cas_shutdown))
368		pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
369	else
370		aprint_error_dev(sc->sc_dev,
371		    "could not establish power handlers\n");
372
373	sc->sc_att_stage = CAS_ATT_FINISHED;
374		/*FALLTHROUGH*/
375}
376
377/*
378 * cas_config:
379 *
380 *	Attach a Cassini interface to the system.
381 */
382void
383cas_config(struct cas_softc *sc, const uint8_t *enaddr)
384{
385	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
386	struct mii_data *mii = &sc->sc_mii;
387	struct mii_softc *child;
388	int i, error;
389
390	/* Make sure the chip is stopped. */
391	ifp->if_softc = sc;
392	cas_reset(sc);
393
394	/*
395	 * Allocate the control data structures, and create and load the
396	 * DMA map for it.
397	 */
398	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
399	    sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
400	    1, &sc->sc_cdnseg, 0)) != 0) {
401		aprint_error_dev(sc->sc_dev,
402		    "unable to allocate control data, error = %d\n",
403		    error);
404		cas_partial_detach(sc, CAS_ATT_0);
405	}
406
407	/* XXX should map this in with correct endianness */
408	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
409	    sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
410	    BUS_DMA_COHERENT)) != 0) {
411		aprint_error_dev(sc->sc_dev,
412		    "unable to map control data, error = %d\n", error);
413		cas_partial_detach(sc, CAS_ATT_1);
414	}
415
416	if ((error = bus_dmamap_create(sc->sc_dmatag,
417	    sizeof(struct cas_control_data), 1,
418	    sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
419		aprint_error_dev(sc->sc_dev,
420		    "unable to create control data DMA map, error = %d\n", error);
421		cas_partial_detach(sc, CAS_ATT_2);
422	}
423
424	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
425	    sc->sc_control_data, sizeof(struct cas_control_data), NULL,
426	    0)) != 0) {
427		aprint_error_dev(sc->sc_dev,
428		    "unable to load control data DMA map, error = %d\n",
429		    error);
430		cas_partial_detach(sc, CAS_ATT_3);
431	}
432
433	memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
434
435	/*
436	 * Create the receive buffer DMA maps.
437	 */
438	for (i = 0; i < CAS_NRXDESC; i++) {
439		bus_dma_segment_t seg;
440		char *kva;
441		int rseg;
442
443		if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
444		    CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
445			aprint_error_dev(sc->sc_dev,
446			    "unable to alloc rx DMA mem %d, error = %d\n",
447			    i, error);
448			cas_partial_detach(sc, CAS_ATT_5);
449		}
450		sc->sc_rxsoft[i].rxs_dmaseg = seg;
451
452		if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
453		    CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
454			aprint_error_dev(sc->sc_dev,
455			    "unable to alloc rx DMA mem %d, error = %d\n",
456			    i, error);
457			cas_partial_detach(sc, CAS_ATT_5);
458		}
459		sc->sc_rxsoft[i].rxs_kva = kva;
460
461		if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
462		    CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
463			aprint_error_dev(sc->sc_dev,
464			    "unable to create rx DMA map %d, error = %d\n",
465			    i, error);
466			cas_partial_detach(sc, CAS_ATT_5);
467		}
468
469		if ((error = bus_dmamap_load(sc->sc_dmatag,
470		   sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
471		   BUS_DMA_NOWAIT)) != 0) {
472			aprint_error_dev(sc->sc_dev,
473			    "unable to load rx DMA map %d, error = %d\n",
474			    i, error);
475			cas_partial_detach(sc, CAS_ATT_5);
476		}
477	}
478
479	/*
480	 * Create the transmit buffer DMA maps.
481	 */
482	for (i = 0; i < CAS_NTXDESC; i++) {
483		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
484		    CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
485		    &sc->sc_txd[i].sd_map)) != 0) {
486			aprint_error_dev(sc->sc_dev,
487			    "unable to create tx DMA map %d, error = %d\n",
488			    i, error);
489			cas_partial_detach(sc, CAS_ATT_6);
490		}
491		sc->sc_txd[i].sd_mbuf = NULL;
492	}
493
494	/*
495	 * From this point forward, the attachment cannot fail.  A failure
496	 * before this point releases all resources that may have been
497	 * allocated.
498	 */
499
500	/* Announce ourselves. */
501	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
502	    ether_sprintf(enaddr));
503	aprint_naive(": Ethernet controller\n");
504
505	/* Get RX FIFO size */
506	sc->sc_rxfifosize = 16 * 1024;
507
508	/* Initialize ifnet structure. */
509	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
510	ifp->if_softc = sc;
511	ifp->if_flags =
512	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
513	ifp->if_start = cas_start;
514	ifp->if_ioctl = cas_ioctl;
515	ifp->if_watchdog = cas_watchdog;
516	ifp->if_stop = cas_stop;
517	ifp->if_init = cas_init;
518	IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
519	IFQ_SET_READY(&ifp->if_snd);
520
521	/* Initialize ifmedia structures and MII info */
522	mii->mii_ifp = ifp;
523	mii->mii_readreg = cas_mii_readreg;
524	mii->mii_writereg = cas_mii_writereg;
525	mii->mii_statchg = cas_mii_statchg;
526
527	ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
528	sc->sc_ethercom.ec_mii = mii;
529
530	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
531
532	cas_mifinit(sc);
533
534	if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
535		sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
536		bus_space_write_4(sc->sc_memt, sc->sc_memh,
537	            CAS_MIF_CONFIG, sc->sc_mif_config);
538	}
539
540	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
541	    MII_OFFSET_ANY, 0);
542
543	child = LIST_FIRST(&mii->mii_phys);
544	if (child == NULL &&
545	    sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
546		/*
547		 * Try the external PCS SERDES if we didn't find any
548		 * MII devices.
