z8530tty.c revision 1.90
1/*	$NetBSD: z8530tty.c,v 1.90 2003/06/29 09:56:28 darrenr Exp $	*/
2
3/*-
4 * Copyright (c) 1993, 1994, 1995, 1996, 1997, 1998, 1999
5 *	Charles M. Hannum.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Charles M. Hannum.
18 * 4. The name of the author may not be used to endorse or promote products
19 *    derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Copyright (c) 1994 Gordon W. Ross
35 * Copyright (c) 1992, 1993
36 *	The Regents of the University of California.  All rights reserved.
37 *
38 * This software was developed by the Computer Systems Engineering group
39 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
40 * contributed to Berkeley.
41 *
42 * All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 *	This product includes software developed by the University of
45 *	California, Lawrence Berkeley Laboratory.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 *    notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 *    notice, this list of conditions and the following disclaimer in the
54 *    documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 *    must display the following acknowledgement:
57 *	This product includes software developed by the University of
58 *	California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 *    may be used to endorse or promote products derived from this software
61 *    without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 *	@(#)zs.c	8.1 (Berkeley) 7/19/93
76 */
77
78/*
79 * Zilog Z8530 Dual UART driver (tty interface)
80 *
81 * This is the "slave" driver that will be attached to
82 * the "zsc" driver for plain "tty" async. serial lines.
83 *
84 * Credits, history:
85 *
86 * The original version of this code was the sparc/dev/zs.c driver
87 * as distributed with the Berkeley 4.4 Lite release.  Since then,
88 * Gordon Ross reorganized the code into the current parent/child
89 * driver scheme, separating the Sun keyboard and mouse support
90 * into independent child drivers.
91 *
92 * RTS/CTS flow-control support was a collaboration of:
93 *	Gordon Ross <gwr@netbsd.org>,
94 *	Bill Studenmund <wrstuden@loki.stanford.edu>
95 *	Ian Dall <Ian.Dall@dsto.defence.gov.au>
96 *
97 * The driver was massively overhauled in November 1997 by Charles Hannum,
98 * fixing *many* bugs, and substantially improving performance.
99 */
100
101#include <sys/cdefs.h>
102__KERNEL_RCSID(0, "$NetBSD: z8530tty.c,v 1.90 2003/06/29 09:56:28 darrenr Exp $");
103
104#include "opt_kgdb.h"
105
106#include <sys/param.h>
107#include <sys/systm.h>
108#include <sys/proc.h>
109#include <sys/device.h>
110#include <sys/conf.h>
111#include <sys/file.h>
112#include <sys/ioctl.h>
113#include <sys/malloc.h>
114#include <sys/timepps.h>
115#include <sys/tty.h>
116#include <sys/time.h>
117#include <sys/kernel.h>
118#include <sys/syslog.h>
119
120#include <dev/ic/z8530reg.h>
121#include <machine/z8530var.h>
122
123#include <dev/cons.h>
124
125#include "locators.h"
126
127/*
128 * How many input characters we can buffer.
129 * The port-specific var.h may override this.
130 * Note: must be a power of two!
131 */
132#ifndef	ZSTTY_RING_SIZE
133#define	ZSTTY_RING_SIZE	2048
134#endif
135
136static struct cnm_state zstty_cnm_state;
137/*
138 * Make this an option variable one can patch.
139 * But be warned:  this must be a power of 2!
140 */
141u_int zstty_rbuf_size = ZSTTY_RING_SIZE;
142
143/* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
144u_int zstty_rbuf_hiwat = (ZSTTY_RING_SIZE * 1) / 4;
145u_int zstty_rbuf_lowat = (ZSTTY_RING_SIZE * 3) / 4;
146
147static int zsppscap =
148	PPS_TSFMT_TSPEC |
149	PPS_CAPTUREASSERT |
150	PPS_CAPTURECLEAR |
151#ifdef  PPS_SYNC
152	PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
153#endif	/* PPS_SYNC */
154	PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
155
156struct zstty_softc {
157	struct	device zst_dev;		/* required first: base device */
158	struct  tty *zst_tty;
159	struct	zs_chanstate *zst_cs;
160
161	struct callout zst_diag_ch;
162
163	u_int zst_overflows,
164	      zst_floods,
165	      zst_errors;
166
167	int zst_hwflags,	/* see z8530var.h */
168	    zst_swflags;	/* TIOCFLAG_SOFTCAR, ... <ttycom.h> */
169
170	u_int zst_r_hiwat,
171	      zst_r_lowat;
172	u_char *volatile zst_rbget,
173	       *volatile zst_rbput;
174	volatile u_int zst_rbavail;
175	u_char *zst_rbuf,
176	       *zst_ebuf;
177
178	/*
179	 * The transmit byte count and address are used for pseudo-DMA
180	 * output in the hardware interrupt code.  PDMA can be suspended
181	 * to get pending changes done; heldtbc is used for this.  It can
182	 * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
183	 */
184	u_char *zst_tba;		/* transmit buffer address */
185	u_int zst_tbc,			/* transmit byte count */
186	      zst_heldtbc;		/* held tbc while xmission stopped */
187
188	/* Flags to communicate with zstty_softint() */
189	volatile u_char zst_rx_flags,	/* receiver blocked */
190#define	RX_TTY_BLOCKED		0x01
191#define	RX_TTY_OVERFLOWED	0x02
192#define	RX_IBUF_BLOCKED		0x04
193#define	RX_IBUF_OVERFLOWED	0x08
194#define	RX_ANY_BLOCK		0x0f
195			zst_tx_busy,	/* working on an output chunk */
196			zst_tx_done,	/* done with one output chunk */
197			zst_tx_stopped,	/* H/W level stop (lost CTS) */
198			zst_st_check,	/* got a status interrupt */
199			zst_rx_ready;
200
201	/* PPS signal on DCD, with or without inkernel clock disciplining */
202	u_char  zst_ppsmask;			/* pps signal mask */
203	u_char  zst_ppsassert;			/* pps leading edge */
204	u_char  zst_ppsclear;			/* pps trailing edge */
205	pps_info_t ppsinfo;
206	pps_params_t ppsparam;
207};
208
209/* Macros to clear/set/test flags. */
210#define SET(t, f)	(t) |= (f)
211#define CLR(t, f)	(t) &= ~(f)
212#define ISSET(t, f)	((t) & (f))
213
214/* Definition of the driver for autoconfig. */
215static int	zstty_match(struct device *, struct cfdata *, void *);
216static void	zstty_attach(struct device *, struct device *, void *);
217
218CFATTACH_DECL(zstty, sizeof(struct zstty_softc),
219    zstty_match, zstty_attach, NULL, NULL);
220
221extern struct cfdriver zstty_cd;
222
223dev_type_open(zsopen);
224dev_type_close(zsclose);
225dev_type_read(zsread);
226dev_type_write(zswrite);
227dev_type_ioctl(zsioctl);
228dev_type_stop(zsstop);
229dev_type_tty(zstty);
230dev_type_poll(zspoll);
231
232const struct cdevsw zstty_cdevsw = {
233	zsopen, zsclose, zsread, zswrite, zsioctl,
234	zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
235};
236
237struct zsops zsops_tty;
238
239static void zs_shutdown __P((struct zstty_softc *));
240static void	zsstart __P((struct tty *));
241static int	zsparam __P((struct tty *, struct termios *));
242static void zs_modem __P((struct zstty_softc *, int));
243static void tiocm_to_zs __P((struct zstty_softc *, u_long, int));
244static int  zs_to_tiocm __P((struct zstty_softc *));
245static int    zshwiflow __P((struct tty *, int));
246static void  zs_hwiflow __P((struct zstty_softc *));
247static void zs_maskintr __P((struct zstty_softc *));
248
249/* Low-level routines. */
250static void zstty_rxint   __P((struct zs_chanstate *));
251static void zstty_stint   __P((struct zs_chanstate *, int));
252static void zstty_txint   __P((struct zs_chanstate *));
253static void zstty_softint __P((struct zs_chanstate *));
254
255#define	ZSUNIT(x)	(minor(x) & 0x7ffff)
256#define	ZSDIALOUT(x)	(minor(x) & 0x80000)
257
258/*
259 * zstty_match: how is this zs channel configured?
