nvmm_x86_svm.c revision 1.44
1/*	$NetBSD: nvmm_x86_svm.c,v 1.44 2019/04/29 18:54:25 maxv Exp $	*/
2
3/*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32#include <sys/cdefs.h>
33__KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.44 2019/04/29 18:54:25 maxv Exp $");
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/kernel.h>
38#include <sys/kmem.h>
39#include <sys/cpu.h>
40#include <sys/xcall.h>
41#include <sys/mman.h>
42
43#include <uvm/uvm.h>
44#include <uvm/uvm_page.h>
45
46#include <x86/cputypes.h>
47#include <x86/specialreg.h>
48#include <x86/pmap.h>
49#include <x86/dbregs.h>
50#include <x86/cpu_counter.h>
51#include <machine/cpuvar.h>
52
53#include <dev/nvmm/nvmm.h>
54#include <dev/nvmm/nvmm_internal.h>
55#include <dev/nvmm/x86/nvmm_x86.h>
56
57int svm_vmrun(paddr_t, uint64_t *);
58
59#define	MSR_VM_HSAVE_PA	0xC0010117
60
61/* -------------------------------------------------------------------------- */
62
63#define VMCB_EXITCODE_CR0_READ		0x0000
64#define VMCB_EXITCODE_CR1_READ		0x0001
65#define VMCB_EXITCODE_CR2_READ		0x0002
66#define VMCB_EXITCODE_CR3_READ		0x0003
67#define VMCB_EXITCODE_CR4_READ		0x0004
68#define VMCB_EXITCODE_CR5_READ		0x0005
69#define VMCB_EXITCODE_CR6_READ		0x0006
70#define VMCB_EXITCODE_CR7_READ		0x0007
71#define VMCB_EXITCODE_CR8_READ		0x0008
72#define VMCB_EXITCODE_CR9_READ		0x0009
73#define VMCB_EXITCODE_CR10_READ		0x000A
74#define VMCB_EXITCODE_CR11_READ		0x000B
75#define VMCB_EXITCODE_CR12_READ		0x000C
76#define VMCB_EXITCODE_CR13_READ		0x000D
77#define VMCB_EXITCODE_CR14_READ		0x000E
78#define VMCB_EXITCODE_CR15_READ		0x000F
79#define VMCB_EXITCODE_CR0_WRITE		0x0010
80#define VMCB_EXITCODE_CR1_WRITE		0x0011
81#define VMCB_EXITCODE_CR2_WRITE		0x0012
82#define VMCB_EXITCODE_CR3_WRITE		0x0013
83#define VMCB_EXITCODE_CR4_WRITE		0x0014
84#define VMCB_EXITCODE_CR5_WRITE		0x0015
85#define VMCB_EXITCODE_CR6_WRITE		0x0016
86#define VMCB_EXITCODE_CR7_WRITE		0x0017
87#define VMCB_EXITCODE_CR8_WRITE		0x0018
88#define VMCB_EXITCODE_CR9_WRITE		0x0019
89#define VMCB_EXITCODE_CR10_WRITE	0x001A
90#define VMCB_EXITCODE_CR11_WRITE	0x001B
91#define VMCB_EXITCODE_CR12_WRITE	0x001C
92#define VMCB_EXITCODE_CR13_WRITE	0x001D
93#define VMCB_EXITCODE_CR14_WRITE	0x001E
94#define VMCB_EXITCODE_CR15_WRITE	0x001F
95#define VMCB_EXITCODE_DR0_READ		0x0020
96#define VMCB_EXITCODE_DR1_READ		0x0021
97#define VMCB_EXITCODE_DR2_READ		0x0022
98#define VMCB_EXITCODE_DR3_READ		0x0023
99#define VMCB_EXITCODE_DR4_READ		0x0024
100#define VMCB_EXITCODE_DR5_READ		0x0025
101#define VMCB_EXITCODE_DR6_READ		0x0026
102#define VMCB_EXITCODE_DR7_READ		0x0027
103#define VMCB_EXITCODE_DR8_READ		0x0028
104#define VMCB_EXITCODE_DR9_READ		0x0029
105#define VMCB_EXITCODE_DR10_READ		0x002A
106#define VMCB_EXITCODE_DR11_READ		0x002B
107#define VMCB_EXITCODE_DR12_READ		0x002C
108#define VMCB_EXITCODE_DR13_READ		0x002D
109#define VMCB_EXITCODE_DR14_READ		0x002E
110#define VMCB_EXITCODE_DR15_READ		0x002F
111#define VMCB_EXITCODE_DR0_WRITE		0x0030
112#define VMCB_EXITCODE_DR1_WRITE		0x0031
113#define VMCB_EXITCODE_DR2_WRITE		0x0032
114#define VMCB_EXITCODE_DR3_WRITE		0x0033
115#define VMCB_EXITCODE_DR4_WRITE		0x0034
116#define VMCB_EXITCODE_DR5_WRITE		0x0035
117#define VMCB_EXITCODE_DR6_WRITE		0x0036
118#define VMCB_EXITCODE_DR7_WRITE		0x0037
119#define VMCB_EXITCODE_DR8_WRITE		0x0038
120#define VMCB_EXITCODE_DR9_WRITE		0x0039
121#define VMCB_EXITCODE_DR10_WRITE	0x003A
122#define VMCB_EXITCODE_DR11_WRITE	0x003B
123#define VMCB_EXITCODE_DR12_WRITE	0x003C
124#define VMCB_EXITCODE_DR13_WRITE	0x003D
125#define VMCB_EXITCODE_DR14_WRITE	0x003E
126#define VMCB_EXITCODE_DR15_WRITE	0x003F
127#define VMCB_EXITCODE_EXCP0		0x0040
128#define VMCB_EXITCODE_EXCP1		0x0041
129#define VMCB_EXITCODE_EXCP2		0x0042
130#define VMCB_EXITCODE_EXCP3		0x0043
131#define VMCB_EXITCODE_EXCP4		0x0044
132#define VMCB_EXITCODE_EXCP5		0x0045
133#define VMCB_EXITCODE_EXCP6		0x0046
134#define VMCB_EXITCODE_EXCP7		0x0047
135#define VMCB_EXITCODE_EXCP8		0x0048
136#define VMCB_EXITCODE_EXCP9		0x0049
137#define VMCB_EXITCODE_EXCP10		0x004A
138#define VMCB_EXITCODE_EXCP11		0x004B
139#define VMCB_EXITCODE_EXCP12		0x004C
140#define VMCB_EXITCODE_EXCP13		0x004D
141#define VMCB_EXITCODE_EXCP14		0x004E
142#define VMCB_EXITCODE_EXCP15		0x004F
143#define VMCB_EXITCODE_EXCP16		0x0050
144#define VMCB_EXITCODE_EXCP17		0x0051
145#define VMCB_EXITCODE_EXCP18		0x0052
146#define VMCB_EXITCODE_EXCP19		0x0053
147#define VMCB_EXITCODE_EXCP20		0x0054
148#define VMCB_EXITCODE_EXCP21		0x0055
149#define VMCB_EXITCODE_EXCP22		0x0056
150#define VMCB_EXITCODE_EXCP23		0x0057
151#define VMCB_EXITCODE_EXCP24		0x0058
152#define VMCB_EXITCODE_EXCP25		0x0059
153#define VMCB_EXITCODE_EXCP26		0x005A
154#define VMCB_EXITCODE_EXCP27		0x005B
155#define VMCB_EXITCODE_EXCP28		0x005C
156#define VMCB_EXITCODE_EXCP29		0x005D
157#define VMCB_EXITCODE_EXCP30		0x005E
158#define VMCB_EXITCODE_EXCP31		0x005F
159#define VMCB_EXITCODE_INTR		0x0060
160#define VMCB_EXITCODE_NMI		0x0061
161#define VMCB_EXITCODE_SMI		0x0062
162#define VMCB_EXITCODE_INIT		0x0063
163#define VMCB_EXITCODE_VINTR		0x0064
164#define VMCB_EXITCODE_CR0_SEL_WRITE	0x0065
165#define VMCB_EXITCODE_IDTR_READ		0x0066
166#define VMCB_EXITCODE_GDTR_READ		0x0067
167#define VMCB_EXITCODE_LDTR_READ		0x0068
168#define VMCB_EXITCODE_TR_READ		0x0069
169#define VMCB_EXITCODE_IDTR_WRITE	0x006A
170#define VMCB_EXITCODE_GDTR_WRITE	0x006B
171#define VMCB_EXITCODE_LDTR_WRITE	0x006C
172#define VMCB_EXITCODE_TR_WRITE		0x006D
173#define VMCB_EXITCODE_RDTSC		0x006E
174#define VMCB_EXITCODE_RDPMC		0x006F
175#define VMCB_EXITCODE_PUSHF		0x0070
176#define VMCB_EXITCODE_POPF		0x0071
177#define VMCB_EXITCODE_CPUID		0x0072
178#define VMCB_EXITCODE_RSM		0x0073
179#define VMCB_EXITCODE_IRET		0x0074
180#define VMCB_EXITCODE_SWINT		0x0075
181#define VMCB_EXITCODE_INVD		0x0076
182#define VMCB_EXITCODE_PAUSE		0x0077
183#define VMCB_EXITCODE_HLT		0x0078
184#define VMCB_EXITCODE_INVLPG		0x0079
185#define VMCB_EXITCODE_INVLPGA		0x007A
186#define VMCB_EXITCODE_IOIO		0x007B
187#define VMCB_EXITCODE_MSR		0x007C
188#define VMCB_EXITCODE_TASK_SWITCH	0x007D
189#define VMCB_EXITCODE_FERR_FREEZE	0x007E
190#define VMCB_EXITCODE_SHUTDOWN		0x007F
191#define VMCB_EXITCODE_VMRUN		0x0080
192#define VMCB_EXITCODE_VMMCALL		0x0081
193#define VMCB_EXITCODE_VMLOAD		0x0082
194#define VMCB_EXITCODE_VMSAVE		0x0083
195#define VMCB_EXITCODE_STGI		0x0084
196#define VMCB_EXITCODE_CLGI		0x0085
197#define VMCB_EXITCODE_SKINIT		0x0086
198#define VMCB_EXITCODE_RDTSCP		0x0087
199#define VMCB_EXITCODE_ICEBP		0x0088
200#define VMCB_EXITCODE_WBINVD		0x0089
201#define VMCB_EXITCODE_MONITOR		0x008A
202#define VMCB_EXITCODE_MWAIT		0x008B
203#define VMCB_EXITCODE_MWAIT_CONDITIONAL	0x008C
204#define VMCB_EXITCODE_XSETBV		0x008D
205#define VMCB_EXITCODE_EFER_WRITE_TRAP	0x008F
206#define VMCB_EXITCODE_CR0_WRITE_TRAP	0x0090
207#define VMCB_EXITCODE_CR1_WRITE_TRAP	0x0091
208#define VMCB_EXITCODE_CR2_WRITE_TRAP	0x0092
209#define VMCB_EXITCODE_CR3_WRITE_TRAP	0x0093
210#define VMCB_EXITCODE_CR4_WRITE_TRAP	0x0094
211#define VMCB_EXITCODE_CR5_WRITE_TRAP	0x0095
212#define VMCB_EXITCODE_CR6_WRITE_TRAP	0x0096
213#define VMCB_EXITCODE_CR7_WRITE_TRAP	0x0097
214#define VMCB_EXITCODE_CR8_WRITE_TRAP	0x0098
215#define VMCB_EXITCODE_CR9_WRITE_TRAP	0x0099
216#define VMCB_EXITCODE_CR10_WRITE_TRAP	0x009A
217#define VMCB_EXITCODE_CR11_WRITE_TRAP	0x009B
218#define VMCB_EXITCODE_CR12_WRITE_TRAP	0x009C
219#define VMCB_EXITCODE_CR13_WRITE_TRAP	0x009D
