nvmm_x86_svm.c revision 1.82
1/*	$NetBSD: nvmm_x86_svm.c,v 1.82 2020/10/24 07:14:30 mgorny Exp $	*/
2
3/*
4 * Copyright (c) 2018-2020 Maxime Villard, m00nbsd.net
5 * All rights reserved.
6 *
7 * This code is part of the NVMM hypervisor.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.82 2020/10/24 07:14:30 mgorny Exp $");
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/kernel.h>
37#include <sys/kmem.h>
38#include <sys/cpu.h>
39#include <sys/xcall.h>
40#include <sys/mman.h>
41
42#include <uvm/uvm_extern.h>
43#include <uvm/uvm_page.h>
44
45#include <x86/cputypes.h>
46#include <x86/specialreg.h>
47#include <x86/dbregs.h>
48#include <x86/cpu_counter.h>
49
50#include <machine/cpuvar.h>
51
52#include <dev/nvmm/nvmm.h>
53#include <dev/nvmm/nvmm_internal.h>
54#include <dev/nvmm/x86/nvmm_x86.h>
55
56int svm_vmrun(paddr_t, uint64_t *);
57
58static inline void
59svm_clgi(void)
60{
61	asm volatile ("clgi" ::: "memory");
62}
63
64static inline void
65svm_stgi(void)
66{
67	asm volatile ("stgi" ::: "memory");
68}
69
70#define	MSR_VM_HSAVE_PA	0xC0010117
71
72/* -------------------------------------------------------------------------- */
73
74#define VMCB_EXITCODE_CR0_READ		0x0000
75#define VMCB_EXITCODE_CR1_READ		0x0001
76#define VMCB_EXITCODE_CR2_READ		0x0002
77#define VMCB_EXITCODE_CR3_READ		0x0003
78#define VMCB_EXITCODE_CR4_READ		0x0004
79#define VMCB_EXITCODE_CR5_READ		0x0005
80#define VMCB_EXITCODE_CR6_READ		0x0006
81#define VMCB_EXITCODE_CR7_READ		0x0007
82#define VMCB_EXITCODE_CR8_READ		0x0008
83#define VMCB_EXITCODE_CR9_READ		0x0009
84#define VMCB_EXITCODE_CR10_READ		0x000A
85#define VMCB_EXITCODE_CR11_READ		0x000B
86#define VMCB_EXITCODE_CR12_READ		0x000C
87#define VMCB_EXITCODE_CR13_READ		0x000D
88#define VMCB_EXITCODE_CR14_READ		0x000E
89#define VMCB_EXITCODE_CR15_READ		0x000F
90#define VMCB_EXITCODE_CR0_WRITE		0x0010
91#define VMCB_EXITCODE_CR1_WRITE		0x0011
92#define VMCB_EXITCODE_CR2_WRITE		0x0012
93#define VMCB_EXITCODE_CR3_WRITE		0x0013
94#define VMCB_EXITCODE_CR4_WRITE		0x0014
95#define VMCB_EXITCODE_CR5_WRITE		0x0015
96#define VMCB_EXITCODE_CR6_WRITE		0x0016
97#define VMCB_EXITCODE_CR7_WRITE		0x0017
98#define VMCB_EXITCODE_CR8_WRITE		0x0018
99#define VMCB_EXITCODE_CR9_WRITE		0x0019
100#define VMCB_EXITCODE_CR10_WRITE	0x001A
101#define VMCB_EXITCODE_CR11_WRITE	0x001B
102#define VMCB_EXITCODE_CR12_WRITE	0x001C
103#define VMCB_EXITCODE_CR13_WRITE	0x001D
104#define VMCB_EXITCODE_CR14_WRITE	0x001E
105#define VMCB_EXITCODE_CR15_WRITE	0x001F
106#define VMCB_EXITCODE_DR0_READ		0x0020
107#define VMCB_EXITCODE_DR1_READ		0x0021
108#define VMCB_EXITCODE_DR2_READ		0x0022
109#define VMCB_EXITCODE_DR3_READ		0x0023
110#define VMCB_EXITCODE_DR4_READ		0x0024
111#define VMCB_EXITCODE_DR5_READ		0x0025
112#define VMCB_EXITCODE_DR6_READ		0x0026
113#define VMCB_EXITCODE_DR7_READ		0x0027
114#define VMCB_EXITCODE_DR8_READ		0x0028
115#define VMCB_EXITCODE_DR9_READ		0x0029
116#define VMCB_EXITCODE_DR10_READ		0x002A
117#define VMCB_EXITCODE_DR11_READ		0x002B
118#define VMCB_EXITCODE_DR12_READ		0x002C
119#define VMCB_EXITCODE_DR13_READ		0x002D
120#define VMCB_EXITCODE_DR14_READ		0x002E
121#define VMCB_EXITCODE_DR15_READ		0x002F
122#define VMCB_EXITCODE_DR0_WRITE		0x0030
123#define VMCB_EXITCODE_DR1_WRITE		0x0031
124#define VMCB_EXITCODE_DR2_WRITE		0x0032
125#define VMCB_EXITCODE_DR3_WRITE		0x0033
126#define VMCB_EXITCODE_DR4_WRITE		0x0034
127#define VMCB_EXITCODE_DR5_WRITE		0x0035
128#define VMCB_EXITCODE_DR6_WRITE		0x0036
129#define VMCB_EXITCODE_DR7_WRITE		0x0037
130#define VMCB_EXITCODE_DR8_WRITE		0x0038
131#define VMCB_EXITCODE_DR9_WRITE		0x0039
132#define VMCB_EXITCODE_DR10_WRITE	0x003A
133#define VMCB_EXITCODE_DR11_WRITE	0x003B
134#define VMCB_EXITCODE_DR12_WRITE	0x003C
135#define VMCB_EXITCODE_DR13_WRITE	0x003D
136#define VMCB_EXITCODE_DR14_WRITE	0x003E
137#define VMCB_EXITCODE_DR15_WRITE	0x003F
138#define VMCB_EXITCODE_EXCP0		0x0040
139#define VMCB_EXITCODE_EXCP1		0x0041
140#define VMCB_EXITCODE_EXCP2		0x0042
141#define VMCB_EXITCODE_EXCP3		0x0043
142#define VMCB_EXITCODE_EXCP4		0x0044
143#define VMCB_EXITCODE_EXCP5		0x0045
144#define VMCB_EXITCODE_EXCP6		0x0046
145#define VMCB_EXITCODE_EXCP7		0x0047
146#define VMCB_EXITCODE_EXCP8		0x0048
147#define VMCB_EXITCODE_EXCP9		0x0049
148#define VMCB_EXITCODE_EXCP10		0x004A
149#define VMCB_EXITCODE_EXCP11		0x004B
150#define VMCB_EXITCODE_EXCP12		0x004C
151#define VMCB_EXITCODE_EXCP13		0x004D
152#define VMCB_EXITCODE_EXCP14		0x004E
153#define VMCB_EXITCODE_EXCP15		0x004F
154#define VMCB_EXITCODE_EXCP16		0x0050
155#define VMCB_EXITCODE_EXCP17		0x0051
156#define VMCB_EXITCODE_EXCP18		0x0052
157#define VMCB_EXITCODE_EXCP19		0x0053
158#define VMCB_EXITCODE_EXCP20		0x0054
159#define VMCB_EXITCODE_EXCP21		0x0055
160#define VMCB_EXITCODE_EXCP22		0x0056
161#define VMCB_EXITCODE_EXCP23		0x0057
162#define VMCB_EXITCODE_EXCP24		0x0058
163#define VMCB_EXITCODE_EXCP25		0x0059
164#define VMCB_EXITCODE_EXCP26		0x005A
165#define VMCB_EXITCODE_EXCP27		0x005B
166#define VMCB_EXITCODE_EXCP28		0x005C
167#define VMCB_EXITCODE_EXCP29		0x005D
168#define VMCB_EXITCODE_EXCP30		0x005E
169#define VMCB_EXITCODE_EXCP31		0x005F
170#define VMCB_EXITCODE_INTR		0x0060
171#define VMCB_EXITCODE_NMI		0x0061
172#define VMCB_EXITCODE_SMI		0x0062
173#define VMCB_EXITCODE_INIT		0x0063
174#define VMCB_EXITCODE_VINTR		0x0064
175#define VMCB_EXITCODE_CR0_SEL_WRITE	0x0065
176#define VMCB_EXITCODE_IDTR_READ		0x0066
177#define VMCB_EXITCODE_GDTR_READ		0x0067
178#define VMCB_EXITCODE_LDTR_READ		0x0068
179#define VMCB_EXITCODE_TR_READ		0x0069
180#define VMCB_EXITCODE_IDTR_WRITE	0x006A
181#define VMCB_EXITCODE_GDTR_WRITE	0x006B
182#define VMCB_EXITCODE_LDTR_WRITE	0x006C
183#define VMCB_EXITCODE_TR_WRITE		0x006D
184#define VMCB_EXITCODE_RDTSC		0x006E
185#define VMCB_EXITCODE_RDPMC		0x006F
186#define VMCB_EXITCODE_PUSHF		0x0070
187#define VMCB_EXITCODE_POPF		0x0071
188#define VMCB_EXITCODE_CPUID		0x0072
189#define VMCB_EXITCODE_RSM		0x0073
190#define VMCB_EXITCODE_IRET		0x0074
191#define VMCB_EXITCODE_SWINT		0x0075
192#define VMCB_EXITCODE_INVD		0x0076
193#define VMCB_EXITCODE_PAUSE		0x0077
194#define VMCB_EXITCODE_HLT		0x0078
195#define VMCB_EXITCODE_INVLPG		0x0079
196#define VMCB_EXITCODE_INVLPGA		0x007A
197#define VMCB_EXITCODE_IOIO		0x007B
198#define VMCB_EXITCODE_MSR		0x007C
199#define VMCB_EXITCODE_TASK_SWITCH	0x007D
200#define VMCB_EXITCODE_FERR_FREEZE	0x007E
201#define VMCB_EXITCODE_SHUTDOWN		0x007F
202#define VMCB_EXITCODE_VMRUN		0x0080
203#define VMCB_EXITCODE_VMMCALL		0x0081
204#define VMCB_EXITCODE_VMLOAD		0x0082
205#define VMCB_EXITCODE_VMSAVE		0x0083
206#define VMCB_EXITCODE_STGI		0x0084
207#define VMCB_EXITCODE_CLGI		0x0085
208#define VMCB_EXITCODE_SKINIT		0x0086
209#define VMCB_EXITCODE_RDTSCP		0x0087
210#define VMCB_EXITCODE_ICEBP		0x0088
211#define VMCB_EXITCODE_WBINVD		0x0089
212#define VMCB_EXITCODE_MONITOR		0x008A
213#define VMCB_EXITCODE_MWAIT		0x008B
214#define VMCB_EXITCODE_MWAIT_CONDITIONAL	0x008C
215#define VMCB_EXITCODE_XSETBV		0x008D
216#define VMCB_EXITCODE_RDPRU		0x008E
217#define VMCB_EXITCODE_EFER_WRITE_TRAP	0x008F
218#define VMCB_EXITCODE_CR0_WRITE_TRAP	0x0090
219#define VMCB_EXITCODE_CR1_WRITE_TRAP	0x0091
220#define VMCB_EXITCODE_CR2_WRITE_TRAP	0x0092
221#define VMCB_EXITCODE_CR3_WRITE_TRAP	0x0093
222#define VMCB_EXITCODE_CR4_WRITE_TRAP	0x0094
223#define VMCB_EXITCODE_CR5_WRITE_TRAP	0x0095
224#define VMCB_EXITCODE_CR6_WRITE_TRAP	0x0096
225#define VMCB_EXITCODE_CR7_WRITE_TRAP	0x0097
226#define VMCB_EXITCODE_CR8_WRITE_TRAP	0x0098
227#define VMCB_EXITCODE_CR9_WRITE_TRAP	0x0099
228#define VMCB_EXITCODE_CR10_WRITE_TRAP	0x009A
229#define VMCB_EXITCODE_CR11_WRITE_TRAP	0x009B
230#define VMCB_EXITCODE_CR12_WRITE_TRAP	0x009C
231#define VMCB_EXITCODE_CR13_WRITE_TRAP	0x009D
232#define VMCB_EXITCODE_CR14_WRITE_TRAP	0x009E
233#define VMCB_EXITCODE_CR15_WRITE_TRAP	0x009F
234#define VMCB_EXITCODE_INVLPGB		0x00A0
235#define VMCB_EXITCODE_INVLPGB_ILLEGAL	0x00A1
236#define VMCB_EXITCODE_INVPCID		0x00A2
237#define VMCB_EXITCODE_MCOMMIT		0x00A3
238#define VMCB_EXITCODE_TLBSYNC		0x00A4
239#define VMCB_EXITCODE_NPF		0x0400
240#define VMCB_EXITCODE_AVIC_INCOMP_IPI	0x0401