260 */
261int
262zstty_match(parent, cf, aux)
263	struct device *parent;
264	struct cfdata *cf;
265	void   *aux;
266{
267	struct zsc_attach_args *args = aux;
268
269	/* Exact match is better than wildcard. */
270	if (cf->cf_loc[ZSCCF_CHANNEL] == args->channel)
271		return 2;
272
273	/* This driver accepts wildcard. */
274	if (cf->cf_loc[ZSCCF_CHANNEL] == ZSCCF_CHANNEL_DEFAULT)
275		return 1;
276
277	return 0;
278}
279
280void
281zstty_attach(parent, self, aux)
282	struct device *parent, *self;
283	void   *aux;
284
285{
286	struct zsc_softc *zsc = (void *) parent;
287	struct zstty_softc *zst = (void *) self;
288	struct cfdata *cf = self->dv_cfdata;
289	struct zsc_attach_args *args = aux;
290	struct zs_chanstate *cs;
291	struct tty *tp;
292	int channel, s, tty_unit;
293	dev_t dev;
294	char *i, *o;
295	int dtr_on;
296	int resetbit;
297
298	callout_init(&zst->zst_diag_ch);
299	cn_init_magic(&zstty_cnm_state);
300
301	tty_unit = zst->zst_dev.dv_unit;
302	channel = args->channel;
303	cs = zsc->zsc_cs[channel];
304	cs->cs_private = zst;
305	cs->cs_ops = &zsops_tty;
306
307	zst->zst_cs = cs;
308	zst->zst_swflags = cf->cf_flags;	/* softcar, etc. */
309	zst->zst_hwflags = args->hwflags;
310	dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), tty_unit);
311
312	if (zst->zst_swflags)
313		printf(" flags 0x%x", zst->zst_swflags);
314
315	/*
316	 * Check whether we serve as a console device.
317	 * XXX - split console input/output channels aren't
318	 *	 supported yet on /dev/console
319	 */
320	i = o = NULL;
321	if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
322		i = "input";
323		if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
324			args->consdev->cn_dev = dev;
325			cn_tab->cn_pollc = args->consdev->cn_pollc;
326			cn_tab->cn_getc = args->consdev->cn_getc;
327		}
328		cn_tab->cn_dev = dev;
329		/* Set console magic to BREAK */
330		cn_set_magic("\047\001");
331	}
332	if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
333		o = "output";
334		if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
335			cn_tab->cn_putc = args->consdev->cn_putc;
336		}
337		cn_tab->cn_dev = dev;
338	}
339	if (i != NULL || o != NULL)
340		printf(" (console %s)", i ? (o ? "i/o" : i) : o);
341
342#ifdef KGDB
343	if (zs_check_kgdb(cs, dev)) {
344		/*
345		 * Allow kgdb to "take over" this port.  Returns true
346		 * if this serial port is in-use by kgdb.
347		 */
348		printf(" (kgdb)\n");
349		/*
350		 * This is the kgdb port (exclusive use)
351		 * so skip the normal attach code.
352		 */
353		return;
354	}
355#endif
356	printf("\n");
357
358	tp = ttymalloc();
359	tp->t_dev = dev;
360	tp->t_oproc = zsstart;
361	tp->t_param = zsparam;
362	tp->t_hwiflow = zshwiflow;
363	tty_attach(tp);
364
365	zst->zst_tty = tp;
366	zst->zst_rbuf = malloc(zstty_rbuf_size << 1, M_DEVBUF, M_WAITOK);
367	zst->zst_ebuf = zst->zst_rbuf + (zstty_rbuf_size << 1);
368	/* Disable the high water mark. */
369	zst->zst_r_hiwat = 0;
370	zst->zst_r_lowat = 0;
371	zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
372	zst->zst_rbavail = zstty_rbuf_size;
373
374	/* if there are no enable/disable functions, assume the device
375	   is always enabled */
376	if (!cs->enable)
377		cs->enabled = 1;
378
379	/*
380	 * Hardware init
381	 */
382	dtr_on = 0;
383	resetbit = 0;
384	if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
385		/* Call zsparam similar to open. */
386		struct termios t;
387
388		/* Wait a while for previous console output to complete */
389		DELAY(10000);
390
391		/* Setup the "new" parameters in t. */
392		t.c_ispeed = 0;
393		t.c_ospeed = cs->cs_defspeed;
394		t.c_cflag = cs->cs_defcflag;
395
396		/*
397		 * Turn on receiver and status interrupts.
398		 * We defer the actual write of the register to zsparam(),
399		 * but we must make sure status interrupts are turned on by
400		 * the time zsparam() reads the initial rr0 state.
401		 */
402		SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
403
404		/* Make sure zsparam will see changes. */
405		tp->t_ospeed = 0;
406		(void) zsparam(tp, &t);
407
408		/* Make sure DTR is on now. */
409		dtr_on = 1;
410
411	} else if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_NORESET)) {
412		/* Not the console; may need reset. */
413		resetbit = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET;
414	}
415
416	s = splzs();
417	simple_lock(&cs->cs_lock);
418	if (resetbit)
419		zs_write_reg(cs, 9, resetbit);
420	zs_modem(zst, dtr_on);
421	simple_unlock(&cs->cs_lock);
422	splx(s);
423}
424
425
426/*
427 * Return pointer to our tty.
428 */
429struct tty *
430zstty(dev)
431	dev_t dev;
432{
433	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
434
435	return (zst->zst_tty);
436}
437
438
439void
440zs_shutdown(zst)
441	struct zstty_softc *zst;
442{
443	struct zs_chanstate *cs = zst->zst_cs;
444	struct tty *tp = zst->zst_tty;
445	int s;
446
447	s = splzs();
448	simple_lock(&cs->cs_lock);
449
450	/* If we were asserting flow control, then deassert it. */
451	SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
452	zs_hwiflow(zst);
453
454	/* Clear any break condition set with TIOCSBRK. */
455	zs_break(cs, 0);
456
457	/* Turn off PPS capture on last close. */
458	zst->zst_ppsmask = 0;
459	zst->ppsparam.mode = 0;
460
461	/*
462	 * Hang up if necessary.  Wait a bit, so the other side has time to
463	 * notice even if we immediately open the port again.
464	 */
465	if (ISSET(tp->t_cflag, HUPCL)) {
466		zs_modem(zst, 0);
467		simple_unlock(&cs->cs_lock);
468		splx(s);
469		/*
470		 * XXX -    another process is not prevented from opening
471		 *	    the device during our sleep.
