i82557.c revision 1.97
1/*	$NetBSD: i82557.c,v 1.97 2006/02/20 16:50:37 thorpej Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the NetBSD
22 *	Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 *    contributors may be used to endorse or promote products derived
25 *    from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40/*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 *    notice unmodified, this list of conditions, and the following
50 *    disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 *    notice, this list of conditions and the following disclaimer in the
53 *    documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70/*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75#include <sys/cdefs.h>
76__KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.97 2006/02/20 16:50:37 thorpej Exp $");
77
78#include "bpfilter.h"
79#include "rnd.h"
80
81#include <sys/param.h>
82#include <sys/systm.h>
83#include <sys/callout.h>
84#include <sys/mbuf.h>
85#include <sys/malloc.h>
86#include <sys/kernel.h>
87#include <sys/socket.h>
88#include <sys/ioctl.h>
89#include <sys/errno.h>
90#include <sys/device.h>
91#include <sys/syslog.h>
92
93#include <machine/endian.h>
94
95#include <uvm/uvm_extern.h>
96
97#if NRND > 0
98#include <sys/rnd.h>
99#endif
100
101#include <net/if.h>
102#include <net/if_dl.h>
103#include <net/if_media.h>
104#include <net/if_ether.h>
105
106#if NBPFILTER > 0
107#include <net/bpf.h>
108#endif
109
110#include <machine/bus.h>
111#include <machine/intr.h>
112
113#include <dev/mii/miivar.h>
114
115#include <dev/ic/i82557reg.h>
116#include <dev/ic/i82557var.h>
117
118#include <dev/microcode/i8255x/rcvbundl.h>
119
120/*
121 * NOTE!  On the Alpha, we have an alignment constraint.  The
122 * card DMAs the packet immediately following the RFA.  However,
123 * the first thing in the packet is a 14-byte Ethernet header.
124 * This means that the packet is misaligned.  To compensate,
125 * we actually offset the RFA 2 bytes into the cluster.  This
126 * alignes the packet after the Ethernet header at a 32-bit
127 * boundary.  HOWEVER!  This means that the RFA is misaligned!
128 */
129#define	RFA_ALIGNMENT_FUDGE	2
130
131/*
132 * The configuration byte map has several undefined fields which
133 * must be one or must be zero.  Set up a template for these bits
134 * only (assuming an i82557 chip), leaving the actual configuration
135 * for fxp_init().
136 *
137 * See the definition of struct fxp_cb_config for the bit definitions.
138 */
139const u_int8_t fxp_cb_config_template[] = {
140	0x0, 0x0,		/* cb_status */
141	0x0, 0x0,		/* cb_command */
142	0x0, 0x0, 0x0, 0x0,	/* link_addr */
143	0x0,	/*  0 */
144	0x0,	/*  1 */
145	0x0,	/*  2 */
146	0x0,	/*  3 */
147	0x0,	/*  4 */
148	0x0,	/*  5 */
149	0x32,	/*  6 */
150	0x0,	/*  7 */
151	0x0,	/*  8 */
152	0x0,	/*  9 */
153	0x6,	/* 10 */
154	0x0,	/* 11 */
155	0x0,	/* 12 */
156	0x0,	/* 13 */
157	0xf2,	/* 14 */
158	0x48,	/* 15 */
159	0x0,	/* 16 */
160	0x40,	/* 17 */
161	0xf0,	/* 18 */
162	0x0,	/* 19 */
163	0x3f,	/* 20 */
164	0x5,	/* 21 */
165	0x0,	/* 22 */
166	0x0,	/* 23 */
167	0x0,	/* 24 */
168	0x0,	/* 25 */
169	0x0,	/* 26 */
170	0x0,	/* 27 */
171	0x0,	/* 28 */
172	0x0,	/* 29 */
173	0x0,	/* 30 */
174	0x0,	/* 31 */
175};
176
177void	fxp_mii_initmedia(struct fxp_softc *);
178int	fxp_mii_mediachange(struct ifnet *);
179void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
180
181void	fxp_80c24_initmedia(struct fxp_softc *);
182int	fxp_80c24_mediachange(struct ifnet *);
183void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
