rtw.c revision 1.1
1/* $NetBSD: rtw.c,v 1.1 2004/09/26 02:29:15 dyoung Exp $ */
2/*-
3 * Copyright (c) 2004, 2005 David Young.  All rights reserved.
4 *
5 * Programmed for NetBSD by David Young.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. The name of David Young may not be used to endorse or promote
16 *    products derived from this software without specific prior
17 *    written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
22 * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL David
23 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
25 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
30 * OF SUCH DAMAGE.
31 */
32/*
33 * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
34 */
35
36#include <sys/cdefs.h>
37__KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.1 2004/09/26 02:29:15 dyoung Exp $");
38
39#include "bpfilter.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/mbuf.h>
45#include <sys/malloc.h>
46#include <sys/kernel.h>
47#if 0
48#include <sys/socket.h>
49#include <sys/ioctl.h>
50#include <sys/errno.h>
51#include <sys/device.h>
52#endif
53#include <sys/time.h>
54#include <sys/types.h>
55
56#include <machine/endian.h>
57#include <machine/bus.h>
58#include <machine/intr.h>	/* splnet */
59
60#include <uvm/uvm_extern.h>
61
62#include <net/if.h>
63#include <net/if_media.h>
64#include <net/if_ether.h>
65
66#include <net80211/ieee80211_var.h>
67#include <net80211/ieee80211_compat.h>
68#include <net80211/ieee80211_radiotap.h>
69
70#if NBPFILTER > 0
71#include <net/bpf.h>
72#endif
73
74#include <dev/ic/rtwreg.h>
75#include <dev/ic/rtwvar.h>
76#include <dev/ic/rtwphyio.h>
77#include <dev/ic/rtwphy.h>
78
79#include <dev/ic/smc93cx6var.h>
80
81#define	KASSERT2(__cond, __msg)		\
82	do {				\
83		if (!(__cond))		\
84			panic __msg ;	\
85	} while (0)
86
87#ifdef RTW_DEBUG
88int rtw_debug = 2;
89#endif /* RTW_DEBUG */
90
91#define NEXT_ATTACH_STATE(sc, state) do {				\
92	DPRINTF(sc, ("%s: attach state %s\n", __func__, #state));	\
93	sc->sc_attach_state = state;					\
94} while (0)
95
96int rtw_dwelltime = 1000;	/* milliseconds */
97
98#ifdef RTW_DEBUG
99static void
100rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
101{
102#define PRINTREG32(sc, reg) \
103	RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
104	    dvname, reg, RTW_READ(regs, reg)))
105
106#define PRINTREG16(sc, reg) \
107	RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %04x\n", \
108	    dvname, reg, RTW_READ16(regs, reg)))
109
110#define PRINTREG8(sc, reg) \
111	RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %02x\n", \
112	    dvname, reg, RTW_READ8(regs, reg)))
113
114	RTW_DPRINTF2(("%s: %s\n", dvname, where));
115
116	PRINTREG32(regs, RTW_IDR0);
117	PRINTREG32(regs, RTW_IDR1);
118	PRINTREG32(regs, RTW_MAR0);
119	PRINTREG32(regs, RTW_MAR1);
120	PRINTREG32(regs, RTW_TSFTRL);
121	PRINTREG32(regs, RTW_TSFTRH);
122	PRINTREG32(regs, RTW_TLPDA);
123	PRINTREG32(regs, RTW_TNPDA);
124	PRINTREG32(regs, RTW_THPDA);
125	PRINTREG32(regs, RTW_TCR);
126	PRINTREG32(regs, RTW_RCR);
127	PRINTREG32(regs, RTW_TINT);
128	PRINTREG32(regs, RTW_TBDA);
129	PRINTREG32(regs, RTW_ANAPARM);
130	PRINTREG32(regs, RTW_BB);
131	PRINTREG32(regs, RTW_PHYCFG);
132	PRINTREG32(regs, RTW_WAKEUP0L);
133	PRINTREG32(regs, RTW_WAKEUP0H);
134	PRINTREG32(regs, RTW_WAKEUP1L);
135	PRINTREG32(regs, RTW_WAKEUP1H);
136	PRINTREG32(regs, RTW_WAKEUP2LL);
137	PRINTREG32(regs, RTW_WAKEUP2LH);
138	PRINTREG32(regs, RTW_WAKEUP2HL);
139	PRINTREG32(regs, RTW_WAKEUP2HH);
140	PRINTREG32(regs, RTW_WAKEUP3LL);
141	PRINTREG32(regs, RTW_WAKEUP3LH);
142	PRINTREG32(regs, RTW_WAKEUP3HL);
143	PRINTREG32(regs, RTW_WAKEUP3HH);
144	PRINTREG32(regs, RTW_WAKEUP4LL);
145	PRINTREG32(regs, RTW_WAKEUP4LH);
146	PRINTREG32(regs, RTW_WAKEUP4HL);
147	PRINTREG32(regs, RTW_WAKEUP4HH);
148	PRINTREG32(regs, RTW_DK0);
149	PRINTREG32(regs, RTW_DK1);
150	PRINTREG32(regs, RTW_DK2);
151	PRINTREG32(regs, RTW_DK3);
152	PRINTREG32(regs, RTW_RETRYCTR);
153	PRINTREG32(regs, RTW_RDSAR);
154	PRINTREG32(regs, RTW_FER);
155	PRINTREG32(regs, RTW_FEMR);
156	PRINTREG32(regs, RTW_FPSR);
157	PRINTREG32(regs, RTW_FFER);
158
159	/* 16-bit registers */
160	PRINTREG16(regs, RTW_BRSR);
161	PRINTREG16(regs, RTW_IMR);
162	PRINTREG16(regs, RTW_ISR);
163	PRINTREG16(regs, RTW_BCNITV);
164	PRINTREG16(regs, RTW_ATIMWND);
165	PRINTREG16(regs, RTW_BINTRITV);
166	PRINTREG16(regs, RTW_ATIMTRITV);
167	PRINTREG16(regs, RTW_CRC16ERR);
168	PRINTREG16(regs, RTW_CRC0);
169	PRINTREG16(regs, RTW_CRC1);
170	PRINTREG16(regs, RTW_CRC2);
171	PRINTREG16(regs, RTW_CRC3);
172	PRINTREG16(regs, RTW_CRC4);
173	PRINTREG16(regs, RTW_CWR);
174
175	/* 8-bit registers */
176	PRINTREG8(regs, RTW_CR);
177	PRINTREG8(regs, RTW_9346CR);
178	PRINTREG8(regs, RTW_CONFIG0);
179	PRINTREG8(regs, RTW_CONFIG1);
180	PRINTREG8(regs, RTW_CONFIG2);
181	PRINTREG8(regs, RTW_MSR);
182	PRINTREG8(regs, RTW_CONFIG3);
183	PRINTREG8(regs, RTW_CONFIG4);
184	PRINTREG8(regs, RTW_TESTR);
185	PRINTREG8(regs, RTW_PSR);
186	PRINTREG8(regs, RTW_SCR);
187	PRINTREG8(regs, RTW_PHYDELAY);
188	PRINTREG8(regs, RTW_CRCOUNT);
189	PRINTREG8(regs, RTW_PHYADDR);
190	PRINTREG8(regs, RTW_PHYDATAW);
191	PRINTREG8(regs, RTW_PHYDATAR);
192	PRINTREG8(regs, RTW_CONFIG5);
193	PRINTREG8(regs, RTW_TPPOLL);
194
195	PRINTREG16(regs, RTW_BSSID16);
196	PRINTREG32(regs, RTW_BSSID32);
197#undef PRINTREG32
198#undef PRINTREG16
199#undef PRINTREG8
200}
201#endif /* RTW_DEBUG */
202
203void
204rtw_continuous_tx_enable(struct rtw_regs *regs, int enable)
205{
206	u_int32_t tcr;
207	tcr = RTW_READ(regs, RTW_TCR);
208	tcr &= ~RTW_TCR_LBK_MASK;
209	if (enable)
210		tcr |= RTW_TCR_LBK_CONT;
211	else
212		tcr |= RTW_TCR_LBK_NORMAL;
213	RTW_WRITE(regs, RTW_TCR, tcr);
214	RTW_SYNC(regs, RTW_TCR, RTW_TCR);
215	if (enable) {
216		rtw_config0123_enable(regs, 1);
217		rtw_anaparm_enable(regs, 1);
218		rtw_txdac_enable(regs, 0);
219	} else {
220		rtw_txdac_enable(regs, 1);
221		rtw_anaparm_enable(regs, 0);
222		rtw_config0123_enable(regs, 0);
223	}
224}
225
226/*
227 * Enable registers, switch register banks.