472		 */
473		(void) tsleep(cs, TTIPRI, ttclos, hz);
474		/* Re-check state in case we were opened during our sleep */
475		if (ISSET(tp->t_state, TS_ISOPEN) || tp->t_wopen != 0)
476			return;
477
478		s = splzs();
479		simple_lock(&cs->cs_lock);
480	}
481
482	/* Turn off interrupts if not the console. */
483	if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
484		CLR(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
485		cs->cs_creg[1] = cs->cs_preg[1];
486		zs_write_reg(cs, 1, cs->cs_creg[1]);
487	}
488
489	/* Call the power management hook. */
490	if (cs->disable) {
491#ifdef DIAGNOSTIC
492		if (!cs->enabled)
493			panic("zs_shutdown: not enabled?");
494#endif
495		(*cs->disable)(zst->zst_cs);
496	}
497
498	simple_unlock(&cs->cs_lock);
499	splx(s);
500}
501
502/*
503 * Open a zs serial (tty) port.
504 */
505int
506zsopen(dev, flags, mode, l)
507	dev_t dev;
508	int flags;
509	int mode;
510	struct lwp *l;
511{
512	struct zstty_softc *zst;
513	struct zs_chanstate *cs;
514	struct tty *tp;
515	int s, s2;
516	int error;
517
518	zst = device_lookup(&zstty_cd, ZSUNIT(dev));
519	if (zst == NULL)
520		return (ENXIO);
521
522	tp = zst->zst_tty;
523	cs = zst->zst_cs;
524
525	/* If KGDB took the line, then tp==NULL */
526	if (tp == NULL)
527		return (EBUSY);
528
529	if (ISSET(tp->t_state, TS_ISOPEN) &&
530	    ISSET(tp->t_state, TS_XCLUDE) &&
531	    l->l_proc->p_ucred->cr_uid != 0)
532		return (EBUSY);
533
534	s = spltty();
535
536	/*
537	 * Do the following iff this is a first open.
538	 */
539	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
540		struct termios t;
541
542		tp->t_dev = dev;
543
544		/* Call the power management hook. */
545		if (cs->enable) {
546			if ((*cs->enable)(cs)) {
547				splx(s);
548				printf("%s: device enable failed\n",
549			       	zst->zst_dev.dv_xname);
550				return (EIO);
551			}
552		}
553
554		/*
555		 * Initialize the termios status to the defaults.  Add in the
556		 * sticky bits from TIOCSFLAGS.
557		 */
558		t.c_ispeed = 0;
559		t.c_ospeed = cs->cs_defspeed;
560		t.c_cflag = cs->cs_defcflag;
561		if (ISSET(zst->zst_swflags, TIOCFLAG_CLOCAL))
562			SET(t.c_cflag, CLOCAL);
563		if (ISSET(zst->zst_swflags, TIOCFLAG_CRTSCTS))
564			SET(t.c_cflag, CRTSCTS);
565		if (ISSET(zst->zst_swflags, TIOCFLAG_CDTRCTS))
566			SET(t.c_cflag, CDTRCTS);
567		if (ISSET(zst->zst_swflags, TIOCFLAG_MDMBUF))
568			SET(t.c_cflag, MDMBUF);
569
570		s2 = splzs();
571		simple_lock(&cs->cs_lock);
572
573		/*
574		 * Turn on receiver and status interrupts.
575		 * We defer the actual write of the register to zsparam(),
576		 * but we must make sure status interrupts are turned on by
577		 * the time zsparam() reads the initial rr0 state.
578		 */
579		SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
580
581		/* Clear PPS capture state on first open. */
582		zst->zst_ppsmask = 0;
583		zst->ppsparam.mode = 0;
584
585		simple_unlock(&cs->cs_lock);
586		splx(s2);
587
588		/* Make sure zsparam will see changes. */
589		tp->t_ospeed = 0;
590		(void) zsparam(tp, &t);
591
592		/*
593		 * Note: zsparam has done: cflag, ispeed, ospeed
594		 * so we just need to do: iflag, oflag, lflag, cc
595		 * For "raw" mode, just leave all zeros.
596		 */
597		if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_RAW)) {
598			tp->t_iflag = TTYDEF_IFLAG;
599			tp->t_oflag = TTYDEF_OFLAG;
600			tp->t_lflag = TTYDEF_LFLAG;
601		} else {
602			tp->t_iflag = 0;
603			tp->t_oflag = 0;
604			tp->t_lflag = 0;
605		}
606		ttychars(tp);
607		ttsetwater(tp);
608
609		s2 = splzs();
610		simple_lock(&cs->cs_lock);
611
612		/*
613		 * Turn on DTR.  We must always do this, even if carrier is not
614		 * present, because otherwise we'd have to use TIOCSDTR
615		 * immediately after setting CLOCAL, which applications do not
616		 * expect.  We always assert DTR while the device is open
617		 * unless explicitly requested to deassert it.
618		 */
619		zs_modem(zst, 1);
620
621		/* Clear the input ring, and unblock. */
622		zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
623		zst->zst_rbavail = zstty_rbuf_size;
624		zs_iflush(cs);
625		CLR(zst->zst_rx_flags, RX_ANY_BLOCK);
626		zs_hwiflow(zst);
627
628		simple_unlock(&cs->cs_lock);
629		splx(s2);
630	}
631
632	splx(s);
633
634	error = ttyopen(tp, ZSDIALOUT(dev), ISSET(flags, O_NONBLOCK));
635	if (error)
636		goto bad;
637
638	error = (*tp->t_linesw->l_open)(dev, tp);
639	if (error)
640		goto bad;
641
642	return (0);
643
644bad:
645	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
646		/*
647		 * We failed to open the device, and nobody else had it opened.
648		 * Clean up the state as appropriate.
649		 */
650		zs_shutdown(zst);
651	}
652
653	return (error);
654}
655
656/*
657 * Close a zs serial port.
658 */
659int
660zsclose(dev, flags, mode, l)
661	dev_t dev;
662	int flags;
663	int mode;
664	struct lwp *l;
665{
666	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
667	struct tty *tp = zst->zst_tty;
668
669	/* XXX This is for cons.c. */
670	if (!ISSET(tp->t_state, TS_ISOPEN))
671		return 0;
672
673	(*tp->t_linesw->l_close)(tp, flags);
674	ttyclose(tp);
675
676	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
677		/*
678		 * Although we got a last close, the device may still be in
679		 * use; e.g. if this was the dialout node, and there are still
680		 * processes waiting for carrier on the non-dialout node.
681		 */
682		zs_shutdown(zst);
683	}
684
685	return (0);
686}
687
688/*
689 * Read/write zs serial port.