241#define VMCB_EXITCODE_AVIC_NOACCEL	0x0402
242#define VMCB_EXITCODE_VMGEXIT		0x0403
243#define VMCB_EXITCODE_BUSY		-2ULL
244#define VMCB_EXITCODE_INVALID		-1ULL
245
246/* -------------------------------------------------------------------------- */
247
248struct vmcb_ctrl {
249	uint32_t intercept_cr;
250#define VMCB_CTRL_INTERCEPT_RCR(x)	__BIT( 0 + x)
251#define VMCB_CTRL_INTERCEPT_WCR(x)	__BIT(16 + x)
252
253	uint32_t intercept_dr;
254#define VMCB_CTRL_INTERCEPT_RDR(x)	__BIT( 0 + x)
255#define VMCB_CTRL_INTERCEPT_WDR(x)	__BIT(16 + x)
256
257	uint32_t intercept_vec;
258#define VMCB_CTRL_INTERCEPT_VEC(x)	__BIT(x)
259
260	uint32_t intercept_misc1;
261#define VMCB_CTRL_INTERCEPT_INTR	__BIT(0)
262#define VMCB_CTRL_INTERCEPT_NMI		__BIT(1)
263#define VMCB_CTRL_INTERCEPT_SMI		__BIT(2)
264#define VMCB_CTRL_INTERCEPT_INIT	__BIT(3)
265#define VMCB_CTRL_INTERCEPT_VINTR	__BIT(4)
266#define VMCB_CTRL_INTERCEPT_CR0_SPEC	__BIT(5)
267#define VMCB_CTRL_INTERCEPT_RIDTR	__BIT(6)
268#define VMCB_CTRL_INTERCEPT_RGDTR	__BIT(7)
269#define VMCB_CTRL_INTERCEPT_RLDTR	__BIT(8)
270#define VMCB_CTRL_INTERCEPT_RTR		__BIT(9)
271#define VMCB_CTRL_INTERCEPT_WIDTR	__BIT(10)
272#define VMCB_CTRL_INTERCEPT_WGDTR	__BIT(11)
273#define VMCB_CTRL_INTERCEPT_WLDTR	__BIT(12)
274#define VMCB_CTRL_INTERCEPT_WTR		__BIT(13)
275#define VMCB_CTRL_INTERCEPT_RDTSC	__BIT(14)
276#define VMCB_CTRL_INTERCEPT_RDPMC	__BIT(15)
277#define VMCB_CTRL_INTERCEPT_PUSHF	__BIT(16)
278#define VMCB_CTRL_INTERCEPT_POPF	__BIT(17)
279#define VMCB_CTRL_INTERCEPT_CPUID	__BIT(18)
280#define VMCB_CTRL_INTERCEPT_RSM		__BIT(19)
281#define VMCB_CTRL_INTERCEPT_IRET	__BIT(20)
282#define VMCB_CTRL_INTERCEPT_INTN	__BIT(21)
283#define VMCB_CTRL_INTERCEPT_INVD	__BIT(22)
284#define VMCB_CTRL_INTERCEPT_PAUSE	__BIT(23)
285#define VMCB_CTRL_INTERCEPT_HLT		__BIT(24)
286#define VMCB_CTRL_INTERCEPT_INVLPG	__BIT(25)
287#define VMCB_CTRL_INTERCEPT_INVLPGA	__BIT(26)
288#define VMCB_CTRL_INTERCEPT_IOIO_PROT	__BIT(27)
289#define VMCB_CTRL_INTERCEPT_MSR_PROT	__BIT(28)
290#define VMCB_CTRL_INTERCEPT_TASKSW	__BIT(29)
291#define VMCB_CTRL_INTERCEPT_FERR_FREEZE	__BIT(30)
292#define VMCB_CTRL_INTERCEPT_SHUTDOWN	__BIT(31)
293
294	uint32_t intercept_misc2;
295#define VMCB_CTRL_INTERCEPT_VMRUN	__BIT(0)
296#define VMCB_CTRL_INTERCEPT_VMMCALL	__BIT(1)
297#define VMCB_CTRL_INTERCEPT_VMLOAD	__BIT(2)
298#define VMCB_CTRL_INTERCEPT_VMSAVE	__BIT(3)
299#define VMCB_CTRL_INTERCEPT_STGI	__BIT(4)
300#define VMCB_CTRL_INTERCEPT_CLGI	__BIT(5)
301#define VMCB_CTRL_INTERCEPT_SKINIT	__BIT(6)
302#define VMCB_CTRL_INTERCEPT_RDTSCP	__BIT(7)
303#define VMCB_CTRL_INTERCEPT_ICEBP	__BIT(8)
304#define VMCB_CTRL_INTERCEPT_WBINVD	__BIT(9)
305#define VMCB_CTRL_INTERCEPT_MONITOR	__BIT(10)
306#define VMCB_CTRL_INTERCEPT_MWAIT	__BIT(11)
307#define VMCB_CTRL_INTERCEPT_MWAIT_ARMED	__BIT(12)
308#define VMCB_CTRL_INTERCEPT_XSETBV	__BIT(13)
309#define VMCB_CTRL_INTERCEPT_RDPRU	__BIT(14)
310#define VMCB_CTRL_INTERCEPT_EFER_SPEC	__BIT(15)
311#define VMCB_CTRL_INTERCEPT_WCR_SPEC(x)	__BIT(16 + x)
312
313	uint32_t intercept_misc3;
314#define VMCB_CTRL_INTERCEPT_INVLPGB_ALL	__BIT(0)
315#define VMCB_CTRL_INTERCEPT_INVLPGB_ILL	__BIT(1)
316#define VMCB_CTRL_INTERCEPT_PCID	__BIT(2)
317#define VMCB_CTRL_INTERCEPT_MCOMMIT	__BIT(3)
318#define VMCB_CTRL_INTERCEPT_TLBSYNC	__BIT(4)
319
320	uint8_t  rsvd1[36];
321	uint16_t pause_filt_thresh;
322	uint16_t pause_filt_cnt;
323	uint64_t iopm_base_pa;
324	uint64_t msrpm_base_pa;
325	uint64_t tsc_offset;
326	uint32_t guest_asid;
327
328	uint32_t tlb_ctrl;
329#define VMCB_CTRL_TLB_CTRL_FLUSH_ALL			0x01
330#define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST			0x03
331#define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL	0x07
332
333	uint64_t v;
334#define VMCB_CTRL_V_TPR			__BITS(3,0)
335#define VMCB_CTRL_V_IRQ			__BIT(8)
336#define VMCB_CTRL_V_VGIF		__BIT(9)
337#define VMCB_CTRL_V_INTR_PRIO		__BITS(19,16)
338#define VMCB_CTRL_V_IGN_TPR		__BIT(20)
339#define VMCB_CTRL_V_INTR_MASKING	__BIT(24)
340#define VMCB_CTRL_V_GUEST_VGIF		__BIT(25)
341#define VMCB_CTRL_V_AVIC_EN		__BIT(31)
342#define VMCB_CTRL_V_INTR_VECTOR		__BITS(39,32)
343
344	uint64_t intr;
345#define VMCB_CTRL_INTR_SHADOW		__BIT(0)
346#define VMCB_CTRL_INTR_MASK		__BIT(1)
347
348	uint64_t exitcode;
349	uint64_t exitinfo1;
350	uint64_t exitinfo2;
351
352	uint64_t exitintinfo;
353#define VMCB_CTRL_EXITINTINFO_VECTOR	__BITS(7,0)
354#define VMCB_CTRL_EXITINTINFO_TYPE	__BITS(10,8)
355#define VMCB_CTRL_EXITINTINFO_EV	__BIT(11)
356#define VMCB_CTRL_EXITINTINFO_V		__BIT(31)
357#define VMCB_CTRL_EXITINTINFO_ERRORCODE	__BITS(63,32)
358
359	uint64_t enable1;
360#define VMCB_CTRL_ENABLE_NP		__BIT(0)
361#define VMCB_CTRL_ENABLE_SEV		__BIT(1)
362#define VMCB_CTRL_ENABLE_ES_SEV		__BIT(2)
363#define VMCB_CTRL_ENABLE_GMET		__BIT(3)
364#define VMCB_CTRL_ENABLE_VTE		__BIT(5)
365
366	uint64_t avic;
367#define VMCB_CTRL_AVIC_APIC_BAR		__BITS(51,0)
368
369	uint64_t ghcb;
370
371	uint64_t eventinj;
372#define VMCB_CTRL_EVENTINJ_VECTOR	__BITS(7,0)
373#define VMCB_CTRL_EVENTINJ_TYPE		__BITS(10,8)
374#define VMCB_CTRL_EVENTINJ_EV		__BIT(11)
375#define VMCB_CTRL_EVENTINJ_V		__BIT(31)
376#define VMCB_CTRL_EVENTINJ_ERRORCODE	__BITS(63,32)
377
378	uint64_t n_cr3;
379
380	uint64_t enable2;
381#define VMCB_CTRL_ENABLE_LBR		__BIT(0)
382#define VMCB_CTRL_ENABLE_VVMSAVE	__BIT(1)
383
384	uint32_t vmcb_clean;
385#define VMCB_CTRL_VMCB_CLEAN_I		__BIT(0)
386#define VMCB_CTRL_VMCB_CLEAN_IOPM	__BIT(1)
387#define VMCB_CTRL_VMCB_CLEAN_ASID	__BIT(2)
388#define VMCB_CTRL_VMCB_CLEAN_TPR	__BIT(3)
389#define VMCB_CTRL_VMCB_CLEAN_NP		__BIT(4)
390#define VMCB_CTRL_VMCB_CLEAN_CR		__BIT(5)
391#define VMCB_CTRL_VMCB_CLEAN_DR		__BIT(6)
392#define VMCB_CTRL_VMCB_CLEAN_DT		__BIT(7)
393#define VMCB_CTRL_VMCB_CLEAN_SEG	__BIT(8)
394#define VMCB_CTRL_VMCB_CLEAN_CR2	__BIT(9)
395#define VMCB_CTRL_VMCB_CLEAN_LBR	__BIT(10)
396#define VMCB_CTRL_VMCB_CLEAN_AVIC	__BIT(11)
397
398	uint32_t rsvd2;
399	uint64_t nrip;
400	uint8_t	inst_len;
401	uint8_t	inst_bytes[15];
402	uint64_t avic_abpp;
403	uint64_t rsvd3;
404	uint64_t avic_ltp;
405
406	uint64_t avic_phys;
407#define VMCB_CTRL_AVIC_PHYS_TABLE_PTR	__BITS(51,12)
408#define VMCB_CTRL_AVIC_PHYS_MAX_INDEX	__BITS(7,0)
409
410	uint64_t rsvd4;
411	uint64_t vmsa_ptr;
412
413	uint8_t	pad[752];
414} __packed;
415
416CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
417
418struct vmcb_segment {
419	uint16_t selector;
420	uint16_t attrib;	/* hidden */
421	uint32_t limit;		/* hidden */
422	uint64_t base;		/* hidden */
423} __packed;
424
425CTASSERT(sizeof(struct vmcb_segment) == 16);
426
427struct vmcb_state {
428	struct   vmcb_segment es;
429	struct   vmcb_segment cs;
430	struct   vmcb_segment ss;
431	struct   vmcb_segment ds;
432	struct   vmcb_segment fs;
433	struct   vmcb_segment gs;
434	struct   vmcb_segment gdt;
435	struct   vmcb_segment ldt;
436	struct   vmcb_segment idt;
437	struct   vmcb_segment tr;
438	uint8_t	 rsvd1[43];
439	uint8_t	 cpl;
440	uint8_t  rsvd2[4];
441	uint64_t efer;
442	uint8_t	 rsvd3[112];
443	uint64_t cr4;
444	uint64_t cr3;
445	uint64_t cr0;
446	uint64_t dr7;
447	uint64_t dr6;
448	uint64_t rflags;
449	uint64_t rip;
450	uint8_t	 rsvd4[88];
451	uint64_t rsp;
452	uint8_t	 rsvd5[24];
453	uint64_t rax;
454	uint64_t star;
455	uint64_t lstar;
456	uint64_t cstar;
457	uint64_t sfmask;
458	uint64_t kernelgsbase;
459	uint64_t sysenter_cs;
460	uint64_t sysenter_esp;
461	uint64_t sysenter_eip;
462	uint64_t cr2;
463	uint8_t	 rsvd6[32];
464	uint64_t g_pat;
465	uint64_t dbgctl;
466	uint64_t br_from;
467	uint64_t br_to;
468	uint64_t int_from;
469	uint64_t int_to;
470	uint8_t	 pad[2408];
471} __packed;
472
473CTASSERT(sizeof(struct vmcb_state) == 0xC00);
474
475struct vmcb {
476	struct vmcb_ctrl ctrl;
477	struct vmcb_state state;
478} __packed;
479
480CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
481CTASSERT(offsetof(struct vmcb, state) == 0x400);
482
483/* -------------------------------------------------------------------------- */
484
485static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
486static void svm_vcpu_state_commit(struct nvmm_cpu *);
487
488struct svm_hsave {
489	paddr_t pa;
490};