549		 */
550		bus_space_write_4(sc->sc_memt, sc->sc_memh,
551		    CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
552
553		bus_space_write_4(sc->sc_memt, sc->sc_memh,
554		     CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
555
556		mii->mii_readreg = cas_pcs_readreg;
557		mii->mii_writereg = cas_pcs_writereg;
558
559		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
560		    MII_OFFSET_ANY, MIIF_NOISOLATE);
561	}
562
563	child = LIST_FIRST(&mii->mii_phys);
564	if (child == NULL) {
565		/* No PHY attached */
566		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
567		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
568	} else {
569		/*
570		 * Walk along the list of attached MII devices and
571		 * establish an `MII instance' to `phy number'
572		 * mapping. We'll use this mapping in media change
573		 * requests to determine which phy to use to program
574		 * the MIF configuration register.
575		 */
576		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
577			/*
578			 * Note: we support just two PHYs: the built-in
579			 * internal device and an external on the MII
580			 * connector.
581			 */
582			if (child->mii_phy > 1 || child->mii_inst > 1) {
583				aprint_error_dev(sc->sc_dev,
584				    "cannot accommodate MII device %s"
585				    " at phy %d, instance %d\n",
586				    device_xname(child->mii_dev),
587				    child->mii_phy, child->mii_inst);
588				continue;
589			}
590
591			sc->sc_phys[child->mii_inst] = child->mii_phy;
592		}
593
594		/*
595		 * XXX - we can really do the following ONLY if the
596		 * phy indeed has the auto negotiation capability!!
597		 */
598		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
599	}
600
601	/* claim 802.1q capability */
602	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
603
604	/* Attach the interface. */
605	if_attach(ifp);
606	ether_ifattach(ifp, enaddr);
607
608#if NRND > 0
609	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
610			  RND_TYPE_NET, 0);
611#endif
612
613	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
614	    NULL, device_xname(sc->sc_dev), "interrupts");
615
616	callout_init(&sc->sc_tick_ch, 0);
617
618	return;
619}
620
621int
622cas_detach(device_t self, int flags)
623{
624	int i;
625	struct cas_softc *sc = device_private(self);
626	bus_space_tag_t t = sc->sc_memt;
627	bus_space_handle_t h = sc->sc_memh;
628	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
629
630	/*
631	 * Free any resources we've allocated during the failed attach
632	 * attempt.  Do this in reverse order and fall through.
633	 */
634	switch (sc->sc_att_stage) {
635	case CAS_ATT_FINISHED:
636		bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
637		pmf_device_deregister(self);
638		cas_stop(&sc->sc_ethercom.ec_if, 1);
639		evcnt_detach(&sc->sc_ev_intr);
640
641#if NRND > 0
642		rnd_detach_source(&sc->rnd_source);
643#endif
644
645		ether_ifdetach(ifp);
646		if_detach(ifp);
647		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
648
649		callout_destroy(&sc->sc_tick_ch);
650
651		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
652
653		/*FALLTHROUGH*/
654	case CAS_ATT_MII:
655	case CAS_ATT_7:
656	case CAS_ATT_6:
657		for (i = 0; i < CAS_NTXDESC; i++) {
658			if (sc->sc_txd[i].sd_map != NULL)
659				bus_dmamap_destroy(sc->sc_dmatag,
660				    sc->sc_txd[i].sd_map);
661		}
662		/*FALLTHROUGH*/
663	case CAS_ATT_5:
664		for (i = 0; i < CAS_NRXDESC; i++) {
665			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
666				bus_dmamap_unload(sc->sc_dmatag,
667				    sc->sc_rxsoft[i].rxs_dmamap);
668			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
669				bus_dmamap_destroy(sc->sc_dmatag,
670				    sc->sc_rxsoft[i].rxs_dmamap);
671			if (sc->sc_rxsoft[i].rxs_kva != NULL)
672				bus_dmamem_unmap(sc->sc_dmatag,
673				    sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
674			/* XXX   need to check that bus_dmamem_alloc suceeded
675			if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
676			*/
677				bus_dmamem_free(sc->sc_dmatag,
678				    &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
679		}
680		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
681		/*FALLTHROUGH*/
682	case CAS_ATT_4:
683	case CAS_ATT_3:
684		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
685		/*FALLTHROUGH*/
686	case CAS_ATT_2:
687		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
688		    sizeof(struct cas_control_data));
689		/*FALLTHROUGH*/
690	case CAS_ATT_1:
691		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
692		/*FALLTHROUGH*/
693	case CAS_ATT_0:
694		sc->sc_att_stage = CAS_ATT_0;
695		/*FALLTHROUGH*/
696	case CAS_ATT_BACKEND_2:
697	case CAS_ATT_BACKEND_1:
698		if (sc->sc_ih != NULL) {
699			pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
700			sc->sc_ih = NULL;
701		}
702		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
703		/*FALLTHROUGH*/
704	case CAS_ATT_BACKEND_0:
705		break;
706	}
707	return 0;
708}
709
710static void
711cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
712{
713	cfattach_t ca = device_cfattach(sc->sc_dev);
714
715	sc->sc_att_stage = stage;
716	(*ca->ca_detach)(sc->sc_dev, 0);
717}
718
719void
720cas_tick(void *arg)
721{
722	struct cas_softc *sc = arg;
723	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
724	bus_space_tag_t t = sc->sc_memt;
725	bus_space_handle_t mac = sc->sc_memh;
726	int s;
727	u_int32_t v;
728
729	/* unload collisions counters */
730	v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
731	    bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
732	ifp->if_collisions += v +
733	    bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
734	    bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
735	ifp->if_oerrors += v;
736
737	/* read error counters */
738	ifp->if_ierrors +=
739	    bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
740	    bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
741	    bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
742	    bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
743
744	/* clear the hardware counters */
745	bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
746	bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
747	bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
748	bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
749	bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
750	bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
751	bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
752	bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
753
754	s = splnet();
755	mii_tick(&sc->sc_mii);
756	splx(s);
757
758	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
759}
760
761int
762cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
763    u_int32_t clr, u_int32_t set)
764{
765	int i;
766	u_int32_t reg;
767
768	for (i = TRIES; i--; DELAY(100)) {
769		reg = bus_space_read_4(sc->sc_memt, h, r);
770		if ((reg & clr) == 0 && (reg & set) == set)
771			return (1);
772	}
773
774	return (0);
775}
776
777void
778cas_reset(struct cas_softc *sc)
779{
780	bus_space_tag_t t = sc->sc_memt;
781	bus_space_handle_t h = sc->sc_memh;
782	int s;
783
784	s = splnet();
785	DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
786	cas_reset_rx(sc);
787	cas_reset_tx(sc);
788
789	/* Disable interrupts */
790	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
791
792	/* Do a full reset */
793	bus_space_write_4(t, h, CAS_RESET,
794	    CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
795	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
796		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
797	splx(s);
798}
799
800
801/*
802 * cas_rxdrain:
803 *
804 *	Drain the receive queue.
