z8530tty.c revision 1.79
1/*	$NetBSD: z8530tty.c,v 1.79 2002/03/17 19:40:58 atatat Exp $	*/
2
3/*-
4 * Copyright (c) 1993, 1994, 1995, 1996, 1997, 1998, 1999
5 *	Charles M. Hannum.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Charles M. Hannum.
18 * 4. The name of the author may not be used to endorse or promote products
19 *    derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Copyright (c) 1994 Gordon W. Ross
35 * Copyright (c) 1992, 1993
36 *	The Regents of the University of California.  All rights reserved.
37 *
38 * This software was developed by the Computer Systems Engineering group
39 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
40 * contributed to Berkeley.
41 *
42 * All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 *	This product includes software developed by the University of
45 *	California, Lawrence Berkeley Laboratory.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 *    notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 *    notice, this list of conditions and the following disclaimer in the
54 *    documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 *    must display the following acknowledgement:
57 *	This product includes software developed by the University of
58 *	California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 *    may be used to endorse or promote products derived from this software
61 *    without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 *	@(#)zs.c	8.1 (Berkeley) 7/19/93
76 */
77
78/*
79 * Zilog Z8530 Dual UART driver (tty interface)
80 *
81 * This is the "slave" driver that will be attached to
82 * the "zsc" driver for plain "tty" async. serial lines.
83 *
84 * Credits, history:
85 *
86 * The original version of this code was the sparc/dev/zs.c driver
87 * as distributed with the Berkeley 4.4 Lite release.  Since then,
88 * Gordon Ross reorganized the code into the current parent/child
89 * driver scheme, separating the Sun keyboard and mouse support
90 * into independent child drivers.
91 *
92 * RTS/CTS flow-control support was a collaboration of:
93 *	Gordon Ross <gwr@netbsd.org>,
94 *	Bill Studenmund <wrstuden@loki.stanford.edu>
95 *	Ian Dall <Ian.Dall@dsto.defence.gov.au>
96 *
97 * The driver was massively overhauled in November 1997 by Charles Hannum,
98 * fixing *many* bugs, and substantially improving performance.
99 */
100
101#include <sys/cdefs.h>
102__KERNEL_RCSID(0, "$NetBSD: z8530tty.c,v 1.79 2002/03/17 19:40:58 atatat Exp $");
103
104#include "opt_kgdb.h"
105
106#include <sys/param.h>
107#include <sys/systm.h>
108#include <sys/proc.h>
109#include <sys/device.h>
110#include <sys/conf.h>
111#include <sys/file.h>
112#include <sys/ioctl.h>
113#include <sys/malloc.h>
114#include <sys/timepps.h>
115#include <sys/tty.h>
116#include <sys/time.h>
117#include <sys/kernel.h>
118#include <sys/syslog.h>
119
120#include <dev/ic/z8530reg.h>
121#include <machine/z8530var.h>
122
123#include <dev/cons.h>
124
125#include "locators.h"
126
127/*
128 * How many input characters we can buffer.
129 * The port-specific var.h may override this.
130 * Note: must be a power of two!
131 */
132#ifndef	ZSTTY_RING_SIZE
133#define	ZSTTY_RING_SIZE	2048
134#endif
135
136static struct cnm_state zstty_cnm_state;
137/*
138 * Make this an option variable one can patch.
139 * But be warned:  this must be a power of 2!
140 */
141u_int zstty_rbuf_size = ZSTTY_RING_SIZE;
142
143/* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
144u_int zstty_rbuf_hiwat = (ZSTTY_RING_SIZE * 1) / 4;
145u_int zstty_rbuf_lowat = (ZSTTY_RING_SIZE * 3) / 4;
146
147static int zsppscap =
148	PPS_TSFMT_TSPEC |
149	PPS_CAPTUREASSERT |
150	PPS_CAPTURECLEAR |
151#ifdef  PPS_SYNC
152	PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
153#endif	/* PPS_SYNC */
154	PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
155
156struct zstty_softc {
157	struct	device zst_dev;		/* required first: base device */
158	struct  tty *zst_tty;
159	struct	zs_chanstate *zst_cs;
160
161	struct callout zst_diag_ch;
162
163	u_int zst_overflows,
164	      zst_floods,
165	      zst_errors;
166
167	int zst_hwflags,	/* see z8530var.h */
168	    zst_swflags;	/* TIOCFLAG_SOFTCAR, ... <ttycom.h> */
169
170	u_int zst_r_hiwat,
171	      zst_r_lowat;
172	u_char *volatile zst_rbget,
173	       *volatile zst_rbput;
174	volatile u_int zst_rbavail;
175	u_char *zst_rbuf,
176	       *zst_ebuf;
177
178	/*
179	 * The transmit byte count and address are used for pseudo-DMA
180	 * output in the hardware interrupt code.  PDMA can be suspended
181	 * to get pending changes done; heldtbc is used for this.  It can
182	 * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
183	 */
184	u_char *zst_tba;		/* transmit buffer address */
185	u_int zst_tbc,			/* transmit byte count */
186	      zst_heldtbc;		/* held tbc while xmission stopped */
187
188	/* Flags to communicate with zstty_softint() */
189	volatile u_char zst_rx_flags,	/* receiver blocked */
190#define	RX_TTY_BLOCKED		0x01
191#define	RX_TTY_OVERFLOWED	0x02
192#define	RX_IBUF_BLOCKED		0x04
193#define	RX_IBUF_OVERFLOWED	0x08
194#define	RX_ANY_BLOCK		0x0f
195			zst_tx_busy,	/* working on an output chunk */
196			zst_tx_done,	/* done with one output chunk */
197			zst_tx_stopped,	/* H/W level stop (lost CTS) */
198			zst_st_check,	/* got a status interrupt */
199			zst_rx_ready;
200
201	/* PPS signal on DCD, with or without inkernel clock disciplining */
202	u_char  zst_ppsmask;			/* pps signal mask */
203	u_char  zst_ppsassert;			/* pps leading edge */
204	u_char  zst_ppsclear;			/* pps trailing edge */
205	pps_info_t ppsinfo;
206	pps_params_t ppsparam;
207};
208
209/* Macros to clear/set/test flags. */
210#define SET(t, f)	(t) |= (f)
211#define CLR(t, f)	(t) &= ~(f)
212#define ISSET(t, f)	((t) & (f))
213
214/* Definition of the driver for autoconfig. */
215static int	zstty_match(struct device *, struct cfdata *, void *);
216static void	zstty_attach(struct device *, struct device *, void *);
217
218struct cfattach zstty_ca = {
219	sizeof(struct zstty_softc), zstty_match, zstty_attach
220};
221
222extern struct cfdriver zstty_cd;
223
224struct zsops zsops_tty;
225
226/* Routines called from other code. */
227cdev_decl(zs);	/* open, close, read, write, ioctl, stop, ... */
228
229static void zs_shutdown __P((struct zstty_softc *));
230static void	zsstart __P((struct tty *));
231static int	zsparam __P((struct tty *, struct termios *));
232static void zs_modem __P((struct zstty_softc *, int));
233static void tiocm_to_zs __P((struct zstty_softc *, u_long, int));
234static int  zs_to_tiocm __P((struct zstty_softc *));
235static int    zshwiflow __P((struct tty *, int));
236static void  zs_hwiflow __P((struct zstty_softc *));
237static void zs_maskintr __P((struct zstty_softc *));
238
239/* Low-level routines. */
240static void zstty_rxint   __P((struct zs_chanstate *));
241static void zstty_stint   __P((struct zs_chanstate *, int));
242static void zstty_txint   __P((struct zs_chanstate *));
243static void zstty_softint __P((struct zs_chanstate *));
244
245#define	ZSUNIT(x)	(minor(x) & 0x7ffff)
246#define	ZSDIALOUT(x)	(minor(x) & 0x80000)
247
248/*
249 * zstty_match: how is this zs channel configured?