220#define VMCB_EXITCODE_CR14_WRITE_TRAP	0x009E
221#define VMCB_EXITCODE_CR15_WRITE_TRAP	0x009F
222#define VMCB_EXITCODE_NPF		0x0400
223#define VMCB_EXITCODE_AVIC_INCOMP_IPI	0x0401
224#define VMCB_EXITCODE_AVIC_NOACCEL	0x0402
225#define VMCB_EXITCODE_VMGEXIT		0x0403
226#define VMCB_EXITCODE_INVALID		-1
227
228/* -------------------------------------------------------------------------- */
229
230struct vmcb_ctrl {
231	uint32_t intercept_cr;
232#define VMCB_CTRL_INTERCEPT_RCR(x)	__BIT( 0 + x)
233#define VMCB_CTRL_INTERCEPT_WCR(x)	__BIT(16 + x)
234
235	uint32_t intercept_dr;
236#define VMCB_CTRL_INTERCEPT_RDR(x)	__BIT( 0 + x)
237#define VMCB_CTRL_INTERCEPT_WDR(x)	__BIT(16 + x)
238
239	uint32_t intercept_vec;
240#define VMCB_CTRL_INTERCEPT_VEC(x)	__BIT(x)
241
242	uint32_t intercept_misc1;
243#define VMCB_CTRL_INTERCEPT_INTR	__BIT(0)
244#define VMCB_CTRL_INTERCEPT_NMI		__BIT(1)
245#define VMCB_CTRL_INTERCEPT_SMI		__BIT(2)
246#define VMCB_CTRL_INTERCEPT_INIT	__BIT(3)
247#define VMCB_CTRL_INTERCEPT_VINTR	__BIT(4)
248#define VMCB_CTRL_INTERCEPT_CR0_SPEC	__BIT(5)
249#define VMCB_CTRL_INTERCEPT_RIDTR	__BIT(6)
250#define VMCB_CTRL_INTERCEPT_RGDTR	__BIT(7)
251#define VMCB_CTRL_INTERCEPT_RLDTR	__BIT(8)
252#define VMCB_CTRL_INTERCEPT_RTR		__BIT(9)
253#define VMCB_CTRL_INTERCEPT_WIDTR	__BIT(10)
254#define VMCB_CTRL_INTERCEPT_WGDTR	__BIT(11)
255#define VMCB_CTRL_INTERCEPT_WLDTR	__BIT(12)
256#define VMCB_CTRL_INTERCEPT_WTR		__BIT(13)
257#define VMCB_CTRL_INTERCEPT_RDTSC	__BIT(14)
258#define VMCB_CTRL_INTERCEPT_RDPMC	__BIT(15)
259#define VMCB_CTRL_INTERCEPT_PUSHF	__BIT(16)
260#define VMCB_CTRL_INTERCEPT_POPF	__BIT(17)
261#define VMCB_CTRL_INTERCEPT_CPUID	__BIT(18)
262#define VMCB_CTRL_INTERCEPT_RSM		__BIT(19)
263#define VMCB_CTRL_INTERCEPT_IRET	__BIT(20)
264#define VMCB_CTRL_INTERCEPT_INTN	__BIT(21)
265#define VMCB_CTRL_INTERCEPT_INVD	__BIT(22)
266#define VMCB_CTRL_INTERCEPT_PAUSE	__BIT(23)
267#define VMCB_CTRL_INTERCEPT_HLT		__BIT(24)
268#define VMCB_CTRL_INTERCEPT_INVLPG	__BIT(25)
269#define VMCB_CTRL_INTERCEPT_INVLPGA	__BIT(26)
270#define VMCB_CTRL_INTERCEPT_IOIO_PROT	__BIT(27)
271#define VMCB_CTRL_INTERCEPT_MSR_PROT	__BIT(28)
272#define VMCB_CTRL_INTERCEPT_TASKSW	__BIT(29)
273#define VMCB_CTRL_INTERCEPT_FERR_FREEZE	__BIT(30)
274#define VMCB_CTRL_INTERCEPT_SHUTDOWN	__BIT(31)
275
276	uint32_t intercept_misc2;
277#define VMCB_CTRL_INTERCEPT_VMRUN	__BIT(0)
278#define VMCB_CTRL_INTERCEPT_VMMCALL	__BIT(1)
279#define VMCB_CTRL_INTERCEPT_VMLOAD	__BIT(2)
280#define VMCB_CTRL_INTERCEPT_VMSAVE	__BIT(3)
281#define VMCB_CTRL_INTERCEPT_STGI	__BIT(4)
282#define VMCB_CTRL_INTERCEPT_CLGI	__BIT(5)
283#define VMCB_CTRL_INTERCEPT_SKINIT	__BIT(6)
284#define VMCB_CTRL_INTERCEPT_RDTSCP	__BIT(7)
285#define VMCB_CTRL_INTERCEPT_ICEBP	__BIT(8)
286#define VMCB_CTRL_INTERCEPT_WBINVD	__BIT(9)
287#define VMCB_CTRL_INTERCEPT_MONITOR	__BIT(10)
288#define VMCB_CTRL_INTERCEPT_MWAIT	__BIT(12)
289#define VMCB_CTRL_INTERCEPT_XSETBV	__BIT(13)
290#define VMCB_CTRL_INTERCEPT_EFER_SPEC	__BIT(15)
291#define VMCB_CTRL_INTERCEPT_WCR_SPEC(x)	__BIT(16 + x)
292
293	uint8_t  rsvd1[40];
294	uint16_t pause_filt_thresh;
295	uint16_t pause_filt_cnt;
296	uint64_t iopm_base_pa;
297	uint64_t msrpm_base_pa;
298	uint64_t tsc_offset;
299	uint32_t guest_asid;
300
301	uint32_t tlb_ctrl;
302#define VMCB_CTRL_TLB_CTRL_FLUSH_ALL			0x01
303#define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST			0x03
304#define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL	0x07
305
306	uint64_t v;
307#define VMCB_CTRL_V_TPR			__BITS(3,0)
308#define VMCB_CTRL_V_IRQ			__BIT(8)
309#define VMCB_CTRL_V_VGIF		__BIT(9)
310#define VMCB_CTRL_V_INTR_PRIO		__BITS(19,16)
311#define VMCB_CTRL_V_IGN_TPR		__BIT(20)
312#define VMCB_CTRL_V_INTR_MASKING	__BIT(24)
313#define VMCB_CTRL_V_GUEST_VGIF		__BIT(25)
314#define VMCB_CTRL_V_AVIC_EN		__BIT(31)
315#define VMCB_CTRL_V_INTR_VECTOR		__BITS(39,32)
316
317	uint64_t intr;
318#define VMCB_CTRL_INTR_SHADOW		__BIT(0)
319
320	uint64_t exitcode;
321	uint64_t exitinfo1;
322	uint64_t exitinfo2;
323
324	uint64_t exitintinfo;
325#define VMCB_CTRL_EXITINTINFO_VECTOR	__BITS(7,0)
326#define VMCB_CTRL_EXITINTINFO_TYPE	__BITS(10,8)
327#define VMCB_CTRL_EXITINTINFO_EV	__BIT(11)
328#define VMCB_CTRL_EXITINTINFO_V		__BIT(31)
329#define VMCB_CTRL_EXITINTINFO_ERRORCODE	__BITS(63,32)
330
331	uint64_t enable1;
332#define VMCB_CTRL_ENABLE_NP		__BIT(0)
333#define VMCB_CTRL_ENABLE_SEV		__BIT(1)
334#define VMCB_CTRL_ENABLE_ES_SEV		__BIT(2)
335
336	uint64_t avic;
337#define VMCB_CTRL_AVIC_APIC_BAR		__BITS(51,0)
338
339	uint64_t ghcb;
340
341	uint64_t eventinj;
342#define VMCB_CTRL_EVENTINJ_VECTOR	__BITS(7,0)
343#define VMCB_CTRL_EVENTINJ_TYPE		__BITS(10,8)
344#define VMCB_CTRL_EVENTINJ_EV		__BIT(11)
345#define VMCB_CTRL_EVENTINJ_V		__BIT(31)
346#define VMCB_CTRL_EVENTINJ_ERRORCODE	__BITS(63,32)
347
348	uint64_t n_cr3;
349
350	uint64_t enable2;
351#define VMCB_CTRL_ENABLE_LBR		__BIT(0)
352#define VMCB_CTRL_ENABLE_VVMSAVE	__BIT(1)
353
354	uint32_t vmcb_clean;
355#define VMCB_CTRL_VMCB_CLEAN_I		__BIT(0)
356#define VMCB_CTRL_VMCB_CLEAN_IOPM	__BIT(1)
357#define VMCB_CTRL_VMCB_CLEAN_ASID	__BIT(2)
358#define VMCB_CTRL_VMCB_CLEAN_TPR	__BIT(3)
359#define VMCB_CTRL_VMCB_CLEAN_NP		__BIT(4)
360#define VMCB_CTRL_VMCB_CLEAN_CR		__BIT(5)
361#define VMCB_CTRL_VMCB_CLEAN_DR		__BIT(6)
362#define VMCB_CTRL_VMCB_CLEAN_DT		__BIT(7)
363#define VMCB_CTRL_VMCB_CLEAN_SEG	__BIT(8)
364#define VMCB_CTRL_VMCB_CLEAN_CR2	__BIT(9)
365#define VMCB_CTRL_VMCB_CLEAN_LBR	__BIT(10)
366#define VMCB_CTRL_VMCB_CLEAN_AVIC	__BIT(11)
367
368	uint32_t rsvd2;
369	uint64_t nrip;
370	uint8_t	inst_len;
371	uint8_t	inst_bytes[15];
372	uint64_t avic_abpp;
373	uint64_t rsvd3;
374	uint64_t avic_ltp;
375
376	uint64_t avic_phys;
377#define VMCB_CTRL_AVIC_PHYS_TABLE_PTR	__BITS(51,12)
378#define VMCB_CTRL_AVIC_PHYS_MAX_INDEX	__BITS(7,0)
379
380	uint64_t rsvd4;
381	uint64_t vmcb_ptr;
382
383	uint8_t	pad[752];
384} __packed;
385
386CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
387
388struct vmcb_segment {
389	uint16_t selector;
390	uint16_t attrib;	/* hidden */
391	uint32_t limit;		/* hidden */
392	uint64_t base;		/* hidden */
393} __packed;
394
395CTASSERT(sizeof(struct vmcb_segment) == 16);
396
397struct vmcb_state {
398	struct   vmcb_segment es;
399	struct   vmcb_segment cs;
400	struct   vmcb_segment ss;
401	struct   vmcb_segment ds;
402	struct   vmcb_segment fs;
403	struct   vmcb_segment gs;
404	struct   vmcb_segment gdt;
405	struct   vmcb_segment ldt;
406	struct   vmcb_segment idt;
407	struct   vmcb_segment tr;
408	uint8_t	 rsvd1[43];
409	uint8_t	 cpl;
410	uint8_t  rsvd2[4];
411	uint64_t efer;
412	uint8_t	 rsvd3[112];
413	uint64_t cr4;
414	uint64_t cr3;
415	uint64_t cr0;
416	uint64_t dr7;
417	uint64_t dr6;
418	uint64_t rflags;
419	uint64_t rip;
420	uint8_t	 rsvd4[88];
421	uint64_t rsp;
422	uint8_t	 rsvd5[24];
423	uint64_t rax;
424	uint64_t star;
425	uint64_t lstar;
426	uint64_t cstar;
427	uint64_t sfmask;
428	uint64_t kernelgsbase;
429	uint64_t sysenter_cs;
430	uint64_t sysenter_esp;
431	uint64_t sysenter_eip;
432	uint64_t cr2;
433	uint8_t	 rsvd6[32];
434	uint64_t g_pat;
435	uint64_t dbgctl;
436	uint64_t br_from;
437	uint64_t br_to;
438	uint64_t int_from;
439	uint64_t int_to;
440	uint8_t	 pad[2408];
441} __packed;
442
443CTASSERT(sizeof(struct vmcb_state) == 0xC00);
444
445struct vmcb {
446	struct vmcb_ctrl ctrl;
447	struct vmcb_state state;
448} __packed;
449
450CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
451CTASSERT(offsetof(struct vmcb, state) == 0x400);