690 */
691int
692zsread(dev, uio, flags)
693	dev_t dev;
694	struct uio *uio;
695	int flags;
696{
697	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
698	struct tty *tp = zst->zst_tty;
699
700	return ((*tp->t_linesw->l_read)(tp, uio, flags));
701}
702
703int
704zswrite(dev, uio, flags)
705	dev_t dev;
706	struct uio *uio;
707	int flags;
708{
709	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
710	struct tty *tp = zst->zst_tty;
711
712	return ((*tp->t_linesw->l_write)(tp, uio, flags));
713}
714
715int
716zspoll(dev, events, l)
717	dev_t dev;
718	int events;
719	struct lwp *l;
720{
721	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
722	struct tty *tp = zst->zst_tty;
723
724	return ((*tp->t_linesw->l_poll)(tp, events, l));
725}
726
727int
728zsioctl(dev, cmd, data, flag, l)
729	dev_t dev;
730	u_long cmd;
731	caddr_t data;
732	int flag;
733	struct lwp *l;
734{
735	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
736	struct zs_chanstate *cs = zst->zst_cs;
737	struct tty *tp = zst->zst_tty;
738	int error;
739	int s;
740
741	error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
742	if (error != EPASSTHROUGH)
743		return (error);
744
745	error = ttioctl(tp, cmd, data, flag, l);
746	if (error != EPASSTHROUGH)
747		return (error);
748
749#ifdef	ZS_MD_IOCTL
750	error = ZS_MD_IOCTL(cs, cmd, data);
751	if (error != EPASSTHROUGH)
752		return (error);
753#endif	/* ZS_MD_IOCTL */
754
755	error = 0;
756
757	s = splzs();
758	simple_lock(&cs->cs_lock);
759
760	switch (cmd) {
761	case TIOCSBRK:
762		zs_break(cs, 1);
763		break;
764
765	case TIOCCBRK:
766		zs_break(cs, 0);
767		break;
768
769	case TIOCGFLAGS:
770		*(int *)data = zst->zst_swflags;
771		break;
772
773	case TIOCSFLAGS:
774		error = suser(l->l_proc->p_ucred, &l->l_proc->p_acflag);
775		if (error)
776			break;
777		zst->zst_swflags = *(int *)data;
778		break;
779
780	case TIOCSDTR:
781		zs_modem(zst, 1);
782		break;
783
784	case TIOCCDTR:
785		zs_modem(zst, 0);
786		break;
787
788	case TIOCMSET:
789	case TIOCMBIS:
790	case TIOCMBIC:
791		tiocm_to_zs(zst, cmd, *(int *)data);
792		break;
793
794	case TIOCMGET:
795		*(int *)data = zs_to_tiocm(zst);
796		break;
797
798	case PPS_IOC_CREATE:
799		break;
800
801	case PPS_IOC_DESTROY:
802		break;
803
804	case PPS_IOC_GETPARAMS: {
805		pps_params_t *pp;
806		pp = (pps_params_t *)data;
807		*pp = zst->ppsparam;
808		break;
809	}
810
811	case PPS_IOC_SETPARAMS: {
812		pps_params_t *pp;
813		int mode;
814		if (cs->cs_rr0_pps == 0) {
815			error = EINVAL;
816			break;
817		}
818		pp = (pps_params_t *)data;
819		if (pp->mode & ~zsppscap) {
820			error = EINVAL;
821			break;
822		}
823		zst->ppsparam = *pp;
824		/*
825		 * compute masks from user-specified timestamp state.
826		 */
827		mode = zst->ppsparam.mode;
828#ifdef	PPS_SYNC
829		if (mode & PPS_HARDPPSONASSERT) {
830			mode |= PPS_CAPTUREASSERT;
831			/* XXX revoke any previous HARDPPS source */
832		}
833		if (mode & PPS_HARDPPSONCLEAR) {
834			mode |= PPS_CAPTURECLEAR;
835			/* XXX revoke any previous HARDPPS source */
836		}
837#endif	/* PPS_SYNC */
838		switch (mode & PPS_CAPTUREBOTH) {
839		case 0:
840			zst->zst_ppsmask = 0;
841			break;
842
843		case PPS_CAPTUREASSERT:
844			zst->zst_ppsmask = ZSRR0_DCD;
845			zst->zst_ppsassert = ZSRR0_DCD;
846			zst->zst_ppsclear = -1;
847			break;
848
849		case PPS_CAPTURECLEAR:
850			zst->zst_ppsmask = ZSRR0_DCD;
851			zst->zst_ppsassert = -1;
852			zst->zst_ppsclear = 0;
853			break;
854
855		case PPS_CAPTUREBOTH:
856			zst->zst_ppsmask = ZSRR0_DCD;
857			zst->zst_ppsassert = ZSRR0_DCD;
858			zst->zst_ppsclear = 0;
859			break;
860
861		default:
862			error = EINVAL;
863			break;
864		}
865
866		/*
867		 * Now update interrupts.
868		 */
869		zs_maskintr(zst);
870		/*
871		 * If nothing is being transmitted, set up new current values,
872		 * else mark them as pending.
873		 */
874		if (!cs->cs_heldchange) {
875			if (zst->zst_tx_busy) {
876				zst->zst_heldtbc = zst->zst_tbc;
877				zst->zst_tbc = 0;
878				cs->cs_heldchange = 1;
879			} else
880				zs_loadchannelregs(cs);
881		}
882
883		break;
884	}
885
886	case PPS_IOC_GETCAP:
887		*(int *)data = zsppscap;
888		break;
889
890	case PPS_IOC_FETCH: {
891		pps_info_t *pi;
892		pi = (pps_info_t *)data;
893		*pi = zst->ppsinfo;
894		break;
895	}
896
897	case TIOCDCDTIMESTAMP:	/* XXX old, overloaded  API used by xntpd v3 */
898		if (cs->cs_rr0_pps == 0) {
899			error = EINVAL;
900			break;
901		}
902		/*
903		 * Some GPS clocks models use the falling rather than
904		 * rising edge as the on-the-second signal.
905		 * The old API has no way to specify PPS polarity.
906		 */
907		zst->zst_ppsmask = ZSRR0_DCD;
908#ifndef	PPS_TRAILING_EDGE
909		zst->zst_ppsassert = ZSRR0_DCD;
910		zst->zst_ppsclear = -1;
911		TIMESPEC_TO_TIMEVAL((struct timeval *)data,
912			&zst->ppsinfo.assert_timestamp);
913#else
914		zst->zst_ppsassert = -1;
915		zst->zst_ppsclear = 01;
916		TIMESPEC_TO_TIMEVAL((struct timeval *)data,
917			&zst->ppsinfo.clear_timestamp);
918#endif
919		/*
920		 * Now update interrupts.
921		 */
922		zs_maskintr(zst);
923		/*
924		 * If nothing is being transmitted, set up new current values,
925		 * else mark them as pending.
926		 */
927		if (!cs->cs_heldchange) {
928			if (zst->zst_tx_busy) {
929				zst->zst_heldtbc = zst->zst_tbc;
930				zst->zst_tbc = 0;
931				cs->cs_heldchange = 1;
932			} else
933				zs_loadchannelregs(cs);
934		}
935
936		break;
937
938	default:
939		error = EPASSTHROUGH;
940		break;
941	}
942
943	simple_unlock(&cs->cs_lock);
944	splx(s);
945
946	return (error);
947}
948
949/*
950 * Start or restart transmission.
951 */
952static void
953zsstart(tp)
954	struct tty *tp;
955{
956	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
957	struct zs_chanstate *cs = zst->zst_cs;
958	int s;
959
960	s = spltty();
961	if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
962		goto out;
963	if (zst->zst_tx_stopped)
964		goto out;
965
966	if (tp->t_outq.c_cc <= tp->t_lowat) {
967		if (ISSET(tp->t_state, TS_ASLEEP)) {
968			CLR(tp->t_state, TS_ASLEEP);
969			wakeup((caddr_t)&tp->t_outq);
970		}
971		selwakeup(&tp->t_wsel);
972		if (tp->t_outq.c_cc == 0)
973			goto out;
974	}
975
976	/* Grab the first contiguous region of buffer space. */
977	{
978		u_char *tba;
979		int tbc;
980
981		tba = tp->t_outq.c_cf;
982		tbc = ndqb(&tp->t_outq, 0);
983
984		(void) splzs();
985		simple_lock(&cs->cs_lock);
986
987		zst->zst_tba = tba;
988		zst->zst_tbc = tbc;
989	}
990
991	SET(tp->t_state, TS_BUSY);
992	zst->zst_tx_busy = 1;
993
994	/* Enable transmit completion interrupts if necessary. */
995	if (!ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
996		SET(cs->cs_preg[1], ZSWR1_TIE);
997		cs->cs_creg[1] = cs->cs_preg[1];
998		zs_write_reg(cs, 1, cs->cs_creg[1]);
999	}
1000
1001	/* Output the first character of the contiguous buffer. */
1002	{
1003		zs_write_data(cs, *zst->zst_tba);
1004		zst->zst_tbc--;
1005		zst->zst_tba++;
1006	}
1007	simple_unlock(&cs->cs_lock);
1008out:
1009	splx(s);
1010	return;
1011}
1012
1013/*
1014 * Stop output, e.g., for ^S or output flush.