250 */
251int
252zstty_match(parent, cf, aux)
253	struct device *parent;
254	struct cfdata *cf;
255	void   *aux;
256{
257	struct zsc_attach_args *args = aux;
258
259	/* Exact match is better than wildcard. */
260	if (cf->cf_loc[ZSCCF_CHANNEL] == args->channel)
261		return 2;
262
263	/* This driver accepts wildcard. */
264	if (cf->cf_loc[ZSCCF_CHANNEL] == ZSCCF_CHANNEL_DEFAULT)
265		return 1;
266
267	return 0;
268}
269
270void
271zstty_attach(parent, self, aux)
272	struct device *parent, *self;
273	void   *aux;
274
275{
276	struct zsc_softc *zsc = (void *) parent;
277	struct zstty_softc *zst = (void *) self;
278	struct cfdata *cf = self->dv_cfdata;
279	struct zsc_attach_args *args = aux;
280	struct zs_chanstate *cs;
281	struct tty *tp;
282	int channel, s, tty_unit;
283	dev_t dev;
284	char *i, *o;
285
286	callout_init(&zst->zst_diag_ch);
287	cn_init_magic(&zstty_cnm_state);
288
289	tty_unit = zst->zst_dev.dv_unit;
290	channel = args->channel;
291	cs = zsc->zsc_cs[channel];
292	cs->cs_private = zst;
293	cs->cs_ops = &zsops_tty;
294
295	zst->zst_cs = cs;
296	zst->zst_swflags = cf->cf_flags;	/* softcar, etc. */
297	zst->zst_hwflags = args->hwflags;
298	dev = makedev(zs_major, tty_unit);
299
300	if (zst->zst_swflags)
301		printf(" flags 0x%x", zst->zst_swflags);
302
303	/*
304	 * Check whether we serve as a console device.
305	 * XXX - split console input/output channels aren't
306	 *	 supported yet on /dev/console
307	 */
308	i = o = NULL;
309	if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
310		i = "input";
311		if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
312			args->consdev->cn_dev = dev;
313			cn_tab->cn_pollc = args->consdev->cn_pollc;
314			cn_tab->cn_getc = args->consdev->cn_getc;
315		}
316		cn_tab->cn_dev = dev;
317		/* Set console magic to BREAK */
318		cn_set_magic("\047\001");
319	}
320	if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
321		o = "output";
322		if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
323			cn_tab->cn_putc = args->consdev->cn_putc;
324		}
325		cn_tab->cn_dev = dev;
326	}
327	if (i != NULL || o != NULL)
328		printf(" (console %s)", i ? (o ? "i/o" : i) : o);
329
330#ifdef KGDB
331	if (zs_check_kgdb(cs, dev)) {
332		/*
333		 * Allow kgdb to "take over" this port.  Returns true
334		 * if this serial port is in-use by kgdb.
335		 */
336		printf(" (kgdb)\n");
337		/*
338		 * This is the kgdb port (exclusive use)
339		 * so skip the normal attach code.
340		 */
341		return;
342	}
343#endif
344	printf("\n");
345
346	tp = ttymalloc();
347	tp->t_dev = dev;
348	tp->t_oproc = zsstart;
349	tp->t_param = zsparam;
350	tp->t_hwiflow = zshwiflow;
351	tty_attach(tp);
352
353	zst->zst_tty = tp;
354	zst->zst_rbuf = malloc(zstty_rbuf_size << 1, M_DEVBUF, M_WAITOK);
355	zst->zst_ebuf = zst->zst_rbuf + (zstty_rbuf_size << 1);
356	/* Disable the high water mark. */
357	zst->zst_r_hiwat = 0;
358	zst->zst_r_lowat = 0;
359	zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
360	zst->zst_rbavail = zstty_rbuf_size;
361
362	/* if there are no enable/disable functions, assume the device
363	   is always enabled */
364	if (!cs->enable)
365		cs->enabled = 1;
366
367	/*
368	 * Hardware init
369	 */
370	if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
371		/* Call zsparam similar to open. */
372		struct termios t;
373
374		/* Wait a while for previous console output to complete */
375		DELAY(10000);
376
377		/* Setup the "new" parameters in t. */
378		t.c_ispeed = 0;
379		t.c_ospeed = cs->cs_defspeed;
380		t.c_cflag = cs->cs_defcflag;
381
382		s = splzs();
383
384		/*
385		 * Turn on receiver and status interrupts.
386		 * We defer the actual write of the register to zsparam(),
387		 * but we must make sure status interrupts are turned on by
388		 * the time zsparam() reads the initial rr0 state.
389		 */
390		SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
391
392		splx(s);
393
394		/* Make sure zsparam will see changes. */
395		tp->t_ospeed = 0;
396		(void) zsparam(tp, &t);
397
398		s = splzs();
399
400		/* Make sure DTR is on now. */
401		zs_modem(zst, 1);
402
403		splx(s);
404	} else if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_NORESET)) {
405		/* Not the console; may need reset. */
406		int reset;
407
408		reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET;
409
410		s = splzs();
411
412		zs_write_reg(cs, 9, reset);
413
414		/* Will raise DTR in open. */
415		zs_modem(zst, 0);
416
417		splx(s);
418	}
419}
420
421
422/*
423 * Return pointer to our tty.
424 */
425struct tty *
426zstty(dev)
427	dev_t dev;
428{
429	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
430
431	return (zst->zst_tty);
432}
433
434
435void
436zs_shutdown(zst)
437	struct zstty_softc *zst;
438{
439	struct zs_chanstate *cs = zst->zst_cs;
440	struct tty *tp = zst->zst_tty;
441	int s;
442
443	s = splzs();
444
445	/* If we were asserting flow control, then deassert it. */
446	SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
447	zs_hwiflow(zst);
448
449	/* Clear any break condition set with TIOCSBRK. */
450	zs_break(cs, 0);
451
452	/* Turn off PPS capture on last close. */
453	zst->zst_ppsmask = 0;
454	zst->ppsparam.mode = 0;
455
456	/*
457	 * Hang up if necessary.  Wait a bit, so the other side has time to
458	 * notice even if we immediately open the port again.
459	 */
460	if (ISSET(tp->t_cflag, HUPCL)) {
461		zs_modem(zst, 0);
462		(void) tsleep(cs, TTIPRI, ttclos, hz);
463	}
464
465	/* Turn off interrupts if not the console. */
466	if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
467		CLR(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
468		cs->cs_creg[1] = cs->cs_preg[1];
469		zs_write_reg(cs, 1, cs->cs_creg[1]);
470	}
471
472	/* Call the power management hook. */
473	if (cs->disable) {
474#ifdef DIAGNOSTIC
475		if (!cs->enabled)
476			panic("zs_shutdown: not enabled?");
477#endif
478		(*cs->disable)(zst->zst_cs);
479	}
480
481	splx(s);
482}
483
484/*
485 * Open a zs serial (tty) port.