452
453/* -------------------------------------------------------------------------- */
454
455static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
456static void svm_vcpu_state_commit(struct nvmm_cpu *);
457
458struct svm_hsave {
459	paddr_t pa;
460};
461
462static struct svm_hsave hsave[MAXCPUS];
463
464static uint8_t *svm_asidmap __read_mostly;
465static uint32_t svm_maxasid __read_mostly;
466static kmutex_t svm_asidlock __cacheline_aligned;
467
468static bool svm_decode_assist __read_mostly;
469static uint32_t svm_ctrl_tlb_flush __read_mostly;
470
471#define SVM_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
472static uint64_t svm_xcr0_mask __read_mostly;
473
474#define SVM_NCPUIDS	32
475
476#define VMCB_NPAGES	1
477
478#define MSRBM_NPAGES	2
479#define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
480
481#define IOBM_NPAGES	3
482#define IOBM_SIZE	(IOBM_NPAGES * PAGE_SIZE)
483
484/* Does not include EFER_LMSLE. */
485#define EFER_VALID \
486	(EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
487
488#define EFER_TLB_FLUSH \
489	(EFER_NXE|EFER_LMA|EFER_LME)
490#define CR0_TLB_FLUSH \
491	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
492#define CR4_TLB_FLUSH \
493	(CR4_PGE|CR4_PAE|CR4_PSE)
494
495/* -------------------------------------------------------------------------- */
496
497struct svm_machdata {
498	bool cpuidpresent[SVM_NCPUIDS];
499	struct nvmm_x86_conf_cpuid cpuid[SVM_NCPUIDS];
500	volatile uint64_t mach_htlb_gen;
501};
502
503static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
504	[NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
505};
506
507struct svm_cpudata {
508	/* General */
509	bool shared_asid;
510	bool gtlb_want_flush;
511	bool gtsc_want_update;
512	uint64_t vcpu_htlb_gen;
513
514	/* VMCB */
515	struct vmcb *vmcb;
516	paddr_t vmcb_pa;
517
518	/* I/O bitmap */
519	uint8_t *iobm;
520	paddr_t iobm_pa;
521
522	/* MSR bitmap */
523	uint8_t *msrbm;
524	paddr_t msrbm_pa;
525
526	/* Host state */
527	uint64_t hxcr0;
528	uint64_t star;
529	uint64_t lstar;
530	uint64_t cstar;
531	uint64_t sfmask;
532	uint64_t fsbase;
533	uint64_t kernelgsbase;
534	bool ts_set;
535	struct xsave_header hfpu __aligned(64);
536
537	/* Intr state */
538	bool int_window_exit;
539	bool nmi_window_exit;
540	bool evt_pending;
541
542	/* Guest state */
543	uint64_t gxcr0;
544	uint64_t gprs[NVMM_X64_NGPR];
545	uint64_t drs[NVMM_X64_NDR];
546	uint64_t gtsc;
547	struct xsave_header gfpu __aligned(64);
548};
549
550static void
551svm_vmcb_cache_default(struct vmcb *vmcb)
552{
553	vmcb->ctrl.vmcb_clean =
554	    VMCB_CTRL_VMCB_CLEAN_I |
555	    VMCB_CTRL_VMCB_CLEAN_IOPM |
556	    VMCB_CTRL_VMCB_CLEAN_ASID |
557	    VMCB_CTRL_VMCB_CLEAN_TPR |
558	    VMCB_CTRL_VMCB_CLEAN_NP |
559	    VMCB_CTRL_VMCB_CLEAN_CR |
560	    VMCB_CTRL_VMCB_CLEAN_DR |
561	    VMCB_CTRL_VMCB_CLEAN_DT |
562	    VMCB_CTRL_VMCB_CLEAN_SEG |
563	    VMCB_CTRL_VMCB_CLEAN_CR2 |
564	    VMCB_CTRL_VMCB_CLEAN_LBR |
565	    VMCB_CTRL_VMCB_CLEAN_AVIC;
566}
567
568static void
569svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
570{
571	if (flags & NVMM_X64_STATE_SEGS) {
572		vmcb->ctrl.vmcb_clean &=
573		    ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
574	}
575	if (flags & NVMM_X64_STATE_CRS) {
576		vmcb->ctrl.vmcb_clean &=
577		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
578		      VMCB_CTRL_VMCB_CLEAN_TPR);
579	}
580	if (flags & NVMM_X64_STATE_DRS) {
581		vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
582	}
583	if (flags & NVMM_X64_STATE_MSRS) {
584		/* CR for EFER, NP for PAT. */
585		vmcb->ctrl.vmcb_clean &=
586		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
587	}
588}
589
590static inline void
591svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
592{
593	vmcb->ctrl.vmcb_clean &= ~flags;
594}
595
596static inline void
597svm_vmcb_cache_flush_all(struct vmcb *vmcb)
598{
599	vmcb->ctrl.vmcb_clean = 0;
600}
601
602#define SVM_EVENT_TYPE_HW_INT	0
603#define SVM_EVENT_TYPE_NMI	2
604#define SVM_EVENT_TYPE_EXC	3
605#define SVM_EVENT_TYPE_SW_INT	4
606
607static void
608svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
609{
610	struct svm_cpudata *cpudata = vcpu->cpudata;
611	struct vmcb *vmcb = cpudata->vmcb;
612
613	if (nmi) {
614		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
615		cpudata->nmi_window_exit = true;
616	} else {
617		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
618		vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
619		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
620		cpudata->int_window_exit = true;
621	}
622
623	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
624}
625
626static void
627svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
628{
629	struct svm_cpudata *cpudata = vcpu->cpudata;
630	struct vmcb *vmcb = cpudata->vmcb;
631
632	if (nmi) {
633		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
634		cpudata->nmi_window_exit = false;
635	} else {
636		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
637		vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
638		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
639		cpudata->int_window_exit = false;
640	}
641
642	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
643}
644
645static inline int
646svm_event_has_error(uint64_t vector)
647{
648	switch (vector) {
649	case 8:		/* #DF */
650	case 10:	/* #TS */
651	case 11:	/* #NP */
652	case 12:	/* #SS */
653	case 13:	/* #GP */
654	case 14:	/* #PF */
655	case 17:	/* #AC */
656	case 30:	/* #SX */
657		return 1;
658	default:
659		return 0;
660	}
661}
662
663static int
664svm_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
665    struct nvmm_event *event)
666{
667	struct svm_cpudata *cpudata = vcpu->cpudata;
668	struct vmcb *vmcb = cpudata->vmcb;
669	int type = 0, err = 0;
670
671	if (event->vector >= 256) {
672		return EINVAL;
673	}
674
675	switch (event->type) {
676	case NVMM_EVENT_INTERRUPT_HW:
677		type = SVM_EVENT_TYPE_HW_INT;
678		if (event->vector == 2) {
679			type = SVM_EVENT_TYPE_NMI;
680			svm_event_waitexit_enable(vcpu, true);
681		}
682		err = 0;
683		break;
684	case NVMM_EVENT_INTERRUPT_SW:
685		return EINVAL;
686	case NVMM_EVENT_EXCEPTION:
687		type = SVM_EVENT_TYPE_EXC;
688		if (event->vector == 2 || event->vector >= 32)
689			return EINVAL;
690		if (event->vector == 3 || event->vector == 0)
691			return EINVAL;
692		err = svm_event_has_error(event->vector);
693		break;
694	default:
695		return EINVAL;
696	}
697
698	vmcb->ctrl.eventinj =
699	    __SHIFTIN(event->vector, VMCB_CTRL_EVENTINJ_VECTOR) |
700	    __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
701	    __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
702	    __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
703	    __SHIFTIN(event->u.error, VMCB_CTRL_EVENTINJ_ERRORCODE);
704
705	cpudata->evt_pending = true;
706
707	return 0;
708}
709
710static void
711svm_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
712{
713	struct nvmm_event event;
714	int ret __diagused;
715
716	event.type = NVMM_EVENT_EXCEPTION;
717	event.vector = 6;
718	event.u.error = 0;
719
720	ret = svm_vcpu_inject(mach, vcpu, &event);
721	KASSERT(ret == 0);
722}
723
724static void
725svm_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
726{
727	struct nvmm_event event;
728	int ret __diagused;
729
730	event.type = NVMM_EVENT_EXCEPTION;
731	event.vector = 13;
732	event.u.error = 0;
733
734	ret = svm_vcpu_inject(mach, vcpu, &event);