184
185void	fxp_start(struct ifnet *);
186int	fxp_ioctl(struct ifnet *, u_long, caddr_t);
187void	fxp_watchdog(struct ifnet *);
188int	fxp_init(struct ifnet *);
189void	fxp_stop(struct ifnet *, int);
190
191void	fxp_txintr(struct fxp_softc *);
192void	fxp_rxintr(struct fxp_softc *);
193
194int	fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
195
196void	fxp_rxdrain(struct fxp_softc *);
197int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
198int	fxp_mdi_read(struct device *, int, int);
199void	fxp_statchg(struct device *);
200void	fxp_mdi_write(struct device *, int, int, int);
201void	fxp_autosize_eeprom(struct fxp_softc*);
202void	fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
203void	fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
204void	fxp_eeprom_update_cksum(struct fxp_softc *);
205void	fxp_get_info(struct fxp_softc *, u_int8_t *);
206void	fxp_tick(void *);
207void	fxp_mc_setup(struct fxp_softc *);
208void	fxp_load_ucode(struct fxp_softc *);
209
210void	fxp_shutdown(void *);
211void	fxp_power(int, void *);
212
213int	fxp_copy_small = 0;
214
215/*
216 * Variables for interrupt mitigating microcode.
217 */
218int	fxp_int_delay = 1000;		/* usec */
219int	fxp_bundle_max = 6;		/* packets */
220
221struct fxp_phytype {
222	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
223	void	(*fp_init)(struct fxp_softc *);
224} fxp_phytype_table[] = {
225	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
226	{ -1,				fxp_mii_initmedia },
227};
228
229/*
230 * Set initial transmit threshold at 64 (512 bytes). This is
231 * increased by 64 (512 bytes) at a time, to maximum of 192
232 * (1536 bytes), if an underrun occurs.
233 */
234static int tx_threshold = 64;
235
236/*
237 * Wait for the previous command to be accepted (but not necessarily
238 * completed).
239 */
240static inline void
241fxp_scb_wait(struct fxp_softc *sc)
242{
243	int i = 10000;
244
245	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
246		delay(2);
247	if (i == 0)
248		log(LOG_WARNING,
249		    "%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
250}
251
252/*
253 * Submit a command to the i82557.
254 */
255static inline void
256fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
257{
258
259	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
260}
261
262/*
263 * Finish attaching an i82557 interface.  Called by bus-specific front-end.
264 */
265void
266fxp_attach(struct fxp_softc *sc)
267{
268	u_int8_t enaddr[ETHER_ADDR_LEN];
269	struct ifnet *ifp;
270	bus_dma_segment_t seg;
271	int rseg, i, error;
272	struct fxp_phytype *fp;
273
274	callout_init(&sc->sc_callout);
275
276	/*
277	 * Enable some good stuff on i82558 and later.
278	 */
279	if (sc->sc_rev >= FXP_REV_82558_A4) {
280		/* Enable the extended TxCB. */
281		sc->sc_flags |= FXPF_EXT_TXCB;
282	}
283
284        /*
285	 * Enable use of extended RFDs and TCBs for 82550
286	 * and later chips. Note: we need extended TXCB support
287	 * too, but that's already enabled by the code above.
288	 * Be careful to do this only on the right devices.
289	 */
290	if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
291		sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
292		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
293	} else {
294		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
295	}
296
297	sc->sc_rfa_size =
298	    (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
299
300	/*
301	 * Allocate the control data structures, and create and load the
302	 * DMA map for it.