1015 */
1016void
1017zsstop(tp, flag)
1018	struct tty *tp;
1019	int flag;
1020{
1021	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1022	int s;
1023
1024	s = splzs();
1025	if (ISSET(tp->t_state, TS_BUSY)) {
1026		/* Stop transmitting at the next chunk. */
1027		zst->zst_tbc = 0;
1028		zst->zst_heldtbc = 0;
1029		if (!ISSET(tp->t_state, TS_TTSTOP))
1030			SET(tp->t_state, TS_FLUSH);
1031	}
1032	splx(s);
1033}
1034
1035/*
1036 * Set ZS tty parameters from termios.
1037 * XXX - Should just copy the whole termios after
1038 * making sure all the changes could be done.
1039 */
1040static int
1041zsparam(tp, t)
1042	struct tty *tp;
1043	struct termios *t;
1044{
1045	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1046	struct zs_chanstate *cs = zst->zst_cs;
1047	int ospeed;
1048	tcflag_t cflag;
1049	u_char tmp3, tmp4, tmp5;
1050	int s, error;
1051
1052	ospeed = t->c_ospeed;
1053	cflag = t->c_cflag;
1054
1055	/* Check requested parameters. */
1056	if (ospeed < 0)
1057		return (EINVAL);
1058	if (t->c_ispeed && t->c_ispeed != ospeed)
1059		return (EINVAL);
1060
1061	/*
1062	 * For the console, always force CLOCAL and !HUPCL, so that the port
1063	 * is always active.
1064	 */
1065	if (ISSET(zst->zst_swflags, TIOCFLAG_SOFTCAR) ||
1066	    ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
1067		SET(cflag, CLOCAL);
1068		CLR(cflag, HUPCL);
1069	}
1070
1071	/*
1072	 * Only whack the UART when params change.
1073	 * Some callers need to clear tp->t_ospeed
1074	 * to make sure initialization gets done.
1075	 */
1076	if (tp->t_ospeed == ospeed &&
1077	    tp->t_cflag == cflag)
1078		return (0);
1079
1080	/*
1081	 * Call MD functions to deal with changed
1082	 * clock modes or H/W flow control modes.
1083	 * The BRG divisor is set now. (reg 12,13)
1084	 */
1085	error = zs_set_speed(cs, ospeed);
1086	if (error)
1087		return (error);
1088	error = zs_set_modes(cs, cflag);
1089	if (error)
1090		return (error);
1091
1092	/*
1093	 * Block interrupts so that state will not
1094	 * be altered until we are done setting it up.
1095	 *
1096	 * Initial values in cs_preg are set before
1097	 * our attach routine is called.  The master
1098	 * interrupt enable is handled by zsc.c
1099	 *
1100	 */
1101	s = splzs();
1102	simple_lock(&cs->cs_lock);
1103
1104	/*
1105	 * Recalculate which status ints to enable.
1106	 */
1107	zs_maskintr(zst);
1108
1109	/* Recompute character size bits. */
1110	tmp3 = cs->cs_preg[3];
1111	tmp5 = cs->cs_preg[5];
1112	CLR(tmp3, ZSWR3_RXSIZE);
1113	CLR(tmp5, ZSWR5_TXSIZE);
1114	switch (ISSET(cflag, CSIZE)) {
1115	case CS5:
1116		SET(tmp3, ZSWR3_RX_5);
1117		SET(tmp5, ZSWR5_TX_5);
1118		break;
1119	case CS6:
1120		SET(tmp3, ZSWR3_RX_6);
1121		SET(tmp5, ZSWR5_TX_6);
1122		break;
1123	case CS7:
1124		SET(tmp3, ZSWR3_RX_7);
1125		SET(tmp5, ZSWR5_TX_7);
1126		break;
1127	case CS8:
1128		SET(tmp3, ZSWR3_RX_8);
1129		SET(tmp5, ZSWR5_TX_8);
1130		break;
1131	}
1132	cs->cs_preg[3] = tmp3;
1133	cs->cs_preg[5] = tmp5;
1134
1135	/*
1136	 * Recompute the stop bits and parity bits.  Note that
1137	 * zs_set_speed() may have set clock selection bits etc.
1138	 * in wr4, so those must preserved.
1139	 */
1140	tmp4 = cs->cs_preg[4];
1141	CLR(tmp4, ZSWR4_SBMASK | ZSWR4_PARMASK);
1142	if (ISSET(cflag, CSTOPB))
1143		SET(tmp4, ZSWR4_TWOSB);
1144	else
1145		SET(tmp4, ZSWR4_ONESB);
1146	if (!ISSET(cflag, PARODD))
1147		SET(tmp4, ZSWR4_EVENP);
1148	if (ISSET(cflag, PARENB))
1149		SET(tmp4, ZSWR4_PARENB);
1150	cs->cs_preg[4] = tmp4;
1151
1152	/* And copy to tty. */
1153	tp->t_ispeed = 0;
1154	tp->t_ospeed = ospeed;
1155	tp->t_cflag = cflag;
1156
1157	/*
1158	 * If nothing is being transmitted, set up new current values,
1159	 * else mark them as pending.
1160	 */
1161	if (!cs->cs_heldchange) {
1162		if (zst->zst_tx_busy) {
1163			zst->zst_heldtbc = zst->zst_tbc;
1164			zst->zst_tbc = 0;
1165			cs->cs_heldchange = 1;
1166		} else
1167			zs_loadchannelregs(cs);
1168	}
1169
1170	/*
1171	 * If hardware flow control is disabled, turn off the buffer water
1172	 * marks and unblock any soft flow control state.  Otherwise, enable
1173	 * the water marks.
1174	 */
1175	if (!ISSET(cflag, CHWFLOW)) {
1176		zst->zst_r_hiwat = 0;
1177		zst->zst_r_lowat = 0;
1178		if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1179			CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1180			zst->zst_rx_ready = 1;
1181			cs->cs_softreq = 1;
1182		}
1183		if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1184			CLR(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1185			zs_hwiflow(zst);
1186		}
1187	} else {
1188		zst->zst_r_hiwat = zstty_rbuf_hiwat;
1189		zst->zst_r_lowat = zstty_rbuf_lowat;
1190	}
1191
1192	/*
1193	 * Force a recheck of the hardware carrier and flow control status,
1194	 * since we may have changed which bits we're looking at.
1195	 */
1196	zstty_stint(cs, 1);
1197
1198	simple_unlock(&cs->cs_lock);
1199	splx(s);
1200
1201	/*
1202	 * If hardware flow control is disabled, unblock any hard flow control
1203	 * state.
1204	 */
1205	if (!ISSET(cflag, CHWFLOW)) {
1206		if (zst->zst_tx_stopped) {
1207			zst->zst_tx_stopped = 0;
1208			zsstart(tp);
1209		}
1210	}
1211
1212	zstty_softint(cs);
1213
1214	return (0);
1215}
1216
1217/*
1218 * Compute interrupt enable bits and set in the pending bits. Called both
1219 * in zsparam() and when PPS (pulse per second timing) state changes.
1220 * Must be called at splzs().