486 */
487int
488zsopen(dev, flags, mode, p)
489	dev_t dev;
490	int flags;
491	int mode;
492	struct proc *p;
493{
494	struct zstty_softc *zst;
495	struct zs_chanstate *cs;
496	struct tty *tp;
497	int s, s2;
498	int error;
499
500	zst = device_lookup(&zstty_cd, ZSUNIT(dev));
501	if (zst == NULL)
502		return (ENXIO);
503
504	tp = zst->zst_tty;
505	cs = zst->zst_cs;
506
507	/* If KGDB took the line, then tp==NULL */
508	if (tp == NULL)
509		return (EBUSY);
510
511	if (ISSET(tp->t_state, TS_ISOPEN) &&
512	    ISSET(tp->t_state, TS_XCLUDE) &&
513	    p->p_ucred->cr_uid != 0)
514		return (EBUSY);
515
516	s = spltty();
517
518	/*
519	 * Do the following iff this is a first open.
520	 */
521	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
522		struct termios t;
523
524		tp->t_dev = dev;
525
526		/* Call the power management hook. */
527		if (cs->enable) {
528			if ((*cs->enable)(cs)) {
529				splx(s);
530				printf("%s: device enable failed\n",
531			       	zst->zst_dev.dv_xname);
532				return (EIO);
533			}
534		}
535
536		/*
537		 * Initialize the termios status to the defaults.  Add in the
538		 * sticky bits from TIOCSFLAGS.
539		 */
540		t.c_ispeed = 0;
541		t.c_ospeed = cs->cs_defspeed;
542		t.c_cflag = cs->cs_defcflag;
543		if (ISSET(zst->zst_swflags, TIOCFLAG_CLOCAL))
544			SET(t.c_cflag, CLOCAL);
545		if (ISSET(zst->zst_swflags, TIOCFLAG_CRTSCTS))
546			SET(t.c_cflag, CRTSCTS);
547		if (ISSET(zst->zst_swflags, TIOCFLAG_CDTRCTS))
548			SET(t.c_cflag, CDTRCTS);
549		if (ISSET(zst->zst_swflags, TIOCFLAG_MDMBUF))
550			SET(t.c_cflag, MDMBUF);
551
552		s2 = splzs();
553
554		/*
555		 * Turn on receiver and status interrupts.
556		 * We defer the actual write of the register to zsparam(),
557		 * but we must make sure status interrupts are turned on by
558		 * the time zsparam() reads the initial rr0 state.
559		 */
560		SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
561
562		/* Clear PPS capture state on first open. */
563		zst->zst_ppsmask = 0;
564		zst->ppsparam.mode = 0;
565
566		splx(s2);
567
568		/* Make sure zsparam will see changes. */
569		tp->t_ospeed = 0;
570		(void) zsparam(tp, &t);
571
572		/*
573		 * Note: zsparam has done: cflag, ispeed, ospeed
574		 * so we just need to do: iflag, oflag, lflag, cc
575		 * For "raw" mode, just leave all zeros.
576		 */
577		if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_RAW)) {
578			tp->t_iflag = TTYDEF_IFLAG;
579			tp->t_oflag = TTYDEF_OFLAG;
580			tp->t_lflag = TTYDEF_LFLAG;
581		} else {
582			tp->t_iflag = 0;
583			tp->t_oflag = 0;
584			tp->t_lflag = 0;
585		}
586		ttychars(tp);
587		ttsetwater(tp);
588
589		s2 = splzs();
590
591		/*
592		 * Turn on DTR.  We must always do this, even if carrier is not
593		 * present, because otherwise we'd have to use TIOCSDTR
594		 * immediately after setting CLOCAL, which applications do not
595		 * expect.  We always assert DTR while the device is open
596		 * unless explicitly requested to deassert it.
597		 */
598		zs_modem(zst, 1);
599
600		/* Clear the input ring, and unblock. */
601		zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
602		zst->zst_rbavail = zstty_rbuf_size;
603		zs_iflush(cs);
604		CLR(zst->zst_rx_flags, RX_ANY_BLOCK);
605		zs_hwiflow(zst);
606
607		splx(s2);
608	}
609
610	splx(s);
611
612	error = ttyopen(tp, ZSDIALOUT(dev), ISSET(flags, O_NONBLOCK));
613	if (error)
614		goto bad;
615
616	error = (*tp->t_linesw->l_open)(dev, tp);
617	if (error)
618		goto bad;
619
620	return (0);
621
622bad:
623	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
624		/*
625		 * We failed to open the device, and nobody else had it opened.
626		 * Clean up the state as appropriate.
627		 */
628		zs_shutdown(zst);
629	}
630
631	return (error);
632}
633
634/*
635 * Close a zs serial port.
636 */
637int
638zsclose(dev, flags, mode, p)
639	dev_t dev;
640	int flags;
641	int mode;
642	struct proc *p;
643{
644	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
645	struct tty *tp = zst->zst_tty;
646
647	/* XXX This is for cons.c. */
648	if (!ISSET(tp->t_state, TS_ISOPEN))
649		return 0;
650
651	(*tp->t_linesw->l_close)(tp, flags);
652	ttyclose(tp);
653
654	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
655		/*
656		 * Although we got a last close, the device may still be in
657		 * use; e.g. if this was the dialout node, and there are still
658		 * processes waiting for carrier on the non-dialout node.
659		 */
660		zs_shutdown(zst);
661	}
662
663	return (0);
664}
665
666/*
667 * Read/write zs serial port.