228 */
229void
230rtw_config0123_enable(struct rtw_regs *regs, int enable)
231{
232	u_int8_t ecr;
233	ecr = RTW_READ8(regs, RTW_9346CR);
234	ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
235	if (enable)
236		ecr |= RTW_9346CR_EEM_CONFIG;
237	else
238		ecr |= RTW_9346CR_EEM_NORMAL;
239	RTW_WRITE8(regs, RTW_9346CR, ecr);
240	RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
241}
242
243/* requires rtw_config0123_enable(, 1) */
244void
245rtw_anaparm_enable(struct rtw_regs *regs, int enable)
246{
247	u_int8_t cfg3;
248
249	cfg3 = RTW_READ8(regs, RTW_CONFIG3);
250	cfg3 |= RTW_CONFIG3_PARMEN | RTW_CONFIG3_CLKRUNEN;
251	if (!enable)
252		cfg3 &= ~RTW_CONFIG3_PARMEN;
253	RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
254	RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
255}
256
257/* requires rtw_anaparm_enable(, 1) */
258void
259rtw_txdac_enable(struct rtw_regs *regs, int enable)
260{
261	u_int32_t anaparm;
262
263	anaparm = RTW_READ(regs, RTW_ANAPARM);
264	if (enable)
265		anaparm &= ~RTW_ANAPARM_TXDACOFF;
266	else
267		anaparm |= RTW_ANAPARM_TXDACOFF;
268	RTW_WRITE(regs, RTW_ANAPARM, anaparm);
269	RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
270}
271
272static __inline int
273rtw_chip_reset(struct rtw_regs *regs, char (*dvname)[IFNAMSIZ])
274{
275	int i;
276	u_int8_t cr;
277	uint32_t tcr;
278
279	/* from Linux driver */
280	tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
281	      LSHIFT(7, RTW_TCR_SRL_MASK) | LSHIFT(7, RTW_TCR_LRL_MASK);
282
283	RTW_WRITE(regs, RTW_TCR, tcr);
284
285	RTW_WBW(regs, RTW_CR, RTW_TCR);
286
287	RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
288
289	RTW_WBR(regs, RTW_CR, RTW_CR);
290
291	for (i = 0; i < 10000; i++) {
292		if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
293			RTW_DPRINTF(("%s: reset in %dus\n", *dvname, i));
294			return 0;
295		}
296		RTW_RBR(regs, RTW_CR, RTW_CR);
297		DELAY(1); /* 1us */
298	}
299
300	printf("%s: reset failed\n", *dvname);
301	return ETIMEDOUT;
302}
303
304static __inline int
305rtw_recall_eeprom(struct rtw_regs *regs, char (*dvname)[IFNAMSIZ])
306{
307	int i;
308	u_int8_t ecr;
309
310	ecr = RTW_READ8(regs, RTW_9346CR);
311	ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
312	RTW_WRITE8(regs, RTW_9346CR, ecr);
313
314	RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
315
316	/* wait 2.5ms for completion */
317	for (i = 0; i < 25; i++) {
318		ecr = RTW_READ8(regs, RTW_9346CR);
319		if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
320			RTW_DPRINTF(("%s: recall EEPROM in %dus\n", *dvname,
321			    i * 100));
322			return 0;
323		}
324		RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
325		DELAY(100);
326	}
327	printf("%s: recall EEPROM failed\n", *dvname);
328	return ETIMEDOUT;
329}
330
331static __inline int
332rtw_reset(struct rtw_softc *sc)
333{
334	int rc;
335	uint32_t config1;
336
337	if ((rc = rtw_chip_reset(&sc->sc_regs, &sc->sc_dev.dv_xname)) != 0)
338		return rc;
339
340	if ((rc = rtw_recall_eeprom(&sc->sc_regs, &sc->sc_dev.dv_xname)) != 0)
341		;
342
343	config1 = RTW_READ(&sc->sc_regs, RTW_CONFIG1);
344	RTW_WRITE(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
345	/* TBD turn off maximum power saving? */
346
347	return 0;
348}
349
350static __inline int
351rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txctl *descs,
352    u_int ndescs)
353{
354	int i, rc = 0;
355	for (i = 0; i < ndescs; i++) {
356		rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
357		    0, 0, &descs[i].stx_dmamap);
358		if (rc != 0)
359			break;
360	}
361	return rc;
362}
363
364static __inline int
365rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxctl *descs,
366    u_int ndescs)
367{
368	int i, rc = 0;
369	for (i = 0; i < ndescs; i++) {
370		rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
371		    &descs[i].srx_dmamap);
372		if (rc != 0)
373			break;
374	}
375	return rc;
376}
377
378static __inline void
379rtw_rxctls_setup(struct rtw_rxctl (*descs)[RTW_RXQLEN])
380{
381	int i;
382	for (i = 0; i < RTW_RXQLEN; i++)
383		(*descs)[i].srx_mbuf = NULL;
384}
385
386static __inline void
387rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxctl *descs,
388    u_int ndescs)
389{
390	int i;
391	for (i = 0; i < ndescs; i++) {
392		if (descs[i].srx_dmamap != NULL)
393			bus_dmamap_destroy(dmat, descs[i].srx_dmamap);
394	}
395}
396
397static __inline void
398rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txctl *descs,
399    u_int ndescs)
400{
401	int i;
402	for (i = 0; i < ndescs; i++) {
403		if (descs[i].stx_dmamap != NULL)
404			bus_dmamap_destroy(dmat, descs[i].stx_dmamap);
405	}
406}
407
408static __inline void
409rtw_srom_free(struct rtw_srom *sr)
410{
411	sr->sr_size = 0;
412	if (sr->sr_content == NULL)
413		return;
414	free(sr->sr_content, M_DEVBUF);
415	sr->sr_content = NULL;
416}
417
418static void
419rtw_srom_defaults(struct rtw_srom *sr, u_int32_t *flags, u_int8_t *cs_threshold,
420    enum rtw_rfchipid *rfchipid, u_int32_t *rcr, char (*dvname)[IFNAMSIZ])
421{
422	*flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
423	*cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
424	*rcr |= RTW_RCR_ENCS1;
425	*rfchipid = RTW_RFCHIPID_PHILIPS;
426}
427
428static int
429rtw_srom_parse(struct rtw_srom *sr, u_int32_t *flags, u_int8_t *cs_threshold,
430    enum rtw_rfchipid *rfchipid, u_int32_t *rcr, enum rtw_locale *locale,
431    char (*dvname)[IFNAMSIZ])
432{
433	int i;
434	const char *rfname, *paname;
435	char scratch[sizeof("unknown 0xXX")];
436	u_int16_t version;
437	u_int8_t mac[IEEE80211_ADDR_LEN];
438
439	*flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
440	*rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
441
442	version = RTW_SR_GET16(sr, RTW_SR_VERSION);
443	printf("%s: SROM version %d.%d", *dvname, version >> 8, version & 0xff);
444
445	if (version <= 0x0101) {
446		printf(" is not understood, limping along with defaults\n");
447		rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr,
448		    dvname);
449		return 0;
450	}
451	printf("\n");
452
453	for (i = 0; i < IEEE80211_ADDR_LEN; i++)
454		mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
455
456	RTW_DPRINTF(("%s: EEPROM MAC %s\n", *dvname, ether_sprintf(mac)));
457
458	*cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
459
460	if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
461		*flags |= RTW_F_ANTDIV;
462
463	if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) != 0)
464		*flags |= RTW_F_DIGPHY;
465	if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
466		*flags |= RTW_F_DFLANTB;
467
468	*rcr |= LSHIFT(MASK_AND_RSHIFT(RTW_SR_GET(sr, RTW_SR_RFPARM),
469	    RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
470
471	*rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
472	switch (*rfchipid) {
473	case RTW_RFCHIPID_GCT:		/* this combo seen in the wild */
474		rfname = "GCT GRF5101";
475		paname = "Winspring WS9901";
476		break;
477	case RTW_RFCHIPID_MAXIM:
478		rfname = "Maxim MAX2820";	/* guess */
479		paname = "Maxim MAX2422";	/* guess */
480		break;
481	case RTW_RFCHIPID_INTERSIL:
482		rfname = "Intersil HFA3873";	/* guess */
483		paname = "Intersil <unknown>";
484		break;
485	case RTW_RFCHIPID_PHILIPS:	/* this combo seen in the wild */
486		rfname = "Philips SA2400A";
487		paname = "Philips SA2411";
488		break;
489	case RTW_RFCHIPID_RFMD:
490		/* this is the same front-end as an atw(4)! */
491		rfname = "RFMD RF2948B, "	/* mentioned in Realtek docs */
492			 "LNA: RFMD RF2494, "	/* mentioned in Realtek docs */
493			 "SYN: Silicon Labs Si4126";	/* inferred from
494			 				 * reference driver
495							 */
496		paname = "RFMD RF2189";		/* mentioned in Realtek docs */
497		break;
498	case RTW_RFCHIPID_RESERVED:
499		rfname = paname = "reserved";
500		break;
501	default:
502		snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
503		rfname = paname = scratch;
504	}
505	printf("%s: RF: %s, PA: %s\n", *dvname, rfname, paname);
506
507	switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
508	case RTW_CONFIG0_GL_USA:
509		*locale = RTW_LOCALE_USA;
510		break;
511	case RTW_CONFIG0_GL_EUROPE:
512		*locale = RTW_LOCALE_EUROPE;
513		break;
514	case RTW_CONFIG0_GL_JAPAN:
515		*locale = RTW_LOCALE_JAPAN;
516		break;
517	default:
518		*locale = RTW_LOCALE_UNKNOWN;
519		break;
520	}
521	return 0;
522}
523
524/* Returns -1 on failure. */
525static int
526rtw_srom_read(struct rtw_regs *regs, u_int32_t flags, struct rtw_srom *sr,
527    char (*dvname)[IFNAMSIZ])
528{
529	int rc;
530	struct seeprom_descriptor sd;
531	u_int8_t ecr;
532
533	(void)memset(&sd, 0, sizeof(sd));
534
535	ecr = RTW_READ8(regs, RTW_9346CR);
536
537	if ((flags & RTW_F_9356SROM) != 0) {
538		RTW_DPRINTF(("%s: 93c56 SROM\n", *dvname));
539		sr->sr_size = 256;
540		sd.sd_chip = C56_66;
541	} else {
542		RTW_DPRINTF(("%s: 93c46 SROM\n", *dvname));
543		sr->sr_size = 128;
544		sd.sd_chip = C46;
545	}
546
547	ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
548	    RTW_9346CR_EEM_MASK);
549	ecr |= RTW_9346CR_EEM_PROGRAM;
550
551	RTW_WRITE8(regs, RTW_9346CR, ecr);
552
553	sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
554
555	if (sr->sr_content == NULL) {
556		printf("%s: unable to allocate SROM buffer\n", *dvname);
557		return ENOMEM;
558	}
559
560	(void)memset(sr->sr_content, 0, sr->sr_size);
561
562	/* RTL8180 has a single 8-bit register for controlling the
563	 * 93cx6 SROM.  There is no "ready" bit. The RTL8180
564	 * input/output sense is the reverse of read_seeprom's.