491
492static struct svm_hsave hsave[MAXCPUS];
493
494static uint8_t *svm_asidmap __read_mostly;
495static uint32_t svm_maxasid __read_mostly;
496static kmutex_t svm_asidlock __cacheline_aligned;
497
498static bool svm_decode_assist __read_mostly;
499static uint32_t svm_ctrl_tlb_flush __read_mostly;
500
501#define SVM_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
502static uint64_t svm_xcr0_mask __read_mostly;
503
504#define SVM_NCPUIDS	32
505
506#define VMCB_NPAGES	1
507
508#define MSRBM_NPAGES	2
509#define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
510
511#define IOBM_NPAGES	3
512#define IOBM_SIZE	(IOBM_NPAGES * PAGE_SIZE)
513
514/* Does not include EFER_LMSLE. */
515#define EFER_VALID \
516	(EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
517
518#define EFER_TLB_FLUSH \
519	(EFER_NXE|EFER_LMA|EFER_LME)
520#define CR0_TLB_FLUSH \
521	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
522#define CR4_TLB_FLUSH \
523	(CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
524
525/* -------------------------------------------------------------------------- */
526
527struct svm_machdata {
528	volatile uint64_t mach_htlb_gen;
529};
530
531static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
532	[NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
533	    sizeof(struct nvmm_vcpu_conf_cpuid),
534	[NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
535	    sizeof(struct nvmm_vcpu_conf_tpr)
536};
537
538struct svm_cpudata {
539	/* General */
540	bool shared_asid;
541	bool gtlb_want_flush;
542	bool gtsc_want_update;
543	uint64_t vcpu_htlb_gen;
544
545	/* VMCB */
546	struct vmcb *vmcb;
547	paddr_t vmcb_pa;
548
549	/* I/O bitmap */
550	uint8_t *iobm;
551	paddr_t iobm_pa;
552
553	/* MSR bitmap */
554	uint8_t *msrbm;
555	paddr_t msrbm_pa;
556
557	/* Host state */
558	uint64_t hxcr0;
559	uint64_t star;
560	uint64_t lstar;
561	uint64_t cstar;
562	uint64_t sfmask;
563	uint64_t fsbase;
564	uint64_t kernelgsbase;
565
566	/* Intr state */
567	bool int_window_exit;
568	bool nmi_window_exit;
569	bool evt_pending;
570
571	/* Guest state */
572	uint64_t gxcr0;
573	uint64_t gprs[NVMM_X64_NGPR];
574	uint64_t drs[NVMM_X64_NDR];
575	uint64_t gtsc;
576	struct xsave_header gfpu __aligned(64);
577
578	/* VCPU configuration. */
579	bool cpuidpresent[SVM_NCPUIDS];
580	struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
581};
582
583static void
584svm_vmcb_cache_default(struct vmcb *vmcb)
585{
586	vmcb->ctrl.vmcb_clean =
587	    VMCB_CTRL_VMCB_CLEAN_I |
588	    VMCB_CTRL_VMCB_CLEAN_IOPM |
589	    VMCB_CTRL_VMCB_CLEAN_ASID |
590	    VMCB_CTRL_VMCB_CLEAN_TPR |
591	    VMCB_CTRL_VMCB_CLEAN_NP |
592	    VMCB_CTRL_VMCB_CLEAN_CR |
593	    VMCB_CTRL_VMCB_CLEAN_DR |
594	    VMCB_CTRL_VMCB_CLEAN_DT |
595	    VMCB_CTRL_VMCB_CLEAN_SEG |
596	    VMCB_CTRL_VMCB_CLEAN_CR2 |
597	    VMCB_CTRL_VMCB_CLEAN_LBR |
598	    VMCB_CTRL_VMCB_CLEAN_AVIC;
599}
600
601static void
602svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
603{
604	if (flags & NVMM_X64_STATE_SEGS) {
605		vmcb->ctrl.vmcb_clean &=
606		    ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
607	}
608	if (flags & NVMM_X64_STATE_CRS) {
609		vmcb->ctrl.vmcb_clean &=
610		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
611		      VMCB_CTRL_VMCB_CLEAN_TPR);
612	}
613	if (flags & NVMM_X64_STATE_DRS) {
614		vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
615	}
616	if (flags & NVMM_X64_STATE_MSRS) {
617		/* CR for EFER, NP for PAT. */
618		vmcb->ctrl.vmcb_clean &=
619		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
620	}
621}
622
623static inline void
624svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
625{
626	vmcb->ctrl.vmcb_clean &= ~flags;
627}
628
629static inline void
630svm_vmcb_cache_flush_all(struct vmcb *vmcb)
631{
632	vmcb->ctrl.vmcb_clean = 0;
633}
634
635#define SVM_EVENT_TYPE_HW_INT	0
636#define SVM_EVENT_TYPE_NMI	2
637#define SVM_EVENT_TYPE_EXC	3
638#define SVM_EVENT_TYPE_SW_INT	4
639
640static void
641svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
642{
643	struct svm_cpudata *cpudata = vcpu->cpudata;
644	struct vmcb *vmcb = cpudata->vmcb;
645
646	if (nmi) {
647		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
648		cpudata->nmi_window_exit = true;
649	} else {
650		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
651		vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
652		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
653		cpudata->int_window_exit = true;
654	}
655
656	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
657}
658
659static void
660svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
661{
662	struct svm_cpudata *cpudata = vcpu->cpudata;
663	struct vmcb *vmcb = cpudata->vmcb;
664
665	if (nmi) {
666		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
667		cpudata->nmi_window_exit = false;
668	} else {
669		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
670		vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
671		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
672		cpudata->int_window_exit = false;
673	}
674
675	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
676}
677
678static inline bool
679svm_excp_has_rf(uint8_t vector)
680{
681	switch (vector) {
682	case 1:		/* #DB */
683	case 4:		/* #OF */
684	case 8:		/* #DF */
685	case 18:	/* #MC */
686		return false;
687	default:
688		return true;
689	}
690}
691
692static inline int
693svm_excp_has_error(uint8_t vector)
694{
695	switch (vector) {
696	case 8:		/* #DF */
697	case 10:	/* #TS */
698	case 11:	/* #NP */
699	case 12:	/* #SS */
700	case 13:	/* #GP */
701	case 14:	/* #PF */
702	case 17:	/* #AC */
703	case 30:	/* #SX */
704		return 1;
705	default:
706		return 0;
707	}
708}
709
710static int
711svm_vcpu_inject(struct nvmm_cpu *vcpu)
712{
713	struct nvmm_comm_page *comm = vcpu->comm;
714	struct svm_cpudata *cpudata = vcpu->cpudata;
715	struct vmcb *vmcb = cpudata->vmcb;
716	u_int evtype;
717	uint8_t vector;
718	uint64_t error;
719	int type = 0, err = 0;
720
721	evtype = comm->event.type;
722	vector = comm->event.vector;
723	error = comm->event.u.excp.error;
724	__insn_barrier();
725
726	switch (evtype) {
727	case NVMM_VCPU_EVENT_EXCP:
728		type = SVM_EVENT_TYPE_EXC;
729		if (vector == 2 || vector >= 32)
730			return EINVAL;
731		if (vector == 3 || vector == 0)
732			return EINVAL;
733		if (svm_excp_has_rf(vector)) {
734			vmcb->state.rflags |= PSL_RF;
735		}
736		err = svm_excp_has_error(vector);
737		break;
738	case NVMM_VCPU_EVENT_INTR:
739		type = SVM_EVENT_TYPE_HW_INT;
740		if (vector == 2) {
741			type = SVM_EVENT_TYPE_NMI;
742			svm_event_waitexit_enable(vcpu, true);
743		}
744		err = 0;
745		break;
746	default:
747		return EINVAL;
748	}
749
750	vmcb->ctrl.eventinj =
751	    __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
752	    __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
753	    __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
754	    __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
755	    __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
756
757	cpudata->evt_pending = true;
758
759	return 0;
760}
761
762static void
763svm_inject_ud(struct nvmm_cpu *vcpu)
764{
765	struct nvmm_comm_page *comm = vcpu->comm;
766	int ret __diagused;
767
768	comm->event.type = NVMM_VCPU_EVENT_EXCP;
769	comm->event.vector = 6;
770	comm->event.u.excp.error = 0;
771
772	ret = svm_vcpu_inject(vcpu);
773	KASSERT(ret == 0);
774}
775
776static void
777svm_inject_gp(struct nvmm_cpu *vcpu)
778{
779	struct nvmm_comm_page *comm = vcpu->comm;
780	int ret __diagused;
781
782	comm->event.type = NVMM_VCPU_EVENT_EXCP;
783	comm->event.vector = 13;
784	comm->event.u.excp.error = 0;
785
786	ret = svm_vcpu_inject(vcpu);
787	KASSERT(ret == 0);
788}
789
790static inline int
791svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
792{
793	if (__predict_true(!vcpu->comm->event_commit)) {
794		return 0;
795	}
796	vcpu->comm->event_commit = false;
797	return svm_vcpu_inject(vcpu);
798}
799
800static inline void
801svm_inkernel_advance(struct vmcb *vmcb)
802{
803	/*
804	 * Maybe we should also apply single-stepping and debug exceptions.