668 */
669int
670zsread(dev, uio, flags)
671	dev_t dev;
672	struct uio *uio;
673	int flags;
674{
675	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
676	struct tty *tp = zst->zst_tty;
677
678	return ((*tp->t_linesw->l_read)(tp, uio, flags));
679}
680
681int
682zswrite(dev, uio, flags)
683	dev_t dev;
684	struct uio *uio;
685	int flags;
686{
687	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
688	struct tty *tp = zst->zst_tty;
689
690	return ((*tp->t_linesw->l_write)(tp, uio, flags));
691}
692
693int
694zspoll(dev, events, p)
695	dev_t dev;
696	int events;
697	struct proc *p;
698{
699	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
700	struct tty *tp = zst->zst_tty;
701
702	return ((*tp->t_linesw->l_poll)(tp, events, p));
703}
704
705int
706zsioctl(dev, cmd, data, flag, p)
707	dev_t dev;
708	u_long cmd;
709	caddr_t data;
710	int flag;
711	struct proc *p;
712{
713	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
714	struct zs_chanstate *cs = zst->zst_cs;
715	struct tty *tp = zst->zst_tty;
716	int error;
717	int s;
718
719	error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, p);
720	if (error != EPASSTHROUGH)
721		return (error);
722
723	error = ttioctl(tp, cmd, data, flag, p);
724	if (error != EPASSTHROUGH)
725		return (error);
726
727#ifdef	ZS_MD_IOCTL
728	error = ZS_MD_IOCTL(cs, cmd, data);
729	if (error != EPASSTHROUGH)
730		return (error);
731#endif	/* ZS_MD_IOCTL */
732
733	error = 0;
734
735	s = splzs();
736
737	switch (cmd) {
738	case TIOCSBRK:
739		zs_break(cs, 1);
740		break;
741
742	case TIOCCBRK:
743		zs_break(cs, 0);
744		break;
745
746	case TIOCGFLAGS:
747		*(int *)data = zst->zst_swflags;
748		break;
749
750	case TIOCSFLAGS:
751		error = suser(p->p_ucred, &p->p_acflag);
752		if (error)
753			break;
754		zst->zst_swflags = *(int *)data;
755		break;
756
757	case TIOCSDTR:
758		zs_modem(zst, 1);
759		break;
760
761	case TIOCCDTR:
762		zs_modem(zst, 0);
763		break;
764
765	case TIOCMSET:
766	case TIOCMBIS:
767	case TIOCMBIC:
768		tiocm_to_zs(zst, cmd, *(int *)data);
769		break;
770
771	case TIOCMGET:
772		*(int *)data = zs_to_tiocm(zst);
773		break;
774
775	case PPS_IOC_CREATE:
776		break;
777
778	case PPS_IOC_DESTROY:
779		break;
780
781	case PPS_IOC_GETPARAMS: {
782		pps_params_t *pp;
783		pp = (pps_params_t *)data;
784		*pp = zst->ppsparam;
785		break;
786	}
787
788	case PPS_IOC_SETPARAMS: {
789		pps_params_t *pp;
790		int mode;
791		if (cs->cs_rr0_pps == 0) {
792			error = EINVAL;
793			break;
794		}
795		pp = (pps_params_t *)data;
796		if (pp->mode & ~zsppscap) {
797			error = EINVAL;
798			break;
799		}
800		zst->ppsparam = *pp;
801		/*
802		 * compute masks from user-specified timestamp state.
803		 */
804		mode = zst->ppsparam.mode;
805#ifdef	PPS_SYNC
806		if (mode & PPS_HARDPPSONASSERT) {
807			mode |= PPS_CAPTUREASSERT;
808			/* XXX revoke any previous HARDPPS source */
809		}
810		if (mode & PPS_HARDPPSONCLEAR) {
811			mode |= PPS_CAPTURECLEAR;
812			/* XXX revoke any previous HARDPPS source */
813		}
814#endif	/* PPS_SYNC */
815		switch (mode & PPS_CAPTUREBOTH) {
816		case 0:
817			zst->zst_ppsmask = 0;
818			break;
819
820		case PPS_CAPTUREASSERT:
821			zst->zst_ppsmask = ZSRR0_DCD;
822			zst->zst_ppsassert = ZSRR0_DCD;
823			zst->zst_ppsclear = -1;
824			break;
825
826		case PPS_CAPTURECLEAR:
827			zst->zst_ppsmask = ZSRR0_DCD;
828			zst->zst_ppsassert = -1;
829			zst->zst_ppsclear = 0;
830			break;
831
832		case PPS_CAPTUREBOTH:
833			zst->zst_ppsmask = ZSRR0_DCD;
834			zst->zst_ppsassert = ZSRR0_DCD;
835			zst->zst_ppsclear = 0;
836			break;
837
838		default:
839			error = EINVAL;
840			break;
841		}
842
843		/*
844		 * Now update interrupts.
845		 */
846		zs_maskintr(zst);
847		/*
848		 * If nothing is being transmitted, set up new current values,
849		 * else mark them as pending.
850		 */
851		if (!cs->cs_heldchange) {
852			if (zst->zst_tx_busy) {
853				zst->zst_heldtbc = zst->zst_tbc;
854				zst->zst_tbc = 0;
855				cs->cs_heldchange = 1;
856			} else
857				zs_loadchannelregs(cs);
858		}
859
860		break;
861	}
862
863	case PPS_IOC_GETCAP:
864		*(int *)data = zsppscap;
865		break;
866
867	case PPS_IOC_FETCH: {
868		pps_info_t *pi;
869		pi = (pps_info_t *)data;
870		*pi = zst->ppsinfo;
871		break;
872	}
873
874	case TIOCDCDTIMESTAMP:	/* XXX old, overloaded  API used by xntpd v3 */
875		if (cs->cs_rr0_pps == 0) {
876			error = EINVAL;
877			break;
878		}
879		/*
880		 * Some GPS clocks models use the falling rather than
881		 * rising edge as the on-the-second signal.
882		 * The old API has no way to specify PPS polarity.
883		 */
884		zst->zst_ppsmask = ZSRR0_DCD;
885#ifndef	PPS_TRAILING_EDGE
886		zst->zst_ppsassert = ZSRR0_DCD;
887		zst->zst_ppsclear = -1;
888		TIMESPEC_TO_TIMEVAL((struct timeval *)data,
889			&zst->ppsinfo.assert_timestamp);
890#else
891		zst->zst_ppsassert = -1;
892		zst->zst_ppsclear = 01;
893		TIMESPEC_TO_TIMEVAL((struct timeval *)data,
894			&zst->ppsinfo.clear_timestamp);
895#endif
896		/*
897		 * Now update interrupts.
898		 */
899		zs_maskintr(zst);
900		/*
901		 * If nothing is being transmitted, set up new current values,
902		 * else mark them as pending.
903		 */
904		if (!cs->cs_heldchange) {
905			if (zst->zst_tx_busy) {
906				zst->zst_heldtbc = zst->zst_tbc;
907				zst->zst_tbc = 0;
908				cs->cs_heldchange = 1;
909			} else
910				zs_loadchannelregs(cs);
911		}
912
913		break;
914
915	default:
916		error = EPASSTHROUGH;
917		break;
918	}
919
920	splx(s);
921
922	return (error);
923}
924
925/*
926 * Start or restart transmission.
927 */
928static void
929zsstart(tp)
930	struct tty *tp;
931{
932	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
933	struct zs_chanstate *cs = zst->zst_cs;
934	int s;
935
936	s = spltty();
937	if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
938		goto out;
939	if (zst->zst_tx_stopped)
940		goto out;
941
942	if (tp->t_outq.c_cc <= tp->t_lowat) {
943		if (ISSET(tp->t_state, TS_ASLEEP)) {
944			CLR(tp->t_state, TS_ASLEEP);
945			wakeup((caddr_t)&tp->t_outq);
946		}
947		selwakeup(&tp->t_wsel);
948		if (tp->t_outq.c_cc == 0)
949			goto out;
950	}
951
952	/* Grab the first contiguous region of buffer space. */
953	{
954		u_char *tba;
955		int tbc;
956
957		tba = tp->t_outq.c_cf;
958		tbc = ndqb(&tp->t_outq, 0);
959
960		(void) splzs();
961
962		zst->zst_tba = tba;
963		zst->zst_tbc = tbc;
964	}
965
966	SET(tp->t_state, TS_BUSY);
967	zst->zst_tx_busy = 1;
968
969	/* Enable transmit completion interrupts if necessary. */
970	if (!ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
971		SET(cs->cs_preg[1], ZSWR1_TIE);
972		cs->cs_creg[1] = cs->cs_preg[1];
973		zs_write_reg(cs, 1, cs->cs_creg[1]);
974	}
975
976	/* Output the first character of the contiguous buffer. */
977	{
978		zs_write_data(cs, *zst->zst_tba);
979		zst->zst_tbc--;
980		zst->zst_tba++;
981	}
982out:
983	splx(s);
984	return;
985}
986
987/*
988 * Stop output, e.g., for ^S or output flush.