735	KASSERT(ret == 0);
736}
737
738static inline void
739svm_inkernel_advance(struct vmcb *vmcb)
740{
741	/*
742	 * Maybe we should also apply single-stepping and debug exceptions.
743	 * Matters for guest-ring3, because it can execute 'cpuid' under a
744	 * debugger.
745	 */
746	vmcb->state.rip = vmcb->ctrl.nrip;
747	vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
748}
749
750static void
751svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
752{
753	struct svm_cpudata *cpudata = vcpu->cpudata;
754	uint64_t cr4;
755
756	switch (eax) {
757	case 0x00000001:
758		cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
759
760		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
761		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
762		    CPUID_LOCAL_APIC_ID);
763
764		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
765		cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
766
767		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
768
769		/* CPUID2_OSXSAVE depends on CR4. */
770		cr4 = cpudata->vmcb->state.cr4;
771		if (!(cr4 & CR4_OSXSAVE)) {
772			cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
773		}
774		break;
775	case 0x00000005:
776	case 0x00000006:
777		cpudata->vmcb->state.rax = 0;
778		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
779		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
780		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
781		break;
782	case 0x00000007:
783		cpudata->vmcb->state.rax &= nvmm_cpuid_00000007.eax;
784		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
785		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
786		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
787		break;
788	case 0x0000000D:
789		if (svm_xcr0_mask == 0) {
790			break;
791		}
792		switch (ecx) {
793		case 0:
794			cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
795			if (cpudata->gxcr0 & XCR0_SSE) {
796				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
797			} else {
798				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
799			}
800			cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
801			cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
802			cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
803			break;
804		case 1:
805			cpudata->vmcb->state.rax &= ~CPUID_PES1_XSAVES;
806			break;
807		}
808		break;
809	case 0x40000000:
810		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
811		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
812		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
813		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
814		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
815		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
816		break;
817	case 0x80000001:
818		cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
819		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
820		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
821		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
822		break;
823	default:
824		break;
825	}
826}
827
828static void
829svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
830    struct nvmm_exit *exit)
831{
832	struct svm_machdata *machdata = mach->machdata;
833	struct svm_cpudata *cpudata = vcpu->cpudata;
834	struct nvmm_x86_conf_cpuid *cpuid;
835	uint64_t eax, ecx;
836	u_int descs[4];
837	size_t i;
838
839	eax = cpudata->vmcb->state.rax;
840	ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
841	x86_cpuid2(eax, ecx, descs);
842
843	cpudata->vmcb->state.rax = descs[0];
844	cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
845	cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
846	cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
847
848	svm_inkernel_handle_cpuid(vcpu, eax, ecx);
849
850	for (i = 0; i < SVM_NCPUIDS; i++) {
851		cpuid = &machdata->cpuid[i];
852		if (!machdata->cpuidpresent[i]) {
853			continue;
854		}
855		if (cpuid->leaf != eax) {
856			continue;
857		}
858
859		/* del */
860		cpudata->vmcb->state.rax &= ~cpuid->del.eax;
861		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
862		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
863		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
864
865		/* set */
866		cpudata->vmcb->state.rax |= cpuid->set.eax;
867		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
868		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
869		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
870
871		break;
872	}
873
874	svm_inkernel_advance(cpudata->vmcb);
875	exit->reason = NVMM_EXIT_NONE;
876}
877
878static void
879svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
880    struct nvmm_exit *exit)
881{
882	struct svm_cpudata *cpudata = vcpu->cpudata;
883	struct vmcb *vmcb = cpudata->vmcb;
884
885	if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
886		svm_event_waitexit_disable(vcpu, false);
887	}
888
889	svm_inkernel_advance(cpudata->vmcb);
890	exit->reason = NVMM_EXIT_HALTED;
891}
892
893#define SVM_EXIT_IO_PORT	__BITS(31,16)
894#define SVM_EXIT_IO_SEG		__BITS(12,10)
895#define SVM_EXIT_IO_A64		__BIT(9)
896#define SVM_EXIT_IO_A32		__BIT(8)
897#define SVM_EXIT_IO_A16		__BIT(7)
898#define SVM_EXIT_IO_SZ32	__BIT(6)
899#define SVM_EXIT_IO_SZ16	__BIT(5)
900#define SVM_EXIT_IO_SZ8		__BIT(4)
901#define SVM_EXIT_IO_REP		__BIT(3)
902#define SVM_EXIT_IO_STR		__BIT(2)
903#define SVM_EXIT_IO_IN		__BIT(0)
904
905static void
906svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
907    struct nvmm_exit *exit)
908{
909	struct svm_cpudata *cpudata = vcpu->cpudata;
910	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
911	uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
912
913	exit->reason = NVMM_EXIT_IO;
914
915	if (info & SVM_EXIT_IO_IN) {
916		exit->u.io.type = NVMM_EXIT_IO_IN;
917	} else {
918		exit->u.io.type = NVMM_EXIT_IO_OUT;
919	}
920
921	exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
922
923	if (svm_decode_assist) {
924		KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
925		exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
926	} else {
927		exit->u.io.seg = -1;
928	}
929
930	if (info & SVM_EXIT_IO_A64) {
931		exit->u.io.address_size = 8;
932	} else if (info & SVM_EXIT_IO_A32) {
933		exit->u.io.address_size = 4;
934	} else if (info & SVM_EXIT_IO_A16) {
935		exit->u.io.address_size = 2;
936	}
937
938	if (info & SVM_EXIT_IO_SZ32) {
939		exit->u.io.operand_size = 4;
940	} else if (info & SVM_EXIT_IO_SZ16) {
941		exit->u.io.operand_size = 2;
942	} else if (info & SVM_EXIT_IO_SZ8) {
943		exit->u.io.operand_size = 1;
944	}
945
946	exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
947	exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
948	exit->u.io.npc = nextpc;
949
950	svm_vcpu_state_provide(vcpu,
951	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
952	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
953}
954
955static const uint64_t msr_ignore_list[] = {
956	0xc0010055, /* MSR_CMPHALT */
957	MSR_DE_CFG,
958	MSR_IC_CFG,
959	MSR_UCODE_AMD_PATCHLEVEL
960};
961
962static bool
963svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
964    struct nvmm_exit *exit)
965{
966	struct svm_cpudata *cpudata = vcpu->cpudata;
967	struct vmcb *vmcb = cpudata->vmcb;
968	uint64_t val;
969	size_t i;
970
971	switch (exit->u.msr.type) {
972	case NVMM_EXIT_MSR_RDMSR:
973		if (exit->u.msr.msr == MSR_NB_CFG) {
974			val = NB_CFG_INITAPICCPUIDLO;
975			vmcb->state.rax = (val & 0xFFFFFFFF);
976			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