805	 * Matters for guest-ring3, because it can execute 'cpuid' under a
806	 * debugger.
807	 */
808	vmcb->state.rip = vmcb->ctrl.nrip;
809	vmcb->state.rflags &= ~PSL_RF;
810	vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
811}
812
813#define SVM_CPUID_MAX_BASIC		0xD
814#define SVM_CPUID_MAX_HYPERVISOR	0x40000000
815#define SVM_CPUID_MAX_EXTENDED		0x8000001F
816static uint32_t svm_cpuid_max_basic __read_mostly;
817static uint32_t svm_cpuid_max_extended __read_mostly;
818
819static void
820svm_inkernel_exec_cpuid(struct svm_cpudata *cpudata, uint64_t eax, uint64_t ecx)
821{
822	u_int descs[4];
823
824	x86_cpuid2(eax, ecx, descs);
825	cpudata->vmcb->state.rax = descs[0];
826	cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
827	cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
828	cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
829}
830
831static void
832svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
833{
834	struct svm_cpudata *cpudata = vcpu->cpudata;
835	uint64_t cr4;
836
837	if (eax < 0x40000000) {
838		if (__predict_false(eax > svm_cpuid_max_basic)) {
839			eax = svm_cpuid_max_basic;
840			svm_inkernel_exec_cpuid(cpudata, eax, ecx);
841		}
842	} else if (eax < 0x80000000) {
843		if (__predict_false(eax > SVM_CPUID_MAX_HYPERVISOR)) {
844			eax = svm_cpuid_max_basic;
845			svm_inkernel_exec_cpuid(cpudata, eax, ecx);
846		}
847	} else {
848		if (__predict_false(eax > svm_cpuid_max_extended)) {
849			eax = svm_cpuid_max_basic;
850			svm_inkernel_exec_cpuid(cpudata, eax, ecx);
851		}
852	}
853
854	switch (eax) {
855	case 0x00000000:
856		cpudata->vmcb->state.rax = svm_cpuid_max_basic;
857		break;
858	case 0x00000001:
859		cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
860
861		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
862		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
863		    CPUID_LOCAL_APIC_ID);
864
865		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
866		cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
867
868		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
869
870		/* CPUID2_OSXSAVE depends on CR4. */
871		cr4 = cpudata->vmcb->state.cr4;
872		if (!(cr4 & CR4_OSXSAVE)) {
873			cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
874		}
875		break;
876	case 0x00000002: /* Empty */
877	case 0x00000003: /* Empty */
878	case 0x00000004: /* Empty */
879	case 0x00000005: /* Monitor/MWait */
880	case 0x00000006: /* Power Management Related Features */
881		cpudata->vmcb->state.rax = 0;
882		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
883		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
884		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
885		break;
886	case 0x00000007: /* Structured Extended Features */
887		switch (ecx) {
888		case 0:
889			cpudata->vmcb->state.rax = 0;
890			cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
891			cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
892			cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
893			break;
894		default:
895			cpudata->vmcb->state.rax = 0;
896			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
897			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
898			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
899			break;
900		}
901		break;
902	case 0x00000008: /* Empty */
903	case 0x00000009: /* Empty */
904	case 0x0000000A: /* Empty */
905	case 0x0000000B: /* Empty */
906	case 0x0000000C: /* Empty */
907		cpudata->vmcb->state.rax = 0;
908		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
909		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
910		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
911		break;
912	case 0x0000000D: /* Processor Extended State Enumeration */
913		if (svm_xcr0_mask == 0) {
914			break;
915		}
916		switch (ecx) {
917		case 0:
918			cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
919			if (cpudata->gxcr0 & XCR0_SSE) {
920				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
921			} else {
922				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
923			}
924			cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
925			cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
926			cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
927			break;
928		case 1:
929			cpudata->vmcb->state.rax &=
930			    (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
931			     CPUID_PES1_XGETBV);
932			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
933			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
934			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
935			break;
936		default:
937			cpudata->vmcb->state.rax = 0;
938			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
939			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
940			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
941			break;
942		}
943		break;
944
945	case 0x40000000: /* Hypervisor Information */
946		cpudata->vmcb->state.rax = SVM_CPUID_MAX_HYPERVISOR;
947		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
948		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
949		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
950		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
951		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
952		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
953		break;
954
955	case 0x80000000:
956		cpudata->vmcb->state.rax = svm_cpuid_max_extended;
957		break;
958	case 0x80000001:
959		cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
960		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
961		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
962		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
963		break;
964	case 0x80000002: /* Extended Processor Name String */
965	case 0x80000003: /* Extended Processor Name String */
966	case 0x80000004: /* Extended Processor Name String */
967	case 0x80000005: /* L1 Cache and TLB Information */
968	case 0x80000006: /* L2 Cache and TLB and L3 Cache Information */
969		break;
970	case 0x80000007: /* Processor Power Management and RAS Capabilities */
971		cpudata->vmcb->state.rax &= nvmm_cpuid_80000007.eax;
972		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000007.ebx;
973		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000007.ecx;
974		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000007.edx;
975		break;
976	case 0x80000008: /* Processor Capacity Parameters and Ext Feat Ident */
977		cpudata->vmcb->state.rax &= nvmm_cpuid_80000008.eax;
978		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000008.ebx;
979		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000008.ecx;
980		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000008.edx;
981		break;
982	case 0x80000009: /* Empty */
983	case 0x8000000A: /* SVM Features */
984	case 0x8000000B: /* Empty */
985	case 0x8000000C: /* Empty */
986	case 0x8000000D: /* Empty */
987	case 0x8000000E: /* Empty */
988	case 0x8000000F: /* Empty */
989	case 0x80000010: /* Empty */
990	case 0x80000011: /* Empty */
991	case 0x80000012: /* Empty */
992	case 0x80000013: /* Empty */
993	case 0x80000014: /* Empty */
994	case 0x80000015: /* Empty */
995	case 0x80000016: /* Empty */
996	case 0x80000017: /* Empty */
997	case 0x80000018: /* Empty */
998		cpudata->vmcb->state.rax = 0;
999		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1000		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1001		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1002		break;
1003	case 0x80000019: /* TLB Characteristics for 1GB pages */
1004	case 0x8000001A: /* Instruction Optimizations */
1005		break;
1006	case 0x8000001B: /* Instruction-Based Sampling Capabilities */
1007	case 0x8000001C: /* Lightweight Profiling Capabilities */
1008		cpudata->vmcb->state.rax = 0;
1009		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1010		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1011		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1012		break;
1013	case 0x8000001D: /* Cache Topology Information */
1014	case 0x8000001E: /* Processor Topology Information */
1015		break; /* TODO? */
1016	case 0x8000001F: /* Encrypted Memory Capabilities */
1017		cpudata->vmcb->state.rax = 0;
1018		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1019		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1020		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1021		break;
1022
1023	default:
1024		break;
1025	}
1026}
1027
1028static void
1029svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
1030{
1031	exit->u.insn.npc = vmcb->ctrl.nrip;
1032	exit->reason = reason;
1033}
1034
1035static void
1036svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1037    struct nvmm_vcpu_exit *exit)
1038{
1039	struct svm_cpudata *cpudata = vcpu->cpudata;
1040	struct nvmm_vcpu_conf_cpuid *cpuid;
1041	uint64_t eax, ecx;
1042	size_t i;
1043
1044	eax = cpudata->vmcb->state.rax;
1045	ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1046	svm_inkernel_exec_cpuid(cpudata, eax, ecx);
1047	svm_inkernel_handle_cpuid(vcpu, eax, ecx);
1048
1049	for (i = 0; i < SVM_NCPUIDS; i++) {
1050		if (!cpudata->cpuidpresent[i]) {
1051			continue;
1052		}
1053		cpuid = &cpudata->cpuid[i];
1054		if (cpuid->leaf != eax) {
1055			continue;
1056		}
1057
1058		if (cpuid->exit) {
1059			svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
1060			return;
1061		}
1062		KASSERT(cpuid->mask);
1063
1064		/* del */
1065		cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
1066		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1067		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1068		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1069
1070		/* set */
1071		cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
1072		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1073		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1074		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1075
1076		break;
1077	}
1078
1079	svm_inkernel_advance(cpudata->vmcb);
1080	exit->reason = NVMM_VCPU_EXIT_NONE;
1081}
1082
1083static void
1084svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1085    struct nvmm_vcpu_exit *exit)
1086{
1087	struct svm_cpudata *cpudata = vcpu->cpudata;
1088	struct vmcb *vmcb = cpudata->vmcb;
1089
1090	if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
1091		svm_event_waitexit_disable(vcpu, false);
1092	}
1093
1094	svm_inkernel_advance(cpudata->vmcb);
1095	exit->reason = NVMM_VCPU_EXIT_HALTED;
1096}
1097
1098#define SVM_EXIT_IO_PORT	__BITS(31,16)
1099#define SVM_EXIT_IO_SEG		__BITS(12,10)