989 */
990void
991zsstop(tp, flag)
992	struct tty *tp;
993	int flag;
994{
995	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
996	int s;
997
998	s = splzs();
999	if (ISSET(tp->t_state, TS_BUSY)) {
1000		/* Stop transmitting at the next chunk. */
1001		zst->zst_tbc = 0;
1002		zst->zst_heldtbc = 0;
1003		if (!ISSET(tp->t_state, TS_TTSTOP))
1004			SET(tp->t_state, TS_FLUSH);
1005	}
1006	splx(s);
1007}
1008
1009/*
1010 * Set ZS tty parameters from termios.
1011 * XXX - Should just copy the whole termios after
1012 * making sure all the changes could be done.
1013 */
1014static int
1015zsparam(tp, t)
1016	struct tty *tp;
1017	struct termios *t;
1018{
1019	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1020	struct zs_chanstate *cs = zst->zst_cs;
1021	int ospeed, cflag;
1022	u_char tmp3, tmp4, tmp5;
1023	int s, error;
1024
1025	ospeed = t->c_ospeed;
1026	cflag = t->c_cflag;
1027
1028	/* Check requested parameters. */
1029	if (ospeed < 0)
1030		return (EINVAL);
1031	if (t->c_ispeed && t->c_ispeed != ospeed)
1032		return (EINVAL);
1033
1034	/*
1035	 * For the console, always force CLOCAL and !HUPCL, so that the port
1036	 * is always active.
1037	 */
1038	if (ISSET(zst->zst_swflags, TIOCFLAG_SOFTCAR) ||
1039	    ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
1040		SET(cflag, CLOCAL);
1041		CLR(cflag, HUPCL);
1042	}
1043
1044	/*
1045	 * Only whack the UART when params change.
1046	 * Some callers need to clear tp->t_ospeed
1047	 * to make sure initialization gets done.
1048	 */
1049	if (tp->t_ospeed == ospeed &&
1050	    tp->t_cflag == cflag)
1051		return (0);
1052
1053	/*
1054	 * Call MD functions to deal with changed
1055	 * clock modes or H/W flow control modes.
1056	 * The BRG divisor is set now. (reg 12,13)
1057	 */
1058	error = zs_set_speed(cs, ospeed);
1059	if (error)
1060		return (error);
1061	error = zs_set_modes(cs, cflag);
1062	if (error)
1063		return (error);
1064
1065	/*
1066	 * Block interrupts so that state will not
1067	 * be altered until we are done setting it up.
1068	 *
1069	 * Initial values in cs_preg are set before
1070	 * our attach routine is called.  The master
1071	 * interrupt enable is handled by zsc.c
1072	 *
1073	 */
1074	s = splzs();
1075
1076	/*
1077	 * Recalculate which status ints to enable.
1078	 */
1079	zs_maskintr(zst);
1080
1081	/* Recompute character size bits. */
1082	tmp3 = cs->cs_preg[3];
1083	tmp5 = cs->cs_preg[5];
1084	CLR(tmp3, ZSWR3_RXSIZE);
1085	CLR(tmp5, ZSWR5_TXSIZE);
1086	switch (ISSET(cflag, CSIZE)) {
1087	case CS5:
1088		SET(tmp3, ZSWR3_RX_5);
1089		SET(tmp5, ZSWR5_TX_5);
1090		break;
1091	case CS6:
1092		SET(tmp3, ZSWR3_RX_6);
1093		SET(tmp5, ZSWR5_TX_6);
1094		break;
1095	case CS7:
1096		SET(tmp3, ZSWR3_RX_7);
1097		SET(tmp5, ZSWR5_TX_7);
1098		break;
1099	case CS8:
1100		SET(tmp3, ZSWR3_RX_8);
1101		SET(tmp5, ZSWR5_TX_8);
1102		break;
1103	}
1104	cs->cs_preg[3] = tmp3;
1105	cs->cs_preg[5] = tmp5;
1106
1107	/*
1108	 * Recompute the stop bits and parity bits.  Note that
1109	 * zs_set_speed() may have set clock selection bits etc.
1110	 * in wr4, so those must preserved.
1111	 */
1112	tmp4 = cs->cs_preg[4];
1113	CLR(tmp4, ZSWR4_SBMASK | ZSWR4_PARMASK);
1114	if (ISSET(cflag, CSTOPB))
1115		SET(tmp4, ZSWR4_TWOSB);
1116	else
1117		SET(tmp4, ZSWR4_ONESB);
1118	if (!ISSET(cflag, PARODD))
1119		SET(tmp4, ZSWR4_EVENP);
1120	if (ISSET(cflag, PARENB))
1121		SET(tmp4, ZSWR4_PARENB);
1122	cs->cs_preg[4] = tmp4;
1123
1124	/* And copy to tty. */
1125	tp->t_ispeed = 0;
1126	tp->t_ospeed = ospeed;
1127	tp->t_cflag = cflag;
1128
1129	/*
1130	 * If nothing is being transmitted, set up new current values,
1131	 * else mark them as pending.
1132	 */
1133	if (!cs->cs_heldchange) {
1134		if (zst->zst_tx_busy) {
1135			zst->zst_heldtbc = zst->zst_tbc;
1136			zst->zst_tbc = 0;
1137			cs->cs_heldchange = 1;
1138		} else
1139			zs_loadchannelregs(cs);
1140	}
1141
1142	/*
1143	 * If hardware flow control is disabled, turn off the buffer water
1144	 * marks and unblock any soft flow control state.  Otherwise, enable
1145	 * the water marks.
1146	 */
1147	if (!ISSET(cflag, CHWFLOW)) {
1148		zst->zst_r_hiwat = 0;
1149		zst->zst_r_lowat = 0;
1150		if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1151			CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1152			zst->zst_rx_ready = 1;
1153			cs->cs_softreq = 1;
1154		}
1155		if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1156			CLR(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1157			zs_hwiflow(zst);
1158		}
1159	} else {
1160		zst->zst_r_hiwat = zstty_rbuf_hiwat;
1161		zst->zst_r_lowat = zstty_rbuf_lowat;
1162	}
1163
1164	/*
1165	 * Force a recheck of the hardware carrier and flow control status,
1166	 * since we may have changed which bits we're looking at.
1167	 */
1168	zstty_stint(cs, 1);
1169
1170	splx(s);
1171
1172	/*
1173	 * If hardware flow control is disabled, unblock any hard flow control
1174	 * state.
1175	 */
1176	if (!ISSET(cflag, CHWFLOW)) {
1177		if (zst->zst_tx_stopped) {
1178			zst->zst_tx_stopped = 0;
1179			zsstart(tp);
1180		}
1181	}
1182
1183	zstty_softint(cs);
1184
1185	return (0);
1186}
1187
1188/*
1189 * Compute interupt enable bits and set in the pending bits. Called both
1190 * in zsparam() and when PPS (pulse per second timing) state changes.