977			goto handled;
978		}
979		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
980			if (msr_ignore_list[i] != exit->u.msr.msr)
981				continue;
982			val = 0;
983			vmcb->state.rax = (val & 0xFFFFFFFF);
984			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
985			goto handled;
986		}
987		break;
988	case NVMM_EXIT_MSR_WRMSR:
989		if (exit->u.msr.msr == MSR_EFER) {
990			if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
991				goto error;
992			}
993			if ((vmcb->state.efer ^ exit->u.msr.val) &
994			     EFER_TLB_FLUSH) {
995				cpudata->gtlb_want_flush = true;
996			}
997			vmcb->state.efer = exit->u.msr.val | EFER_SVME;
998			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
999			goto handled;
1000		}
1001		if (exit->u.msr.msr == MSR_TSC) {
1002			cpudata->gtsc = exit->u.msr.val;
1003			cpudata->gtsc_want_update = true;
1004			goto handled;
1005		}
1006		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1007			if (msr_ignore_list[i] != exit->u.msr.msr)
1008				continue;
1009			goto handled;
1010		}
1011		break;
1012	}
1013
1014	return false;
1015
1016handled:
1017	svm_inkernel_advance(cpudata->vmcb);
1018	return true;
1019
1020error:
1021	svm_inject_gp(mach, vcpu);
1022	return true;
1023}
1024
1025static void
1026svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1027    struct nvmm_exit *exit)
1028{
1029	struct svm_cpudata *cpudata = vcpu->cpudata;
1030	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1031
1032	if (info == 0) {
1033		exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1034	} else {
1035		exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1036	}
1037
1038	exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1039
1040	if (info == 1) {
1041		uint64_t rdx, rax;
1042		rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1043		rax = cpudata->vmcb->state.rax;
1044		exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1045	} else {
1046		exit->u.msr.val = 0;
1047	}
1048
1049	if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1050		exit->reason = NVMM_EXIT_NONE;
1051		return;
1052	}
1053
1054	exit->reason = NVMM_EXIT_MSR;
1055	exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
1056
1057	svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1058}
1059
1060static void
1061svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1062    struct nvmm_exit *exit)
1063{
1064	struct svm_cpudata *cpudata = vcpu->cpudata;
1065	gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1066
1067	exit->reason = NVMM_EXIT_MEMORY;
1068	if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1069		exit->u.mem.prot = PROT_WRITE;
1070	else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1071		exit->u.mem.prot = PROT_EXEC;
1072	else
1073		exit->u.mem.prot = PROT_READ;
1074	exit->u.mem.gpa = gpa;
1075	exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1076	memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1077	    sizeof(exit->u.mem.inst_bytes));
1078
1079	svm_vcpu_state_provide(vcpu,
1080	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1081	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1082}
1083
1084static void
1085svm_exit_insn(struct vmcb *vmcb, struct nvmm_exit *exit, uint64_t reason)
1086{
1087	exit->u.insn.npc = vmcb->ctrl.nrip;
1088	exit->reason = reason;
1089}
1090
1091static void
1092svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1093    struct nvmm_exit *exit)
1094{
1095	struct svm_cpudata *cpudata = vcpu->cpudata;
1096	struct vmcb *vmcb = cpudata->vmcb;
1097	uint64_t val;
1098
1099	exit->reason = NVMM_EXIT_NONE;
1100
1101	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1102	    (vmcb->state.rax & 0xFFFFFFFF);
1103
1104	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1105		goto error;
1106	} else if (__predict_false(vmcb->state.cpl != 0)) {
1107		goto error;
1108	} else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1109		goto error;
1110	} else if (__predict_false((val & XCR0_X87) == 0)) {
1111		goto error;
1112	}
1113
1114	cpudata->gxcr0 = val;
1115
1116	svm_inkernel_advance(cpudata->vmcb);
1117	return;
1118
1119error:
1120	svm_inject_gp(mach, vcpu);
1121}
1122
1123static void
1124svm_exit_invalid(struct nvmm_exit *exit, uint64_t code)
1125{
1126	exit->u.inv.hwcode = code;
1127	exit->reason = NVMM_EXIT_INVALID;
1128}
1129
1130/* -------------------------------------------------------------------------- */
1131
1132static void
1133svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1134{
1135	struct svm_cpudata *cpudata = vcpu->cpudata;
1136
1137	cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1138
1139	fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
1140	fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1141
1142	if (svm_xcr0_mask != 0) {
1143		cpudata->hxcr0 = rdxcr(0);
1144		wrxcr(0, cpudata->gxcr0);
1145	}
1146}
1147
1148static void
1149svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1150{
1151	struct svm_cpudata *cpudata = vcpu->cpudata;
1152
1153	if (svm_xcr0_mask != 0) {
1154		cpudata->gxcr0 = rdxcr(0);
1155		wrxcr(0, cpudata->hxcr0);
1156	}
1157
1158	fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1159	fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
1160
1161	if (cpudata->ts_set) {
1162		stts();
1163	}
1164}
1165
1166static void
1167svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1168{
1169	struct svm_cpudata *cpudata = vcpu->cpudata;
1170
1171	x86_dbregs_save(curlwp);
1172
1173	ldr7(0);
1174
1175	ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1176	ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1177	ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1178	ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1179}
1180
1181static void
1182svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1183{
1184	struct svm_cpudata *cpudata = vcpu->cpudata;
1185
1186	cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1187	cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1188	cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1189	cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1190
1191	x86_dbregs_restore(curlwp);
1192}
1193
1194static void
1195svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1196{
1197	struct svm_cpudata *cpudata = vcpu->cpudata;
1198
1199	cpudata->fsbase = rdmsr(MSR_FSBASE);
1200	cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1201}
1202
1203static void
1204svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1205{
1206	struct svm_cpudata *cpudata = vcpu->cpudata;
1207
1208	wrmsr(MSR_STAR, cpudata->star);
1209	wrmsr(MSR_LSTAR, cpudata->lstar);
1210	wrmsr(MSR_CSTAR, cpudata->cstar);
1211	wrmsr(MSR_SFMASK, cpudata->sfmask);
1212	wrmsr(MSR_FSBASE, cpudata->fsbase);
1213	wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1214}
1215
1216/* -------------------------------------------------------------------------- */
1217
1218static inline void
1219svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1220{
1221	struct svm_cpudata *cpudata = vcpu->cpudata;
1222
1223	if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1224		cpudata->gtlb_want_flush = true;
1225	}
1226}
1227
1228static inline void
1229svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1230{
1231	/*
1232	 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1233	 * executing on this hCPU and the hTLB already got flushed, or it
1234	 * was executing on another hCPU in which case the catchup is done
1235	 * in svm_gtlb_catchup().