805 */
806void
807cas_rxdrain(struct cas_softc *sc)
808{
809	/* Nothing to do yet. */
810}
811
812/*
813 * Reset the whole thing.
814 */
815void
816cas_stop(struct ifnet *ifp, int disable)
817{
818	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
819	struct cas_sxd *sd;
820	u_int32_t i;
821
822	DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
823
824	callout_stop(&sc->sc_tick_ch);
825
826	/*
827	 * Mark the interface down and cancel the watchdog timer.
828	 */
829	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
830	ifp->if_timer = 0;
831
832	mii_down(&sc->sc_mii);
833
834	cas_reset_rx(sc);
835	cas_reset_tx(sc);
836
837	/*
838	 * Release any queued transmit buffers.
839	 */
840	for (i = 0; i < CAS_NTXDESC; i++) {
841		sd = &sc->sc_txd[i];
842		if (sd->sd_mbuf != NULL) {
843			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
844			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
845			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
846			m_freem(sd->sd_mbuf);
847			sd->sd_mbuf = NULL;
848		}
849	}
850	sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
851
852	if (disable)
853		cas_rxdrain(sc);
854}
855
856
857/*
858 * Reset the receiver
859 */
860int
861cas_reset_rx(struct cas_softc *sc)
862{
863	bus_space_tag_t t = sc->sc_memt;
864	bus_space_handle_t h = sc->sc_memh;
865
866	/*
867	 * Resetting while DMA is in progress can cause a bus hang, so we
868	 * disable DMA first.
869	 */
870	cas_disable_rx(sc);
871	bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
872	/* Wait till it finishes */
873	if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
874		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
875	/* Wait 5ms extra. */
876	delay(5000);
877
878	/* Finally, reset the ERX */
879	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
880	/* Wait till it finishes */
881	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
882		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
883		return (1);
884	}
885	return (0);
886}
887
888
889/*
890 * Reset the transmitter
891 */
892int
893cas_reset_tx(struct cas_softc *sc)
894{
895	bus_space_tag_t t = sc->sc_memt;
896	bus_space_handle_t h = sc->sc_memh;
897
898	/*
899	 * Resetting while DMA is in progress can cause a bus hang, so we
900	 * disable DMA first.
901	 */
902	cas_disable_tx(sc);
903	bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
904	/* Wait till it finishes */
905	if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
906		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
907	/* Wait 5ms extra. */
908	delay(5000);
909
910	/* Finally, reset the ETX */
911	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
912	/* Wait till it finishes */
913	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
914		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
915		return (1);
916	}
917	return (0);
918}
919
920/*
921 * Disable receiver.
922 */
923int
924cas_disable_rx(struct cas_softc *sc)
925{
926	bus_space_tag_t t = sc->sc_memt;
927	bus_space_handle_t h = sc->sc_memh;
928	u_int32_t cfg;
929
930	/* Flip the enable bit */
931	cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
932	cfg &= ~CAS_MAC_RX_ENABLE;
933	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
934
935	/* Wait for it to finish */
936	return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
937}
938
939/*
940 * Disable transmitter.
941 */
942int
943cas_disable_tx(struct cas_softc *sc)
944{
945	bus_space_tag_t t = sc->sc_memt;
946	bus_space_handle_t h = sc->sc_memh;
947	u_int32_t cfg;
948
949	/* Flip the enable bit */
950	cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
951	cfg &= ~CAS_MAC_TX_ENABLE;
952	bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
953
954	/* Wait for it to finish */
955	return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
956}
957
958/*
959 * Initialize interface.
960 */
961int
962cas_meminit(struct cas_softc *sc)
963{
964	struct cas_rxsoft *rxs;
965	int i, error;
966
967	rxs = (void *)&error;
968
969	/*
970	 * Initialize the transmit descriptor ring.
971	 */
972	for (i = 0; i < CAS_NTXDESC; i++) {
973		sc->sc_txdescs[i].cd_flags = 0;
974		sc->sc_txdescs[i].cd_addr = 0;
975	}
976	CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
977	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
978
979	/*
980	 * Initialize the receive descriptor and receive job
981	 * descriptor rings.
982	 */
983	for (i = 0; i < CAS_NRXDESC; i++)
984		CAS_INIT_RXDESC(sc, i, i);
985	sc->sc_rxdptr = 0;
986	sc->sc_rxptr = 0;
987
988	/*
989	 * Initialize the receive completion ring.