303	 */
304	if ((error = bus_dmamem_alloc(sc->sc_dmat,
305	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
306	    0)) != 0) {
307		aprint_error(
308		    "%s: unable to allocate control data, error = %d\n",
309		    sc->sc_dev.dv_xname, error);
310		goto fail_0;
311	}
312
313	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
314	    sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
315	    BUS_DMA_COHERENT)) != 0) {
316		aprint_error("%s: unable to map control data, error = %d\n",
317		    sc->sc_dev.dv_xname, error);
318		goto fail_1;
319	}
320	sc->sc_cdseg = seg;
321	sc->sc_cdnseg = rseg;
322
323	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
324
325	if ((error = bus_dmamap_create(sc->sc_dmat,
326	    sizeof(struct fxp_control_data), 1,
327	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
328		aprint_error("%s: unable to create control data DMA map, "
329		    "error = %d\n", sc->sc_dev.dv_xname, error);
330		goto fail_2;
331	}
332
333	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
334	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
335	    0)) != 0) {
336		aprint_error(
337		    "%s: can't load control data DMA map, error = %d\n",
338		    sc->sc_dev.dv_xname, error);
339		goto fail_3;
340	}
341
342	/*
343	 * Create the transmit buffer DMA maps.
344	 */
345	for (i = 0; i < FXP_NTXCB; i++) {
346		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
347		    (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
348		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
349			aprint_error("%s: unable to create tx DMA map %d, "
350			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
351			goto fail_4;
352		}
353	}
354
355	/*
356	 * Create the receive buffer DMA maps.
357	 */
358	for (i = 0; i < FXP_NRFABUFS; i++) {
359		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
360		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
361			aprint_error("%s: unable to create rx DMA map %d, "
362			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
363			goto fail_5;
364		}
365	}
366
367	/* Initialize MAC address and media structures. */
368	fxp_get_info(sc, enaddr);
369
370	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
371	    ether_sprintf(enaddr));
372
373	ifp = &sc->sc_ethercom.ec_if;
374
375	/*
376	 * Get info about our media interface, and initialize it.  Note
377	 * the table terminates itself with a phy of -1, indicating
378	 * that we're using MII.
379	 */
380	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
381		if (fp->fp_phy == sc->phy_primary_device)
382			break;
383	(*fp->fp_init)(sc);
384
385	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
386	ifp->if_softc = sc;
387	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
388	ifp->if_ioctl = fxp_ioctl;
389	ifp->if_start = fxp_start;
390	ifp->if_watchdog = fxp_watchdog;
391	ifp->if_init = fxp_init;
392	ifp->if_stop = fxp_stop;
393	IFQ_SET_READY(&ifp->if_snd);
394
395	if (sc->sc_flags & FXPF_IPCB) {
396		KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
397		/*
398		 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
399		 * at least, on i82550 rev.12.
400		 * specifically, it doesn't calculate ipv4 checksum correctly
401		 * when sending 20 byte ipv4 header + 1 or 2 byte data.
402		 * FreeBSD driver has related comments.
403		 */
404		ifp->if_capabilities =
405		    IFCAP_CSUM_IPv4_Rx |
406		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
407		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
408		sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
409	}
410
411	/*
412	 * We can support 802.1Q VLAN-sized frames.
413	 */
414	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
415
416	/*
417	 * Attach the interface.
418	 */
419	if_attach(ifp);
420	ether_ifattach(ifp, enaddr);
421#if NRND > 0
422	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
423	    RND_TYPE_NET, 0);
424#endif
425
426#ifdef FXP_EVENT_COUNTERS
427	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
428	    NULL, sc->sc_dev.dv_xname, "txstall");
429	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
430	    NULL, sc->sc_dev.dv_xname, "txintr");
431	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
432	    NULL, sc->sc_dev.dv_xname, "rxintr");
433	if (sc->sc_rev >= FXP_REV_82558_A4) {
434		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
435		    NULL, sc->sc_dev.dv_xname, "txpause");
436		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
437		    NULL, sc->sc_dev.dv_xname, "rxpause");
438	}
439#endif /* FXP_EVENT_COUNTERS */
440
441	/*
442	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
443	 * doing do could allow DMA to corrupt kernel memory during the
444	 * reboot before the driver initializes.