1236	 */
1237}
1238
1239static inline uint64_t
1240svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1241{
1242	struct vmcb *vmcb = cpudata->vmcb;
1243	uint64_t machgen;
1244
1245	machgen = machdata->mach_htlb_gen;
1246	if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1247		return machgen;
1248	}
1249
1250	vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1251	return machgen;
1252}
1253
1254static inline void
1255svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1256{
1257	struct vmcb *vmcb = cpudata->vmcb;
1258
1259	if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1260		cpudata->vcpu_htlb_gen = machgen;
1261	}
1262}
1263
1264static inline void
1265svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1266{
1267	cpudata->evt_pending = false;
1268
1269	if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1270		vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1271		cpudata->evt_pending = true;
1272	}
1273}
1274
1275static int
1276svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1277    struct nvmm_exit *exit)
1278{
1279	struct nvmm_comm_page *comm = vcpu->comm;
1280	struct svm_machdata *machdata = mach->machdata;
1281	struct svm_cpudata *cpudata = vcpu->cpudata;
1282	struct vmcb *vmcb = cpudata->vmcb;
1283	uint64_t machgen;
1284	int hcpu, s;
1285
1286	svm_vcpu_state_commit(vcpu);
1287	comm->state_cached = 0;
1288
1289	kpreempt_disable();
1290	hcpu = cpu_number();
1291
1292	svm_gtlb_catchup(vcpu, hcpu);
1293	svm_htlb_catchup(vcpu, hcpu);
1294
1295	if (vcpu->hcpu_last != hcpu) {
1296		svm_vmcb_cache_flush_all(vmcb);
1297		cpudata->gtsc_want_update = true;
1298	}
1299
1300	svm_vcpu_guest_dbregs_enter(vcpu);
1301	svm_vcpu_guest_misc_enter(vcpu);
1302
1303	while (1) {
1304		if (cpudata->gtlb_want_flush) {
1305			vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1306		} else {
1307			vmcb->ctrl.tlb_ctrl = 0;
1308		}
1309
1310		if (__predict_false(cpudata->gtsc_want_update)) {
1311			vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1312			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1313		}
1314
1315		s = splhigh();
1316		machgen = svm_htlb_flush(machdata, cpudata);
1317		svm_vcpu_guest_fpu_enter(vcpu);
1318		svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1319		svm_vcpu_guest_fpu_leave(vcpu);
1320		svm_htlb_flush_ack(cpudata, machgen);
1321		splx(s);
1322
1323		svm_vmcb_cache_default(vmcb);
1324
1325		if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1326			cpudata->gtlb_want_flush = false;
1327			cpudata->gtsc_want_update = false;
1328			vcpu->hcpu_last = hcpu;
1329		}
1330		svm_exit_evt(cpudata, vmcb);
1331
1332		switch (vmcb->ctrl.exitcode) {
1333		case VMCB_EXITCODE_INTR:
1334		case VMCB_EXITCODE_NMI:
1335			exit->reason = NVMM_EXIT_NONE;
1336			break;
1337		case VMCB_EXITCODE_VINTR:
1338			svm_event_waitexit_disable(vcpu, false);
1339			exit->reason = NVMM_EXIT_INT_READY;
1340			break;
1341		case VMCB_EXITCODE_IRET:
1342			svm_event_waitexit_disable(vcpu, true);
1343			exit->reason = NVMM_EXIT_NMI_READY;
1344			break;
1345		case VMCB_EXITCODE_CPUID:
1346			svm_exit_cpuid(mach, vcpu, exit);
1347			break;
1348		case VMCB_EXITCODE_HLT:
1349			svm_exit_hlt(mach, vcpu, exit);
1350			break;
1351		case VMCB_EXITCODE_IOIO:
1352			svm_exit_io(mach, vcpu, exit);
1353			break;
1354		case VMCB_EXITCODE_MSR:
1355			svm_exit_msr(mach, vcpu, exit);
1356			break;
1357		case VMCB_EXITCODE_SHUTDOWN:
1358			exit->reason = NVMM_EXIT_SHUTDOWN;
1359			break;
1360		case VMCB_EXITCODE_RDPMC:
1361		case VMCB_EXITCODE_RSM:
1362		case VMCB_EXITCODE_INVLPGA:
1363		case VMCB_EXITCODE_VMRUN:
1364		case VMCB_EXITCODE_VMMCALL:
1365		case VMCB_EXITCODE_VMLOAD:
1366		case VMCB_EXITCODE_VMSAVE:
1367		case VMCB_EXITCODE_STGI:
1368		case VMCB_EXITCODE_CLGI:
1369		case VMCB_EXITCODE_SKINIT:
1370		case VMCB_EXITCODE_RDTSCP:
1371			svm_inject_ud(mach, vcpu);
1372			exit->reason = NVMM_EXIT_NONE;
1373			break;
1374		case VMCB_EXITCODE_MONITOR:
1375			svm_exit_insn(vmcb, exit, NVMM_EXIT_MONITOR);
1376			break;
1377		case VMCB_EXITCODE_MWAIT:
1378			svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT);
1379			break;
1380		case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1381			svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT_COND);
1382			break;
1383		case VMCB_EXITCODE_XSETBV:
1384			svm_exit_xsetbv(mach, vcpu, exit);
1385			break;
1386		case VMCB_EXITCODE_NPF:
1387			svm_exit_npf(mach, vcpu, exit);
1388			break;
1389		case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1390		default:
1391			svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1392			break;
1393		}
1394
1395		/* If no reason to return to userland, keep rolling. */
1396		if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1397			break;
1398		}
1399		if (curcpu()->ci_data.cpu_softints != 0) {
1400			break;
1401		}
1402		if (curlwp->l_flag & LW_USERRET) {
1403			break;
1404		}
1405		if (exit->reason != NVMM_EXIT_NONE) {
1406			break;
1407		}
1408	}
1409
1410	cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1411
1412	svm_vcpu_guest_misc_leave(vcpu);
1413	svm_vcpu_guest_dbregs_leave(vcpu);
1414
1415	kpreempt_enable();
1416
1417	exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1418	    VMCB_CTRL_V_TPR);
1419	exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
1420
1421	exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1422	    ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1423	exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1424	    cpudata->int_window_exit;
1425	exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1426	    cpudata->nmi_window_exit;
1427	exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
1428	    cpudata->evt_pending;
1429
1430	return 0;
1431}
1432
1433/* -------------------------------------------------------------------------- */
1434
1435static int
1436svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1437{
1438	struct pglist pglist;
1439	paddr_t _pa;
1440	vaddr_t _va;
1441	size_t i;
1442	int ret;
1443
1444	ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1445	    &pglist, 1, 0);
1446	if (ret != 0)
1447		return ENOMEM;
1448	_pa = TAILQ_FIRST(&pglist)->phys_addr;
1449	_va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1450	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1451	if (_va == 0)
1452		goto error;
1453
1454	for (i = 0; i < npages; i++) {
1455		pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1456		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1457	}
1458	pmap_update(pmap_kernel());
1459
1460	memset((void *)_va, 0, npages * PAGE_SIZE);
1461
1462	*pa = _pa;
1463	*va = _va;
1464	return 0;
1465
1466error:
1467	for (i = 0; i < npages; i++) {
1468		uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1469	}
1470	return ENOMEM;
1471}
1472
1473static void
1474svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1475{
1476	size_t i;
1477
1478	pmap_kremove(va, npages * PAGE_SIZE);
1479	pmap_update(pmap_kernel());
1480	uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1481	for (i = 0; i < npages; i++) {
1482		uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1483	}
1484}
1485
1486/* -------------------------------------------------------------------------- */
1487
1488#define SVM_MSRBM_READ	__BIT(0)
1489#define SVM_MSRBM_WRITE	__BIT(1)
1490
1491static void
1492svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1493{
1494	uint64_t byte;
1495	uint8_t bitoff;
1496
1497	if (msr < 0x00002000) {
1498		/* Range 1 */
1499		byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1500	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1501		/* Range 2 */
1502		byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1503	} else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1504		/* Range 3 */
1505		byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1506	} else {
1507		panic("%s: wrong range", __func__);
1508	}
1509
1510	bitoff = (msr & 0x3) << 1;
1511
1512	if (read) {
1513		bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1514	}
1515	if (write) {
1516		bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1517	}
1518}
1519
1520#define SVM_SEG_ATTRIB_TYPE		__BITS(3,0)
1521#define SVM_SEG_ATTRIB_S		__BIT(4)
1522#define SVM_SEG_ATTRIB_DPL		__BITS(6,5)
1523#define SVM_SEG_ATTRIB_P		__BIT(7)
1524#define SVM_SEG_ATTRIB_AVL		__BIT(8)
1525#define SVM_SEG_ATTRIB_L		__BIT(9)
1526#define SVM_SEG_ATTRIB_DEF		__BIT(10)
1527#define SVM_SEG_ATTRIB_G		__BIT(11)
1528
1529static void
1530svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1531    struct vmcb_segment *vseg)
1532{
1533	vseg->selector = seg->selector;
1534	vseg->attrib =
1535	    __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1536	    __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1537	    __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1538	    __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1539	    __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1540	    __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1541	    __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1542	    __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1543	vseg->limit = seg->limit;
1544	vseg->base = seg->base;
1545}
1546
1547static void
1548svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1549{
1550	seg->selector = vseg->selector;
1551	seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1552	seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1553	seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1554	seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1555	seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1556	seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1557	seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1558	seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1559	seg->limit = vseg->limit;
1560	seg->base = vseg->base;
1561}
1562
1563static inline bool
1564svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1565    uint64_t flags)
1566{
1567	if (flags & NVMM_X64_STATE_CRS) {
1568		if ((vmcb->state.cr0 ^
1569		     state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1570			return true;
1571		}
1572		if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1573			return true;
1574		}
1575		if ((vmcb->state.cr4 ^
1576		     state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1577			return true;
1578		}
1579	}
1580
1581	if (flags & NVMM_X64_STATE_MSRS) {
1582		if ((vmcb->state.efer ^
1583		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1584			return true;
1585		}
1586	}
1587
1588	return false;
1589}
1590
1591static void
1592svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1593{
1594	struct nvmm_comm_page *comm = vcpu->comm;
1595	const struct nvmm_x64_state *state = &comm->state;
1596	struct svm_cpudata *cpudata = vcpu->cpudata;
1597	struct vmcb *vmcb = cpudata->vmcb;
1598	struct fxsave *fpustate;
1599	uint64_t flags;
1600
1601	flags = comm->state_wanted;
1602
1603	if (svm_state_tlb_flush(vmcb, state, flags)) {
1604		cpudata->gtlb_want_flush = true;
1605	}
1606
1607	if (flags & NVMM_X64_STATE_SEGS) {
1608		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1609		    &vmcb->state.cs);
1610		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1611		    &vmcb->state.ds);
1612		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1613		    &vmcb->state.es);
1614		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1615		    &vmcb->state.fs);
1616		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1617		    &vmcb->state.gs);
1618		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1619		    &vmcb->state.ss);
1620		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1621		    &vmcb->state.gdt);
1622		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1623		    &vmcb->state.idt);
1624		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1625		    &vmcb->state.ldt);
1626		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1627		    &vmcb->state.tr);
1628
1629		vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1630	}
1631
1632	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1633	if (flags & NVMM_X64_STATE_GPRS) {
1634		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1635
1636		vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1637		vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1638		vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1639		vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1640	}
1641
1642	if (flags & NVMM_X64_STATE_CRS) {
1643		vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1644		vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1645		vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1646		vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1647
1648		vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1649		vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1650		    VMCB_CTRL_V_TPR);
1651
1652		if (svm_xcr0_mask != 0) {
1653			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
1654			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1655			cpudata->gxcr0 &= svm_xcr0_mask;
1656			cpudata->gxcr0 |= XCR0_X87;
1657		}
1658	}
1659
1660	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1661	if (flags & NVMM_X64_STATE_DRS) {
1662		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1663
1664		vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1665		vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1666	}
1667
1668	if (flags & NVMM_X64_STATE_MSRS) {
1669		/*
1670		 * EFER_SVME is mandatory.