990	 */
991	for (i = 0; i < CAS_NRXCOMP; i++) {
992		sc->sc_rxcomps[i].cc_word[0] = 0;
993		sc->sc_rxcomps[i].cc_word[1] = 0;
994		sc->sc_rxcomps[i].cc_word[2] = 0;
995		sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
996		CAS_CDRXCSYNC(sc, i,
997		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
998	}
999
1000	return (0);
1001}
1002
1003int
1004cas_ringsize(int sz)
1005{
1006	switch (sz) {
1007	case 32:
1008		return CAS_RING_SZ_32;
1009	case 64:
1010		return CAS_RING_SZ_64;
1011	case 128:
1012		return CAS_RING_SZ_128;
1013	case 256:
1014		return CAS_RING_SZ_256;
1015	case 512:
1016		return CAS_RING_SZ_512;
1017	case 1024:
1018		return CAS_RING_SZ_1024;
1019	case 2048:
1020		return CAS_RING_SZ_2048;
1021	case 4096:
1022		return CAS_RING_SZ_4096;
1023	case 8192:
1024		return CAS_RING_SZ_8192;
1025	default:
1026		aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1027		    sz);
1028		return CAS_RING_SZ_32;
1029	}
1030}
1031
1032int
1033cas_cringsize(int sz)
1034{
1035	int i;
1036
1037	for (i = 0; i < 9; i++)
1038		if (sz == (128 << i))
1039			return i;
1040
1041	aprint_error("cas: invalid completion ring size %d\n", sz);
1042	return 128;
1043}
1044
1045/*
1046 * Initialization of interface; set up initialization block
1047 * and transmit/receive descriptor rings.
1048 */
1049int
1050cas_init(struct ifnet *ifp)
1051{
1052	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1053	bus_space_tag_t t = sc->sc_memt;
1054	bus_space_handle_t h = sc->sc_memh;
1055	int s;
1056	u_int max_frame_size;
1057	u_int32_t v;
1058
1059	s = splnet();
1060
1061	DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1062	/*
1063	 * Initialization sequence. The numbered steps below correspond
1064	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1065	 * Channel Engine manual (part of the PCIO manual).
1066	 * See also the STP2002-STQ document from Sun Microsystems.
1067	 */
1068
1069	/* step 1 & 2. Reset the Ethernet Channel */
1070	cas_stop(ifp, 0);
1071	cas_reset(sc);
1072	DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1073
1074	/* Re-initialize the MIF */
1075	cas_mifinit(sc);
1076
1077	/* step 3. Setup data structures in host memory */
1078	cas_meminit(sc);
1079
1080	/* step 4. TX MAC registers & counters */
1081	cas_init_regs(sc);
1082	max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1083	v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1084	bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1085
1086	/* step 5. RX MAC registers & counters */
1087	cas_iff(sc);
1088
1089	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1090	KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1091	bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1092	    (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1093	bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1094
1095	KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1096	bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1097	    (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1098	bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1099
1100	KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1101	bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1102	    (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1103	bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1104
1105	if (CAS_PLUS(sc)) {
1106		KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1107		bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1108		    (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1109		bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1110		    CAS_CDRXADDR2(sc, 0));
1111	}
1112
1113	/* step 8. Global Configuration & Interrupt Mask */
1114	cas_estintr(sc, CAS_INTR_REG);
1115
1116	/* step 9. ETX Configuration: use mostly default values */
1117
1118	/* Enable DMA */
1119	v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1120	bus_space_write_4(t, h, CAS_TX_CONFIG,
1121	    v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1122	bus_space_write_4(t, h, CAS_TX_KICK, 0);
1123
1124	/* step 10. ERX Configuration */
1125
1126	/* Encode Receive Descriptor ring size */
1127	v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1128	if (CAS_PLUS(sc))
1129		v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1130
1131	/* Encode Receive Completion ring size */
1132	v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1133
1134	/* Enable DMA */
1135	bus_space_write_4(t, h, CAS_RX_CONFIG,
1136	    v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1137
1138	/*
1139	 * The following value is for an OFF Threshold of about 3/4 full
1140	 * and an ON Threshold of 1/4 full.
1141	 */
1142	bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1143	    (3 * sc->sc_rxfifosize / 256) |
1144	    ((sc->sc_rxfifosize / 256) << 12));
1145	bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1146
1147	/* step 11. Configure Media */
1148	mii_ifmedia_change(&sc->sc_mii);
1149
1150	/* step 12. RX_MAC Configuration Register */
1151	v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1152	v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1153	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1154
1155	/* step 14. Issue Transmit Pending command */
1156
1157	/* step 15.  Give the receiver a swift kick */
1158	bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1159	if (CAS_PLUS(sc))
1160		bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1161
1162	/* Start the one second timer. */
1163	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1164
1165	ifp->if_flags |= IFF_RUNNING;
1166	ifp->if_flags &= ~IFF_OACTIVE;
1167	ifp->if_timer = 0;
1168	splx(s);
1169
1170	return (0);
1171}
1172
1173void
1174cas_init_regs(struct cas_softc *sc)
1175{
1176	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1177	bus_space_tag_t t = sc->sc_memt;
1178	bus_space_handle_t h = sc->sc_memh;
1179	const u_char *laddr = CLLADDR(ifp->if_sadl);
1180	u_int32_t v, r;
1181
1182	/* These regs are not cleared on reset */
1183	sc->sc_inited = 0;
1184	if (!sc->sc_inited) {
1185		/* Load recommended values  */
1186		bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1187		bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1188		bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1189
1190		bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1191		/* Max frame and max burst size */
1192		v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1193		bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1194
1195		bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1196		bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1197		bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1198		bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1199		bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1200		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1201
1202		/* Secondary MAC addresses set to 0:0:0:0:0:0 */
1203		for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1204			bus_space_write_4(t, h, r, 0);
1205
1206		/* MAC control addr set to 0:1:c2:0:1:80 */
1207		bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1208		bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1209		bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1210
1211		/* MAC filter addr set to 0:0:0:0:0:0 */
1212		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1213		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1214		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1215
1216		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1217		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1218
1219		/* Hash table initialized to 0 */
1220		for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1221			bus_space_write_4(t, h, r, 0);
1222
1223		sc->sc_inited = 1;
1224	}
1225
1226	/* Counters need to be zeroed */
1227	bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1228	bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1229	bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1230	bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1231	bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1232	bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1233	bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1234	bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1235	bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1236	bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1237	bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1238
1239	/* Un-pause stuff */
1240	bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1241
1242	/*
1243	 * Set the station address.