445	 */
446	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
447	if (sc->sc_sdhook == NULL)
448		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
449		    sc->sc_dev.dv_xname);
450	/*
451  	 * Add suspend hook, for similar reasons..
452	 */
453	sc->sc_powerhook = powerhook_establish(fxp_power, sc);
454	if (sc->sc_powerhook == NULL)
455		aprint_error("%s: WARNING: unable to establish power hook\n",
456		    sc->sc_dev.dv_xname);
457
458	/* The attach is successful. */
459	sc->sc_flags |= FXPF_ATTACHED;
460
461	return;
462
463	/*
464	 * Free any resources we've allocated during the failed attach
465	 * attempt.  Do this in reverse order and fall though.
466	 */
467 fail_5:
468	for (i = 0; i < FXP_NRFABUFS; i++) {
469		if (sc->sc_rxmaps[i] != NULL)
470			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
471	}
472 fail_4:
473	for (i = 0; i < FXP_NTXCB; i++) {
474		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
475			bus_dmamap_destroy(sc->sc_dmat,
476			    FXP_DSTX(sc, i)->txs_dmamap);
477	}
478	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
479 fail_3:
480	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
481 fail_2:
482	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
483	    sizeof(struct fxp_control_data));
484 fail_1:
485	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
486 fail_0:
487	return;
488}
489
490void
491fxp_mii_initmedia(struct fxp_softc *sc)
492{
493	int flags;
494
495	sc->sc_flags |= FXPF_MII;
496
497	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
498	sc->sc_mii.mii_readreg = fxp_mdi_read;
499	sc->sc_mii.mii_writereg = fxp_mdi_write;
500	sc->sc_mii.mii_statchg = fxp_statchg;
501	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, fxp_mii_mediachange,
502	    fxp_mii_mediastatus);
503
504	flags = MIIF_NOISOLATE;
505	if (sc->sc_rev >= FXP_REV_82558_A4)
506		flags |= MIIF_DOPAUSE;
507	/*
508	 * The i82557 wedges if all of its PHYs are isolated!
509	 */
510	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
511	    MII_OFFSET_ANY, flags);
512	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
513		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
514		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
515	} else
516		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
517}
518
519void
520fxp_80c24_initmedia(struct fxp_softc *sc)
521{
522
523	/*
524	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
525	 * doesn't have a programming interface of any sort.  The
526	 * media is sensed automatically based on how the link partner
527	 * is configured.  This is, in essence, manual configuration.
528	 */
529	aprint_normal("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
530	    sc->sc_dev.dv_xname);
531	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
532	    fxp_80c24_mediastatus);
533	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
534	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
535}
536
537/*
538 * Device shutdown routine. Called at system shutdown after sync. The
539 * main purpose of this routine is to shut off receiver DMA so that
540 * kernel memory doesn't get clobbered during warmboot.
541 */
542void
543fxp_shutdown(void *arg)
544{
545	struct fxp_softc *sc = arg;
546
547	/*
548	 * Since the system's going to halt shortly, don't bother
549	 * freeing mbufs.
550	 */
551	fxp_stop(&sc->sc_ethercom.ec_if, 0);
552}
553/*
554 * Power handler routine. Called when the system is transitioning
555 * into/out of power save modes.  As with fxp_shutdown, the main
556 * purpose of this routine is to shut off receiver DMA so it doesn't
557 * clobber kernel memory at the wrong time.
558 */
559void
560fxp_power(int why, void *arg)
561{
562	struct fxp_softc *sc = arg;
563	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
564	int s;
565
566	s = splnet();
567	switch (why) {
568	case PWR_SUSPEND:
569	case PWR_STANDBY:
570		fxp_stop(ifp, 0);
571		break;
572	case PWR_RESUME:
573		if (ifp->if_flags & IFF_UP)
574			fxp_init(ifp);
575		break;
576	case PWR_SOFTSUSPEND:
577	case PWR_SOFTSTANDBY:
578	case PWR_SOFTRESUME:
579		break;
580	}
581	splx(s);
582}
583
584/*
585 * Initialize the interface media.