1100#define SVM_EXIT_IO_A64		__BIT(9)
1101#define SVM_EXIT_IO_A32		__BIT(8)
1102#define SVM_EXIT_IO_A16		__BIT(7)
1103#define SVM_EXIT_IO_SZ32	__BIT(6)
1104#define SVM_EXIT_IO_SZ16	__BIT(5)
1105#define SVM_EXIT_IO_SZ8		__BIT(4)
1106#define SVM_EXIT_IO_REP		__BIT(3)
1107#define SVM_EXIT_IO_STR		__BIT(2)
1108#define SVM_EXIT_IO_IN		__BIT(0)
1109
1110static void
1111svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1112    struct nvmm_vcpu_exit *exit)
1113{
1114	struct svm_cpudata *cpudata = vcpu->cpudata;
1115	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1116	uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
1117
1118	exit->reason = NVMM_VCPU_EXIT_IO;
1119
1120	exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
1121	exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
1122
1123	if (svm_decode_assist) {
1124		KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
1125		exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
1126	} else {
1127		exit->u.io.seg = -1;
1128	}
1129
1130	if (info & SVM_EXIT_IO_A64) {
1131		exit->u.io.address_size = 8;
1132	} else if (info & SVM_EXIT_IO_A32) {
1133		exit->u.io.address_size = 4;
1134	} else if (info & SVM_EXIT_IO_A16) {
1135		exit->u.io.address_size = 2;
1136	}
1137
1138	if (info & SVM_EXIT_IO_SZ32) {
1139		exit->u.io.operand_size = 4;
1140	} else if (info & SVM_EXIT_IO_SZ16) {
1141		exit->u.io.operand_size = 2;
1142	} else if (info & SVM_EXIT_IO_SZ8) {
1143		exit->u.io.operand_size = 1;
1144	}
1145
1146	exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
1147	exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
1148	exit->u.io.npc = nextpc;
1149
1150	svm_vcpu_state_provide(vcpu,
1151	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1152	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1153}
1154
1155static const uint64_t msr_ignore_list[] = {
1156	0xc0010055, /* MSR_CMPHALT */
1157	MSR_DE_CFG,
1158	MSR_IC_CFG,
1159	MSR_UCODE_AMD_PATCHLEVEL
1160};
1161
1162static bool
1163svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1164    struct nvmm_vcpu_exit *exit)
1165{
1166	struct svm_cpudata *cpudata = vcpu->cpudata;
1167	struct vmcb *vmcb = cpudata->vmcb;
1168	uint64_t val;
1169	size_t i;
1170
1171	if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1172		if (exit->u.rdmsr.msr == MSR_EFER) {
1173			val = vmcb->state.efer & ~EFER_SVME;
1174			vmcb->state.rax = (val & 0xFFFFFFFF);
1175			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1176			goto handled;
1177		}
1178		if (exit->u.rdmsr.msr == MSR_NB_CFG) {
1179			val = NB_CFG_INITAPICCPUIDLO;
1180			vmcb->state.rax = (val & 0xFFFFFFFF);
1181			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1182			goto handled;
1183		}
1184		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1185			if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1186				continue;
1187			val = 0;
1188			vmcb->state.rax = (val & 0xFFFFFFFF);
1189			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1190			goto handled;
1191		}
1192	} else {
1193		if (exit->u.wrmsr.msr == MSR_EFER) {
1194			if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
1195				goto error;
1196			}
1197			if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
1198			     EFER_TLB_FLUSH) {
1199				cpudata->gtlb_want_flush = true;
1200			}
1201			vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
1202			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1203			goto handled;
1204		}
1205		if (exit->u.wrmsr.msr == MSR_TSC) {
1206			cpudata->gtsc = exit->u.wrmsr.val;
1207			cpudata->gtsc_want_update = true;
1208			goto handled;
1209		}
1210		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1211			if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1212				continue;
1213			goto handled;
1214		}
1215	}
1216
1217	return false;
1218
1219handled:
1220	svm_inkernel_advance(cpudata->vmcb);
1221	return true;
1222
1223error:
1224	svm_inject_gp(vcpu);
1225	return true;
1226}
1227
1228static inline void
1229svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1230    struct nvmm_vcpu_exit *exit)
1231{
1232	struct svm_cpudata *cpudata = vcpu->cpudata;
1233
1234	exit->reason = NVMM_VCPU_EXIT_RDMSR;
1235	exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1236	exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
1237
1238	if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1239		exit->reason = NVMM_VCPU_EXIT_NONE;
1240		return;
1241	}
1242
1243	svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1244}
1245
1246static inline void
1247svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1248    struct nvmm_vcpu_exit *exit)
1249{
1250	struct svm_cpudata *cpudata = vcpu->cpudata;
1251	uint64_t rdx, rax;
1252
1253	rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1254	rax = cpudata->vmcb->state.rax;
1255
1256	exit->reason = NVMM_VCPU_EXIT_WRMSR;
1257	exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1258	exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1259	exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
1260
1261	if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1262		exit->reason = NVMM_VCPU_EXIT_NONE;
1263		return;
1264	}
1265
1266	svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1267}
1268
1269static void
1270svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1271    struct nvmm_vcpu_exit *exit)
1272{
1273	struct svm_cpudata *cpudata = vcpu->cpudata;
1274	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1275
1276	if (info == 0) {
1277		svm_exit_rdmsr(mach, vcpu, exit);
1278	} else {
1279		svm_exit_wrmsr(mach, vcpu, exit);
1280	}
1281}
1282
1283static void
1284svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1285    struct nvmm_vcpu_exit *exit)
1286{
1287	struct svm_cpudata *cpudata = vcpu->cpudata;
1288	gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1289
1290	exit->reason = NVMM_VCPU_EXIT_MEMORY;
1291	if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1292		exit->u.mem.prot = PROT_WRITE;
1293	else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_I)
1294		exit->u.mem.prot = PROT_EXEC;
1295	else
1296		exit->u.mem.prot = PROT_READ;
1297	exit->u.mem.gpa = gpa;
1298	exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1299	memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1300	    sizeof(exit->u.mem.inst_bytes));
1301
1302	svm_vcpu_state_provide(vcpu,
1303	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1304	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1305}
1306
1307static void
1308svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1309    struct nvmm_vcpu_exit *exit)
1310{
1311	struct svm_cpudata *cpudata = vcpu->cpudata;
1312	struct vmcb *vmcb = cpudata->vmcb;
1313	uint64_t val;
1314
1315	exit->reason = NVMM_VCPU_EXIT_NONE;
1316
1317	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1318	    (vmcb->state.rax & 0xFFFFFFFF);
1319
1320	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1321		goto error;
1322	} else if (__predict_false(vmcb->state.cpl != 0)) {
1323		goto error;
1324	} else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1325		goto error;
1326	} else if (__predict_false((val & XCR0_X87) == 0)) {
1327		goto error;
1328	}
1329
1330	cpudata->gxcr0 = val;
1331
1332	svm_inkernel_advance(cpudata->vmcb);
1333	return;
1334
1335error:
1336	svm_inject_gp(vcpu);
1337}
1338
1339static void
1340svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1341{
1342	exit->u.inv.hwcode = code;
1343	exit->reason = NVMM_VCPU_EXIT_INVALID;
1344}
1345
1346/* -------------------------------------------------------------------------- */
1347
1348static void
1349svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1350{
1351	struct svm_cpudata *cpudata = vcpu->cpudata;
1352
1353	fpu_kern_enter();
1354	/* TODO: should we use *XSAVE64 here? */
1355	fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask, false);
1356
1357	if (svm_xcr0_mask != 0) {
1358		cpudata->hxcr0 = rdxcr(0);
1359		wrxcr(0, cpudata->gxcr0);
1360	}
1361}
1362
1363static void
1364svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1365{
1366	struct svm_cpudata *cpudata = vcpu->cpudata;
1367
1368	if (svm_xcr0_mask != 0) {
1369		cpudata->gxcr0 = rdxcr(0);
1370		wrxcr(0, cpudata->hxcr0);
1371	}
1372
1373	/* TODO: should we use *XSAVE64 here? */
1374	fpu_area_save(&cpudata->gfpu, svm_xcr0_mask, false);
1375	fpu_kern_leave();
1376}
1377
1378static void
1379svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1380{
1381	struct svm_cpudata *cpudata = vcpu->cpudata;
1382
1383	x86_dbregs_save(curlwp);
1384
1385	ldr7(0);
1386
1387	ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1388	ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1389	ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1390	ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1391}
1392
1393static void
1394svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1395{
1396	struct svm_cpudata *cpudata = vcpu->cpudata;
1397
1398	cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1399	cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1400	cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1401	cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1402
1403	x86_dbregs_restore(curlwp);
1404}
1405
1406static void
1407svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1408{
1409	struct svm_cpudata *cpudata = vcpu->cpudata;
1410
1411	cpudata->fsbase = rdmsr(MSR_FSBASE);
1412	cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1413}
1414
1415static void
1416svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1417{
1418	struct svm_cpudata *cpudata = vcpu->cpudata;
1419
1420	wrmsr(MSR_STAR, cpudata->star);
1421	wrmsr(MSR_LSTAR, cpudata->lstar);
1422	wrmsr(MSR_CSTAR, cpudata->cstar);
1423	wrmsr(MSR_SFMASK, cpudata->sfmask);
1424	wrmsr(MSR_FSBASE, cpudata->fsbase);
1425	wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1426}
1427
1428/* -------------------------------------------------------------------------- */
1429
1430static inline void
1431svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1432{
1433	struct svm_cpudata *cpudata = vcpu->cpudata;
1434
1435	if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1436		cpudata->gtlb_want_flush = true;
1437	}
1438}
1439
1440static inline void
1441svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1442{
1443	/*
1444	 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1445	 * executing on this hCPU and the hTLB already got flushed, or it
1446	 * was executing on another hCPU in which case the catchup is done
1447	 * in svm_gtlb_catchup().