1221 */
1222static void
1223zs_maskintr(zst)
1224	struct zstty_softc *zst;
1225{
1226	struct zs_chanstate *cs = zst->zst_cs;
1227	int tmp15;
1228
1229	cs->cs_rr0_mask = cs->cs_rr0_cts | cs->cs_rr0_dcd;
1230	if (zst->zst_ppsmask != 0)
1231		cs->cs_rr0_mask |= cs->cs_rr0_pps;
1232	tmp15 = cs->cs_preg[15];
1233	if (ISSET(cs->cs_rr0_mask, ZSRR0_DCD))
1234		SET(tmp15, ZSWR15_DCD_IE);
1235	else
1236		CLR(tmp15, ZSWR15_DCD_IE);
1237	if (ISSET(cs->cs_rr0_mask, ZSRR0_CTS))
1238		SET(tmp15, ZSWR15_CTS_IE);
1239	else
1240		CLR(tmp15, ZSWR15_CTS_IE);
1241	cs->cs_preg[15] = tmp15;
1242}
1243
1244
1245/*
1246 * Raise or lower modem control (DTR/RTS) signals.  If a character is
1247 * in transmission, the change is deferred.
1248 * Called at splzs() and with the channel lock held.
1249 */
1250static void
1251zs_modem(zst, onoff)
1252	struct zstty_softc *zst;
1253	int onoff;
1254{
1255	struct zs_chanstate *cs = zst->zst_cs, *ccs;
1256
1257	if (cs->cs_wr5_dtr == 0)
1258		return;
1259
1260	ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1261
1262	if (onoff)
1263		SET(ccs->cs_preg[5], cs->cs_wr5_dtr);
1264	else
1265		CLR(ccs->cs_preg[5], cs->cs_wr5_dtr);
1266
1267	if (!cs->cs_heldchange) {
1268		if (zst->zst_tx_busy) {
1269			zst->zst_heldtbc = zst->zst_tbc;
1270			zst->zst_tbc = 0;
1271			cs->cs_heldchange = 1;
1272		} else
1273			zs_loadchannelregs(cs);
1274	}
1275}
1276
1277/*
1278 * Set modem bits.
1279 * Called at splzs() and with the channel lock held.
1280 */
1281static void
1282tiocm_to_zs(zst, how, ttybits)
1283	struct zstty_softc *zst;
1284	u_long how;
1285	int ttybits;
1286{
1287	struct zs_chanstate *cs = zst->zst_cs, *ccs;
1288	u_char zsbits;
1289
1290	ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1291
1292	zsbits = 0;
1293	if (ISSET(ttybits, TIOCM_DTR))
1294		SET(zsbits, ZSWR5_DTR);
1295	if (ISSET(ttybits, TIOCM_RTS))
1296		SET(zsbits, ZSWR5_RTS);
1297
1298	switch (how) {
1299	case TIOCMBIC:
1300		CLR(ccs->cs_preg[5], zsbits);
1301		break;
1302
1303	case TIOCMBIS:
1304		SET(ccs->cs_preg[5], zsbits);
1305		break;
1306
1307	case TIOCMSET:
1308		CLR(ccs->cs_preg[5], ZSWR5_RTS | ZSWR5_DTR);
1309		SET(ccs->cs_preg[5], zsbits);
1310		break;
1311	}
1312
1313	if (!cs->cs_heldchange) {
1314		if (zst->zst_tx_busy) {
1315			zst->zst_heldtbc = zst->zst_tbc;
1316			zst->zst_tbc = 0;
1317			cs->cs_heldchange = 1;
1318		} else
1319			zs_loadchannelregs(cs);
1320	}
1321}
1322
1323/*
1324 * Get modem bits.
1325 * Called at splzs() and with the channel lock held.
1326 */
1327static int
1328zs_to_tiocm(zst)
1329	struct zstty_softc *zst;
1330{
1331	struct zs_chanstate *cs = zst->zst_cs, *ccs;
1332	u_char zsbits;
1333	int ttybits = 0;
1334
1335	ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1336
1337	zsbits = ccs->cs_preg[5];
1338	if (ISSET(zsbits, ZSWR5_DTR))
1339		SET(ttybits, TIOCM_DTR);
1340	if (ISSET(zsbits, ZSWR5_RTS))
1341		SET(ttybits, TIOCM_RTS);
1342
1343	zsbits = cs->cs_rr0;
1344	if (ISSET(zsbits, ZSRR0_DCD))
1345		SET(ttybits, TIOCM_CD);
1346	if (ISSET(zsbits, ZSRR0_CTS))
1347		SET(ttybits, TIOCM_CTS);
1348
1349	return (ttybits);
1350}
1351
1352/*
1353 * Try to block or unblock input using hardware flow-control.
1354 * This is called by kern/tty.c if MDMBUF|CRTSCTS is set, and
1355 * if this function returns non-zero, the TS_TBLOCK flag will
1356 * be set or cleared according to the "block" arg passed.
1357 */
1358int
1359zshwiflow(tp, block)
1360	struct tty *tp;
1361	int block;
1362{
1363	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1364	struct zs_chanstate *cs = zst->zst_cs;
1365	int s;
1366
1367	if (cs->cs_wr5_rts == 0)
1368		return (0);
1369
1370	s = splzs();
1371	simple_lock(&cs->cs_lock);
1372	if (block) {
1373		if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1374			SET(zst->zst_rx_flags, RX_TTY_BLOCKED);
1375			zs_hwiflow(zst);
1376		}
1377	} else {
1378		if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1379			CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1380			zst->zst_rx_ready = 1;
1381			cs->cs_softreq = 1;
1382		}
1383		if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1384			CLR(zst->zst_rx_flags, RX_TTY_BLOCKED);
1385			zs_hwiflow(zst);
1386		}
1387	}
1388	simple_unlock(&cs->cs_lock);
1389	splx(s);
1390	return (1);
1391}
1392
1393/*
1394 * Internal version of zshwiflow
1395 * Called at splzs() and with the channel lock held.
1396 */
1397static void
1398zs_hwiflow(zst)
1399	struct zstty_softc *zst;
1400{
1401	struct zs_chanstate *cs = zst->zst_cs, *ccs;
1402
1403	if (cs->cs_wr5_rts == 0)
1404		return;
1405
1406	ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1407
1408	if (ISSET(zst->zst_rx_flags, RX_ANY_BLOCK)) {
1409		CLR(ccs->cs_preg[5], cs->cs_wr5_rts);
1410		CLR(ccs->cs_creg[5], cs->cs_wr5_rts);
1411	} else {
1412		SET(ccs->cs_preg[5], cs->cs_wr5_rts);
1413		SET(ccs->cs_creg[5], cs->cs_wr5_rts);
1414	}
1415	zs_write_reg(ccs, 5, ccs->cs_creg[5]);
1416}
1417
1418
1419/****************************************************************
1420 * Interface to the lower layer (zscc)
1421 ****************************************************************/
1422
1423#define	integrate	static inline
1424integrate void zstty_rxsoft __P((struct zstty_softc *, struct tty *));
1425integrate void zstty_txsoft __P((struct zstty_softc *, struct tty *));
1426integrate void zstty_stsoft __P((struct zstty_softc *, struct tty *));
1427static void zstty_diag __P((void *));
1428
1429/*
1430 * Receiver Ready interrupt.
1431 * Called at splzs() and with the channel lock held.
1432 */
1433static void
1434zstty_rxint(cs)
1435	struct zs_chanstate *cs;
1436{
1437	struct zstty_softc *zst = cs->cs_private;
1438	u_char *put, *end;
1439	u_int cc;
1440	u_char rr0, rr1, c;
1441
1442	end = zst->zst_ebuf;
1443	put = zst->zst_rbput;
1444	cc = zst->zst_rbavail;
1445
1446	while (cc > 0) {
1447		/*
1448		 * First read the status, because reading the received char
1449		 * destroys the status of this char.