586 */
587void
588fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
589{
590	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
591
592	/*
593	 * Reset to a stable state.
594	 */
595	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
596	DELAY(100);
597
598	sc->sc_eeprom_size = 0;
599	fxp_autosize_eeprom(sc);
600	if (sc->sc_eeprom_size == 0) {
601		aprint_error("%s: failed to detect EEPROM size\n",
602		    sc->sc_dev.dv_xname);
603		sc->sc_eeprom_size = 6; /* XXX panic here? */
604	}
605#ifdef DEBUG
606	aprint_debug("%s: detected %d word EEPROM\n",
607	    sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
608#endif
609
610	/*
611	 * Get info about the primary PHY
612	 */
613	fxp_read_eeprom(sc, &data, 6, 1);
614	sc->phy_primary_device =
615	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
616
617	/*
618	 * Read MAC address.
619	 */
620	fxp_read_eeprom(sc, myea, 0, 3);
621	enaddr[0] = myea[0] & 0xff;
622	enaddr[1] = myea[0] >> 8;
623	enaddr[2] = myea[1] & 0xff;
624	enaddr[3] = myea[1] >> 8;
625	enaddr[4] = myea[2] & 0xff;
626	enaddr[5] = myea[2] >> 8;
627
628	/*
629	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
630	 * as some i82559 designs, have a defect where the chip can
631	 * cause a PCI protocol violation if it receives a CU_RESUME
632	 * command when it is entering the IDLE state.
633	 *
634	 * The work-around is to disable Dynamic Standby Mode, so that
635	 * the chip never deasserts #CLKRUN, and always remains in the
636	 * active state.
637	 *
638	 * Unfortunately, the only way to disable Dynamic Standby is
639	 * to frob an EEPROM setting and reboot (the EEPROM setting
640	 * is only consulted when the PCI bus comes out of reset).
641	 *
642	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
643	 */
644	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
645		fxp_read_eeprom(sc, &data, 10, 1);
646		if (data & 0x02) {		/* STB enable */
647			aprint_error("%s: WARNING: "
648			    "Disabling dynamic standby mode in EEPROM "
649			    "to work around a\n",
650			    sc->sc_dev.dv_xname);
651			aprint_normal(
652			    "%s: WARNING: hardware bug.  You must reset "
653			    "the system before using this\n",
654			    sc->sc_dev.dv_xname);
655			aprint_normal("%s: WARNING: interface.\n",
656			    sc->sc_dev.dv_xname);
657			data &= ~0x02;
658			fxp_write_eeprom(sc, &data, 10, 1);
659			aprint_normal("%s: new EEPROM ID: 0x%04x\n",
660			    sc->sc_dev.dv_xname, data);
661			fxp_eeprom_update_cksum(sc);
662		}
663	}
664
665	/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
666	/* Due to false positives we make it conditional on setting link1 */
667	fxp_read_eeprom(sc, &data, 3, 1);
668	if ((data & 0x03) != 0x03) {
669		aprint_verbose("%s: May need receiver lock-up workaround\n",
670		    sc->sc_dev.dv_xname);
671	}
672}
673
674static void
675fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
676{
677	uint16_t reg;
678	int x;
679
680	for (x = 1 << (len - 1); x != 0; x >>= 1) {
681		DELAY(40);
682		if (data & x)
683			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
684		else
685			reg = FXP_EEPROM_EECS;
686		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
687		DELAY(40);
688		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
689		    reg | FXP_EEPROM_EESK);
690		DELAY(40);
691		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
692	}
693	DELAY(40);
694}
695
696/*
697 * Figure out EEPROM size.
698 *
699 * 559's can have either 64-word or 256-word EEPROMs, the 558
700 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
701 * talks about the existence of 16 to 256 word EEPROMs.