1448	 */
1449}
1450
1451static inline uint64_t
1452svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1453{
1454	struct vmcb *vmcb = cpudata->vmcb;
1455	uint64_t machgen;
1456
1457	machgen = machdata->mach_htlb_gen;
1458	if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1459		return machgen;
1460	}
1461
1462	vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1463	return machgen;
1464}
1465
1466static inline void
1467svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1468{
1469	struct vmcb *vmcb = cpudata->vmcb;
1470
1471	if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1472		cpudata->vcpu_htlb_gen = machgen;
1473	}
1474}
1475
1476static inline void
1477svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1478{
1479	cpudata->evt_pending = false;
1480
1481	if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1482		vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1483		cpudata->evt_pending = true;
1484	}
1485}
1486
1487static int
1488svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1489    struct nvmm_vcpu_exit *exit)
1490{
1491	struct nvmm_comm_page *comm = vcpu->comm;
1492	struct svm_machdata *machdata = mach->machdata;
1493	struct svm_cpudata *cpudata = vcpu->cpudata;
1494	struct vmcb *vmcb = cpudata->vmcb;
1495	uint64_t machgen;
1496	int hcpu;
1497
1498	svm_vcpu_state_commit(vcpu);
1499	comm->state_cached = 0;
1500
1501	if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1502		return EINVAL;
1503	}
1504
1505	kpreempt_disable();
1506	hcpu = cpu_number();
1507
1508	svm_gtlb_catchup(vcpu, hcpu);
1509	svm_htlb_catchup(vcpu, hcpu);
1510
1511	if (vcpu->hcpu_last != hcpu) {
1512		svm_vmcb_cache_flush_all(vmcb);
1513		cpudata->gtsc_want_update = true;
1514	}
1515
1516	svm_vcpu_guest_dbregs_enter(vcpu);
1517	svm_vcpu_guest_misc_enter(vcpu);
1518
1519	while (1) {
1520		if (cpudata->gtlb_want_flush) {
1521			vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1522		} else {
1523			vmcb->ctrl.tlb_ctrl = 0;
1524		}
1525
1526		if (__predict_false(cpudata->gtsc_want_update)) {
1527			vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1528			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1529		}
1530
1531		svm_vcpu_guest_fpu_enter(vcpu);
1532		svm_clgi();
1533		machgen = svm_htlb_flush(machdata, cpudata);
1534		svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1535		svm_htlb_flush_ack(cpudata, machgen);
1536		svm_stgi();
1537		svm_vcpu_guest_fpu_leave(vcpu);
1538
1539		svm_vmcb_cache_default(vmcb);
1540
1541		if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1542			cpudata->gtlb_want_flush = false;
1543			cpudata->gtsc_want_update = false;
1544			vcpu->hcpu_last = hcpu;
1545		}
1546		svm_exit_evt(cpudata, vmcb);
1547
1548		switch (vmcb->ctrl.exitcode) {
1549		case VMCB_EXITCODE_INTR:
1550		case VMCB_EXITCODE_NMI:
1551			exit->reason = NVMM_VCPU_EXIT_NONE;
1552			break;
1553		case VMCB_EXITCODE_VINTR:
1554			svm_event_waitexit_disable(vcpu, false);
1555			exit->reason = NVMM_VCPU_EXIT_INT_READY;
1556			break;
1557		case VMCB_EXITCODE_IRET:
1558			svm_event_waitexit_disable(vcpu, true);
1559			exit->reason = NVMM_VCPU_EXIT_NMI_READY;
1560			break;
1561		case VMCB_EXITCODE_CPUID:
1562			svm_exit_cpuid(mach, vcpu, exit);
1563			break;
1564		case VMCB_EXITCODE_HLT:
1565			svm_exit_hlt(mach, vcpu, exit);
1566			break;
1567		case VMCB_EXITCODE_IOIO:
1568			svm_exit_io(mach, vcpu, exit);
1569			break;
1570		case VMCB_EXITCODE_MSR:
1571			svm_exit_msr(mach, vcpu, exit);
1572			break;
1573		case VMCB_EXITCODE_SHUTDOWN:
1574			exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
1575			break;
1576		case VMCB_EXITCODE_RDPMC:
1577		case VMCB_EXITCODE_RSM:
1578		case VMCB_EXITCODE_INVLPGA:
1579		case VMCB_EXITCODE_VMRUN:
1580		case VMCB_EXITCODE_VMMCALL:
1581		case VMCB_EXITCODE_VMLOAD:
1582		case VMCB_EXITCODE_VMSAVE:
1583		case VMCB_EXITCODE_STGI:
1584		case VMCB_EXITCODE_CLGI:
1585		case VMCB_EXITCODE_SKINIT:
1586		case VMCB_EXITCODE_RDTSCP:
1587		case VMCB_EXITCODE_RDPRU:
1588		case VMCB_EXITCODE_INVLPGB:
1589		case VMCB_EXITCODE_INVPCID:
1590		case VMCB_EXITCODE_MCOMMIT:
1591		case VMCB_EXITCODE_TLBSYNC:
1592			svm_inject_ud(vcpu);
1593			exit->reason = NVMM_VCPU_EXIT_NONE;
1594			break;
1595		case VMCB_EXITCODE_MONITOR:
1596			svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
1597			break;
1598		case VMCB_EXITCODE_MWAIT:
1599		case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1600			svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
1601			break;
1602		case VMCB_EXITCODE_XSETBV:
1603			svm_exit_xsetbv(mach, vcpu, exit);
1604			break;
1605		case VMCB_EXITCODE_NPF:
1606			svm_exit_npf(mach, vcpu, exit);
1607			break;
1608		case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1609		default:
1610			svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1611			break;
1612		}
1613
1614		/* If no reason to return to userland, keep rolling. */
1615		if (nvmm_return_needed()) {
1616			break;
1617		}
1618		if (exit->reason != NVMM_VCPU_EXIT_NONE) {
1619			break;
1620		}
1621	}
1622
1623	cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1624
1625	svm_vcpu_guest_misc_leave(vcpu);
1626	svm_vcpu_guest_dbregs_leave(vcpu);
1627
1628	kpreempt_enable();
1629
1630	exit->exitstate.rflags = vmcb->state.rflags;
1631	exit->exitstate.cr8 = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
1632	exit->exitstate.int_shadow =
1633	    ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1634	exit->exitstate.int_window_exiting = cpudata->int_window_exit;
1635	exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
1636	exit->exitstate.evt_pending = cpudata->evt_pending;
1637
1638	return 0;
1639}
1640
1641/* -------------------------------------------------------------------------- */
1642
1643static int
1644svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1645{
1646	struct pglist pglist;
1647	paddr_t _pa;
1648	vaddr_t _va;
1649	size_t i;
1650	int ret;
1651
1652	ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1653	    &pglist, 1, 0);
1654	if (ret != 0)
1655		return ENOMEM;
1656	_pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
1657	_va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1658	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1659	if (_va == 0)
1660		goto error;
1661
1662	for (i = 0; i < npages; i++) {
1663		pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1664		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1665	}
1666	pmap_update(pmap_kernel());
1667
1668	memset((void *)_va, 0, npages * PAGE_SIZE);
1669
1670	*pa = _pa;
1671	*va = _va;
1672	return 0;
1673
1674error:
1675	for (i = 0; i < npages; i++) {
1676		uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1677	}
1678	return ENOMEM;
1679}
1680
1681static void
1682svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1683{
1684	size_t i;
1685
1686	pmap_kremove(va, npages * PAGE_SIZE);
1687	pmap_update(pmap_kernel());
1688	uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1689	for (i = 0; i < npages; i++) {
1690		uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1691	}
1692}
1693
1694/* -------------------------------------------------------------------------- */
1695
1696#define SVM_MSRBM_READ	__BIT(0)
1697#define SVM_MSRBM_WRITE	__BIT(1)
1698
1699static void
1700svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1701{
1702	uint64_t byte;
1703	uint8_t bitoff;
1704
1705	if (msr < 0x00002000) {
1706		/* Range 1 */
1707		byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1708	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1709		/* Range 2 */
1710		byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1711	} else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1712		/* Range 3 */
1713		byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1714	} else {
1715		panic("%s: wrong range", __func__);
1716	}
1717
1718	bitoff = (msr & 0x3) << 1;
1719
1720	if (read) {
1721		bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1722	}
1723	if (write) {
1724		bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1725	}
1726}
1727
1728#define SVM_SEG_ATTRIB_TYPE		__BITS(3,0)
1729#define SVM_SEG_ATTRIB_S		__BIT(4)
1730#define SVM_SEG_ATTRIB_DPL		__BITS(6,5)
1731#define SVM_SEG_ATTRIB_P		__BIT(7)
1732#define SVM_SEG_ATTRIB_AVL		__BIT(8)
1733#define SVM_SEG_ATTRIB_L		__BIT(9)
1734#define SVM_SEG_ATTRIB_DEF		__BIT(10)
1735#define SVM_SEG_ATTRIB_G		__BIT(11)
1736
1737static void
1738svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1739    struct vmcb_segment *vseg)
1740{
1741	vseg->selector = seg->selector;
1742	vseg->attrib =
1743	    __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1744	    __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1745	    __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1746	    __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1747	    __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1748	    __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1749	    __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1750	    __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1751	vseg->limit = seg->limit;
1752	vseg->base = seg->base;
1753}
1754
1755static void
1756svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1757{
1758	seg->selector = vseg->selector;
1759	seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1760	seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1761	seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1762	seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1763	seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1764	seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1765	seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1766	seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1767	seg->limit = vseg->limit;
1768	seg->base = vseg->base;
1769}
1770
1771static inline bool
1772svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1773    uint64_t flags)
1774{
1775	if (flags & NVMM_X64_STATE_CRS) {
1776		if ((vmcb->state.cr0 ^
1777		     state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1778			return true;
1779		}
1780		if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1781			return true;
1782		}
1783		if ((vmcb->state.cr4 ^
1784		     state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1785			return true;
1786		}
1787	}
1788
1789	if (flags & NVMM_X64_STATE_MSRS) {
1790		if ((vmcb->state.efer ^
1791		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1792			return true;
1793		}
1794	}
1795
1796	return false;
1797}
1798
1799static void
1800svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1801{
1802	struct nvmm_comm_page *comm = vcpu->comm;
1803	const struct nvmm_x64_state *state = &comm->state;
1804	struct svm_cpudata *cpudata = vcpu->cpudata;
1805	struct vmcb *vmcb = cpudata->vmcb;
1806	struct fxsave *fpustate;
1807	uint64_t flags;
1808
1809	flags = comm->state_wanted;
1810
1811	if (svm_state_tlb_flush(vmcb, state, flags)) {
1812		cpudata->gtlb_want_flush = true;
1813	}
1814
1815	if (flags & NVMM_X64_STATE_SEGS) {
1816		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1817		    &vmcb->state.cs);
1818		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1819		    &vmcb->state.ds);
1820		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1821		    &vmcb->state.es);
1822		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1823		    &vmcb->state.fs);
1824		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1825		    &vmcb->state.gs);
1826		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1827		    &vmcb->state.ss);
1828		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1829		    &vmcb->state.gdt);
1830		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1831		    &vmcb->state.idt);
1832		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1833		    &vmcb->state.ldt);
1834		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1835		    &vmcb->state.tr);
1836
1837		vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1838	}
1839
1840	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1841	if (flags & NVMM_X64_STATE_GPRS) {
1842		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1843
1844		vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1845		vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1846		vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1847		vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1848	}
1849
1850	if (flags & NVMM_X64_STATE_CRS) {
1851		vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1852		vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1853		vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1854		vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1855
1856		vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1857		vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1858		    VMCB_CTRL_V_TPR);
1859
1860		if (svm_xcr0_mask != 0) {
1861			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
1862			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1863			cpudata->gxcr0 &= svm_xcr0_mask;
1864			cpudata->gxcr0 |= XCR0_X87;
1865		}
1866	}
1867
1868	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1869	if (flags & NVMM_X64_STATE_DRS) {
1870		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1871
1872		vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1873		vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1874	}
1875
1876	if (flags & NVMM_X64_STATE_MSRS) {
1877		/*
1878		 * EFER_SVME is mandatory.