565	 */
566	sd.sd_tag = regs->r_bt;
567	sd.sd_bsh = regs->r_bh;
568	sd.sd_regsize = 1;
569	sd.sd_control_offset = RTW_9346CR;
570	sd.sd_status_offset = RTW_9346CR;
571	sd.sd_dataout_offset = RTW_9346CR;
572	sd.sd_CK = RTW_9346CR_EESK;
573	sd.sd_CS = RTW_9346CR_EECS;
574	sd.sd_DI = RTW_9346CR_EEDO;
575	sd.sd_DO = RTW_9346CR_EEDI;
576	/* make read_seeprom enter EEPROM read/write mode */
577	sd.sd_MS = ecr;
578	sd.sd_RDY = 0;
579#if 0
580	sd.sd_clkdelay = 50;
581#endif
582
583	if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
584		printf("%s: could not read SROM\n", *dvname);
585		free(sr->sr_content, M_DEVBUF);
586		sr->sr_content = NULL;
587		return -1;	/* XXX */
588	}
589
590	/* end EEPROM read/write mode */
591	RTW_WRITE8(regs, RTW_9346CR,
592	    (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
593	RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
594
595	if ((rc = rtw_recall_eeprom(regs, dvname)) != 0)
596		return rc;
597
598#ifdef RTW_DEBUG
599	{
600		int i;
601		RTW_DPRINTF(("\n%s: serial ROM:\n\t", *dvname));
602		for (i = 0; i < sr->sr_size/2; i++) {
603			if (((i % 8) == 0) && (i != 0))
604				RTW_DPRINTF(("\n\t"));
605			RTW_DPRINTF((" %04x", sr->sr_content[i]));
606		}
607		RTW_DPRINTF(("\n"));
608	}
609#endif /* RTW_DEBUG */
610	return 0;
611}
612
613#if 0
614static __inline int
615rtw_identify_rf(struct rtw_regs *regs, enum rtw_rftype *rftype,
616    char (*dvname)[IFNAMSIZ])
617{
618	u_int8_t cfg4;
619	const char *name;
620
621	cfg4 = RTW_READ8(regs, RTW_CONFIG4);
622
623	switch (cfg4 & RTW_CONFIG4_RFTYPE_MASK) {
624	case RTW_CONFIG4_RFTYPE_PHILIPS:
625		*rftype = RTW_RFTYPE_PHILIPS;
626		name = "Philips";
627		break;
628	case RTW_CONFIG4_RFTYPE_INTERSIL:
629		*rftype = RTW_RFTYPE_INTERSIL;
630		name = "Intersil";
631		break;
632	case RTW_CONFIG4_RFTYPE_RFMD:
633		*rftype = RTW_RFTYPE_RFMD;
634		name = "RFMD";
635		break;
636	default:
637		name = "<unknown>";
638		return ENXIO;
639	}
640
641	printf("%s: RF prog type %s\n", *dvname, name);
642	return 0;
643}
644#endif
645
646static __inline void
647rtw_init_channels(enum rtw_locale locale,
648    struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1],
649    char (*dvname)[IFNAMSIZ])
650{
651	int i;
652	const char *name = NULL;
653#define ADD_CHANNEL(_chans, _chan) do {			\
654	(*_chans)[_chan].ic_flags = IEEE80211_CHAN_B;		\
655	(*_chans)[_chan].ic_freq =				\
656	    ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
657} while (0)
658
659	switch (locale) {
660	case RTW_LOCALE_USA:	/* 1-11 */
661		name = "USA";
662		for (i = 1; i <= 11; i++)
663			ADD_CHANNEL(chans, i);
664		break;
665	case RTW_LOCALE_JAPAN:	/* 1-14 */
666		name = "Japan";
667		ADD_CHANNEL(chans, 14);
668		for (i = 1; i <= 14; i++)
669			ADD_CHANNEL(chans, i);
670		break;
671	case RTW_LOCALE_EUROPE:	/* 1-13 */
672		name = "Europe";
673		for (i = 1; i <= 13; i++)
674			ADD_CHANNEL(chans, i);
675		break;
676	default:			/* 10-11 allowed by most countries */
677		name = "<unknown>";
678		for (i = 10; i <= 11; i++)
679			ADD_CHANNEL(chans, i);
680		break;
681	}
682	printf("%s: Geographic Location %s\n", *dvname, name);
683#undef ADD_CHANNEL
684}
685
686static __inline void
687rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale,
688    char (*dvname)[IFNAMSIZ])
689{
690	u_int8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
691
692	switch (cfg0 & RTW_CONFIG0_GL_MASK) {
693	case RTW_CONFIG0_GL_USA:
694		*locale = RTW_LOCALE_USA;
695		break;
696	case RTW_CONFIG0_GL_JAPAN:
697		*locale = RTW_LOCALE_JAPAN;
698		break;
699	case RTW_CONFIG0_GL_EUROPE:
700		*locale = RTW_LOCALE_EUROPE;
701		break;
702	default:
703		*locale = RTW_LOCALE_UNKNOWN;
704		break;
705	}
706}
707
708static __inline int
709rtw_identify_sta(struct rtw_regs *regs, u_int8_t (*addr)[IEEE80211_ADDR_LEN],
710    char (*dvname)[IFNAMSIZ])
711{
712	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
713		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
714	};
715	u_int32_t idr0 = RTW_READ(regs, RTW_IDR0),
716	          idr1 = RTW_READ(regs, RTW_IDR1);
717
718	(*addr)[0] = MASK_AND_RSHIFT(idr0, BITS(0,  7));
719	(*addr)[1] = MASK_AND_RSHIFT(idr0, BITS(8,  15));
720	(*addr)[2] = MASK_AND_RSHIFT(idr0, BITS(16, 23));
721	(*addr)[3] = MASK_AND_RSHIFT(idr0, BITS(24 ,31));
722
723	(*addr)[4] = MASK_AND_RSHIFT(idr1, BITS(0,  7));
724	(*addr)[5] = MASK_AND_RSHIFT(idr1, BITS(8, 15));
725
726	if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
727		printf("%s: could not get mac address, attach failed\n",
728		    *dvname);
729		return ENXIO;
730	}
731
732	printf("%s: 802.11 address %s\n", *dvname, ether_sprintf(*addr));
733
734	return 0;
735}
736
737static u_int8_t
738rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
739    struct ieee80211_channel *chan)
740{
741	u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
742	KASSERT2(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14,
743	    ("%s: channel %d out of range", __func__,
744	     idx - RTW_SR_TXPOWER1 + 1));
745	return RTW_SR_GET(sr, idx);
746}
747
748static void
749rtw_txdesc_blk_init_all(struct rtw_txdesc_blk (*htcs)[RTW_NTXPRI])
750{
751	int pri;
752	u_int ndesc[RTW_NTXPRI] =
753	    {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI, RTW_NTXDESCBCN};
754
755	for (pri = 0; pri < RTW_NTXPRI; pri++) {
756		(*htcs)[pri].htc_nfree = ndesc[pri];
757		(*htcs)[pri].htc_next = 0;
758	}
759}
760
761static int
762rtw_txctl_blk_init(struct rtw_txctl_blk *stc)
763{
764	int i;
765	struct rtw_txctl *stx;
766
767	SIMPLEQ_INIT(&stc->stc_dirtyq);
768	SIMPLEQ_INIT(&stc->stc_freeq);
769	for (i = 0; i < stc->stc_ndesc; i++) {
770		stx = &stc->stc_desc[i];
771		stx->stx_mbuf = NULL;
772		SIMPLEQ_INSERT_TAIL(&stc->stc_freeq, stx, stx_q);
773	}
774	return 0;
775}
776
777static void
778rtw_txctl_blk_init_all(struct rtw_txctl_blk (*stcs)[RTW_NTXPRI])
779{
780	int pri;
781	for (pri = 0; pri < RTW_NTXPRI; pri++) {
782		rtw_txctl_blk_init(&(*stcs)[pri]);
783	}
784}
785
786static __inline void
787rtw_rxdescs_sync(bus_dma_tag_t dmat, bus_dmamap_t dmap, u_int desc0, u_int
788    nsync, int ops)
789{
790	/* sync to end of ring */
791	if (desc0 + nsync > RTW_NRXDESC) {
792		bus_dmamap_sync(dmat, dmap,
793		    offsetof(struct rtw_descs, hd_rx[desc0]),
794		    sizeof(struct rtw_rxdesc) * (RTW_NRXDESC - desc0), ops);
795		nsync -= (RTW_NRXDESC - desc0);
796		desc0 = 0;
797	}
798
799	/* sync what remains */
800	bus_dmamap_sync(dmat, dmap,
801	    offsetof(struct rtw_descs, hd_rx[desc0]),
802	    sizeof(struct rtw_rxdesc) * nsync, ops);
803}
804
805static void
806rtw_txdescs_sync(bus_dma_tag_t dmat, bus_dmamap_t dmap,
807    struct rtw_txdesc_blk *htc, u_int desc0, u_int nsync, int ops)
808{
809	/* sync to end of ring */
810	if (desc0 + nsync > htc->htc_ndesc) {
811		bus_dmamap_sync(dmat, dmap,
812		    htc->htc_ofs + sizeof(struct rtw_txdesc) * desc0,
813		    sizeof(struct rtw_txdesc) * (htc->htc_ndesc - desc0),
814		    ops);
815		nsync -= (htc->htc_ndesc - desc0);
816		desc0 = 0;
817	}
818
819	/* sync what remains */
820	bus_dmamap_sync(dmat, dmap,
821	    htc->htc_ofs + sizeof(struct rtw_txdesc) * desc0,
822	    sizeof(struct rtw_txdesc) * nsync, ops);
823}
824
825static void
826rtw_txdescs_sync_all(bus_dma_tag_t dmat, bus_dmamap_t dmap,
827    struct rtw_txdesc_blk (*htcs)[RTW_NTXPRI])
828{
829	int pri;
830	for (pri = 0; pri < RTW_NTXPRI; pri++) {
831		rtw_txdescs_sync(dmat, dmap,
832		    &(*htcs)[pri], 0, (*htcs)[pri].htc_ndesc,
833		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
834	}
835}
836
837static void
838rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxctl *desc)
839{
840	int i;
841	struct rtw_rxctl *srx;
842
843	for (i = 0; i < RTW_NRXDESC; i++) {
844		srx = &desc[i];
845		bus_dmamap_unload(dmat, srx->srx_dmamap);
846		m_freem(srx->srx_mbuf);
847		srx->srx_mbuf = NULL;
848	}
849}
850
851static __inline int
852rtw_rxbuf_alloc(bus_dma_tag_t dmat, struct rtw_rxctl *srx)
853{
854	int rc;
855	struct mbuf *m;
856
857	MGETHDR(m, M_DONTWAIT, MT_DATA);
858	if (m == NULL)
859		return ENOMEM;
860
861	MCLGET(m, M_DONTWAIT);
862	if (m == NULL)
863		return ENOMEM;
864
865	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
866
867	rc = bus_dmamap_load_mbuf(dmat, srx->srx_dmamap, m, BUS_DMA_NOWAIT);
868	if (rc != 0)
869		return rc;
870
871	srx->srx_mbuf = m;
872
873	return 0;
874}
875
876static int
877rtw_rxctl_init_all(bus_dma_tag_t dmat, struct rtw_rxctl *desc,
878    u_int *next, char (*dvname)[IFNAMSIZ])
879{
880	int i, rc;
881	struct rtw_rxctl *srx;
882
883	for (i = 0; i < RTW_NRXDESC; i++) {
884		srx = &desc[i];
885		if ((rc = rtw_rxbuf_alloc(dmat, srx)) == 0)
886			continue;
887		printf("%s: failed rtw_rxbuf_alloc after %d buffers, rc = %d\n",
888		    *dvname, i, rc);
889		if (i == 0) {
890			rtw_rxbufs_release(dmat, desc);
891			return rc;
892		}
893	}
894	*next = 0;
895	return 0;
896}
897
898static __inline void
899rtw_rxdesc_init(bus_dma_tag_t dmat, bus_dmamap_t dmam,
900    struct rtw_rxdesc *hrx, struct rtw_rxctl *srx, int idx)
901{
902	int is_last = (idx == RTW_NRXDESC - 1);
903	uint32_t ctl;
904
905	hrx->hrx_buf = htole32(srx->srx_dmamap->dm_segs[0].ds_addr);
906
907	ctl = LSHIFT(srx->srx_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
908	    RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
909
910	if (is_last)
911		ctl |= RTW_RXCTL_EOR;
912
913	hrx->hrx_ctl = htole32(ctl);
914
915	/* sync the mbuf */
916	bus_dmamap_sync(dmat, srx->srx_dmamap, 0, srx->srx_dmamap->dm_mapsize,
917	    BUS_DMASYNC_PREREAD);
918
919	/* sync the descriptor */
920	bus_dmamap_sync(dmat, dmam, RTW_DESC_OFFSET(hd_rx, idx),
921	    sizeof(struct rtw_rxdesc),
922	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
923}
924
925static void
926rtw_rxdesc_init_all(bus_dma_tag_t dmat, bus_dmamap_t dmam,
927    struct rtw_rxdesc *desc, struct rtw_rxctl *ctl)