1450		 */
1451		rr1 = zs_read_reg(cs, 1);
1452		c = zs_read_data(cs);
1453
1454		if (ISSET(rr1, ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) {
1455			/* Clear the receive error. */
1456			zs_write_csr(cs, ZSWR0_RESET_ERRORS);
1457		}
1458
1459		cn_check_magic(zst->zst_tty->t_dev, c, zstty_cnm_state);
1460		put[0] = c;
1461		put[1] = rr1;
1462		put += 2;
1463		if (put >= end)
1464			put = zst->zst_rbuf;
1465		cc--;
1466
1467		rr0 = zs_read_csr(cs);
1468		if (!ISSET(rr0, ZSRR0_RX_READY))
1469			break;
1470	}
1471
1472	/*
1473	 * Current string of incoming characters ended because
1474	 * no more data was available or we ran out of space.
1475	 * Schedule a receive event if any data was received.
1476	 * If we're out of space, turn off receive interrupts.
1477	 */
1478	zst->zst_rbput = put;
1479	zst->zst_rbavail = cc;
1480	if (!ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1481		zst->zst_rx_ready = 1;
1482		cs->cs_softreq = 1;
1483	}
1484
1485	/*
1486	 * See if we are in danger of overflowing a buffer. If
1487	 * so, use hardware flow control to ease the pressure.
1488	 */
1489	if (!ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED) &&
1490	    cc < zst->zst_r_hiwat) {
1491		SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1492		zs_hwiflow(zst);
1493	}
1494
1495	/*
1496	 * If we're out of space, disable receive interrupts
1497	 * until the queue has drained a bit.
1498	 */
1499	if (!cc) {
1500		SET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1501		CLR(cs->cs_preg[1], ZSWR1_RIE);
1502		cs->cs_creg[1] = cs->cs_preg[1];
1503		zs_write_reg(cs, 1, cs->cs_creg[1]);
1504	}
1505
1506#if 0
1507	printf("%xH%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1508#endif
1509}
1510
1511/*
1512 * Transmitter Ready interrupt.
1513 * Called at splzs() and with the channel lock held.
1514 */
1515static void
1516zstty_txint(cs)
1517	struct zs_chanstate *cs;
1518{
1519	struct zstty_softc *zst = cs->cs_private;
1520
1521	/*
1522	 * If we've delayed a parameter change, do it now, and restart
1523	 * output.
1524	 */
1525	if (cs->cs_heldchange) {
1526		zs_loadchannelregs(cs);
1527		cs->cs_heldchange = 0;
1528		zst->zst_tbc = zst->zst_heldtbc;
1529		zst->zst_heldtbc = 0;
1530	}
1531
1532	/* Output the next character in the buffer, if any. */
1533	if (zst->zst_tbc > 0) {
1534		zs_write_data(cs, *zst->zst_tba);
1535		zst->zst_tbc--;
1536		zst->zst_tba++;
1537	} else {
1538		/* Disable transmit completion interrupts if necessary. */
1539		if (ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
1540			CLR(cs->cs_preg[1], ZSWR1_TIE);
1541			cs->cs_creg[1] = cs->cs_preg[1];
1542			zs_write_reg(cs, 1, cs->cs_creg[1]);
1543		}
1544		if (zst->zst_tx_busy) {
1545			zst->zst_tx_busy = 0;
1546			zst->zst_tx_done = 1;
1547			cs->cs_softreq = 1;
1548		}
1549	}
1550}
1551
1552/*
1553 * Status Change interrupt.
1554 * Called at splzs() and with the channel lock held.
1555 */
1556static void
1557zstty_stint(cs, force)
1558	struct zs_chanstate *cs;
1559	int force;
1560{
1561	struct zstty_softc *zst = cs->cs_private;
1562	u_char rr0, delta;
1563
1564	rr0 = zs_read_csr(cs);
1565	zs_write_csr(cs, ZSWR0_RESET_STATUS);
1566
1567	/*
1568	 * Check here for console break, so that we can abort
1569	 * even when interrupts are locking up the machine.
1570	 */
1571	if (ISSET(rr0, ZSRR0_BREAK))
1572		cn_check_magic(zst->zst_tty->t_dev, CNC_BREAK, zstty_cnm_state);
1573
1574	if (!force)
1575		delta = rr0 ^ cs->cs_rr0;
1576	else
1577		delta = cs->cs_rr0_mask;
1578	cs->cs_rr0 = rr0;
1579
1580	if (ISSET(delta, cs->cs_rr0_mask)) {
1581		SET(cs->cs_rr0_delta, delta);
1582
1583		/*
1584		 * Pulse-per-second clock signal on edge of DCD?
1585		 */
1586		if (ISSET(delta, zst->zst_ppsmask)) {
1587			struct timeval tv;
1588			if (ISSET(rr0, zst->zst_ppsmask) == zst->zst_ppsassert) {
1589				/* XXX nanotime() */
1590				microtime(&tv);
1591				TIMEVAL_TO_TIMESPEC(&tv,
1592					&zst->ppsinfo.assert_timestamp);
1593				if (zst->ppsparam.mode & PPS_OFFSETASSERT) {
1594					timespecadd(&zst->ppsinfo.assert_timestamp,
1595					    &zst->ppsparam.assert_offset,
1596					    &zst->ppsinfo.assert_timestamp);
1597				}
1598
1599#ifdef PPS_SYNC
1600				if (zst->ppsparam.mode & PPS_HARDPPSONASSERT)
1601					hardpps(&tv, tv.tv_usec);
1602#endif
1603				zst->ppsinfo.assert_sequence++;
1604				zst->ppsinfo.current_mode = zst->ppsparam.mode;
1605			} else if (ISSET(rr0, zst->zst_ppsmask) ==
1606						zst->zst_ppsclear) {
1607				/* XXX nanotime() */
1608				microtime(&tv);
1609				TIMEVAL_TO_TIMESPEC(&tv,
1610					&zst->ppsinfo.clear_timestamp);
1611				if (zst->ppsparam.mode & PPS_OFFSETCLEAR) {
1612					timespecadd(&zst->ppsinfo.clear_timestamp,
1613						&zst->ppsparam.clear_offset,
1614						&zst->ppsinfo.clear_timestamp);
1615				}
1616
1617#ifdef PPS_SYNC
1618				if (zst->ppsparam.mode & PPS_HARDPPSONCLEAR)
1619					hardpps(&tv, tv.tv_usec);
1620#endif
1621				zst->ppsinfo.clear_sequence++;
1622				zst->ppsinfo.current_mode = zst->ppsparam.mode;
1623			}
1624		}
1625
1626		/*
1627		 * Stop output immediately if we lose the output
1628		 * flow control signal or carrier detect.