1671		 */
1672		vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1673		vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1674		vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1675		vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1676		vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1677		vmcb->state.kernelgsbase =
1678		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1679		vmcb->state.sysenter_cs =
1680		    state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1681		vmcb->state.sysenter_esp =
1682		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1683		vmcb->state.sysenter_eip =
1684		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1685		vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1686
1687		cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1688		cpudata->gtsc_want_update = true;
1689	}
1690
1691	if (flags & NVMM_X64_STATE_INTR) {
1692		if (state->intr.int_shadow) {
1693			vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1694		} else {
1695			vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1696		}
1697
1698		if (state->intr.int_window_exiting) {
1699			svm_event_waitexit_enable(vcpu, false);
1700		} else {
1701			svm_event_waitexit_disable(vcpu, false);
1702		}
1703
1704		if (state->intr.nmi_window_exiting) {
1705			svm_event_waitexit_enable(vcpu, true);
1706		} else {
1707			svm_event_waitexit_disable(vcpu, true);
1708		}
1709	}
1710
1711	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1712	if (flags & NVMM_X64_STATE_FPU) {
1713		memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1714		    sizeof(state->fpu));
1715
1716		fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1717		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1718		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1719
1720		if (svm_xcr0_mask != 0) {
1721			/* Reset XSTATE_BV, to force a reload. */
1722			cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1723		}
1724	}
1725
1726	svm_vmcb_cache_update(vmcb, flags);
1727
1728	comm->state_wanted = 0;
1729	comm->state_cached |= flags;
1730}
1731
1732static void
1733svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1734{
1735	struct nvmm_comm_page *comm = vcpu->comm;
1736	struct nvmm_x64_state *state = &comm->state;
1737	struct svm_cpudata *cpudata = vcpu->cpudata;
1738	struct vmcb *vmcb = cpudata->vmcb;
1739	uint64_t flags;
1740
1741	flags = comm->state_wanted;
1742
1743	if (flags & NVMM_X64_STATE_SEGS) {
1744		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1745		    &vmcb->state.cs);
1746		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1747		    &vmcb->state.ds);
1748		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1749		    &vmcb->state.es);
1750		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1751		    &vmcb->state.fs);
1752		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1753		    &vmcb->state.gs);
1754		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1755		    &vmcb->state.ss);
1756		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1757		    &vmcb->state.gdt);
1758		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1759		    &vmcb->state.idt);
1760		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1761		    &vmcb->state.ldt);
1762		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1763		    &vmcb->state.tr);
1764
1765		state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1766	}
1767
1768	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1769	if (flags & NVMM_X64_STATE_GPRS) {
1770		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1771
1772		state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1773		state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1774		state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1775		state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1776	}
1777
1778	if (flags & NVMM_X64_STATE_CRS) {
1779		state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1780		state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1781		state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1782		state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1783		state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1784		    VMCB_CTRL_V_TPR);
1785		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1786	}
1787
1788	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1789	if (flags & NVMM_X64_STATE_DRS) {
1790		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1791
1792		state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1793		state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1794	}
1795
1796	if (flags & NVMM_X64_STATE_MSRS) {
1797		state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1798		state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1799		state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1800		state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1801		state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1802		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1803		    vmcb->state.kernelgsbase;
1804		state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1805		    vmcb->state.sysenter_cs;
1806		state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1807		    vmcb->state.sysenter_esp;
1808		state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1809		    vmcb->state.sysenter_eip;
1810		state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1811		state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
1812
1813		/* Hide SVME. */
1814		state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1815	}
1816
1817	if (flags & NVMM_X64_STATE_INTR) {
1818		state->intr.int_shadow =
1819		    (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1820		state->intr.int_window_exiting = cpudata->int_window_exit;
1821		state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
1822		state->intr.evt_pending = cpudata->evt_pending;
1823	}
1824
1825	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1826	if (flags & NVMM_X64_STATE_FPU) {
1827		memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1828		    sizeof(state->fpu));
1829	}
1830
1831	comm->state_wanted = 0;
1832	comm->state_cached |= flags;
1833}
1834
1835static void
1836svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
1837{
1838	vcpu->comm->state_wanted = flags;
1839	svm_vcpu_getstate(vcpu);
1840}
1841
1842static void
1843svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
1844{
1845	vcpu->comm->state_wanted = vcpu->comm->state_commit;
1846	vcpu->comm->state_commit = 0;
1847	svm_vcpu_setstate(vcpu);
1848}
1849
1850/* -------------------------------------------------------------------------- */
1851
1852static void
1853svm_asid_alloc(struct nvmm_cpu *vcpu)
1854{
1855	struct svm_cpudata *cpudata = vcpu->cpudata;
1856	struct vmcb *vmcb = cpudata->vmcb;
1857	size_t i, oct, bit;
1858
1859	mutex_enter(&svm_asidlock);
1860
1861	for (i = 0; i < svm_maxasid; i++) {
1862		oct = i / 8;
1863		bit = i % 8;
1864
1865		if (svm_asidmap[oct] & __BIT(bit)) {
1866			continue;
1867		}
1868
1869		svm_asidmap[oct] |= __BIT(bit);
1870		vmcb->ctrl.guest_asid = i;
1871		mutex_exit(&svm_asidlock);
1872		return;
1873	}
1874
1875	/*
1876	 * No free ASID. Use the last one, which is shared and requires
1877	 * special TLB handling.
1878	 */
1879	cpudata->shared_asid = true;
1880	vmcb->ctrl.guest_asid = svm_maxasid - 1;
1881	mutex_exit(&svm_asidlock);
1882}
1883
1884static void
1885svm_asid_free(struct nvmm_cpu *vcpu)
1886{
1887	struct svm_cpudata *cpudata = vcpu->cpudata;
1888	struct vmcb *vmcb = cpudata->vmcb;
1889	size_t oct, bit;
1890
1891	if (cpudata->shared_asid) {
1892		return;
1893	}
1894
1895	oct = vmcb->ctrl.guest_asid / 8;
1896	bit = vmcb->ctrl.guest_asid % 8;
1897
1898	mutex_enter(&svm_asidlock);
1899	svm_asidmap[oct] &= ~__BIT(bit);
1900	mutex_exit(&svm_asidlock);
1901}
1902
1903static void
1904svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1905{
1906	struct svm_cpudata *cpudata = vcpu->cpudata;
1907	struct vmcb *vmcb = cpudata->vmcb;
1908
1909	/* Allow reads/writes of Control Registers. */
1910	vmcb->ctrl.intercept_cr = 0;
1911
1912	/* Allow reads/writes of Debug Registers. */
1913	vmcb->ctrl.intercept_dr = 0;
1914
1915	/* Allow exceptions 0 to 31. */
1916	vmcb->ctrl.intercept_vec = 0;
1917
1918	/*
1919	 * Allow:
1920	 *  - SMI [smm interrupts]
1921	 *  - VINTR [virtual interrupts]
1922	 *  - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1923	 *  - RIDTR [reads of IDTR]
1924	 *  - RGDTR [reads of GDTR]
1925	 *  - RLDTR [reads of LDTR]
1926	 *  - RTR [reads of TR]
1927	 *  - WIDTR [writes of IDTR]
1928	 *  - WGDTR [writes of GDTR]
1929	 *  - WLDTR [writes of LDTR]
1930	 *  - WTR [writes of TR]
1931	 *  - RDTSC [rdtsc instruction]
1932	 *  - PUSHF [pushf instruction]
1933	 *  - POPF [popf instruction]
1934	 *  - IRET [iret instruction]
1935	 *  - INTN [int $n instructions]
1936	 *  - INVD [invd instruction]
1937	 *  - PAUSE [pause instruction]
1938	 *  - INVLPG [invplg instruction]
1939	 *  - TASKSW [task switches]
1940	 *
1941	 * Intercept the rest below.
1942	 */
1943	vmcb->ctrl.intercept_misc1 =
1944	    VMCB_CTRL_INTERCEPT_INTR |
1945	    VMCB_CTRL_INTERCEPT_NMI |
1946	    VMCB_CTRL_INTERCEPT_INIT |
1947	    VMCB_CTRL_INTERCEPT_RDPMC |
1948	    VMCB_CTRL_INTERCEPT_CPUID |
1949	    VMCB_CTRL_INTERCEPT_RSM |
1950	    VMCB_CTRL_INTERCEPT_HLT |
1951	    VMCB_CTRL_INTERCEPT_INVLPGA |
1952	    VMCB_CTRL_INTERCEPT_IOIO_PROT |
1953	    VMCB_CTRL_INTERCEPT_MSR_PROT |
1954	    VMCB_CTRL_INTERCEPT_FERR_FREEZE |
1955	    VMCB_CTRL_INTERCEPT_SHUTDOWN;
1956
1957	/*
1958	 * Allow:
1959	 *  - ICEBP [icebp instruction]
1960	 *  - WBINVD [wbinvd instruction]
1961	 *  - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
1962	 *
1963	 * Intercept the rest below.