928{
929	int i;
930	struct rtw_rxdesc *hrx;
931	struct rtw_rxctl *srx;
932
933	for (i = 0; i < RTW_NRXDESC; i++) {
934		hrx = &desc[i];
935		srx = &ctl[i];
936		rtw_rxdesc_init(dmat, dmam, hrx, srx, i);
937	}
938}
939
940static void
941rtw_io_enable(struct rtw_regs *regs, u_int8_t flags, int enable)
942{
943	u_int8_t cr;
944
945	RTW_DPRINTF(("%s: %s 0x%02x\n", __func__,
946	    enable ? "enable" : "disable", flags));
947
948	cr = RTW_READ8(regs, RTW_CR);
949
950	/* XXX reference source does not enable MULRW */
951#if 0
952	/* enable PCI Read/Write Multiple */
953	cr |= RTW_CR_MULRW;
954#endif
955
956	RTW_RBW(regs, RTW_CR, RTW_CR);	/* XXX paranoia? */
957	if (enable)
958		cr |= flags;
959	else
960		cr &= ~flags;
961	RTW_WRITE8(regs, RTW_CR, cr);
962	RTW_SYNC(regs, RTW_CR, RTW_CR);
963}
964
965static void
966rtw_intr_rx(struct rtw_softc *sc, u_int16_t isr)
967{
968	u_int next;
969	int rate, rssi;
970	u_int32_t hrssi, hstat, htsfth, htsftl;
971	struct rtw_rxdesc *hrx;
972	struct rtw_rxctl *srx;
973	struct mbuf *m;
974
975	struct ieee80211_node *ni;
976	struct ieee80211_frame *wh;
977
978	for (next = sc->sc_rxnext; ; next = (next + 1) % RTW_RXQLEN) {
979		rtw_rxdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
980		    next, 1, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
981		hrx = &sc->sc_rxdesc[next];
982		srx = &sc->sc_rxctl[next];
983
984		hstat = le32toh(hrx->hrx_stat);
985		hrssi = le32toh(hrx->hrx_rssi);
986		htsfth = le32toh(hrx->hrx_tsfth);
987		htsftl = le32toh(hrx->hrx_tsftl);
988
989		RTW_DPRINTF2(("%s: rxdesc[%d] hstat %#08x hrssi %#08x "
990		    "htsft %#08x%08x\n", __func__, next,
991		    hstat, hrssi, htsfth, htsftl));
992
993		if ((hstat & RTW_RXSTAT_OWN) != 0) /* belongs to NIC */
994			break;
995
996		if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
997			printf("%s: DMA error/FIFO overflow %08x, "
998			    "rx descriptor %d\n", sc->sc_dev.dv_xname,
999			    hstat & RTW_RXSTAT_IOERROR, next);
1000			goto next;
1001		}
1002
1003		switch (hstat & RTW_RXSTAT_RATE_MASK) {
1004		case RTW_RXSTAT_RATE_1MBPS:
1005			rate = 10;
1006			break;
1007		case RTW_RXSTAT_RATE_2MBPS:
1008			rate = 20;
1009			break;
1010		case RTW_RXSTAT_RATE_5MBPS:
1011			rate = 55;
1012			break;
1013		default:
1014#ifdef RTW_DEBUG
1015			if (rtw_debug > 1)
1016				printf("%s: interpreting rate #%d as 11 MB/s\n",
1017				    sc->sc_dev.dv_xname,
1018				    MASK_AND_RSHIFT(hstat,
1019				        RTW_RXSTAT_RATE_MASK));
1020#endif /* RTW_DEBUG */
1021			/*FALLTHROUGH*/
1022		case RTW_RXSTAT_RATE_11MBPS:
1023			rate = 110;
1024			break;
1025		}
1026
1027		RTW_DPRINTF2(("%s: rate %d\n", __func__, rate));
1028
1029#ifdef RTW_DEBUG
1030#define PRINTSTAT(flag) do { \
1031	if ((hstat & flag) != 0) { \
1032		printf("%s" #flag, delim); \
1033		delim = ","; \
1034	} \
1035} while (0)
1036		if (rtw_debug > 1) {
1037			const char *delim = "<";
1038			printf("%s: ", sc->sc_dev.dv_xname);
1039			if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1040				printf("status %08x<", hstat);
1041				PRINTSTAT(RTW_RXSTAT_SPLCP);
1042				PRINTSTAT(RTW_RXSTAT_MAR);
1043				PRINTSTAT(RTW_RXSTAT_PAR);
1044				PRINTSTAT(RTW_RXSTAT_BAR);
1045				PRINTSTAT(RTW_RXSTAT_PWRMGT);
1046				PRINTSTAT(RTW_RXSTAT_CRC32);
1047				PRINTSTAT(RTW_RXSTAT_ICV);
1048				printf(">, ");
1049			}
1050			printf("rate %d.%d Mb/s, time %08x%08x\n",
1051			    rate / 10, rate % 10, htsfth, htsftl);
1052		}
1053#endif /* RTW_DEBUG */
1054
1055		if ((hstat & RTW_RXSTAT_RES) != 0 &&
1056		    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
1057			goto next;
1058
1059		/* if bad flags, skip descriptor */
1060		if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1061			printf("%s: too many rx segments\n",
1062			    sc->sc_dev.dv_xname);
1063			goto next;
1064		}
1065
1066		m = srx->srx_mbuf;
1067
1068		/* if temporarily out of memory, re-use mbuf */
1069		if (rtw_rxbuf_alloc(sc->sc_dmat, srx) != 0) {
1070			printf("%s: rtw_rxbuf_alloc(, %d) failed, "
1071			    "dropping this packet\n", sc->sc_dev.dv_xname,
1072			    next);
1073			goto next;
1074		}
1075
1076		if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1077			rssi = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_RSSI);
1078		else {
1079			rssi = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_IMR_RSSI);
1080			/* TBD find out each front-end's LNA gain in the
1081			 * front-end's units
1082			 */
1083			if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1084				rssi |= 0x80;
1085		}
1086
1087		m->m_pkthdr.len = m->m_len =
1088		    MASK_AND_RSHIFT(hstat, RTW_RXSTAT_LENGTH_MASK);
1089		m->m_flags |= M_HASFCS;
1090
1091		wh = mtod(m, struct ieee80211_frame *);
1092		/* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1093		ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1094
1095		sc->sc_tsfth = htsfth;
1096
1097		ieee80211_input(&sc->sc_if, m, ni, rssi, htsftl);
1098		ieee80211_release_node(&sc->sc_ic, ni);
1099next:
1100		rtw_rxdesc_init(sc->sc_dmat, sc->sc_desc_dmamap,
1101		    hrx, srx, next);
1102	}
1103	sc->sc_rxnext = next;
1104	return;
1105}
1106
1107static void
1108rtw_intr_tx(struct rtw_softc *sc, u_int16_t isr)
1109{
1110	/* TBD */
1111	return;
1112}
1113
1114static void
1115rtw_intr_beacon(struct rtw_softc *sc, u_int16_t isr)
1116{
1117	/* TBD */
1118	return;
1119}
1120
1121static void
1122rtw_intr_atim(struct rtw_softc *sc)
1123{
1124	/* TBD */
1125	return;
1126}
1127
1128static void
1129rtw_intr_ioerror(struct rtw_softc *sc, u_int16_t isr)
1130{
1131	if ((isr & (RTW_INTR_RDU|RTW_INTR_RXFOVW)) != 0) {
1132#if 0
1133		rtw_rxctl_init_all(sc->sc_dmat, sc->sc_rxctl, &sc->sc_rxnext,
1134		    &sc->sc_dev.dv_xname);
1135		rtw_rxdesc_init_all(sc->sc_dmat, sc->sc_desc_dmamap,
1136		    sc->sc_rxdesc, sc->sc_rxctl);
1137#endif
1138		rtw_io_enable(&sc->sc_regs, RTW_CR_RE, 1);
1139	}
1140	if ((isr & RTW_INTR_TXFOVW) != 0)
1141		;	/* TBD restart transmit engine */
1142	return;
1143}
1144
1145static __inline void
1146rtw_suspend_ticks(struct rtw_softc *sc)
1147{
1148	printf("%s: suspending ticks\n", sc->sc_dev.dv_xname);
1149	sc->sc_do_tick = 0;
1150}
1151
1152static __inline void
1153rtw_resume_ticks(struct rtw_softc *sc)
1154{
1155	int s;
1156	struct timeval tv;
1157	u_int32_t tsftrl0, tsftrl1, next_tick;
1158
1159	tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1160
1161	s = splclock();
1162	timersub(&mono_time, &sc->sc_tick0, &tv);
1163	splx(s);
1164
1165	tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1166	next_tick = tsftrl1 + 1000000 - tv.tv_usec;
1167	RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tick);
1168
1169	sc->sc_do_tick = 1;
1170
1171	printf("%s: resume ticks delta %#08x now %#08x next %#08x\n",
1172	    sc->sc_dev.dv_xname, tsftrl1 - tsftrl0, tsftrl1, next_tick);
1173}
1174
1175static void
1176rtw_intr_timeout(struct rtw_softc *sc)
1177{
1178	printf("%s: timeout\n", sc->sc_dev.dv_xname);
1179	if (sc->sc_do_tick)
1180		rtw_resume_ticks(sc);
1181	return;
1182}
1183
1184int
1185rtw_intr(void *arg)
1186{
1187	struct rtw_softc *sc = arg;
1188	struct rtw_regs *regs = &sc->sc_regs;
1189	u_int16_t isr;
1190
1191#ifdef RTW_DEBUG
1192	if ((sc->sc_flags & RTW_F_ENABLED) == 0)
1193		panic("%s: rtw_intr: not enabled", sc->sc_dev.dv_xname);
1194#endif /* RTW_DEBUG */
1195
1196	/*
1197	 * If the interface isn't running, the interrupt couldn't
1198	 * possibly have come from us.
1199	 */
1200	if ((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
1201	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) {
1202		RTW_DPRINTF2(("%s: stray interrupt\n", sc->sc_dev.dv_xname));
1203		return (0);
1204	}
1205
1206	for (;;) {
1207		isr = RTW_READ16(regs, RTW_ISR);
1208
1209		RTW_WRITE16(regs, RTW_ISR, isr);
1210
1211		if (sc->sc_intr_ack != NULL)
1212			(*sc->sc_intr_ack)(regs);
1213
1214		if (isr == 0)
1215			break;
1216
1217#ifdef RTW_DEBUG
1218#define PRINTINTR(flag) do { \
1219	if ((isr & flag) != 0) { \
1220		printf("%s" #flag, delim); \
1221		delim = ","; \
1222	} \
1223} while (0)
1224
1225		if (rtw_debug > 1 && isr != 0) {
1226			const char *delim = "<";
1227
1228			printf("%s: reg[ISR] = %x", sc->sc_dev.dv_xname, isr);
1229
1230			PRINTINTR(RTW_INTR_TXFOVW);
1231			PRINTINTR(RTW_INTR_TIMEOUT);
1232			PRINTINTR(RTW_INTR_BCNINT);
1233			PRINTINTR(RTW_INTR_ATIMINT);
1234			PRINTINTR(RTW_INTR_TBDER);
1235			PRINTINTR(RTW_INTR_TBDOK);
1236			PRINTINTR(RTW_INTR_THPDER);
1237			PRINTINTR(RTW_INTR_THPDOK);
1238			PRINTINTR(RTW_INTR_TNPDER);
1239			PRINTINTR(RTW_INTR_TNPDOK);
1240			PRINTINTR(RTW_INTR_RXFOVW);
1241			PRINTINTR(RTW_INTR_RDU);
1242			PRINTINTR(RTW_INTR_TLPDER);
1243			PRINTINTR(RTW_INTR_TLPDOK);
1244			PRINTINTR(RTW_INTR_RER);
1245			PRINTINTR(RTW_INTR_ROK);
1246
1247			printf(">\n");
1248		}
1249#undef PRINTINTR
1250#endif /* RTW_DEBUG */
1251
1252		if ((isr & RTW_INTR_RX) != 0)
1253			rtw_intr_rx(sc, isr & RTW_INTR_RX);
1254		if ((isr & RTW_INTR_TX) != 0)
1255			rtw_intr_tx(sc, isr & RTW_INTR_TX);
1256		if ((isr & RTW_INTR_BEACON) != 0)
1257			rtw_intr_beacon(sc, isr & RTW_INTR_BEACON);
1258		if ((isr & RTW_INTR_ATIMINT) != 0)
1259			rtw_intr_atim(sc);
1260		if ((isr & RTW_INTR_IOERROR) != 0)
1261			rtw_intr_ioerror(sc, isr & RTW_INTR_IOERROR);
1262		if ((isr & RTW_INTR_TIMEOUT) != 0)
1263			rtw_intr_timeout(sc);
1264	}
1265
1266	return 1;
1267}
1268
1269static void
1270rtw_stop(struct ifnet *ifp, int disable)
1271{
1272	struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
1273	struct ieee80211com *ic = &sc->sc_ic;
1274	struct rtw_regs *regs = &sc->sc_regs;
1275
1276	rtw_suspend_ticks(sc);
1277
1278	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1279
1280	/* Disable interrupts. */
1281	RTW_WRITE16(regs, RTW_IMR, 0);
1282
1283	/* Stop the transmit and receive processes. First stop DMA,
1284	 * then disable receiver and transmitter.