1191 * Must be called at splzs().
1192 */
1193static void
1194zs_maskintr(zst)
1195	struct zstty_softc *zst;
1196{
1197	struct zs_chanstate *cs = zst->zst_cs;
1198	int tmp15;
1199
1200	cs->cs_rr0_mask = cs->cs_rr0_cts | cs->cs_rr0_dcd;
1201	if (zst->zst_ppsmask != 0)
1202		cs->cs_rr0_mask |= cs->cs_rr0_pps;
1203	tmp15 = cs->cs_preg[15];
1204	if (ISSET(cs->cs_rr0_mask, ZSRR0_DCD))
1205		SET(tmp15, ZSWR15_DCD_IE);
1206	else
1207		CLR(tmp15, ZSWR15_DCD_IE);
1208	if (ISSET(cs->cs_rr0_mask, ZSRR0_CTS))
1209		SET(tmp15, ZSWR15_CTS_IE);
1210	else
1211		CLR(tmp15, ZSWR15_CTS_IE);
1212	cs->cs_preg[15] = tmp15;
1213}
1214
1215
1216/*
1217 * Raise or lower modem control (DTR/RTS) signals.  If a character is
1218 * in transmission, the change is deferred.
1219 */
1220static void
1221zs_modem(zst, onoff)
1222	struct zstty_softc *zst;
1223	int onoff;
1224{
1225	struct zs_chanstate *cs = zst->zst_cs;
1226
1227	if (cs->cs_wr5_dtr == 0)
1228		return;
1229
1230	if (onoff)
1231		SET(cs->cs_preg[5], cs->cs_wr5_dtr);
1232	else
1233		CLR(cs->cs_preg[5], cs->cs_wr5_dtr);
1234
1235	if (!cs->cs_heldchange) {
1236		if (zst->zst_tx_busy) {
1237			zst->zst_heldtbc = zst->zst_tbc;
1238			zst->zst_tbc = 0;
1239			cs->cs_heldchange = 1;
1240		} else
1241			zs_loadchannelregs(cs);
1242	}
1243}
1244
1245static void
1246tiocm_to_zs(zst, how, ttybits)
1247	struct zstty_softc *zst;
1248	u_long how;
1249	int ttybits;
1250{
1251	struct zs_chanstate *cs = zst->zst_cs;
1252	u_char zsbits;
1253
1254	zsbits = 0;
1255	if (ISSET(ttybits, TIOCM_DTR))
1256		SET(zsbits, ZSWR5_DTR);
1257	if (ISSET(ttybits, TIOCM_RTS))
1258		SET(zsbits, ZSWR5_RTS);
1259
1260	switch (how) {
1261	case TIOCMBIC:
1262		CLR(cs->cs_preg[5], zsbits);
1263		break;
1264
1265	case TIOCMBIS:
1266		SET(cs->cs_preg[5], zsbits);
1267		break;
1268
1269	case TIOCMSET:
1270		CLR(cs->cs_preg[5], ZSWR5_RTS | ZSWR5_DTR);
1271		SET(cs->cs_preg[5], zsbits);
1272		break;
1273	}
1274
1275	if (!cs->cs_heldchange) {
1276		if (zst->zst_tx_busy) {
1277			zst->zst_heldtbc = zst->zst_tbc;
1278			zst->zst_tbc = 0;
1279			cs->cs_heldchange = 1;
1280		} else
1281			zs_loadchannelregs(cs);
1282	}
1283}
1284
1285static int
1286zs_to_tiocm(zst)
1287	struct zstty_softc *zst;
1288{
1289	struct zs_chanstate *cs = zst->zst_cs;
1290	u_char zsbits;
1291	int ttybits = 0;
1292
1293	zsbits = cs->cs_preg[5];
1294	if (ISSET(zsbits, ZSWR5_DTR))
1295		SET(ttybits, TIOCM_DTR);
1296	if (ISSET(zsbits, ZSWR5_RTS))
1297		SET(ttybits, TIOCM_RTS);
1298
1299	zsbits = cs->cs_rr0;
1300	if (ISSET(zsbits, ZSRR0_DCD))
1301		SET(ttybits, TIOCM_CD);
1302	if (ISSET(zsbits, ZSRR0_CTS))
1303		SET(ttybits, TIOCM_CTS);
1304
1305	return (ttybits);
1306}
1307
1308/*
1309 * Try to block or unblock input using hardware flow-control.
1310 * This is called by kern/tty.c if MDMBUF|CRTSCTS is set, and
1311 * if this function returns non-zero, the TS_TBLOCK flag will
1312 * be set or cleared according to the "block" arg passed.
1313 */
1314int
1315zshwiflow(tp, block)
1316	struct tty *tp;
1317	int block;
1318{
1319	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1320	struct zs_chanstate *cs = zst->zst_cs;
1321	int s;
1322
1323	if (cs->cs_wr5_rts == 0)
1324		return (0);
1325
1326	s = splzs();
1327	if (block) {
1328		if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1329			SET(zst->zst_rx_flags, RX_TTY_BLOCKED);
1330			zs_hwiflow(zst);
1331		}
1332	} else {
1333		if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1334			CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1335			zst->zst_rx_ready = 1;
1336			cs->cs_softreq = 1;
1337		}
1338		if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1339			CLR(zst->zst_rx_flags, RX_TTY_BLOCKED);
1340			zs_hwiflow(zst);
1341		}
1342	}
1343	splx(s);
1344	return (1);
1345}
1346
1347/*
1348 * Internal version of zshwiflow
1349 * called at splzs
1350 */
1351static void
1352zs_hwiflow(zst)
1353	struct zstty_softc *zst;
1354{
1355	struct zs_chanstate *cs = zst->zst_cs;
1356
1357	if (cs->cs_wr5_rts == 0)
1358		return;
1359
1360	if (ISSET(zst->zst_rx_flags, RX_ANY_BLOCK)) {
1361		CLR(cs->cs_preg[5], cs->cs_wr5_rts);
1362		CLR(cs->cs_creg[5], cs->cs_wr5_rts);
1363	} else {
1364		SET(cs->cs_preg[5], cs->cs_wr5_rts);
1365		SET(cs->cs_creg[5], cs->cs_wr5_rts);
1366	}
1367	zs_write_reg(cs, 5, cs->cs_creg[5]);
1368}
1369
1370
1371/****************************************************************
1372 * Interface to the lower layer (zscc)
1373 ****************************************************************/
1374
1375#define	integrate	static inline
1376integrate void zstty_rxsoft __P((struct zstty_softc *, struct tty *));
1377integrate void zstty_txsoft __P((struct zstty_softc *, struct tty *));
1378integrate void zstty_stsoft __P((struct zstty_softc *, struct tty *));
1379static void zstty_diag __P((void *));
1380
1381/*
1382 * receiver ready interrupt.
1383 * called at splzs
1384 */
1385static void
1386zstty_rxint(cs)
1387	struct zs_chanstate *cs;
1388{
1389	struct zstty_softc *zst = cs->cs_private;
1390	u_char *put, *end;
1391	u_int cc;
1392	u_char rr0, rr1, c;
1393
1394	end = zst->zst_ebuf;
1395	put = zst->zst_rbput;
1396	cc = zst->zst_rbavail;
1397
1398	while (cc > 0) {
1399		/*
1400		 * First read the status, because reading the received char
1401		 * destroys the status of this char.