702 *
703 * The only known sizes are 64 and 256, where the 256 version is used
704 * by CardBus cards to store CIS information.
705 *
706 * The address is shifted in msb-to-lsb, and after the last
707 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
708 * after which follows the actual data. We try to detect this zero, by
709 * probing the data-out bit in the EEPROM control register just after
710 * having shifted in a bit. If the bit is zero, we assume we've
711 * shifted enough address bits. The data-out should be tri-state,
712 * before this, which should translate to a logical one.
713 *
714 * Other ways to do this would be to try to read a register with known
715 * contents with a varying number of address bits, but no such
716 * register seem to be available. The high bits of register 10 are 01
717 * on the 558 and 559, but apparently not on the 557.
718 *
719 * The Linux driver computes a checksum on the EEPROM data, but the
720 * value of this checksum is not very well documented.
721 */
722
723void
724fxp_autosize_eeprom(struct fxp_softc *sc)
725{
726	int x;
727
728	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
729	DELAY(40);
730
731	/* Shift in read opcode. */
732	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
733
734	/*
735	 * Shift in address, wait for the dummy zero following a correct
736	 * address shift.
737	 */
738	for (x = 1; x <= 8; x++) {
739		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
740		DELAY(40);
741		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
742		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
743		DELAY(40);
744		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
745		    FXP_EEPROM_EEDO) == 0)
746			break;
747		DELAY(40);
748		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
749		DELAY(40);
750	}
751	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
752	DELAY(40);
753	if (x != 6 && x != 8) {
754#ifdef DEBUG
755		printf("%s: strange EEPROM size (%d)\n",
756		    sc->sc_dev.dv_xname, 1 << x);
757#endif
758	} else
759		sc->sc_eeprom_size = x;
760}
761
762/*
763 * Read from the serial EEPROM. Basically, you manually shift in
764 * the read opcode (one bit at a time) and then shift in the address,
765 * and then you shift out the data (all of this one bit at a time).
766 * The word size is 16 bits, so you have to provide the address for
767 * every 16 bits of data.
768 */
769void
770fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
771{
772	u_int16_t reg;
773	int i, x;
774
775	for (i = 0; i < words; i++) {
776		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
777
778		/* Shift in read opcode. */
779		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
780
781		/* Shift in address. */
782		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
783
784		reg = FXP_EEPROM_EECS;
785		data[i] = 0;
786
787		/* Shift out data. */
788		for (x = 16; x > 0; x--) {
789			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
790			    reg | FXP_EEPROM_EESK);
791			DELAY(40);
792			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
793			    FXP_EEPROM_EEDO)
794				data[i] |= (1 << (x - 1));
795			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
796			DELAY(40);
797		}
798		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
799		DELAY(40);
800	}
801}
802
803/*
804 * Write data to the serial EEPROM.
805 */
806void
807fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
808{
809	int i, j;
810
811	for (i = 0; i < words; i++) {
812		/* Erase/write enable. */
813		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
814		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
815		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
816		    sc->sc_eeprom_size);
817		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
818		DELAY(4);
819
820		/* Shift in write opcode, address, data. */
821		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
822		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
823		fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
824		fxp_eeprom_shiftin(sc, data[i], 16);
825		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
826		DELAY(4);
827
828		/* Wait for the EEPROM to finish up. */
829		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
830		DELAY(4);
831		for (j = 0; j < 1000; j++) {
832			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
833			    FXP_EEPROM_EEDO)
834				break;
835			DELAY(50);
836		}
837		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
838		DELAY(4);
839
840		/* Erase/write disable. */
841		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
842		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
843		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
844		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
845		DELAY(4);
846	}
847}
848
849/*
850 * Update the checksum of the EEPROM.