1285	 */
1286	RTW_WRITE8(regs, RTW_TPPOLL,
1287	    RTW_TPPOLL_SBQ|RTW_TPPOLL_SHPQ|RTW_TPPOLL_SNPQ|RTW_TPPOLL_SLPQ);
1288
1289	rtw_io_enable(&sc->sc_regs, RTW_CR_RE|RTW_CR_TE, 0);
1290
1291	/* TBD Release transmit buffers. */
1292
1293	if (disable) {
1294		rtw_disable(sc);
1295		rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxctl[0]);
1296	}
1297
1298	/* Mark the interface as not running.  Cancel the watchdog timer. */
1299	ifp->if_flags &= ~IFF_RUNNING;
1300	ifp->if_timer = 0;
1301	return;
1302}
1303
1304const char *
1305rtw_pwrstate_string(enum rtw_pwrstate power)
1306{
1307	switch (power) {
1308	case RTW_ON:
1309		return "on";
1310	case RTW_SLEEP:
1311		return "sleep";
1312	case RTW_OFF:
1313		return "off";
1314	default:
1315		return "unknown";
1316	}
1317}
1318
1319/* XXX I am using the RFMD settings gleaned from the reference
1320 * driver.
1321 */
1322static void
1323rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
1324    int before_rf)
1325{
1326	u_int32_t anaparm;
1327
1328	RTW_DPRINTF(("%s: power state %s, %s RF\n", __func__,
1329	    rtw_pwrstate_string(power), (before_rf) ? "before" : "after"));
1330
1331	anaparm = RTW_READ(regs, RTW_ANAPARM);
1332	anaparm &= ~(RTW_ANAPARM_RFPOW0_MASK|RTW_ANAPARM_RFPOW1_MASK);
1333	anaparm &= ~RTW_ANAPARM_TXDACOFF;
1334
1335	switch (power) {
1336	case RTW_OFF:
1337		if (before_rf)
1338			return;
1339		anaparm |= RTW_ANAPARM_RFPOW0_RFMD_OFF;
1340		anaparm |= RTW_ANAPARM_RFPOW1_RFMD_OFF;
1341		anaparm |= RTW_ANAPARM_TXDACOFF;
1342		break;
1343	case RTW_SLEEP:
1344		if (!before_rf)
1345			return;
1346		anaparm |= RTW_ANAPARM_RFPOW0_RFMD_SLEEP;
1347		anaparm |= RTW_ANAPARM_RFPOW1_RFMD_SLEEP;
1348		anaparm |= RTW_ANAPARM_TXDACOFF;
1349		break;
1350	case RTW_ON:
1351		if (!before_rf)
1352			return;
1353		anaparm |= RTW_ANAPARM_RFPOW0_RFMD_ON;
1354		anaparm |= RTW_ANAPARM_RFPOW1_RFMD_ON;
1355		break;
1356	}
1357	RTW_WRITE(regs, RTW_ANAPARM, anaparm);
1358	RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
1359}
1360
1361static void
1362rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
1363    int before_rf)
1364{
1365	u_int32_t anaparm;
1366
1367	RTW_DPRINTF(("%s: power state %s, %s RF\n", __func__,
1368	    rtw_pwrstate_string(power), (before_rf) ? "before" : "after"));
1369
1370	anaparm = RTW_READ(regs, RTW_ANAPARM);
1371	anaparm &= ~(RTW_ANAPARM_RFPOW0_MASK|RTW_ANAPARM_RFPOW1_MASK);
1372	anaparm &= ~RTW_ANAPARM_TXDACOFF;
1373
1374	switch (power) {
1375	case RTW_OFF:
1376		if (before_rf)
1377			return;
1378		anaparm |= RTW_ANAPARM_RFPOW0_PHILIPS_OFF;
1379		anaparm |= RTW_ANAPARM_RFPOW1_PHILIPS_OFF;
1380		anaparm |= RTW_ANAPARM_TXDACOFF;
1381		break;
1382	case RTW_SLEEP:
1383		if (!before_rf)
1384			return;
1385		anaparm |= RTW_ANAPARM_RFPOW0_PHILIPS_SLEEP;
1386		anaparm |= RTW_ANAPARM_RFPOW1_PHILIPS_SLEEP;
1387		anaparm |= RTW_ANAPARM_TXDACOFF;
1388		break;
1389	case RTW_ON:
1390		if (!before_rf)
1391			return;
1392		anaparm |= RTW_ANAPARM_RFPOW0_PHILIPS_ON;
1393		anaparm |= RTW_ANAPARM_RFPOW1_PHILIPS_ON;
1394		break;
1395	}
1396	RTW_WRITE(regs, RTW_ANAPARM, anaparm);
1397	RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
1398}
1399
1400static void
1401rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf)
1402{
1403	struct rtw_regs *regs = &sc->sc_regs;
1404
1405	rtw_config0123_enable(regs, 1);
1406	rtw_anaparm_enable(regs, 1);
1407
1408	(*sc->sc_pwrstate_cb)(regs, power, before_rf);
1409
1410	rtw_anaparm_enable(regs, 0);
1411	rtw_config0123_enable(regs, 0);
1412
1413	return;
1414}
1415
1416static int
1417rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
1418{
1419	int rc;
1420
1421	RTW_DPRINTF2(("%s: %s->%s\n", __func__,
1422	    rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
1423
1424	if (sc->sc_pwrstate == power)
1425		return 0;
1426
1427	rtw_pwrstate0(sc, power, 1);
1428	rc = rtw_rf_pwrstate(sc->sc_rf, power);
1429	rtw_pwrstate0(sc, power, 0);
1430
1431	switch (power) {
1432	case RTW_ON:
1433		/* TBD */
1434		break;
1435	case RTW_SLEEP:
1436		/* TBD */
1437		break;
1438	case RTW_OFF:
1439		/* TBD */
1440		break;
1441	}
1442	if (rc == 0)
1443		sc->sc_pwrstate = power;
1444	else
1445		sc->sc_pwrstate = RTW_OFF;
1446	return rc;
1447}
1448
1449static int
1450rtw_tune(struct rtw_softc *sc)
1451{
1452	struct ieee80211com *ic = &sc->sc_ic;
1453	u_int chan;
1454	int rc;
1455	int antdiv = sc->sc_flags & RTW_F_ANTDIV,
1456	    dflantb = sc->sc_flags & RTW_F_DFLANTB;
1457
1458	KASSERT(ic->ic_bss->ni_chan != NULL);
1459
1460	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1461	if (chan == IEEE80211_CHAN_ANY)
1462		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1463
1464	if (chan == sc->sc_cur_chan) {
1465		RTW_DPRINTF(("%s: already tuned chan #%d\n", __func__, chan));
1466		return 0;
1467	}
1468
1469	rtw_suspend_ticks(sc);
1470
1471	rtw_io_enable(&sc->sc_regs, RTW_CR_RE | RTW_CR_TE, 0);
1472
1473	/* TBD wait for Tx to complete */
1474
1475	KASSERT((sc->sc_flags & RTW_F_ENABLED) != 0);
1476
1477	if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
1478	    rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_bss->ni_chan),
1479	    sc->sc_csthr, ic->ic_bss->ni_chan->ic_freq, antdiv,
1480	    dflantb, RTW_ON)) != 0) {
1481		/* XXX condition on powersaving */
1482		printf("%s: phy init failed\n", sc->sc_dev.dv_xname);
1483	}
1484
1485	sc->sc_cur_chan = chan;
1486
1487	rtw_io_enable(&sc->sc_regs, RTW_CR_RE | RTW_CR_TE, 1);
1488
1489	rtw_resume_ticks(sc);
1490
1491	return rc;
1492}
1493
1494void
1495rtw_disable(struct rtw_softc *sc)
1496{
1497	int rc;
1498
1499	if ((sc->sc_flags & RTW_F_ENABLED) == 0)
1500		return;
1501
1502	/* turn off PHY */
1503	if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
1504		printf("%s: failed to turn off PHY (%d)\n",
1505		    sc->sc_dev.dv_xname, rc);
1506
1507	if (sc->sc_disable != NULL)
1508		(*sc->sc_disable)(sc);
1509
1510	sc->sc_flags &= ~RTW_F_ENABLED;
1511}
1512
1513int
1514rtw_enable(struct rtw_softc *sc)
1515{
1516	if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
1517		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
1518			printf("%s: device enable failed\n",
1519			    sc->sc_dev.dv_xname);
1520			return (EIO);
1521		}
1522		sc->sc_flags |= RTW_F_ENABLED;
1523	}
1524	return (0);
1525}
1526
1527static void
1528rtw_transmit_config(struct rtw_regs *regs)
1529{
1530	u_int32_t tcr;
1531
1532	tcr = RTW_READ(regs, RTW_TCR);
1533
1534	tcr |= RTW_TCR_SAT;		/* send ACK as fast as possible */
1535	tcr &= ~RTW_TCR_LBK_MASK;
1536	tcr |= RTW_TCR_LBK_NORMAL;	/* normal operating mode */
1537
1538	/* set short/long retry limits */
1539	tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
1540	tcr |= LSHIFT(7, RTW_TCR_SRL_MASK) | LSHIFT(7, RTW_TCR_LRL_MASK);
1541
1542	tcr |= RTW_TCR_CRC;	/* NIC appends CRC32 */
1543
1544	RTW_WRITE(regs, RTW_TCR, tcr);
1545}
1546
1547static __inline void
1548rtw_enable_interrupts(struct rtw_softc *sc)
1549{
1550	struct rtw_regs *regs = &sc->sc_regs;
1551
1552	sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
1553	sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
1554
1555	RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
1556	RTW_WRITE16(regs, RTW_ISR, 0xffff);
1557
1558	/* XXX necessary? */
1559	if (sc->sc_intr_ack != NULL)
1560		(*sc->sc_intr_ack)(regs);
1561}
1562
1563/* XXX is the endianness correct? test. */
1564#define	rtw_calchash(addr) \
1565	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1566
1567static void
1568rtw_pktfilt_load(struct rtw_softc *sc)
1569{
1570	struct rtw_regs *regs = &sc->sc_regs;
1571	struct ieee80211com *ic = &sc->sc_ic;
1572	struct ethercom *ec = &ic->ic_ec;
1573	struct ifnet *ifp = &sc->sc_ic.ic_if;
1574	int hash;
1575	u_int32_t hashes[2] = { 0, 0 };
1576	struct ether_multi *enm;
1577	struct ether_multistep step;
1578
1579	/* XXX might be necessary to stop Rx/Tx engines while setting filters */
1580
1581#define RTW_RCR_MONITOR (RTW_RCR_ACRC32|RTW_RCR_APM|RTW_RCR_AAP|RTW_RCR_AB)
1582
1583	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1584		sc->sc_rcr |= RTW_RCR_MONITOR;
1585	else
1586		sc->sc_rcr &= ~RTW_RCR_MONITOR;
1587
1588	/* XXX reference sources BEGIN */
1589	sc->sc_rcr |= RTW_RCR_ENMARP | RTW_RCR_AICV | RTW_RCR_ACRC32;
1590	sc->sc_rcr |= RTW_RCR_AB | RTW_RCR_AM | RTW_RCR_APM;
1591#if 0
1592	/* receive broadcasts in our BSS */
1593	sc->sc_rcr |= RTW_RCR_ADD3;
1594#endif
1595	/* XXX reference sources END */
1596
1597	/* receive pwrmgmt frames. */
1598	sc->sc_rcr |= RTW_RCR_APWRMGT;
1599	/* receive mgmt/ctrl/data frames. */
1600	sc->sc_rcr |= RTW_RCR_AMF | RTW_RCR_ACF | RTW_RCR_ADF;
1601	/* initialize Rx DMA threshold, Tx DMA burst size */
1602	sc->sc_rcr |= RTW_RCR_RXFTH_WHOLE | RTW_RCR_MXDMA_1024;
1603
1604	ifp->if_flags &= ~IFF_ALLMULTI;
1605
1606	if (ifp->if_flags & IFF_PROMISC) {
1607		sc->sc_rcr |= RTW_RCR_AB;	/* accept all broadcast */
1608allmulti:
1609		ifp->if_flags |= IFF_ALLMULTI;
1610		goto setit;
1611	}
1612
1613	/*
1614	 * Program the 64-bit multicast hash filter.