1629		 */
1630		if (ISSET(~rr0, cs->cs_rr0_mask)) {
1631			zst->zst_tbc = 0;
1632			zst->zst_heldtbc = 0;
1633		}
1634
1635		zst->zst_st_check = 1;
1636		cs->cs_softreq = 1;
1637	}
1638}
1639
1640void
1641zstty_diag(arg)
1642	void *arg;
1643{
1644	struct zstty_softc *zst = arg;
1645	int overflows, floods;
1646	int s;
1647
1648	s = splzs();
1649	overflows = zst->zst_overflows;
1650	zst->zst_overflows = 0;
1651	floods = zst->zst_floods;
1652	zst->zst_floods = 0;
1653	zst->zst_errors = 0;
1654	splx(s);
1655
1656	log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1657	    zst->zst_dev.dv_xname,
1658	    overflows, overflows == 1 ? "" : "s",
1659	    floods, floods == 1 ? "" : "s");
1660}
1661
1662integrate void
1663zstty_rxsoft(zst, tp)
1664	struct zstty_softc *zst;
1665	struct tty *tp;
1666{
1667	struct zs_chanstate *cs = zst->zst_cs;
1668	int (*rint) __P((int c, struct tty *tp)) = tp->t_linesw->l_rint;
1669	u_char *get, *end;
1670	u_int cc, scc;
1671	u_char rr1;
1672	int code;
1673	int s;
1674
1675	end = zst->zst_ebuf;
1676	get = zst->zst_rbget;
1677	scc = cc = zstty_rbuf_size - zst->zst_rbavail;
1678
1679	if (cc == zstty_rbuf_size) {
1680		zst->zst_floods++;
1681		if (zst->zst_errors++ == 0)
1682			callout_reset(&zst->zst_diag_ch, 60 * hz,
1683			    zstty_diag, zst);
1684	}
1685
1686	/* If not yet open, drop the entire buffer content here */
1687	if (!ISSET(tp->t_state, TS_ISOPEN)) {
1688		get += cc << 1;
1689		if (get >= end)
1690			get -= zstty_rbuf_size << 1;
1691		cc = 0;
1692	}
1693	while (cc) {
1694		code = get[0];
1695		rr1 = get[1];
1696		if (ISSET(rr1, ZSRR1_DO | ZSRR1_FE | ZSRR1_PE)) {
1697			if (ISSET(rr1, ZSRR1_DO)) {
1698				zst->zst_overflows++;
1699				if (zst->zst_errors++ == 0)
1700					callout_reset(&zst->zst_diag_ch,
1701					    60 * hz, zstty_diag, zst);
1702			}
1703			if (ISSET(rr1, ZSRR1_FE))
1704				SET(code, TTY_FE);
1705			if (ISSET(rr1, ZSRR1_PE))
1706				SET(code, TTY_PE);
1707		}
1708		if ((*rint)(code, tp) == -1) {
1709			/*
1710			 * The line discipline's buffer is out of space.
1711			 */
1712			if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1713				/*
1714				 * We're either not using flow control, or the
1715				 * line discipline didn't tell us to block for
1716				 * some reason.  Either way, we have no way to
1717				 * know when there's more space available, so
1718				 * just drop the rest of the data.
1719				 */
1720				get += cc << 1;
1721				if (get >= end)
1722					get -= zstty_rbuf_size << 1;
1723				cc = 0;
1724			} else {
1725				/*
1726				 * Don't schedule any more receive processing
1727				 * until the line discipline tells us there's
1728				 * space available (through comhwiflow()).
1729				 * Leave the rest of the data in the input
1730				 * buffer.
1731				 */
1732				SET(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1733			}
1734			break;
1735		}
1736		get += 2;
1737		if (get >= end)
1738			get = zst->zst_rbuf;
1739		cc--;
1740	}
1741
1742	if (cc != scc) {
1743		zst->zst_rbget = get;
1744		s = splzs();
1745		simple_lock(&cs->cs_lock);
1746		cc = zst->zst_rbavail += scc - cc;
1747		/* Buffers should be ok again, release possible block. */
1748		if (cc >= zst->zst_r_lowat) {
1749			if (ISSET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED)) {
1750				CLR(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1751				SET(cs->cs_preg[1], ZSWR1_RIE);
1752				cs->cs_creg[1] = cs->cs_preg[1];
1753				zs_write_reg(cs, 1, cs->cs_creg[1]);
1754			}
1755			if (ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED)) {
1756				CLR(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1757				zs_hwiflow(zst);
1758			}
1759		}
1760		simple_unlock(&cs->cs_lock);
1761		splx(s);
1762	}
1763
1764#if 0
1765	printf("%xS%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1766#endif
1767}
1768
1769integrate void
1770zstty_txsoft(zst, tp)
1771	struct zstty_softc *zst;
1772	struct tty *tp;
1773{
1774	struct zs_chanstate *cs = zst->zst_cs;
1775	int s;
1776
1777	s = splzs();
1778	simple_lock(&cs->cs_lock);
1779	CLR(tp->t_state, TS_BUSY);
1780	if (ISSET(tp->t_state, TS_FLUSH))
1781		CLR(tp->t_state, TS_FLUSH);
1782	else
1783		ndflush(&tp->t_outq, (int)(zst->zst_tba - tp->t_outq.c_cf));
1784	simple_unlock(&cs->cs_lock);
1785	splx(s);
1786	(*tp->t_linesw->l_start)(tp);
1787}
1788
1789integrate void
1790zstty_stsoft(zst, tp)
1791	struct zstty_softc *zst;
1792	struct tty *tp;
1793{
1794	struct zs_chanstate *cs = zst->zst_cs;
1795	u_char rr0, delta;
1796	int s;
1797
1798	s = splzs();
1799	simple_lock(&cs->cs_lock);
1800	rr0 = cs->cs_rr0;
1801	delta = cs->cs_rr0_delta;
1802	cs->cs_rr0_delta = 0;
1803	simple_unlock(&cs->cs_lock);
1804	splx(s);
1805
1806	if (ISSET(delta, cs->cs_rr0_dcd)) {
1807		/*
1808		 * Inform the tty layer that carrier detect changed.
1809		 */
1810		(void) (*tp->t_linesw->l_modem)(tp, ISSET(rr0, ZSRR0_DCD));
1811	}
1812
1813	if (ISSET(delta, cs->cs_rr0_cts)) {
1814		/* Block or unblock output according to flow control. */
1815		if (ISSET(rr0, cs->cs_rr0_cts)) {
1816			zst->zst_tx_stopped = 0;
1817			(*tp->t_linesw->l_start)(tp);
1818		} else {
1819			zst->zst_tx_stopped = 1;
1820		}
1821	}
1822}
1823
1824/*
1825 * Software interrupt.  Called at zssoft
1826 *
1827 * The main job to be done here is to empty the input ring
1828 * by passing its contents up to the tty layer.  The ring is
1829 * always emptied during this operation, therefore the ring
1830 * must not be larger than the space after "high water" in
1831 * the tty layer, or the tty layer might drop our input.
1832 *
1833 * Note: an "input blockage" condition is assumed to exist if
1834 * EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set.
1835 */
1836static void
1837zstty_softint(cs)
1838	struct zs_chanstate *cs;
1839{
1840	struct zstty_softc *zst = cs->cs_private;
1841	struct tty *tp = zst->zst_tty;
1842	int s;
1843
1844	s = spltty();
1845
1846	if (zst->zst_rx_ready) {
1847		zst->zst_rx_ready = 0;
1848		zstty_rxsoft(zst, tp);
1849	}
1850
1851	if (zst->zst_st_check) {
1852		zst->zst_st_check = 0;
1853		zstty_stsoft(zst, tp);
1854	}
1855
1856	if (zst->zst_tx_done) {
1857		zst->zst_tx_done = 0;
1858		zstty_txsoft(zst, tp);
1859	}
1860
1861	splx(s);
1862}
1863
1864struct zsops zsops_tty = {
1865	zstty_rxint,	/* receive char available */
1866	zstty_stint,	/* external/status */
1867	zstty_txint,	/* xmit buffer empty */
1868	zstty_softint,	/* process software interrupt */
1869};
1870