1964	 */
1965	vmcb->ctrl.intercept_misc2 =
1966	    VMCB_CTRL_INTERCEPT_VMRUN |
1967	    VMCB_CTRL_INTERCEPT_VMMCALL |
1968	    VMCB_CTRL_INTERCEPT_VMLOAD |
1969	    VMCB_CTRL_INTERCEPT_VMSAVE |
1970	    VMCB_CTRL_INTERCEPT_STGI |
1971	    VMCB_CTRL_INTERCEPT_CLGI |
1972	    VMCB_CTRL_INTERCEPT_SKINIT |
1973	    VMCB_CTRL_INTERCEPT_RDTSCP |
1974	    VMCB_CTRL_INTERCEPT_MONITOR |
1975	    VMCB_CTRL_INTERCEPT_MWAIT |
1976	    VMCB_CTRL_INTERCEPT_XSETBV;
1977
1978	/* Intercept all I/O accesses. */
1979	memset(cpudata->iobm, 0xFF, IOBM_SIZE);
1980	vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
1981
1982	/* Allow direct access to certain MSRs. */
1983	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
1984	svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
1985	svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
1986	svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
1987	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
1988	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
1989	svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
1990	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
1991	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
1992	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
1993	svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
1994	svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
1995	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
1996	svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
1997	vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
1998
1999	/* Generate ASID. */
2000	svm_asid_alloc(vcpu);
2001
2002	/* Virtual TPR. */
2003	vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2004
2005	/* Enable Nested Paging. */
2006	vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2007	vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2008
2009	/* Init XSAVE header. */
2010	cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2011	cpudata->gfpu.xsh_xcomp_bv = 0;
2012
2013	/* These MSRs are static. */
2014	cpudata->star = rdmsr(MSR_STAR);
2015	cpudata->lstar = rdmsr(MSR_LSTAR);
2016	cpudata->cstar = rdmsr(MSR_CSTAR);
2017	cpudata->sfmask = rdmsr(MSR_SFMASK);
2018
2019	/* Install the RESET state. */
2020	memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2021	    sizeof(nvmm_x86_reset_state));
2022	vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2023	vcpu->comm->state_cached = 0;
2024	svm_vcpu_setstate(vcpu);
2025}
2026
2027static int
2028svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2029{
2030	struct svm_cpudata *cpudata;
2031	int error;
2032
2033	/* Allocate the SVM cpudata. */
2034	cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2035	    roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2036	    UVM_KMF_WIRED|UVM_KMF_ZERO);
2037	vcpu->cpudata = cpudata;
2038
2039	/* VMCB */
2040	error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2041	    VMCB_NPAGES);
2042	if (error)
2043		goto error;
2044
2045	/* I/O Bitmap */
2046	error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2047	    IOBM_NPAGES);
2048	if (error)
2049		goto error;
2050
2051	/* MSR Bitmap */
2052	error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2053	    MSRBM_NPAGES);
2054	if (error)
2055		goto error;
2056
2057	/* Init the VCPU info. */
2058	svm_vcpu_init(mach, vcpu);
2059
2060	return 0;
2061
2062error:
2063	if (cpudata->vmcb_pa) {
2064		svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2065		    VMCB_NPAGES);
2066	}
2067	if (cpudata->iobm_pa) {
2068		svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2069		    IOBM_NPAGES);
2070	}
2071	if (cpudata->msrbm_pa) {
2072		svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2073		    MSRBM_NPAGES);
2074	}
2075	uvm_km_free(kernel_map, (vaddr_t)cpudata,
2076	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2077	return error;
2078}
2079
2080static void
2081svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2082{
2083	struct svm_cpudata *cpudata = vcpu->cpudata;
2084
2085	svm_asid_free(vcpu);
2086
2087	svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2088	svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2089	svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2090
2091	uvm_km_free(kernel_map, (vaddr_t)cpudata,
2092	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2093}
2094
2095/* -------------------------------------------------------------------------- */
2096
2097static void
2098svm_tlb_flush(struct pmap *pm)
2099{
2100	struct nvmm_machine *mach = pm->pm_data;
2101	struct svm_machdata *machdata = mach->machdata;
2102
2103	atomic_inc_64(&machdata->mach_htlb_gen);
2104
2105	/* Generates IPIs, which cause #VMEXITs. */
2106	pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
2107}
2108
2109static void
2110svm_machine_create(struct nvmm_machine *mach)
2111{
2112	struct svm_machdata *machdata;
2113
2114	/* Fill in pmap info. */
2115	mach->vm->vm_map.pmap->pm_data = (void *)mach;
2116	mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2117
2118	machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2119	mach->machdata = machdata;
2120
2121	/* Start with an hTLB flush everywhere. */
2122	machdata->mach_htlb_gen = 1;
2123}
2124
2125static void
2126svm_machine_destroy(struct nvmm_machine *mach)
2127{
2128	kmem_free(mach->machdata, sizeof(struct svm_machdata));
2129}
2130
2131static int
2132svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2133{
2134	struct nvmm_x86_conf_cpuid *cpuid = data;
2135	struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
2136	size_t i;
2137
2138	if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2139		return EINVAL;
2140	}
2141
2142	if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2143	    (cpuid->set.ebx & cpuid->del.ebx) ||
2144	    (cpuid->set.ecx & cpuid->del.ecx) ||
2145	    (cpuid->set.edx & cpuid->del.edx))) {
2146		return EINVAL;
2147	}
2148
2149	/* If already here, replace. */
2150	for (i = 0; i < SVM_NCPUIDS; i++) {
2151		if (!machdata->cpuidpresent[i]) {
2152			continue;
2153		}
2154		if (machdata->cpuid[i].leaf == cpuid->leaf) {
2155			memcpy(&machdata->cpuid[i], cpuid,
2156			    sizeof(struct nvmm_x86_conf_cpuid));
2157			return 0;
2158		}
2159	}
2160
2161	/* Not here, insert. */
2162	for (i = 0; i < SVM_NCPUIDS; i++) {
2163		if (!machdata->cpuidpresent[i]) {
2164			machdata->cpuidpresent[i] = true;
2165			memcpy(&machdata->cpuid[i], cpuid,
2166			    sizeof(struct nvmm_x86_conf_cpuid));
2167			return 0;
2168		}
2169	}
2170
2171	return ENOBUFS;
2172}
2173
2174/* -------------------------------------------------------------------------- */
2175
2176static bool
2177svm_ident(void)
2178{
2179	u_int descs[4];
2180	uint64_t msr;
2181
2182	if (cpu_vendor != CPUVENDOR_AMD) {
2183		return false;
2184	}
2185	if (!(cpu_feature[3] & CPUID_SVM)) {
2186		return false;
2187	}
2188
2189	if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2190		return false;
2191	}
2192	x86_cpuid(0x8000000a, descs);
2193
2194	/* Want Nested Paging. */
2195	if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2196		return false;
2197	}
2198
2199	/* Want nRIP. */
2200	if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2201		return false;
2202	}
2203
2204	svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2205
2206	msr = rdmsr(MSR_VMCR);
2207	if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2208		return false;
2209	}
2210
2211	return true;
2212}
2213
2214static void
2215svm_init_asid(uint32_t maxasid)
2216{
2217	size_t i, j, allocsz;
2218
2219	mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2220
2221	/* Arbitrarily limit. */
2222	maxasid = uimin(maxasid, 8192);
2223
2224	svm_maxasid = maxasid;
2225	allocsz = roundup(maxasid, 8) / 8;
2226	svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2227
2228	/* ASID 0 is reserved for the host. */
2229	svm_asidmap[0] |= __BIT(0);
2230
2231	/* ASID n-1 is special, we share it. */
2232	i = (maxasid - 1) / 8;
2233	j = (maxasid - 1) % 8;
2234	svm_asidmap[i] |= __BIT(j);
2235}
2236
2237static void
2238svm_change_cpu(void *arg1, void *arg2)
2239{
2240	bool enable = (bool)arg1;
2241	uint64_t msr;
2242
2243	msr = rdmsr(MSR_VMCR);
2244	if (msr & VMCR_SVMED) {
2245		wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2246	}
2247
2248	if (!enable) {
2249		wrmsr(MSR_VM_HSAVE_PA, 0);
2250	}
2251
2252	msr = rdmsr(MSR_EFER);
2253	if (enable) {
2254		msr |= EFER_SVME;
2255	} else {
2256		msr &= ~EFER_SVME;
2257	}
2258	wrmsr(MSR_EFER, msr);
2259
2260	if (enable) {
2261		wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2262	}
2263}
2264
2265static void
2266svm_init(void)
2267{
2268	CPU_INFO_ITERATOR cii;
2269	struct cpu_info *ci;
2270	struct vm_page *pg;
2271	u_int descs[4];
2272	uint64_t xc;
2273
2274	x86_cpuid(0x8000000a, descs);
2275
2276	/* The guest TLB flush command. */
2277	if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2278		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2279	} else {
2280		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2281	}
2282
2283	/* Init the ASID. */
2284	svm_init_asid(descs[1]);
2285
2286	/* Init the XCR0 mask. */
2287	svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2288
2289	memset(hsave, 0, sizeof(hsave));
2290	for (CPU_INFO_FOREACH(cii, ci)) {
2291		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2292		hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2293	}
2294
2295	xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2296	xc_wait(xc);
2297}
2298
2299static void
2300svm_fini_asid(void)
2301{
2302	size_t allocsz;
2303
2304	allocsz = roundup(svm_maxasid, 8) / 8;
2305	kmem_free(svm_asidmap, allocsz);
2306
2307	mutex_destroy(&svm_asidlock);
2308}
2309
2310static void
2311svm_fini(void)
2312{
2313	uint64_t xc;
2314	size_t i;
2315
2316	xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2317	xc_wait(xc);
2318
2319	for (i = 0; i < MAXCPUS; i++) {
2320		if (hsave[i].pa != 0)
2321			uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2322	}
2323
2324	svm_fini_asid();
2325}
2326
2327static void
2328svm_capability(struct nvmm_capability *cap)
2329{
2330	cap->arch.xcr0_mask = svm_xcr0_mask;
2331	cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2332	cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2333}
2334
2335const struct nvmm_impl nvmm_x86_svm = {
2336	.ident = svm_ident,
2337	.init = svm_init,
2338	.fini = svm_fini,
2339	.capability = svm_capability,
2340	.conf_max = NVMM_X86_NCONF,
2341	.conf_sizes = svm_conf_sizes,
2342	.state_size = sizeof(struct nvmm_x64_state),
2343	.machine_create = svm_machine_create,
2344	.machine_destroy = svm_machine_destroy,
2345	.machine_configure = svm_machine_configure,
2346	.vcpu_create = svm_vcpu_create,
2347	.vcpu_destroy = svm_vcpu_destroy,
2348	.vcpu_setstate = svm_vcpu_setstate,
2349	.vcpu_getstate = svm_vcpu_getstate,
2350	.vcpu_inject = svm_vcpu_inject,
2351	.vcpu_run = svm_vcpu_run
2352};
2353