1615	 */
1616	ETHER_FIRST_MULTI(step, ec, enm);
1617	while (enm != NULL) {
1618		/* XXX */
1619		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1620		    ETHER_ADDR_LEN) != 0)
1621			goto allmulti;
1622
1623		hash = rtw_calchash(enm->enm_addrlo);
1624		hashes[hash >> 5] |= 1 << (hash & 0x1f);
1625		ETHER_NEXT_MULTI(step, enm);
1626	}
1627
1628	if (ifp->if_flags & IFF_BROADCAST) {
1629		hash = rtw_calchash(etherbroadcastaddr);
1630		hashes[hash >> 5] |= 1 << (hash & 0x1f);
1631	}
1632
1633	/* all bits set => hash is useless */
1634	if (~(hashes[0] & hashes[1]) == 0)
1635		goto allmulti;
1636
1637 setit:
1638	if (ifp->if_flags & IFF_ALLMULTI)
1639		sc->sc_rcr |= RTW_RCR_AM;	/* accept all multicast */
1640
1641	if (ic->ic_state == IEEE80211_S_SCAN)
1642		sc->sc_rcr |= RTW_RCR_AB;	/* accept all broadcast */
1643
1644	hashes[0] = hashes[1] = 0xffffffff;
1645
1646	RTW_WRITE(regs, RTW_MAR0, hashes[0]);
1647	RTW_WRITE(regs, RTW_MAR1, hashes[1]);
1648	RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
1649	RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
1650
1651	DPRINTF(sc, ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
1652	    sc->sc_dev.dv_xname, RTW_READ(regs, RTW_MAR0),
1653	    RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
1654
1655	return;
1656}
1657
1658static int
1659rtw_init(struct ifnet *ifp)
1660{
1661	struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
1662	struct ieee80211com *ic = &sc->sc_ic;
1663	struct rtw_regs *regs = &sc->sc_regs;
1664	int rc = 0, s;
1665
1666	if ((rc = rtw_enable(sc)) != 0)
1667		goto out;
1668
1669	/* Cancel pending I/O and reset. */
1670	rtw_stop(ifp, 0);
1671
1672	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1673	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1674	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
1675	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
1676
1677	if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
1678		goto out;
1679
1680	rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk);
1681
1682	rtw_txctl_blk_init_all(&sc->sc_txctl_blk);
1683
1684	rtw_rxctl_init_all(sc->sc_dmat, sc->sc_rxctl, &sc->sc_rxnext,
1685	    &sc->sc_dev.dv_xname);
1686	rtw_rxdesc_init_all(sc->sc_dmat, sc->sc_desc_dmamap,
1687	    sc->sc_rxdesc, sc->sc_rxctl);
1688
1689	rtw_txdescs_sync_all(sc->sc_dmat, sc->sc_desc_dmamap,
1690	    &sc->sc_txdesc_blk);
1691#if 0	/* redundant with rtw_rxdesc_init_all */
1692	rtw_rxdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
1693	    0, RTW_NRXDESC, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1694#endif
1695
1696	RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1697
1698	rtw_transmit_config(regs);
1699
1700	rtw_config0123_enable(regs, 1);
1701
1702	RTW_WRITE(regs, RTW_MSR, 0x0);	/* no link */
1703
1704	RTW_WRITE(regs, RTW_BRSR, 0x0);	/* long PLCP header, 1Mbps basic rate */
1705
1706	rtw_anaparm_enable(regs, 0);
1707
1708	rtw_config0123_enable(regs, 0);
1709
1710#if 0
1711	RTW_WRITE(regs, RTW_FEMR, RTW_FEMR_GWAKE|RTW_FEMR_WKUP|RTW_FEMR_INTR);
1712#endif
1713	/* XXX from reference sources */
1714	RTW_WRITE(regs, RTW_FEMR, 0xffff);
1715
1716	RTW_WRITE(regs, RTW_PHYDELAY, sc->sc_phydelay);
1717	/* from Linux driver */
1718	RTW_WRITE(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
1719
1720	rtw_enable_interrupts(sc);
1721
1722	rtw_pktfilt_load(sc);
1723
1724	RTW_WRITE(regs, RTW_TLPDA, RTW_RING_BASE(sc, hd_txlo));
1725	RTW_WRITE(regs, RTW_TNPDA, RTW_RING_BASE(sc, hd_txmd));
1726	RTW_WRITE(regs, RTW_THPDA, RTW_RING_BASE(sc, hd_txhi));
1727	RTW_WRITE(regs, RTW_TBDA, RTW_RING_BASE(sc, hd_bcn));
1728
1729	rtw_io_enable(regs, RTW_CR_RE|RTW_CR_TE, 1);
1730
1731	ifp->if_flags |= IFF_RUNNING;
1732	ic->ic_state = IEEE80211_S_INIT;
1733
1734	RTW_WRITE16(regs, RTW_BSSID16, 0x0);
1735	RTW_WRITE(regs, RTW_BSSID32, 0x0);
1736
1737	s = splclock();
1738	sc->sc_tick0 = mono_time;
1739	splx(s);
1740
1741	rtw_resume_ticks(sc);
1742
1743	switch (ic->ic_opmode) {
1744	case IEEE80211_M_AHDEMO:
1745	case IEEE80211_M_IBSS:
1746		RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_ADHOC_OK);
1747		break;
1748	case IEEE80211_M_HOSTAP:
1749		RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_AP_OK);
1750	case IEEE80211_M_MONITOR:
1751		/* XXX */
1752		RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_NOLINK);
1753		return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1754	case IEEE80211_M_STA:
1755		RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_INFRA_OK);
1756		break;
1757	}
1758	return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1759out:
1760	return rc;
1761}
1762
1763static int
1764rtw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1765{
1766	int rc = 0;
1767	struct rtw_softc *sc = ifp->if_softc;
1768	struct ifreq *ifr = (struct ifreq *)data;
1769
1770	switch (cmd) {
1771	case SIOCSIFFLAGS:
1772		if ((ifp->if_flags & IFF_UP) != 0) {
1773			if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
1774				rtw_pktfilt_load(sc);
1775			} else
1776				rc = rtw_init(ifp);
1777#ifdef RTW_DEBUG
1778			rtw_print_regs(&sc->sc_regs, ifp->if_xname, __func__);
1779#endif /* RTW_DEBUG */
1780		} else if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
1781#ifdef RTW_DEBUG
1782			rtw_print_regs(&sc->sc_regs, ifp->if_xname, __func__);
1783#endif /* RTW_DEBUG */
1784			rtw_stop(ifp, 1);
1785		}
1786		break;
1787	case SIOCADDMULTI:
1788	case SIOCDELMULTI:
1789		if (cmd == SIOCADDMULTI)
1790			rc = ether_addmulti(ifr, &sc->sc_ic.ic_ec);
1791		else
1792			rc = ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1793		if (rc == ENETRESET) {
1794			if ((sc->sc_flags & RTW_F_ENABLED) != 0)
1795				rtw_pktfilt_load(sc);
1796			rc = 0;
1797		}
1798		break;
1799	default:
1800		if ((rc = ieee80211_ioctl(ifp, cmd, data)) == ENETRESET) {
1801			if ((sc->sc_flags & RTW_F_ENABLED) != 0)
1802				rc = rtw_init(ifp);
1803			else
1804				rc = 0;
1805		}
1806		break;
1807	}
1808	return rc;
1809}
1810
1811/* Point *mp at the next 802.11 frame to transmit.  Point *stcp
1812 * at the driver's selection of transmit control block for the packet.