1402		 */
1403		rr1 = zs_read_reg(cs, 1);
1404		c = zs_read_data(cs);
1405
1406		if (ISSET(rr1, ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) {
1407			/* Clear the receive error. */
1408			zs_write_csr(cs, ZSWR0_RESET_ERRORS);
1409		}
1410
1411		cn_check_magic(zst->zst_tty->t_dev, c, zstty_cnm_state);
1412		put[0] = c;
1413		put[1] = rr1;
1414		put += 2;
1415		if (put >= end)
1416			put = zst->zst_rbuf;
1417		cc--;
1418
1419		rr0 = zs_read_csr(cs);
1420		if (!ISSET(rr0, ZSRR0_RX_READY))
1421			break;
1422	}
1423
1424	/*
1425	 * Current string of incoming characters ended because
1426	 * no more data was available or we ran out of space.
1427	 * Schedule a receive event if any data was received.
1428	 * If we're out of space, turn off receive interrupts.
1429	 */
1430	zst->zst_rbput = put;
1431	zst->zst_rbavail = cc;
1432	if (!ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1433		zst->zst_rx_ready = 1;
1434		cs->cs_softreq = 1;
1435	}
1436
1437	/*
1438	 * See if we are in danger of overflowing a buffer. If
1439	 * so, use hardware flow control to ease the pressure.
1440	 */
1441	if (!ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED) &&
1442	    cc < zst->zst_r_hiwat) {
1443		SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1444		zs_hwiflow(zst);
1445	}
1446
1447	/*
1448	 * If we're out of space, disable receive interrupts
1449	 * until the queue has drained a bit.
1450	 */
1451	if (!cc) {
1452		SET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1453		CLR(cs->cs_preg[1], ZSWR1_RIE);
1454		cs->cs_creg[1] = cs->cs_preg[1];
1455		zs_write_reg(cs, 1, cs->cs_creg[1]);
1456	}
1457
1458#if 0
1459	printf("%xH%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1460#endif
1461}
1462
1463/*
1464 * transmitter ready interrupt.  (splzs)
1465 */
1466static void
1467zstty_txint(cs)
1468	struct zs_chanstate *cs;
1469{
1470	struct zstty_softc *zst = cs->cs_private;
1471
1472	/*
1473	 * If we've delayed a parameter change, do it now, and restart
1474	 * output.
1475	 */
1476	if (cs->cs_heldchange) {
1477		zs_loadchannelregs(cs);
1478		cs->cs_heldchange = 0;
1479		zst->zst_tbc = zst->zst_heldtbc;
1480		zst->zst_heldtbc = 0;
1481	}
1482
1483	/* Output the next character in the buffer, if any. */
1484	if (zst->zst_tbc > 0) {
1485		zs_write_data(cs, *zst->zst_tba);
1486		zst->zst_tbc--;
1487		zst->zst_tba++;
1488	} else {
1489		/* Disable transmit completion interrupts if necessary. */
1490		if (ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
1491			CLR(cs->cs_preg[1], ZSWR1_TIE);
1492			cs->cs_creg[1] = cs->cs_preg[1];
1493			zs_write_reg(cs, 1, cs->cs_creg[1]);
1494		}
1495		if (zst->zst_tx_busy) {
1496			zst->zst_tx_busy = 0;
1497			zst->zst_tx_done = 1;
1498			cs->cs_softreq = 1;
1499		}
1500	}
1501}
1502
1503/*
1504 * status change interrupt.  (splzs)
1505 */
1506static void
1507zstty_stint(cs, force)
1508	struct zs_chanstate *cs;
1509	int force;
1510{
1511	struct zstty_softc *zst = cs->cs_private;
1512	u_char rr0, delta;
1513
1514	rr0 = zs_read_csr(cs);
1515	zs_write_csr(cs, ZSWR0_RESET_STATUS);
1516
1517	/*
1518	 * Check here for console break, so that we can abort
1519	 * even when interrupts are locking up the machine.
1520	 */
1521	if (ISSET(rr0, ZSRR0_BREAK))
1522		cn_check_magic(zst->zst_tty->t_dev, CNC_BREAK, zstty_cnm_state);
1523
1524	if (!force)
1525		delta = rr0 ^ cs->cs_rr0;
1526	else
1527		delta = cs->cs_rr0_mask;
1528	cs->cs_rr0 = rr0;
1529
1530	if (ISSET(delta, cs->cs_rr0_mask)) {
1531		SET(cs->cs_rr0_delta, delta);
1532
1533		/*
1534		 * Pulse-per-second clock signal on edge of DCD?
1535		 */
1536		if (ISSET(delta, zst->zst_ppsmask)) {
1537			struct timeval tv;
1538			if (ISSET(rr0, zst->zst_ppsmask) == zst->zst_ppsassert) {
1539				/* XXX nanotime() */
1540				microtime(&tv);
1541				TIMEVAL_TO_TIMESPEC(&tv,
1542					&zst->ppsinfo.assert_timestamp);
1543				if (zst->ppsparam.mode & PPS_OFFSETASSERT) {
1544					timespecadd(&zst->ppsinfo.assert_timestamp,
1545					    &zst->ppsparam.assert_offset,
1546					    &zst->ppsinfo.assert_timestamp);
1547				}
1548
1549#ifdef PPS_SYNC
1550				if (zst->ppsparam.mode & PPS_HARDPPSONASSERT)
1551					hardpps(&tv, tv.tv_usec);
1552#endif
1553				zst->ppsinfo.assert_sequence++;
1554				zst->ppsinfo.current_mode = zst->ppsparam.mode;
1555			} else if (ISSET(rr0, zst->zst_ppsmask) ==
1556						zst->zst_ppsclear) {
1557				/* XXX nanotime() */
1558				microtime(&tv);
1559				TIMEVAL_TO_TIMESPEC(&tv,
1560					&zst->ppsinfo.clear_timestamp);
1561				if (zst->ppsparam.mode & PPS_OFFSETCLEAR) {
1562					timespecadd(&zst->ppsinfo.clear_timestamp,
1563						&zst->ppsparam.clear_offset,
1564						&zst->ppsinfo.clear_timestamp);
1565				}
1566
1567#ifdef PPS_SYNC
1568				if (zst->ppsparam.mode & PPS_HARDPPSONCLEAR)
1569					hardpps(&tv, tv.tv_usec);
1570#endif
1571				zst->ppsinfo.clear_sequence++;
1572				zst->ppsinfo.current_mode = zst->ppsparam.mode;
1573			}
1574		}
1575
1576		/*
1577		 * Stop output immediately if we lose the output
1578		 * flow control signal or carrier detect.