1879		 */
1880		vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1881		vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1882		vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1883		vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1884		vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1885		vmcb->state.kernelgsbase =
1886		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1887		vmcb->state.sysenter_cs =
1888		    state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1889		vmcb->state.sysenter_esp =
1890		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1891		vmcb->state.sysenter_eip =
1892		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1893		vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1894
1895		cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1896		cpudata->gtsc_want_update = true;
1897	}
1898
1899	if (flags & NVMM_X64_STATE_INTR) {
1900		if (state->intr.int_shadow) {
1901			vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1902		} else {
1903			vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1904		}
1905
1906		if (state->intr.int_window_exiting) {
1907			svm_event_waitexit_enable(vcpu, false);
1908		} else {
1909			svm_event_waitexit_disable(vcpu, false);
1910		}
1911
1912		if (state->intr.nmi_window_exiting) {
1913			svm_event_waitexit_enable(vcpu, true);
1914		} else {
1915			svm_event_waitexit_disable(vcpu, true);
1916		}
1917	}
1918
1919	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1920	if (flags & NVMM_X64_STATE_FPU) {
1921		memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1922		    sizeof(state->fpu));
1923
1924		fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1925		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1926		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1927
1928		if (svm_xcr0_mask != 0) {
1929			/* Reset XSTATE_BV, to force a reload. */
1930			cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1931		}
1932	}
1933
1934	svm_vmcb_cache_update(vmcb, flags);
1935
1936	comm->state_wanted = 0;
1937	comm->state_cached |= flags;
1938}
1939
1940static void
1941svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1942{
1943	struct nvmm_comm_page *comm = vcpu->comm;
1944	struct nvmm_x64_state *state = &comm->state;
1945	struct svm_cpudata *cpudata = vcpu->cpudata;
1946	struct vmcb *vmcb = cpudata->vmcb;
1947	uint64_t flags;
1948
1949	flags = comm->state_wanted;
1950
1951	if (flags & NVMM_X64_STATE_SEGS) {
1952		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1953		    &vmcb->state.cs);
1954		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1955		    &vmcb->state.ds);
1956		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1957		    &vmcb->state.es);
1958		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1959		    &vmcb->state.fs);
1960		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1961		    &vmcb->state.gs);
1962		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1963		    &vmcb->state.ss);
1964		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1965		    &vmcb->state.gdt);
1966		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1967		    &vmcb->state.idt);
1968		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1969		    &vmcb->state.ldt);
1970		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1971		    &vmcb->state.tr);
1972
1973		state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1974	}
1975
1976	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1977	if (flags & NVMM_X64_STATE_GPRS) {
1978		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1979
1980		state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1981		state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1982		state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1983		state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1984	}
1985
1986	if (flags & NVMM_X64_STATE_CRS) {
1987		state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1988		state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1989		state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1990		state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1991		state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1992		    VMCB_CTRL_V_TPR);
1993		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1994	}
1995
1996	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1997	if (flags & NVMM_X64_STATE_DRS) {
1998		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1999
2000		state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
2001		state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
2002	}
2003
2004	if (flags & NVMM_X64_STATE_MSRS) {
2005		state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
2006		state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
2007		state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
2008		state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
2009		state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
2010		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2011		    vmcb->state.kernelgsbase;
2012		state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2013		    vmcb->state.sysenter_cs;
2014		state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2015		    vmcb->state.sysenter_esp;
2016		state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2017		    vmcb->state.sysenter_eip;
2018		state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
2019		state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2020
2021		/* Hide SVME. */
2022		state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
2023	}
2024
2025	if (flags & NVMM_X64_STATE_INTR) {
2026		state->intr.int_shadow =
2027		    (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
2028		state->intr.int_window_exiting = cpudata->int_window_exit;
2029		state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2030		state->intr.evt_pending = cpudata->evt_pending;
2031	}
2032
2033	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2034	if (flags & NVMM_X64_STATE_FPU) {
2035		memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2036		    sizeof(state->fpu));
2037	}
2038
2039	comm->state_wanted = 0;
2040	comm->state_cached |= flags;
2041}
2042
2043static void
2044svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2045{
2046	vcpu->comm->state_wanted = flags;
2047	svm_vcpu_getstate(vcpu);
2048}
2049
2050static void
2051svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
2052{
2053	vcpu->comm->state_wanted = vcpu->comm->state_commit;
2054	vcpu->comm->state_commit = 0;
2055	svm_vcpu_setstate(vcpu);
2056}
2057
2058/* -------------------------------------------------------------------------- */
2059
2060static void
2061svm_asid_alloc(struct nvmm_cpu *vcpu)
2062{
2063	struct svm_cpudata *cpudata = vcpu->cpudata;
2064	struct vmcb *vmcb = cpudata->vmcb;
2065	size_t i, oct, bit;
2066
2067	mutex_enter(&svm_asidlock);
2068
2069	for (i = 0; i < svm_maxasid; i++) {
2070		oct = i / 8;
2071		bit = i % 8;
2072
2073		if (svm_asidmap[oct] & __BIT(bit)) {
2074			continue;
2075		}
2076
2077		svm_asidmap[oct] |= __BIT(bit);
2078		vmcb->ctrl.guest_asid = i;
2079		mutex_exit(&svm_asidlock);
2080		return;
2081	}
2082
2083	/*
2084	 * No free ASID. Use the last one, which is shared and requires
2085	 * special TLB handling.
2086	 */
2087	cpudata->shared_asid = true;
2088	vmcb->ctrl.guest_asid = svm_maxasid - 1;
2089	mutex_exit(&svm_asidlock);
2090}
2091
2092static void
2093svm_asid_free(struct nvmm_cpu *vcpu)
2094{
2095	struct svm_cpudata *cpudata = vcpu->cpudata;
2096	struct vmcb *vmcb = cpudata->vmcb;
2097	size_t oct, bit;
2098
2099	if (cpudata->shared_asid) {
2100		return;
2101	}
2102
2103	oct = vmcb->ctrl.guest_asid / 8;
2104	bit = vmcb->ctrl.guest_asid % 8;
2105
2106	mutex_enter(&svm_asidlock);
2107	svm_asidmap[oct] &= ~__BIT(bit);
2108	mutex_exit(&svm_asidlock);
2109}
2110
2111static void
2112svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2113{
2114	struct svm_cpudata *cpudata = vcpu->cpudata;
2115	struct vmcb *vmcb = cpudata->vmcb;
2116
2117	/* Allow reads/writes of Control Registers. */
2118	vmcb->ctrl.intercept_cr = 0;
2119
2120	/* Allow reads/writes of Debug Registers. */
2121	vmcb->ctrl.intercept_dr = 0;
2122
2123	/* Allow exceptions 0 to 31. */
2124	vmcb->ctrl.intercept_vec = 0;
2125
2126	/*
2127	 * Allow:
2128	 *  - SMI [smm interrupts]
2129	 *  - VINTR [virtual interrupts]
2130	 *  - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
2131	 *  - RIDTR [reads of IDTR]
2132	 *  - RGDTR [reads of GDTR]
2133	 *  - RLDTR [reads of LDTR]
2134	 *  - RTR [reads of TR]
2135	 *  - WIDTR [writes of IDTR]
2136	 *  - WGDTR [writes of GDTR]
2137	 *  - WLDTR [writes of LDTR]
2138	 *  - WTR [writes of TR]
2139	 *  - RDTSC [rdtsc instruction]
2140	 *  - PUSHF [pushf instruction]
2141	 *  - POPF [popf instruction]
2142	 *  - IRET [iret instruction]
2143	 *  - INTN [int $n instructions]
2144	 *  - PAUSE [pause instruction]
2145	 *  - INVLPG [invplg instruction]
2146	 *  - TASKSW [task switches]
2147	 *
2148	 * Intercept the rest below.
2149	 */
2150	vmcb->ctrl.intercept_misc1 =
2151	    VMCB_CTRL_INTERCEPT_INTR |
2152	    VMCB_CTRL_INTERCEPT_NMI |
2153	    VMCB_CTRL_INTERCEPT_INIT |
2154	    VMCB_CTRL_INTERCEPT_RDPMC |
2155	    VMCB_CTRL_INTERCEPT_CPUID |
2156	    VMCB_CTRL_INTERCEPT_RSM |
2157	    VMCB_CTRL_INTERCEPT_INVD |
2158	    VMCB_CTRL_INTERCEPT_HLT |
2159	    VMCB_CTRL_INTERCEPT_INVLPGA |
2160	    VMCB_CTRL_INTERCEPT_IOIO_PROT |
2161	    VMCB_CTRL_INTERCEPT_MSR_PROT |
2162	    VMCB_CTRL_INTERCEPT_FERR_FREEZE |
2163	    VMCB_CTRL_INTERCEPT_SHUTDOWN;
2164
2165	/*
2166	 * Allow:
2167	 *  - ICEBP [icebp instruction]
2168	 *  - WBINVD [wbinvd instruction]
2169	 *  - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
2170	 *
2171	 * Intercept the rest below.
2172	 */
2173	vmcb->ctrl.intercept_misc2 =
2174	    VMCB_CTRL_INTERCEPT_VMRUN |
2175	    VMCB_CTRL_INTERCEPT_VMMCALL |
2176	    VMCB_CTRL_INTERCEPT_VMLOAD |
2177	    VMCB_CTRL_INTERCEPT_VMSAVE |
2178	    VMCB_CTRL_INTERCEPT_STGI |
2179	    VMCB_CTRL_INTERCEPT_CLGI |
2180	    VMCB_CTRL_INTERCEPT_SKINIT |
2181	    VMCB_CTRL_INTERCEPT_RDTSCP |
2182	    VMCB_CTRL_INTERCEPT_MONITOR |
2183	    VMCB_CTRL_INTERCEPT_MWAIT |
2184	    VMCB_CTRL_INTERCEPT_XSETBV |
2185	    VMCB_CTRL_INTERCEPT_RDPRU;
2186
2187	/*
2188	 * Intercept everything.