1813 */
1814static __inline int
1815rtw_dequeue(struct ifnet *ifp, struct rtw_txctl_blk **stcp, struct mbuf **mp,
1816    struct ieee80211_node **nip)
1817{
1818	struct mbuf *m0;
1819	struct rtw_softc *sc;
1820	struct ieee80211com *ic;
1821
1822	sc = (struct rtw_softc *)ifp->if_softc;
1823	ic = &sc->sc_ic;
1824
1825	*mp = NULL;
1826
1827	if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
1828		IF_DEQUEUE(&ic->ic_mgtq, m0);
1829		*nip = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1830		m0->m_pkthdr.rcvif = NULL;
1831	} else if (ic->ic_state != IEEE80211_S_RUN)
1832		return 0;
1833	else if (!IF_IS_EMPTY(&ic->ic_pwrsaveq)) {
1834		IF_DEQUEUE(&ic->ic_pwrsaveq, m0);
1835		*nip = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1836		m0->m_pkthdr.rcvif = NULL;
1837	} else {
1838		IFQ_POLL(&ifp->if_snd, m0);
1839		if (m0 == NULL)
1840			return 0;
1841		IFQ_DEQUEUE(&ifp->if_snd, m0);
1842		ifp->if_opackets++;
1843#if NBPFILTER > 0
1844		if (ifp->if_bpf)
1845			bpf_mtap(ifp->if_bpf, m0);
1846#endif
1847		if ((m0 = ieee80211_encap(ifp, m0, nip)) == NULL) {
1848			ifp->if_oerrors++;
1849			return -1;
1850		}
1851	}
1852	*stcp = &sc->sc_txctl_blk[RTW_TXPRIMD];
1853	*mp = m0;
1854	return 0;
1855}
1856
1857static void
1858rtw_start(struct ifnet *ifp)
1859{
1860	struct mbuf *m0;
1861	struct rtw_softc *sc;
1862	struct rtw_txctl_blk *stc;
1863	struct ieee80211_node *ni;
1864
1865	sc = (struct rtw_softc *)ifp->if_softc;
1866
1867#if 0
1868	struct ifqueue		ic_mgtq;
1869	struct ifqueue		ic_pwrsaveq;
1870struct rtw_txctl_blk {
1871	/* dirty/free s/w descriptors */
1872	struct rtw_txq		stc_dirtyq;
1873	struct rtw_txq		stc_freeq;
1874	u_int			stc_ndesc;
1875	struct rtw_txctl	*stc_desc;
1876};
1877#endif
1878	while (!SIMPLEQ_EMPTY(&stc->stc_freeq)) {
1879		if (rtw_dequeue(ifp, &stc, &m0, &ni) == -1)
1880			continue;
1881		if (m0 == NULL)
1882			break;
1883		ieee80211_release_node(&sc->sc_ic, ni);
1884	}
1885	return;
1886}
1887
1888static void
1889rtw_watchdog(struct ifnet *ifp)
1890{
1891	/* TBD */
1892	return;
1893}
1894
1895static void
1896rtw_start_beacon(struct rtw_softc *sc, int enable)
1897{
1898	/* TBD */
1899	return;
1900}
1901
1902static void
1903rtw_next_scan(void *arg)
1904{
1905	struct ieee80211com *ic = arg;
1906	int s;
1907
1908	/* don't call rtw_start w/o network interrupts blocked */
1909	s = splnet();
1910	if (ic->ic_state == IEEE80211_S_SCAN)
1911		ieee80211_next_scan(ic);
1912	splx(s);
1913}
1914
1915/* Synchronize the hardware state with the software state. */
1916static int
1917rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1918{
1919	struct ifnet *ifp = &ic->ic_if;
1920	struct rtw_softc *sc = ifp->if_softc;
1921	enum ieee80211_state ostate;
1922	int error;
1923
1924	ostate = ic->ic_state;
1925
1926	if (nstate == IEEE80211_S_INIT) {
1927		callout_stop(&sc->sc_scan_ch);
1928		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
1929		rtw_start_beacon(sc, 0);
1930		return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
1931	}
1932
1933	if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
1934		rtw_pwrstate(sc, RTW_ON);
1935
1936	if ((error = rtw_tune(sc)) != 0)
1937		return error;
1938
1939	switch (nstate) {
1940	case IEEE80211_S_ASSOC:
1941		break;
1942	case IEEE80211_S_INIT:
1943		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
1944		break;
1945	case IEEE80211_S_SCAN:
1946#if 0
1947		memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
1948		rtw_write_bssid(sc);
1949#endif
1950
1951		callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
1952		    rtw_next_scan, ic);
1953
1954		break;
1955	case IEEE80211_S_RUN:
1956		if (ic->ic_opmode == IEEE80211_M_STA)
1957			break;
1958		/*FALLTHROUGH*/
1959	case IEEE80211_S_AUTH:
1960#if 0
1961		rtw_write_bssid(sc);
1962		rtw_write_bcn_thresh(sc);
1963		rtw_write_ssid(sc);
1964		rtw_write_sup_rates(sc);
1965#endif
1966		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
1967		    ic->ic_opmode == IEEE80211_M_MONITOR)
1968			break;
1969
1970		/* TBD set listen interval, beacon interval */
1971
1972#if 0
1973		rtw_tsf(sc);
1974#endif
1975		break;
1976	}
1977
1978	if (nstate != IEEE80211_S_SCAN)
1979		callout_stop(&sc->sc_scan_ch);
1980
1981	if (nstate == IEEE80211_S_RUN &&
1982	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
1983	     ic->ic_opmode == IEEE80211_M_IBSS))
1984		rtw_start_beacon(sc, 1);
1985	else
1986		rtw_start_beacon(sc, 0);
1987
1988	return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
1989}
1990
1991static void
1992rtw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
1993    struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
1994{
1995	/* TBD */
1996	return;
1997}
1998
1999static void
2000rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2001    struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2002{
2003	struct rtw_softc *sc = (struct rtw_softc*)ic->ic_softc;
2004
2005	switch (subtype) {
2006	case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2007		/* do nothing: hardware answers probe request XXX */
2008		break;
2009	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2010	case IEEE80211_FC0_SUBTYPE_BEACON:
2011		rtw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2012		break;
2013	default:
2014		(*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2015		break;
2016	}
2017	return;
2018}
2019
2020static struct ieee80211_node *
2021rtw_node_alloc(struct ieee80211com *ic)
2022{
2023	struct rtw_softc *sc = (struct rtw_softc *)ic->ic_if.if_softc;
2024	struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(ic);
2025
2026	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
2027	return ni;
2028}
2029
2030static void
2031rtw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
2032{
2033	struct rtw_softc *sc = (struct rtw_softc *)ic->ic_if.if_softc;
2034
2035	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
2036	    ether_sprintf(ni->ni_bssid)));
2037	(*sc->sc_mtbl.mt_node_free)(ic, ni);
2038}
2039
2040static int
2041rtw_media_change(struct ifnet *ifp)
2042{
2043	int error;
2044
2045	error = ieee80211_media_change(ifp);
2046	if (error == ENETRESET) {
2047		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
2048		    (IFF_RUNNING|IFF_UP))
2049			rtw_init(ifp);		/* XXX lose error */
2050		error = 0;
2051	}
2052	return error;
2053}
2054
2055static void
2056rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2057{
2058	struct rtw_softc *sc = ifp->if_softc;
2059
2060	if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
2061		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
2062		imr->ifm_status = 0;
2063		return;
2064	}
2065	ieee80211_media_status(ifp, imr);
2066}
2067
2068void
2069rtw_power(int why, void *arg)
2070{
2071	struct rtw_softc *sc = arg;
2072	struct ifnet *ifp = &sc->sc_ic.ic_if;
2073	int s;
2074
2075	DPRINTF(sc, ("%s: rtw_power(%d,)\n", sc->sc_dev.dv_xname, why));
2076
2077	s = splnet();
2078	switch (why) {
2079	case PWR_STANDBY:
2080		/* XXX do nothing. */
2081		break;
2082	case PWR_SUSPEND:
2083		rtw_stop(ifp, 0);
2084		if (sc->sc_power != NULL)
2085			(*sc->sc_power)(sc, why);
2086		break;
2087	case PWR_RESUME:
2088		if (ifp->if_flags & IFF_UP) {
2089			if (sc->sc_power != NULL)
2090				(*sc->sc_power)(sc, why);
2091			rtw_init(ifp);
2092		}
2093		break;
2094	case PWR_SOFTSUSPEND:
2095	case PWR_SOFTSTANDBY:
2096	case PWR_SOFTRESUME:
2097		break;
2098	}
2099	splx(s);
2100}
2101
2102/* rtw_shutdown: make sure the interface is stopped at reboot time. */
2103void
2104rtw_shutdown(void *arg)
2105{
2106	struct rtw_softc *sc = arg;
2107
2108	rtw_stop(&sc->sc_ic.ic_if, 1);
2109}
2110
2111static __inline void
2112rtw_setifprops(struct ifnet *ifp, char (*dvname)[IFNAMSIZ], void *softc)
2113{
2114	(void)memcpy(ifp->if_xname, *dvname, IFNAMSIZ);
2115	ifp->if_softc = softc;
2116	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
2117	    IFF_NOTRAILERS;
2118	ifp->if_ioctl = rtw_ioctl;
2119	ifp->if_start = rtw_start;
2120	ifp->if_watchdog = rtw_watchdog;
2121	ifp->if_init = rtw_init;
2122	ifp->if_stop = rtw_stop;
2123}
2124
2125static __inline void
2126rtw_set80211props(struct ieee80211com *ic)
2127{
2128	int nrate;
2129	ic->ic_phytype = IEEE80211_T_DS;
2130	ic->ic_opmode = IEEE80211_M_STA;
2131	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
2132	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
2133
2134	nrate = 0;
2135	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
2136	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
2137	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
2138	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
2139	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
2140}
2141
2142static __inline void
2143rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
2144{
2145	mtbl->mt_newstate = ic->ic_newstate;
2146	ic->ic_newstate = rtw_newstate;
2147
2148	mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
2149	ic->ic_recv_mgmt = rtw_recv_mgmt;
2150
2151	mtbl->mt_node_free = ic->ic_node_free;
2152	ic->ic_node_free = rtw_node_free;
2153
2154	mtbl->mt_node_alloc = ic->ic_node_alloc;
2155	ic->ic_node_alloc = rtw_node_alloc;
2156}
2157
2158static __inline void
2159rtw_establish_hooks(struct rtw_hooks *hooks, char (*dvname)[IFNAMSIZ],
2160    void *arg)
2161{
2162	/*
2163	 * Make sure the interface is shutdown during reboot.
2164	 */
2165	hooks->rh_shutdown = shutdownhook_establish(rtw_shutdown, arg);
2166	if (hooks->rh_shutdown == NULL)
2167		printf("%s: WARNING: unable to establish shutdown hook\n",
2168		    *dvname);
2169
2170	/*
2171	 * Add a suspend hook to make sure we come back up after a
2172	 * resume.
2173	 */
2174	hooks->rh_power = powerhook_establish(rtw_power, arg);
2175	if (hooks->rh_power == NULL)
2176		printf("%s: WARNING: unable to establish power hook\n",
2177		    *dvname);
2178}
2179
2180static __inline void
2181rtw_disestablish_hooks(struct rtw_hooks *hooks, char (*dvname)[IFNAMSIZ],
2182    void *arg)
2183{
2184	if (hooks->rh_shutdown != NULL)
2185		shutdownhook_disestablish(hooks->rh_shutdown);
2186
2187	if (hooks->rh_power != NULL)
2188		powerhook_disestablish(hooks->rh_power);
2189}
2190
2191static __inline void
2192rtw_init_radiotap(struct rtw_softc *sc)
2193{
2194	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
2195	sc->sc_rxtap.rr_ihdr.it_len = sizeof(sc->sc_rxtapu);
2196	sc->sc_rxtap.rr_ihdr.it_present = RTW_RX_RADIOTAP_PRESENT;
2197
2198	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
2199	sc->sc_txtap.rt_ihdr.it_len = sizeof(sc->sc_txtapu);
2200	sc->sc_txtap.rt_ihdr.it_present = RTW_TX_RADIOTAP_PRESENT;
2201}
2202
2203static int
2204rtw_txctl_blk_setup(struct rtw_txctl_blk *stc, u_int qlen)
2205{
2206	SIMPLEQ_INIT(&stc->stc_dirtyq);
2207	SIMPLEQ_INIT(&stc->stc_freeq);
2208	stc->stc_ndesc = qlen;
2209	stc->stc_desc = malloc(qlen * sizeof(*stc->stc_desc), M_DEVBUF,
2210	    M_NOWAIT);
2211	if (stc->stc_desc == NULL)
2212		return ENOMEM;
2213	return 0;
2214}
2215
2216static void
2217rtw_txctl_blk_cleanup_all(struct rtw_softc *sc)
2218{
2219	struct rtw_txctl_blk *stc;
2220	int qlen[RTW_NTXPRI] =
2221	     {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
2222	int pri;
2223
2224	for (pri = 0; pri < sizeof(qlen)/sizeof(qlen[0]); pri++) {
2225		stc = &sc->sc_txctl_blk[pri];
2226		free(stc->stc_desc, M_DEVBUF);
2227		stc->stc_desc = NULL;
2228	}
2229}
2230
2231static int
2232rtw_txctl_blk_setup_all(struct rtw_softc *sc)
2233{
2234	int pri, rc = 0;
2235	int qlen[RTW_NTXPRI] =
2236	     {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
2237
2238	for (pri = 0; pri < sizeof(qlen)/sizeof(qlen[0]); pri++) {
2239		rc = rtw_txctl_blk_setup(&sc->sc_txctl_blk[pri], qlen[pri]);
2240		if (rc != 0)
2241			break;
2242	}
2243	return rc;
2244}
2245
2246static void
2247rtw_txdesc_blk_setup(struct rtw_txdesc_blk *htc, struct rtw_txdesc *desc,
2248    u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
2249{
2250	int i;
2251
2252	htc->htc_ndesc = ndesc;
2253	htc->htc_desc = desc;
2254	htc->htc_physbase = physbase;
2255	htc->htc_ofs = ofs;
2256
2257	(void)memset(htc->htc_desc, 0,
2258	    sizeof(htc->htc_desc[0]) * htc->htc_ndesc);
2259
2260	for (i = 0; i < htc->htc_ndesc; i++) {
2261		htc->htc_desc[i].htx_next = htole32(RTW_NEXT_DESC(htc, i));
2262	}
2263}
2264
2265static void
2266rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
2267{
2268	rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
2269	    &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
2270	    RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
2271
2272	rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
2273	    &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
2274	    RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
2275
2276	rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
2277	    &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
2278	    RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
2279
2280	rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
2281	    &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
2282	    RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
2283}
2284
2285static struct rtw_rf *
2286rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid,
2287    rtw_rf_write_t rf_write, int digphy)
2288{
2289	struct rtw_rf *rf;
2290
2291	switch (rfchipid) {
2292	case RTW_RFCHIPID_MAXIM:
2293		rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
2294		sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
2295		break;
2296	case RTW_RFCHIPID_PHILIPS:
2297		rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
2298		sc->sc_pwrstate_cb = rtw_philips_pwrstate;
2299		break;
2300	default:
2301		return NULL;
2302	}
2303	rf->rf_continuous_tx_cb =
2304	    (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
2305	rf->rf_continuous_tx_arg = (void *)sc;
2306	return rf;
2307}
2308
2309/* Revision C and later use a different PHY delay setting than
2310 * revisions A and B.