851 */
852void
853fxp_eeprom_update_cksum(struct fxp_softc *sc)
854{
855	int i;
856	uint16_t data, cksum;
857
858	cksum = 0;
859	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
860		fxp_read_eeprom(sc, &data, i, 1);
861		cksum += data;
862	}
863	i = (1 << sc->sc_eeprom_size) - 1;
864	cksum = 0xbaba - cksum;
865	fxp_read_eeprom(sc, &data, i, 1);
866	fxp_write_eeprom(sc, &cksum, i, 1);
867	log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
868	    sc->sc_dev.dv_xname, i, data, cksum);
869}
870
871/*
872 * Start packet transmission on the interface.
873 */
874void
875fxp_start(struct ifnet *ifp)
876{
877	struct fxp_softc *sc = ifp->if_softc;
878	struct mbuf *m0, *m;
879	struct fxp_txdesc *txd;
880	struct fxp_txsoft *txs;
881	bus_dmamap_t dmamap;
882	int error, lasttx, nexttx, opending, seg;
883
884	/*
885	 * If we want a re-init, bail out now.
886	 */
887	if (sc->sc_flags & FXPF_WANTINIT) {
888		ifp->if_flags |= IFF_OACTIVE;
889		return;
890	}
891
892	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
893		return;
894
895	/*
896	 * Remember the previous txpending and the current lasttx.
897	 */
898	opending = sc->sc_txpending;
899	lasttx = sc->sc_txlast;
900
901	/*
902	 * Loop through the send queue, setting up transmit descriptors
903	 * until we drain the queue, or use up all available transmit
904	 * descriptors.
905	 */
906	for (;;) {
907		struct fxp_tbd *tbdp;
908		int csum_flags;
909
910		/*
911		 * Grab a packet off the queue.
912		 */
913		IFQ_POLL(&ifp->if_snd, m0);
914		if (m0 == NULL)
915			break;
916		m = NULL;
917
918		if (sc->sc_txpending == FXP_NTXCB) {
919			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
920			break;
921		}
922
923		/*
924		 * Get the next available transmit descriptor.
925		 */
926		nexttx = FXP_NEXTTX(sc->sc_txlast);
927		txd = FXP_CDTX(sc, nexttx);
928		txs = FXP_DSTX(sc, nexttx);
929		dmamap = txs->txs_dmamap;
930
931		/*
932		 * Load the DMA map.  If this fails, the packet either
933		 * didn't fit in the allotted number of frags, or we were
934		 * short on resources.  In this case, we'll copy and try
935		 * again.
936		 */
937		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
938		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
939			MGETHDR(m, M_DONTWAIT, MT_DATA);
940			if (m == NULL) {
941				log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
942				    sc->sc_dev.dv_xname);
943				break;
944			}
945			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
946			if (m0->m_pkthdr.len > MHLEN) {
947				MCLGET(m, M_DONTWAIT);
948				if ((m->m_flags & M_EXT) == 0) {
949					log(LOG_ERR,
950					    "%s: unable to allocate Tx "
951					    "cluster\n", sc->sc_dev.dv_xname);
952					m_freem(m);
953					break;
954				}
955			}
956			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
957			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
958			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
959			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
960			if (error) {
961				log(LOG_ERR, "%s: unable to load Tx buffer, "
962				    "error = %d\n", sc->sc_dev.dv_xname, error);
963				break;
964			}
965		}
966
967		IFQ_DEQUEUE(&ifp->if_snd, m0);
968		csum_flags = m0->m_pkthdr.csum_flags;
969		if (m != NULL) {
970			m_freem(m0);
971			m0 = m;
972		}
973
974		/* Initialize the fraglist. */
975		tbdp = txd->txd_tbd;
976		if (sc->sc_flags & FXPF_IPCB)
977			tbdp++;
978		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
979			tbdp[seg].tb_addr =
980			    htole32(dmamap->dm_segs[seg].ds_addr);
981			tbdp[seg].tb_size =
982			    htole32(dmamap->dm_segs[seg].ds_len);
983		}
984
985		/* Sync the DMA map. */
986		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
987		    BUS_DMASYNC_PREWRITE);
988
989		/*
990		 * Store a pointer to the packet so we can free it later.