2189	 */
2190	vmcb->ctrl.intercept_misc3 =
2191	    VMCB_CTRL_INTERCEPT_INVLPGB_ALL |
2192	    VMCB_CTRL_INTERCEPT_PCID |
2193	    VMCB_CTRL_INTERCEPT_MCOMMIT |
2194	    VMCB_CTRL_INTERCEPT_TLBSYNC;
2195
2196	/* Intercept all I/O accesses. */
2197	memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2198	vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2199
2200	/* Allow direct access to certain MSRs. */
2201	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2202	svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2203	svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2204	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2205	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2206	svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2207	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2208	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2209	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2210	svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2211	svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2212	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2213	svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2214	vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2215
2216	/* Generate ASID. */
2217	svm_asid_alloc(vcpu);
2218
2219	/* Virtual TPR. */
2220	vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2221
2222	/* Enable Nested Paging. */
2223	vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2224	vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2225
2226	/* Init XSAVE header. */
2227	cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2228	cpudata->gfpu.xsh_xcomp_bv = 0;
2229
2230	/* These MSRs are static. */
2231	cpudata->star = rdmsr(MSR_STAR);
2232	cpudata->lstar = rdmsr(MSR_LSTAR);
2233	cpudata->cstar = rdmsr(MSR_CSTAR);
2234	cpudata->sfmask = rdmsr(MSR_SFMASK);
2235
2236	/* Install the RESET state. */
2237	memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2238	    sizeof(nvmm_x86_reset_state));
2239	vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2240	vcpu->comm->state_cached = 0;
2241	svm_vcpu_setstate(vcpu);
2242}
2243
2244static int
2245svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2246{
2247	struct svm_cpudata *cpudata;
2248	int error;
2249
2250	/* Allocate the SVM cpudata. */
2251	cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2252	    roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2253	    UVM_KMF_WIRED|UVM_KMF_ZERO);
2254	vcpu->cpudata = cpudata;
2255
2256	/* VMCB */
2257	error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2258	    VMCB_NPAGES);
2259	if (error)
2260		goto error;
2261
2262	/* I/O Bitmap */
2263	error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2264	    IOBM_NPAGES);
2265	if (error)
2266		goto error;
2267
2268	/* MSR Bitmap */
2269	error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2270	    MSRBM_NPAGES);
2271	if (error)
2272		goto error;
2273
2274	/* Init the VCPU info. */
2275	svm_vcpu_init(mach, vcpu);
2276
2277	return 0;
2278
2279error:
2280	if (cpudata->vmcb_pa) {
2281		svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2282		    VMCB_NPAGES);
2283	}
2284	if (cpudata->iobm_pa) {
2285		svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2286		    IOBM_NPAGES);
2287	}
2288	if (cpudata->msrbm_pa) {
2289		svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2290		    MSRBM_NPAGES);
2291	}
2292	uvm_km_free(kernel_map, (vaddr_t)cpudata,
2293	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2294	return error;
2295}
2296
2297static void
2298svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2299{
2300	struct svm_cpudata *cpudata = vcpu->cpudata;
2301
2302	svm_asid_free(vcpu);
2303
2304	svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2305	svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2306	svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2307
2308	uvm_km_free(kernel_map, (vaddr_t)cpudata,
2309	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2310}
2311
2312/* -------------------------------------------------------------------------- */
2313
2314static int
2315svm_vcpu_configure_cpuid(struct svm_cpudata *cpudata, void *data)
2316{
2317	struct nvmm_vcpu_conf_cpuid *cpuid = data;
2318	size_t i;
2319
2320	if (__predict_false(cpuid->mask && cpuid->exit)) {
2321		return EINVAL;
2322	}
2323	if (__predict_false(cpuid->mask &&
2324	    ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2325	     (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2326	     (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2327	     (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2328		return EINVAL;
2329	}
2330
2331	/* If unset, delete, to restore the default behavior. */
2332	if (!cpuid->mask && !cpuid->exit) {
2333		for (i = 0; i < SVM_NCPUIDS; i++) {
2334			if (!cpudata->cpuidpresent[i]) {
2335				continue;
2336			}
2337			if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2338				cpudata->cpuidpresent[i] = false;
2339			}
2340		}
2341		return 0;
2342	}
2343
2344	/* If already here, replace. */
2345	for (i = 0; i < SVM_NCPUIDS; i++) {
2346		if (!cpudata->cpuidpresent[i]) {
2347			continue;
2348		}
2349		if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2350			memcpy(&cpudata->cpuid[i], cpuid,
2351			    sizeof(struct nvmm_vcpu_conf_cpuid));
2352			return 0;
2353		}
2354	}
2355
2356	/* Not here, insert. */
2357	for (i = 0; i < SVM_NCPUIDS; i++) {
2358		if (!cpudata->cpuidpresent[i]) {
2359			cpudata->cpuidpresent[i] = true;
2360			memcpy(&cpudata->cpuid[i], cpuid,
2361			    sizeof(struct nvmm_vcpu_conf_cpuid));
2362			return 0;
2363		}
2364	}
2365
2366	return ENOBUFS;
2367}
2368
2369static int
2370svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2371{
2372	struct svm_cpudata *cpudata = vcpu->cpudata;
2373
2374	switch (op) {
2375	case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2376		return svm_vcpu_configure_cpuid(cpudata, data);
2377	default:
2378		return EINVAL;
2379	}
2380}
2381
2382/* -------------------------------------------------------------------------- */
2383
2384static void
2385svm_tlb_flush(struct pmap *pm)
2386{
2387	struct nvmm_machine *mach = pm->pm_data;
2388	struct svm_machdata *machdata = mach->machdata;
2389
2390	atomic_inc_64(&machdata->mach_htlb_gen);
2391
2392	/* Generates IPIs, which cause #VMEXITs. */
2393	pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
2394}
2395
2396static void
2397svm_machine_create(struct nvmm_machine *mach)
2398{
2399	struct svm_machdata *machdata;
2400
2401	/* Fill in pmap info. */
2402	mach->vm->vm_map.pmap->pm_data = (void *)mach;
2403	mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2404
2405	machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2406	mach->machdata = machdata;
2407
2408	/* Start with an hTLB flush everywhere. */
2409	machdata->mach_htlb_gen = 1;
2410}
2411
2412static void
2413svm_machine_destroy(struct nvmm_machine *mach)
2414{
2415	kmem_free(mach->machdata, sizeof(struct svm_machdata));
2416}
2417
2418static int
2419svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2420{
2421	panic("%s: impossible", __func__);
2422}
2423
2424/* -------------------------------------------------------------------------- */
2425
2426static bool
2427svm_ident(void)
2428{
2429	u_int descs[4];
2430	uint64_t msr;
2431
2432	if (cpu_vendor != CPUVENDOR_AMD) {
2433		return false;
2434	}
2435	if (!(cpu_feature[3] & CPUID_SVM)) {
2436		printf("NVMM: SVM not supported\n");
2437		return false;
2438	}
2439
2440	if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2441		printf("NVMM: CPUID leaf not available\n");
2442		return false;
2443	}
2444	x86_cpuid(0x8000000a, descs);
2445
2446	/* Expect revision 1. */
2447	if (__SHIFTOUT(descs[0], CPUID_AMD_SVM_REV) != 1) {
2448		printf("NVMM: SVM revision not supported\n");
2449		return false;
2450	}
2451
2452	/* Want Nested Paging. */
2453	if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2454		printf("NVMM: SVM-NP not supported\n");
2455		return false;
2456	}
2457
2458	/* Want nRIP. */
2459	if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2460		printf("NVMM: SVM-NRIPS not supported\n");
2461		return false;
2462	}
2463
2464	svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2465
2466	msr = rdmsr(MSR_VMCR);
2467	if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2468		printf("NVMM: SVM disabled in BIOS\n");
2469		return false;
2470	}
2471
2472	return true;
2473}
2474
2475static void
2476svm_init_asid(uint32_t maxasid)
2477{
2478	size_t i, j, allocsz;
2479
2480	mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2481
2482	/* Arbitrarily limit. */
2483	maxasid = uimin(maxasid, 8192);
2484
2485	svm_maxasid = maxasid;
2486	allocsz = roundup(maxasid, 8) / 8;
2487	svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2488
2489	/* ASID 0 is reserved for the host. */
2490	svm_asidmap[0] |= __BIT(0);
2491
2492	/* ASID n-1 is special, we share it. */
2493	i = (maxasid - 1) / 8;
2494	j = (maxasid - 1) % 8;
2495	svm_asidmap[i] |= __BIT(j);
2496}
2497
2498static void
2499svm_change_cpu(void *arg1, void *arg2)
2500{
2501	bool enable = arg1 != NULL;
2502	uint64_t msr;
2503
2504	msr = rdmsr(MSR_VMCR);
2505	if (msr & VMCR_SVMED) {
2506		wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2507	}
2508
2509	if (!enable) {
2510		wrmsr(MSR_VM_HSAVE_PA, 0);
2511	}
2512
2513	msr = rdmsr(MSR_EFER);
2514	if (enable) {
2515		msr |= EFER_SVME;
2516	} else {
2517		msr &= ~EFER_SVME;
2518	}
2519	wrmsr(MSR_EFER, msr);
2520
2521	if (enable) {
2522		wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2523	}
2524}
2525
2526static void
2527svm_init(void)
2528{
2529	CPU_INFO_ITERATOR cii;
2530	struct cpu_info *ci;
2531	struct vm_page *pg;
2532	u_int descs[4];
2533	uint64_t xc;
2534
2535	x86_cpuid(0x8000000a, descs);
2536
2537	/* The guest TLB flush command. */
2538	if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2539		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2540	} else {
2541		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2542	}
2543
2544	/* Init the ASID. */
2545	svm_init_asid(descs[1]);
2546
2547	/* Init the XCR0 mask. */
2548	svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2549
2550	/* Init the max basic CPUID leaf. */
2551	svm_cpuid_max_basic = uimin(cpuid_level, SVM_CPUID_MAX_BASIC);
2552
2553	/* Init the max extended CPUID leaf. */
2554	x86_cpuid(0x80000000, descs);
2555	svm_cpuid_max_extended = uimin(descs[0], SVM_CPUID_MAX_EXTENDED);
2556
2557	memset(hsave, 0, sizeof(hsave));
2558	for (CPU_INFO_FOREACH(cii, ci)) {
2559		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2560		hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2561	}
2562
2563	xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2564	xc_wait(xc);
2565}
2566
2567static void
2568svm_fini_asid(void)
2569{
2570	size_t allocsz;
2571
2572	allocsz = roundup(svm_maxasid, 8) / 8;
2573	kmem_free(svm_asidmap, allocsz);
2574
2575	mutex_destroy(&svm_asidlock);
2576}
2577
2578static void
2579svm_fini(void)
2580{
2581	uint64_t xc;
2582	size_t i;
2583
2584	xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2585	xc_wait(xc);
2586
2587	for (i = 0; i < MAXCPUS; i++) {
2588		if (hsave[i].pa != 0)
2589			uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2590	}
2591
2592	svm_fini_asid();
2593}
2594
2595static void
2596svm_capability(struct nvmm_capability *cap)
2597{
2598	cap->arch.mach_conf_support = 0;
2599	cap->arch.vcpu_conf_support =
2600	    NVMM_CAP_ARCH_VCPU_CONF_CPUID;
2601	cap->arch.xcr0_mask = svm_xcr0_mask;
2602	cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2603	cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2604}
2605
2606const struct nvmm_impl nvmm_x86_svm = {
2607	.name = "x86-svm",
2608	.ident = svm_ident,
2609	.init = svm_init,
2610	.fini = svm_fini,
2611	.capability = svm_capability,
2612	.mach_conf_max = NVMM_X86_MACH_NCONF,
2613	.mach_conf_sizes = NULL,
2614	.vcpu_conf_max = NVMM_X86_VCPU_NCONF,
2615	.vcpu_conf_sizes = svm_vcpu_conf_sizes,
2616	.state_size = sizeof(struct nvmm_x64_state),
2617	.machine_create = svm_machine_create,
2618	.machine_destroy = svm_machine_destroy,
2619	.machine_configure = svm_machine_configure,
2620	.vcpu_create = svm_vcpu_create,
2621	.vcpu_destroy = svm_vcpu_destroy,
2622	.vcpu_configure = svm_vcpu_configure,
2623	.vcpu_setstate = svm_vcpu_setstate,
2624	.vcpu_getstate = svm_vcpu_getstate,
2625	.vcpu_inject = svm_vcpu_inject,
2626	.vcpu_run = svm_vcpu_run
2627};
2628