1244	 */
1245	bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1246	bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1247	bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1248}
1249
1250/*
1251 * Receive interrupt.
1252 */
1253int
1254cas_rint(struct cas_softc *sc)
1255{
1256	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1257	bus_space_tag_t t = sc->sc_memt;
1258	bus_space_handle_t h = sc->sc_memh;
1259	struct cas_rxsoft *rxs;
1260	struct mbuf *m;
1261	u_int64_t word[4];
1262	int len, off, idx;
1263	int i, skip;
1264	void *cp;
1265
1266	for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1267		CAS_CDRXCSYNC(sc, i,
1268		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1269
1270		word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1271		word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1272		word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1273		word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1274
1275		/* Stop if the hardware still owns the descriptor. */
1276		if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1277			break;
1278
1279		len = CAS_RC1_HDR_LEN(word[1]);
1280		if (len > 0) {
1281			off = CAS_RC1_HDR_OFF(word[1]);
1282			idx = CAS_RC1_HDR_IDX(word[1]);
1283			rxs = &sc->sc_rxsoft[idx];
1284
1285			DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1286			    idx, off, len));
1287
1288			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1289			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1290
1291			cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1292			m = m_devget(cp, len, 0, ifp, NULL);
1293
1294			if (word[0] & CAS_RC0_RELEASE_HDR)
1295				cas_add_rxbuf(sc, idx);
1296
1297			if (m != NULL) {
1298
1299				/*
1300				 * Pass this up to any BPF listeners, but only
1301				 * pass it up the stack if its for us.
1302				 */
1303				bpf_mtap(ifp, m);
1304
1305				ifp->if_ipackets++;
1306				m->m_pkthdr.csum_flags = 0;
1307				(*ifp->if_input)(ifp, m);
1308			} else
1309				ifp->if_ierrors++;
1310		}
1311
1312		len = CAS_RC0_DATA_LEN(word[0]);
1313		if (len > 0) {
1314			off = CAS_RC0_DATA_OFF(word[0]);
1315			idx = CAS_RC0_DATA_IDX(word[0]);
1316			rxs = &sc->sc_rxsoft[idx];
1317
1318			DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1319			    idx, off, len));
1320
1321			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1322			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1323
1324			/* XXX We should not be copying the packet here. */
1325			cp = rxs->rxs_kva + off + ETHER_ALIGN;
1326			m = m_devget(cp, len, 0, ifp, NULL);
1327
1328			if (word[0] & CAS_RC0_RELEASE_DATA)
1329				cas_add_rxbuf(sc, idx);
1330
1331			if (m != NULL) {
1332				/*
1333				 * Pass this up to any BPF listeners, but only
1334				 * pass it up the stack if its for us.
1335				 */
1336				bpf_mtap(ifp, m);
1337
1338				ifp->if_ipackets++;
1339				m->m_pkthdr.csum_flags = 0;
1340				(*ifp->if_input)(ifp, m);
1341			} else
1342				ifp->if_ierrors++;
1343		}
1344
1345		if (word[0] & CAS_RC0_SPLIT)
1346			aprint_error_dev(sc->sc_dev, "split packet\n");
1347
1348		skip = CAS_RC0_SKIP(word[0]);
1349	}
1350
1351	while (sc->sc_rxptr != i) {
1352		sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1353		sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1354		sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1355		sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1356		    CAS_DMA_WRITE(CAS_RC3_OWN);
1357		CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1358		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1359
1360		sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1361	}
1362
1363	bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1364
1365	DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1366		sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1367
1368	return (1);
1369}
1370
1371/*
1372 * cas_add_rxbuf:
1373 *
1374 *	Add a receive buffer to the indicated descriptor.
1375 */
1376int
1377cas_add_rxbuf(struct cas_softc *sc, int idx)
1378{
1379	bus_space_tag_t t = sc->sc_memt;
1380	bus_space_handle_t h = sc->sc_memh;
1381
1382	CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1383
1384	if ((sc->sc_rxdptr % 4) == 0)
1385		bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1386
1387	if (++sc->sc_rxdptr == CAS_NRXDESC)
1388		sc->sc_rxdptr = 0;
1389
1390	return (0);
1391}
1392
1393int
1394cas_eint(struct cas_softc *sc, u_int status)
1395{
1396	char bits[128];
1397	if ((status & CAS_INTR_MIF) != 0) {
1398		DPRINTF(sc, ("%s: link status changed\n",
1399		    device_xname(sc->sc_dev)));
1400		return (1);
1401	}
1402
1403	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1404	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1405	return (1);
1406}
1407
1408int
1409cas_pint(struct cas_softc *sc)
1410{
1411	bus_space_tag_t t = sc->sc_memt;
1412	bus_space_handle_t seb = sc->sc_memh;
1413	u_int32_t status;
1414
1415	status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1416	status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1417#ifdef CAS_DEBUG
1418	if (status)
1419		printf("%s: link status changed\n", device_xname(sc->sc_dev));
1420#endif
1421	return (1);
1422}
1423
1424int
1425cas_intr(void *v)
1426{
1427	struct cas_softc *sc = (struct cas_softc *)v;
1428	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1429	bus_space_tag_t t = sc->sc_memt;
1430	bus_space_handle_t seb = sc->sc_memh;
1431	u_int32_t status;
1432	int r = 0;
1433#ifdef CAS_DEBUG
1434	char bits[128];
1435#endif
1436
1437	sc->sc_ev_intr.ev_count++;
1438
1439	status = bus_space_read_4(t, seb, CAS_STATUS);
1440#ifdef CAS_DEBUG
1441	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1442#endif
1443	DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1444		device_xname(sc->sc_dev), (status>>19), bits));
1445
1446	if ((status & CAS_INTR_PCS) != 0)
1447		r |= cas_pint(sc);
1448
1449	if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1450	    CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1451		r |= cas_eint(sc, status);
1452
1453	if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1454		r |= cas_tint(sc, status);
1455
1456	if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1457		r |= cas_rint(sc);
1458
1459	/* We should eventually do more than just print out error stats. */
1460	if (status & CAS_INTR_TX_MAC) {
1461		int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1462#ifdef CAS_DEBUG
1463		if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1464			printf("%s: MAC tx fault, status %x\n",
1465			    device_xname(sc->sc_dev), txstat);
1466#endif
1467		if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1468			cas_init(ifp);
1469	}
1470	if (status & CAS_INTR_RX_MAC) {
1471		int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1472#ifdef CAS_DEBUG
1473		if (rxstat & ~CAS_MAC_RX_DONE)
1474			printf("%s: MAC rx fault, status %x\n",
1475			    device_xname(sc->sc_dev), rxstat);
1476#endif
1477		/*
1478		 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1479		 * due to a silicon bug so handle them silently.