2311 */
2312static u_int8_t
2313rtw_check_phydelay(struct rtw_regs *regs, u_int32_t rcr0)
2314{
2315#define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
2316#define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
2317
2318	u_int8_t phydelay = LSHIFT(0x6, RTW_PHYDELAY_PHYDELAY);
2319
2320	RTW_WRITE(regs, RTW_RCR, REVAB);
2321	RTW_WRITE(regs, RTW_RCR, REVC);
2322
2323	RTW_WBR(regs, RTW_RCR, RTW_RCR);
2324	if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
2325		phydelay |= RTW_PHYDELAY_REVC_MAGIC;
2326
2327	RTW_WRITE(regs, RTW_RCR, rcr0);	/* restore RCR */
2328
2329	return phydelay;
2330#undef REVC
2331}
2332
2333void
2334rtw_attach(struct rtw_softc *sc)
2335{
2336	rtw_rf_write_t rf_write;
2337	struct rtw_txctl_blk *stc;
2338	int pri, rc, vers;
2339
2340#if 0
2341	CASSERT(RTW_DESC_ALIGNMENT % sizeof(struct rtw_txdesc) == 0,
2342	    "RTW_DESC_ALIGNMENT is not a multiple of "
2343	    "sizeof(struct rtw_txdesc)");
2344
2345	CASSERT(RTW_DESC_ALIGNMENT % sizeof(struct rtw_rxdesc) == 0,
2346	    "RTW_DESC_ALIGNMENT is not a multiple of "
2347	    "sizeof(struct rtw_rxdesc)");
2348
2349	CASSERT(RTW_DESC_ALIGNMENT % RTW_MAXPKTSEGS == 0,
2350	    "RTW_DESC_ALIGNMENT is not a multiple of RTW_MAXPKTSEGS");
2351#endif
2352
2353	NEXT_ATTACH_STATE(sc, DETACHED);
2354
2355	switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
2356	case RTW_TCR_HWVERID_F:
2357		vers = 'F';
2358		rf_write = rtw_rf_hostwrite;
2359		break;
2360	case RTW_TCR_HWVERID_D:
2361		vers = 'D';
2362		rf_write = rtw_rf_macwrite;
2363		break;
2364	default:
2365		vers = '?';
2366		rf_write = rtw_rf_macwrite;
2367		break;
2368	}
2369	printf("%s: hardware version %c\n", sc->sc_dev.dv_xname, vers);
2370
2371	rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
2372	    RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
2373	    0);
2374
2375	if (rc != 0) {
2376		printf("%s: could not allocate hw descriptors, error %d\n",
2377		     sc->sc_dev.dv_xname, rc);
2378		goto err;
2379	}
2380
2381	NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
2382
2383	rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
2384	    sc->sc_desc_nsegs, sizeof(struct rtw_descs),
2385	    (caddr_t*)&sc->sc_descs, BUS_DMA_COHERENT);
2386
2387	if (rc != 0) {
2388		printf("%s: could not map hw descriptors, error %d\n",
2389		    sc->sc_dev.dv_xname, rc);
2390		goto err;
2391	}
2392	NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
2393
2394	rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
2395	    sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
2396
2397	if (rc != 0) {
2398		printf("%s: could not create DMA map for hw descriptors, "
2399		    "error %d\n", sc->sc_dev.dv_xname, rc);
2400		goto err;
2401	}
2402	NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
2403
2404	rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
2405	    sizeof(struct rtw_descs), NULL, 0);
2406
2407	if (rc != 0) {
2408		printf("%s: could not load DMA map for hw descriptors, "
2409		    "error %d\n", sc->sc_dev.dv_xname, rc);
2410		goto err;
2411	}
2412	NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
2413
2414	if (rtw_txctl_blk_setup_all(sc) != 0)
2415		goto err;
2416	NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
2417
2418	rtw_txdesc_blk_setup_all(sc);
2419
2420	NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
2421
2422	sc->sc_rxdesc = &sc->sc_descs->hd_rx[0];
2423
2424	rtw_rxctls_setup(&sc->sc_rxctl);
2425
2426	for (pri = 0; pri < RTW_NTXPRI; pri++) {
2427		stc = &sc->sc_txctl_blk[pri];
2428
2429		if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
2430		    &stc->stc_desc[0], stc->stc_ndesc)) != 0) {
2431			printf("%s: could not load DMA map for "
2432			    "hw tx descriptors, error %d\n",
2433			    sc->sc_dev.dv_xname, rc);
2434			goto err;
2435		}
2436	}
2437
2438	NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
2439	if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxctl[0],
2440	                                    RTW_RXQLEN)) != 0) {
2441		printf("%s: could not load DMA map for hw rx descriptors, "
2442		    "error %d\n", sc->sc_dev.dv_xname, rc);
2443		goto err;
2444	}
2445	NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
2446
2447	/* Reset the chip to a known state. */
2448	if (rtw_reset(sc) != 0)
2449		goto err;
2450	NEXT_ATTACH_STATE(sc, FINISH_RESET);
2451
2452	sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
2453
2454	if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
2455		sc->sc_flags |= RTW_F_9356SROM;
2456
2457	if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
2458	    &sc->sc_dev.dv_xname) != 0)
2459		goto err;
2460
2461	NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
2462
2463	if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
2464	    &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
2465	    &sc->sc_dev.dv_xname) != 0) {
2466		printf("%s: attach failed, malformed serial ROM\n",
2467		    sc->sc_dev.dv_xname);
2468		goto err;
2469	}
2470
2471	RTW_DPRINTF(("%s: CS threshold %u\n", sc->sc_dev.dv_xname,
2472	    sc->sc_csthr));
2473
2474	NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
2475
2476	sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid, rf_write,
2477	    sc->sc_flags & RTW_F_DIGPHY);
2478
2479	if (sc->sc_rf == NULL) {
2480		printf("%s: attach failed, could not attach RF\n",
2481		    sc->sc_dev.dv_xname);
2482		goto err;
2483	}
2484
2485#if 0
2486	if (rtw_identify_rf(&sc->sc_regs, &sc->sc_rftype,
2487	    &sc->sc_dev.dv_xname) != 0) {
2488		printf("%s: attach failed, unknown RF unidentified\n",
2489		    sc->sc_dev.dv_xname);
2490		goto err;
2491	}
2492#endif
2493
2494	NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
2495
2496	sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
2497
2498	RTW_DPRINTF(("%s: PHY delay %d\n", sc->sc_dev.dv_xname,
2499	    sc->sc_phydelay));
2500
2501	if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
2502		rtw_identify_country(&sc->sc_regs, &sc->sc_locale,
2503		    &sc->sc_dev.dv_xname);
2504
2505	rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels,
2506	    &sc->sc_dev.dv_xname);
2507
2508	if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
2509	    &sc->sc_dev.dv_xname) != 0)
2510		goto err;
2511	NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
2512
2513	rtw_setifprops(&sc->sc_if, &sc->sc_dev.dv_xname, (void*)sc);
2514
2515	IFQ_SET_READY(&sc->sc_if.if_snd);
2516
2517	rtw_set80211props(&sc->sc_ic);
2518
2519	/*
2520	 * Call MI attach routines.
2521	 */
2522	if_attach(&sc->sc_if);
2523	ieee80211_ifattach(&sc->sc_if);
2524
2525	rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
2526
2527	/* possibly we should fill in our own sc_send_prresp, since
2528	 * the RTL8180 is probably sending probe responses in ad hoc
2529	 * mode.
2530	 */
2531
2532	/* complete initialization */
2533	ieee80211_media_init(&sc->sc_if, rtw_media_change, rtw_media_status);
2534	callout_init(&sc->sc_scan_ch);
2535
2536#if NBPFILTER > 0
2537	bpfattach2(&sc->sc_if, DLT_IEEE802_11_RADIO,
2538	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
2539#endif
2540
2541	rtw_establish_hooks(&sc->sc_hooks, &sc->sc_dev.dv_xname, (void*)sc);
2542
2543	rtw_init_radiotap(sc);
2544
2545	NEXT_ATTACH_STATE(sc, FINISHED);
2546
2547	return;
2548err:
2549	rtw_detach(sc);
2550	return;
2551}
2552
2553int
2554rtw_detach(struct rtw_softc *sc)
2555{
2556	int pri;
2557
2558	switch (sc->sc_attach_state) {
2559	case FINISHED:
2560		rtw_disestablish_hooks(&sc->sc_hooks, &sc->sc_dev.dv_xname,
2561		    (void*)sc);
2562		callout_stop(&sc->sc_scan_ch);
2563		ieee80211_ifdetach(&sc->sc_if);
2564		if_detach(&sc->sc_if);
2565		break;
2566	case FINISH_ID_STA:
2567	case FINISH_RF_ATTACH:
2568		rtw_rf_destroy(sc->sc_rf);
2569		sc->sc_rf = NULL;
2570		/*FALLTHROUGH*/
2571	case FINISH_PARSE_SROM:
2572	case FINISH_READ_SROM:
2573		rtw_srom_free(&sc->sc_srom);
2574		/*FALLTHROUGH*/
2575	case FINISH_RESET:
2576	case FINISH_RXMAPS_CREATE:
2577		rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxctl[0],
2578		    RTW_RXQLEN);
2579		/*FALLTHROUGH*/
2580	case FINISH_TXMAPS_CREATE:
2581		for (pri = 0; pri < RTW_NTXPRI; pri++) {
2582			rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
2583			    sc->sc_txctl_blk[pri].stc_desc,
2584			    sc->sc_txctl_blk[pri].stc_ndesc);
2585		}
2586		/*FALLTHROUGH*/
2587	case FINISH_TXDESCBLK_SETUP:
2588	case FINISH_TXCTLBLK_SETUP:
2589		rtw_txctl_blk_cleanup_all(sc);
2590		/*FALLTHROUGH*/
2591	case FINISH_DESCMAP_LOAD:
2592		bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
2593		/*FALLTHROUGH*/
2594	case FINISH_DESCMAP_CREATE:
2595		bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
2596		/*FALLTHROUGH*/
2597	case FINISH_DESC_MAP:
2598		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_descs,
2599		    sizeof(struct rtw_descs));
2600		/*FALLTHROUGH*/
2601	case FINISH_DESC_ALLOC:
2602		bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
2603		    sc->sc_desc_nsegs);
2604		/*FALLTHROUGH*/
2605	case DETACHED:
2606		NEXT_ATTACH_STATE(sc, DETACHED);
2607		break;
2608	}
2609	return 0;
2610}
2611
2612int
2613rtw_activate(struct device *self, enum devact act)
2614{
2615	struct rtw_softc *sc = (struct rtw_softc *)self;
2616	int rc = 0, s;
2617
2618	s = splnet();
2619	switch (act) {
2620	case DVACT_ACTIVATE:
2621		rc = EOPNOTSUPP;
2622		break;
2623
2624	case DVACT_DEACTIVATE:
2625		if_deactivate(&sc->sc_ic.ic_if);
2626		break;
2627	}
2628	splx(s);
2629	return rc;
2630}
2631