1579		 */
1580		if (ISSET(~rr0, cs->cs_rr0_mask)) {
1581			zst->zst_tbc = 0;
1582			zst->zst_heldtbc = 0;
1583		}
1584
1585		zst->zst_st_check = 1;
1586		cs->cs_softreq = 1;
1587	}
1588}
1589
1590void
1591zstty_diag(arg)
1592	void *arg;
1593{
1594	struct zstty_softc *zst = arg;
1595	int overflows, floods;
1596	int s;
1597
1598	s = splzs();
1599	overflows = zst->zst_overflows;
1600	zst->zst_overflows = 0;
1601	floods = zst->zst_floods;
1602	zst->zst_floods = 0;
1603	zst->zst_errors = 0;
1604	splx(s);
1605
1606	log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1607	    zst->zst_dev.dv_xname,
1608	    overflows, overflows == 1 ? "" : "s",
1609	    floods, floods == 1 ? "" : "s");
1610}
1611
1612integrate void
1613zstty_rxsoft(zst, tp)
1614	struct zstty_softc *zst;
1615	struct tty *tp;
1616{
1617	struct zs_chanstate *cs = zst->zst_cs;
1618	int (*rint) __P((int c, struct tty *tp)) = tp->t_linesw->l_rint;
1619	u_char *get, *end;
1620	u_int cc, scc;
1621	u_char rr1;
1622	int code;
1623	int s;
1624
1625	end = zst->zst_ebuf;
1626	get = zst->zst_rbget;
1627	scc = cc = zstty_rbuf_size - zst->zst_rbavail;
1628
1629	if (cc == zstty_rbuf_size) {
1630		zst->zst_floods++;
1631		if (zst->zst_errors++ == 0)
1632			callout_reset(&zst->zst_diag_ch, 60 * hz,
1633			    zstty_diag, zst);
1634	}
1635
1636	/* If not yet open, drop the entire buffer content here */
1637	if (!ISSET(tp->t_state, TS_ISOPEN)) {
1638		get += cc << 1;
1639		if (get >= end)
1640			get -= zstty_rbuf_size << 1;
1641		cc = 0;
1642	}
1643	while (cc) {
1644		code = get[0];
1645		rr1 = get[1];
1646		if (ISSET(rr1, ZSRR1_DO | ZSRR1_FE | ZSRR1_PE)) {
1647			if (ISSET(rr1, ZSRR1_DO)) {
1648				zst->zst_overflows++;
1649				if (zst->zst_errors++ == 0)
1650					callout_reset(&zst->zst_diag_ch,
1651					    60 * hz, zstty_diag, zst);
1652			}
1653			if (ISSET(rr1, ZSRR1_FE))
1654				SET(code, TTY_FE);
1655			if (ISSET(rr1, ZSRR1_PE))
1656				SET(code, TTY_PE);
1657		}
1658		if ((*rint)(code, tp) == -1) {
1659			/*
1660			 * The line discipline's buffer is out of space.
1661			 */
1662			if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1663				/*
1664				 * We're either not using flow control, or the
1665				 * line discipline didn't tell us to block for
1666				 * some reason.  Either way, we have no way to
1667				 * know when there's more space available, so
1668				 * just drop the rest of the data.
1669				 */
1670				get += cc << 1;
1671				if (get >= end)
1672					get -= zstty_rbuf_size << 1;
1673				cc = 0;
1674			} else {
1675				/*
1676				 * Don't schedule any more receive processing
1677				 * until the line discipline tells us there's
1678				 * space available (through comhwiflow()).
1679				 * Leave the rest of the data in the input
1680				 * buffer.
1681				 */
1682				SET(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1683			}
1684			break;
1685		}
1686		get += 2;
1687		if (get >= end)
1688			get = zst->zst_rbuf;
1689		cc--;
1690	}
1691
1692	if (cc != scc) {
1693		zst->zst_rbget = get;
1694		s = splzs();
1695		cc = zst->zst_rbavail += scc - cc;
1696		/* Buffers should be ok again, release possible block. */
1697		if (cc >= zst->zst_r_lowat) {
1698			if (ISSET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED)) {
1699				CLR(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1700				SET(cs->cs_preg[1], ZSWR1_RIE);
1701				cs->cs_creg[1] = cs->cs_preg[1];
1702				zs_write_reg(cs, 1, cs->cs_creg[1]);
1703			}
1704			if (ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED)) {
1705				CLR(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1706				zs_hwiflow(zst);
1707			}
1708		}
1709		splx(s);
1710	}
1711
1712#if 0
1713	printf("%xS%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1714#endif
1715}
1716
1717integrate void
1718zstty_txsoft(zst, tp)
1719	struct zstty_softc *zst;
1720	struct tty *tp;
1721{
1722
1723	CLR(tp->t_state, TS_BUSY);
1724	if (ISSET(tp->t_state, TS_FLUSH))
1725		CLR(tp->t_state, TS_FLUSH);
1726	else
1727		ndflush(&tp->t_outq, (int)(zst->zst_tba - tp->t_outq.c_cf));
1728	(*tp->t_linesw->l_start)(tp);
1729}
1730
1731integrate void
1732zstty_stsoft(zst, tp)
1733	struct zstty_softc *zst;
1734	struct tty *tp;
1735{
1736	struct zs_chanstate *cs = zst->zst_cs;
1737	u_char rr0, delta;
1738	int s;
1739
1740	s = splzs();
1741	rr0 = cs->cs_rr0;
1742	delta = cs->cs_rr0_delta;
1743	cs->cs_rr0_delta = 0;
1744	splx(s);
1745
1746	if (ISSET(delta, cs->cs_rr0_dcd)) {
1747		/*
1748		 * Inform the tty layer that carrier detect changed.
1749		 */
1750		(void) (*tp->t_linesw->l_modem)(tp, ISSET(rr0, ZSRR0_DCD));
1751	}
1752
1753	if (ISSET(delta, cs->cs_rr0_cts)) {
1754		/* Block or unblock output according to flow control. */
1755		if (ISSET(rr0, cs->cs_rr0_cts)) {
1756			zst->zst_tx_stopped = 0;
1757			(*tp->t_linesw->l_start)(tp);
1758		} else {
1759			zst->zst_tx_stopped = 1;
1760		}
1761	}
1762}
1763
1764/*
1765 * Software interrupt.  Called at zssoft
1766 *
1767 * The main job to be done here is to empty the input ring
1768 * by passing its contents up to the tty layer.  The ring is
1769 * always emptied during this operation, therefore the ring
1770 * must not be larger than the space after "high water" in
1771 * the tty layer, or the tty layer might drop our input.
1772 *
1773 * Note: an "input blockage" condition is assumed to exist if
1774 * EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set.
1775 */
1776static void
1777zstty_softint(cs)
1778	struct zs_chanstate *cs;
1779{
1780	struct zstty_softc *zst = cs->cs_private;
1781	struct tty *tp = zst->zst_tty;
1782	int s;
1783
1784	s = spltty();
1785
1786	if (zst->zst_rx_ready) {
1787		zst->zst_rx_ready = 0;
1788		zstty_rxsoft(zst, tp);
1789	}
1790
1791	if (zst->zst_st_check) {
1792		zst->zst_st_check = 0;
1793		zstty_stsoft(zst, tp);
1794	}
1795
1796	if (zst->zst_tx_done) {
1797		zst->zst_tx_done = 0;
1798		zstty_txsoft(zst, tp);
1799	}
1800
1801	splx(s);
1802}
1803
1804struct zsops zsops_tty = {
1805	zstty_rxint,	/* receive char available */
1806	zstty_stint,	/* external/status */
1807	zstty_txint,	/* xmit buffer empty */
1808	zstty_softint,	/* process software interrupt */
1809};
1810