1480		 */
1481		if (rxstat & CAS_MAC_RX_OVERFLOW) {
1482			ifp->if_ierrors++;
1483			cas_init(ifp);
1484		}
1485#ifdef CAS_DEBUG
1486		else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1487			printf("%s: MAC rx fault, status %x\n",
1488			    device_xname(sc->sc_dev), rxstat);
1489#endif
1490	}
1491#if NRND > 0
1492	rnd_add_uint32(&sc->rnd_source, status);
1493#endif
1494	return (r);
1495}
1496
1497
1498void
1499cas_watchdog(struct ifnet *ifp)
1500{
1501	struct cas_softc *sc = ifp->if_softc;
1502
1503	DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1504		"CAS_MAC_RX_CONFIG %x\n",
1505		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1506		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1507		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1508
1509	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1510	++ifp->if_oerrors;
1511
1512	/* Try to get more packets going. */
1513	cas_init(ifp);
1514}
1515
1516/*
1517 * Initialize the MII Management Interface
1518 */
1519void
1520cas_mifinit(struct cas_softc *sc)
1521{
1522	bus_space_tag_t t = sc->sc_memt;
1523	bus_space_handle_t mif = sc->sc_memh;
1524
1525	/* Configure the MIF in frame mode */
1526	sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1527	sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1528	bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1529}
1530
1531/*
1532 * MII interface
1533 *
1534 * The Cassini MII interface supports at least three different operating modes:
1535 *
1536 * Bitbang mode is implemented using data, clock and output enable registers.
1537 *
1538 * Frame mode is implemented by loading a complete frame into the frame
1539 * register and polling the valid bit for completion.
1540 *
1541 * Polling mode uses the frame register but completion is indicated by
1542 * an interrupt.
1543 *
1544 */
1545int
1546cas_mii_readreg(device_t self, int phy, int reg)
1547{
1548	struct cas_softc *sc = device_private(self);
1549	bus_space_tag_t t = sc->sc_memt;
1550	bus_space_handle_t mif = sc->sc_memh;
1551	int n;
1552	u_int32_t v;
1553
1554#ifdef CAS_DEBUG
1555	if (sc->sc_debug)
1556		printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1557#endif
1558
1559	/* Construct the frame command */
1560	v = (reg << CAS_MIF_REG_SHIFT)	| (phy << CAS_MIF_PHY_SHIFT) |
1561		CAS_MIF_FRAME_READ;
1562
1563	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1564	for (n = 0; n < 100; n++) {
1565		DELAY(1);
1566		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1567		if (v & CAS_MIF_FRAME_TA0)
1568			return (v & CAS_MIF_FRAME_DATA);
1569	}
1570
1571	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1572	return (0);
1573}
1574
1575void
1576cas_mii_writereg(device_t self, int phy, int reg, int val)
1577{
1578	struct cas_softc *sc = device_private(self);
1579	bus_space_tag_t t = sc->sc_memt;
1580	bus_space_handle_t mif = sc->sc_memh;
1581	int n;
1582	u_int32_t v;
1583
1584#ifdef CAS_DEBUG
1585	if (sc->sc_debug)
1586		printf("cas_mii_writereg: phy %d reg %d val %x\n",
1587			phy, reg, val);
1588#endif
1589
1590	/* Construct the frame command */
1591	v = CAS_MIF_FRAME_WRITE			|
1592	    (phy << CAS_MIF_PHY_SHIFT)		|
1593	    (reg << CAS_MIF_REG_SHIFT)		|
1594	    (val & CAS_MIF_FRAME_DATA);
1595
1596	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1597	for (n = 0; n < 100; n++) {
1598		DELAY(1);
1599		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1600		if (v & CAS_MIF_FRAME_TA0)
1601			return;
1602	}
1603
1604	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1605}
1606
1607void
1608cas_mii_statchg(device_t self)
1609{
1610	struct cas_softc *sc = device_private(self);
1611#ifdef CAS_DEBUG
1612	int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1613#endif
1614	bus_space_tag_t t = sc->sc_memt;
1615	bus_space_handle_t mac = sc->sc_memh;
1616	u_int32_t v;
1617
1618#ifdef CAS_DEBUG
1619	if (sc->sc_debug)
1620		printf("cas_mii_statchg: status change: phy = %d\n",
1621		    sc->sc_phys[instance]);
1622#endif
1623
1624	/* Set tx full duplex options */
1625	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1626	delay(10000); /* reg must be cleared and delay before changing. */
1627	v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1628		CAS_MAC_TX_ENABLE;
1629	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1630		v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1631	}
1632	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1633
1634	/* XIF Configuration */
1635	v = CAS_MAC_XIF_TX_MII_ENA;
1636	v |= CAS_MAC_XIF_LINK_LED;
1637
1638	/* MII needs echo disable if half duplex. */
1639	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1640		/* turn on full duplex LED */
1641		v |= CAS_MAC_XIF_FDPLX_LED;
1642	else
1643		/* half duplex -- disable echo */
1644		v |= CAS_MAC_XIF_ECHO_DISABL;
1645
1646	switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1647	case IFM_1000_T:  /* Gigabit using GMII interface */
1648	case IFM_1000_SX:
1649		v |= CAS_MAC_XIF_GMII_MODE;
1650		break;
1651	default:
1652		v &= ~CAS_MAC_XIF_GMII_MODE;
1653	}
1654	bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1655}
1656
1657int
1658cas_pcs_readreg(device_t self, int phy, int reg)
1659{
1660	struct cas_softc *sc = device_private(self);
1661	bus_space_tag_t t = sc->sc_memt;
1662	bus_space_handle_t pcs = sc->sc_memh;
1663
1664#ifdef CAS_DEBUG
1665	if (sc->sc_debug)
1666		printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1667#endif
1668
1669	if (phy != CAS_PHYAD_EXTERNAL)
1670		return (0);
1671
1672	switch (reg) {
1673	case MII_BMCR:
1674		reg = CAS_MII_CONTROL;
1675		break;
1676	case MII_BMSR:
1677		reg = CAS_MII_STATUS;
1678		break;
1679	case MII_ANAR:
1680		reg = CAS_MII_ANAR;
1681		break;
1682	case MII_ANLPAR:
1683		reg = CAS_MII_ANLPAR;
1684		break;
1685	case MII_EXTSR:
1686		return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1687	default:
1688		return (0);
1689	}
1690
1691	return bus_space_read_4(t, pcs, reg);
1692}
1693
1694void
1695cas_pcs_writereg(device_t self, int phy, int reg, int val)
1696{
1697	struct cas_softc *sc = device_private(self);
1698	bus_space_tag_t t = sc->sc_memt;
1699	bus_space_handle_t pcs = sc->sc_memh;
1700	int reset = 0;
1701
1702#ifdef CAS_DEBUG
1703	if (sc->sc_debug)
1704		printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1705			phy, reg, val);
1706#endif
1707
1708	if (phy != CAS_PHYAD_EXTERNAL)
1709		return;
1710
1711	if (reg == MII_ANAR)
1712		bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1713
1714	switch (reg) {
1715	case MII_BMCR:
1716		reset = (val & CAS_MII_CONTROL_RESET);
1717		reg = CAS_MII_CONTROL;
1718		break;
1719	case MII_BMSR:
1720		reg = CAS_MII_STATUS;
1721		break;
1722	case MII_ANAR:
1723		reg = CAS_MII_ANAR;
1724		break;
1725	case MII_ANLPAR:
1726		reg = CAS_MII_ANLPAR;
1727		break;
1728	default:
1729		return;
1730	}
1731
1732	bus_space_write_4(t, pcs, reg, val);
1733
1734	if (reset)
1735		cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1736
1737	if (reg == CAS_MII_ANAR || reset)
1738		bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1739		    CAS_MII_CONFIG_ENABLE);
1740}
1741
1742int
1743cas_mediachange(struct ifnet *ifp)
1744{
1745	struct cas_softc *sc = ifp->if_softc;
1746	struct mii_data *mii = &sc->sc_mii;
1747
1748	if (mii->mii_instance) {
1749		struct mii_softc *miisc;
1750		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1751			mii_phy_reset(miisc);
1752	}
1753
1754	return (mii_mediachg(&sc->sc_mii));
1755}
1756
1757void
1758cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1759{
1760	struct cas_softc *sc = ifp->if_softc;
1761
1762	mii_pollstat(&sc->sc_mii);
1763	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1764	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1765}
1766
1767/*
1768 * Process an ioctl request.
1769 */
1770int
1771cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1772{
1773	struct cas_softc *sc = ifp->if_softc;
1774	int s, error = 0;
1775
1776	s = splnet();
1777
1778	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1779		error = 0;
1780		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1781			;
1782		else if (ifp->if_flags & IFF_RUNNING) {
1783			/*
1784			 * Multicast list has changed; set the hardware filter
1785			 * accordingly.
1786			 */
1787			cas_iff(sc);
1788		}
1789	}
1790
1791	splx(s);
1792	return (error);
1793}
1794
1795static bool
1796cas_suspend(device_t self, const pmf_qual_t *qual)
1797{
1798	struct cas_softc *sc = device_private(self);
1799	bus_space_tag_t t = sc->sc_memt;
1800	bus_space_handle_t h = sc->sc_memh;
1801
1802	bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1803	if (sc->sc_ih != NULL) {
1804		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1805		sc->sc_ih = NULL;
1806	}
1807
1808	return true;
1809}
1810
1811static bool
1812cas_resume(device_t self, const pmf_qual_t *qual)
1813{
1814	struct cas_softc *sc = device_private(self);
1815
1816	return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1817}
1818
1819static bool
1820cas_estintr(struct cas_softc *sc, int what)
1821{
1822	bus_space_tag_t t = sc->sc_memt;
1823	bus_space_handle_t h = sc->sc_memh;
1824	const char *intrstr = NULL;
1825
1826	/* PCI interrupts */
1827	if (what & CAS_INTR_PCI) {
1828		intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle);
1829		sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1830		    IPL_NET, cas_intr, sc);
1831		if (sc->sc_ih == NULL) {
1832			aprint_error_dev(sc->sc_dev,
1833			    "unable to establish interrupt");
1834			if (intrstr != NULL)
1835				aprint_error(" at %s", intrstr);
1836			aprint_error("\n");
1837			return false;
1838		}
1839
1840		aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1841	}
1842
1843	/* Interrupt register */
1844	if (what & CAS_INTR_REG) {
1845		bus_space_write_4(t, h, CAS_INTMASK,
1846		    ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1847		    CAS_INTR_TX_TAG_ERR|
1848		    CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1849		    CAS_INTR_RX_TAG_ERR|
1850		    CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1851		    CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1852		    CAS_INTR_BERR));
1853		bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1854		    CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1855		bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1856		bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1857	}
1858	return true;
1859}
1860
1861bool
1862cas_shutdown(device_t self, int howto)
1863{
1864	struct cas_softc *sc = device_private(self);
1865	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1866
1867	cas_stop(ifp, 1);
1868
1869	return true;
1870}
1871
1872void
1873cas_iff(struct cas_softc *sc)
1874{
1875	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1876	struct ethercom *ec = &sc->sc_ethercom;
1877	struct ether_multi *enm;
1878	struct ether_multistep step;
1879	bus_space_tag_t t = sc->sc_memt;
1880	bus_space_handle_t h = sc->sc_memh;
1881	u_int32_t crc, hash[16], rxcfg;
1882	int i;
1883
1884	rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1885	rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1886	    CAS_MAC_RX_PROMISC_GRP);
1887	ifp->if_flags &= ~IFF_ALLMULTI;
1888
1889	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1890		ifp->if_flags |= IFF_ALLMULTI;
1891		if (ifp->if_flags & IFF_PROMISC)
1892			rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1893		else
1894			rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1895        } else {
1896		/*
1897		 * Set up multicast address filter by passing all multicast
1898		 * addresses through a crc generator, and then using the
1899		 * high order 8 bits as an index into the 256 bit logical
1900		 * address filter.  The high order 4 bits selects the word,
1901		 * while the other 4 bits select the bit within the word
1902		 * (where bit 0 is the MSB).
1903		 */
1904
1905		rxcfg |= CAS_MAC_RX_HASH_FILTER;
1906
1907		/* Clear hash table */
1908		for (i = 0; i < 16; i++)
1909			hash[i] = 0;
1910
1911		ETHER_FIRST_MULTI(step, ec, enm);
1912		while (enm != NULL) {
1913                        crc = ether_crc32_le(enm->enm_addrlo,
1914                            ETHER_ADDR_LEN);
1915
1916                        /* Just want the 8 most significant bits. */
1917                        crc >>= 24;
1918
1919                        /* Set the corresponding bit in the filter. */
1920                        hash[crc >> 4] |= 1 << (15 - (crc & 15));
1921
1922			ETHER_NEXT_MULTI(step, enm);
1923		}
1924
1925		/* Now load the hash table into the chip (if we are using it) */
1926		for (i = 0; i < 16; i++) {
1927			bus_space_write_4(t, h,
1928			    CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1929			    hash[i]);
1930		}
1931	}
1932
1933	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1934}
1935
1936int
1937cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1938{
1939	u_int64_t flags;
1940	u_int32_t cur, frag, i;
1941	bus_dmamap_t map;
1942
1943	cur = frag = *bixp;
1944	map = sc->sc_txd[cur].sd_map;
1945
1946	if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1947	    BUS_DMA_NOWAIT) != 0) {
1948		return (ENOBUFS);
1949	}
1950
1951	if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1952		bus_dmamap_unload(sc->sc_dmatag, map);
1953		return (ENOBUFS);
1954	}
1955
1956	bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1957	    BUS_DMASYNC_PREWRITE);
1958
1959	for (i = 0; i < map->dm_nsegs; i++) {
1960		sc->sc_txdescs[frag].cd_addr =
1961		    CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1962		flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1963		    (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1964		    ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1965		sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1966		bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1967		    CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1968		    BUS_DMASYNC_PREWRITE);
1969		cur = frag;
1970		if (++frag == CAS_NTXDESC)
1971			frag = 0;
1972	}
1973
1974	sc->sc_tx_cnt += map->dm_nsegs;
1975	sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1976	sc->sc_txd[cur].sd_map = map;
1977	sc->sc_txd[cur].sd_mbuf = mhead;
1978
1979	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1980
1981	*bixp = frag;
1982
1983	/* sync descriptors */
1984
1985	return (0);
1986}
1987
1988/*
1989 * Transmit interrupt.
1990 */
1991int
1992cas_tint(struct cas_softc *sc, u_int32_t status)
1993{
1994	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1995	struct cas_sxd *sd;
1996	u_int32_t cons, comp;
1997
1998	comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
1999	cons = sc->sc_tx_cons;
2000	while (cons != comp) {
2001		sd = &sc->sc_txd[cons];
2002		if (sd->sd_mbuf != NULL) {
2003			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2004			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2005			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2006			m_freem(sd->sd_mbuf);
2007			sd->sd_mbuf = NULL;
2008			ifp->if_opackets++;
2009		}
2010		sc->sc_tx_cnt--;
2011		if (++cons == CAS_NTXDESC)
2012			cons = 0;
2013	}
2014	sc->sc_tx_cons = cons;
2015
2016	if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2017		ifp->if_flags &= ~IFF_OACTIVE;
2018	if (sc->sc_tx_cnt == 0)
2019		ifp->if_timer = 0;
2020
2021	cas_start(ifp);
2022
2023	return (1);
2024}
2025
2026void
2027cas_start(struct ifnet *ifp)
2028{
2029	struct cas_softc *sc = ifp->if_softc;
2030	struct mbuf *m;
2031	u_int32_t bix;
2032
2033	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2034		return;
2035
2036	bix = sc->sc_tx_prod;
2037	while (sc->sc_txd[bix].sd_mbuf == NULL) {
2038		IFQ_POLL(&ifp->if_snd, m);
2039		if (m == NULL)
2040			break;
2041
2042		/*
2043		 * If BPF is listening on this interface, let it see the
2044		 * packet before we commit it to the wire.
2045		 */
2046		bpf_mtap(ifp, m);
2047
2048		/*
2049		 * Encapsulate this packet and start it going...
2050		 * or fail...
2051		 */
2052		if (cas_encap(sc, m, &bix)) {
2053			ifp->if_flags |= IFF_OACTIVE;
2054			break;
2055		}
2056
2057		IFQ_DEQUEUE(&ifp->if_snd, m);
2058		ifp->if_timer = 5;
2059	}
2060
2061	sc->sc_tx_prod = bix;
2062}
2063