991		 */
992		txs->txs_mbuf = m0;
993
994		/*
995		 * Initialize the transmit descriptor.
996		 */
997		/* BIG_ENDIAN: no need to swap to store 0 */
998		txd->txd_txcb.cb_status = 0;
999		txd->txd_txcb.cb_command =
1000		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
1001		txd->txd_txcb.tx_threshold = tx_threshold;
1002		txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
1003
1004		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
1005		if (sc->sc_flags & FXPF_IPCB) {
1006			struct m_tag *vtag;
1007			struct fxp_ipcb *ipcb;
1008			/*
1009			 * Deal with TCP/IP checksum offload. Note that
1010			 * in order for TCP checksum offload to work,
1011			 * the pseudo header checksum must have already
1012			 * been computed and stored in the checksum field
1013			 * in the TCP header. The stack should have
1014			 * already done this for us.
1015			 */
1016			ipcb = &txd->txd_u.txdu_ipcb;
1017			memset(ipcb, 0, sizeof(*ipcb));
1018			/*
1019			 * always do hardware parsing.
1020			 */
1021			ipcb->ipcb_ip_activation_high =
1022			    FXP_IPCB_HARDWAREPARSING_ENABLE;
1023			/*
1024			 * ip checksum offloading.
1025			 */
1026			if (csum_flags & M_CSUM_IPv4) {
1027				ipcb->ipcb_ip_schedule |=
1028				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1029			}
1030			/*
1031			 * TCP/UDP checksum offloading.
1032			 */
1033			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1034				ipcb->ipcb_ip_schedule |=
1035				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1036			}
1037
1038			/*
1039			 * request VLAN tag insertion if needed.
1040			 */
1041			vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
1042			if (vtag) {
1043				ipcb->ipcb_vlan_id =
1044				    htobe16(*(u_int *)(vtag + 1));
1045				ipcb->ipcb_ip_activation_high |=
1046				    FXP_IPCB_INSERTVLAN_ENABLE;
1047			}
1048		} else {
1049			KASSERT((csum_flags &
1050			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
1051		}
1052
1053		FXP_CDTXSYNC(sc, nexttx,
1054		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1055
1056		/* Advance the tx pointer. */
1057		sc->sc_txpending++;
1058		sc->sc_txlast = nexttx;
1059
1060#if NBPFILTER > 0
1061		/*
1062		 * Pass packet to bpf if there is a listener.
1063		 */
1064		if (ifp->if_bpf)
1065			bpf_mtap(ifp->if_bpf, m0);
1066#endif
1067	}
1068
1069	if (sc->sc_txpending == FXP_NTXCB) {
1070		/* No more slots; notify upper layer. */
1071		ifp->if_flags |= IFF_OACTIVE;
1072	}
1073
1074	if (sc->sc_txpending != opending) {
1075		/*
1076		 * We enqueued packets.  If the transmitter was idle,
1077		 * reset the txdirty pointer.
1078		 */
1079		if (opending == 0)
1080			sc->sc_txdirty = FXP_NEXTTX(lasttx);
1081
1082		/*
1083		 * Cause the chip to interrupt and suspend command
1084		 * processing once the last packet we've enqueued
1085		 * has been transmitted.
1086		 */
1087		FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
1088		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1089		FXP_CDTXSYNC(sc, sc->sc_txlast,
1090		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1091
1092		/*
1093		 * The entire packet chain is set up.  Clear the suspend bit
1094		 * on the command prior to the first packet we set up.
1095		 */
1096		FXP_CDTXSYNC(sc, lasttx,
1097		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1098		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1099		    htole16(~FXP_CB_COMMAND_S);
1100		FXP_CDTXSYNC(sc, lasttx,
1101		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1102
1103		/*
1104		 * Issue a Resume command in case the chip was suspended.
1105		 */
1106		fxp_scb_wait(sc);
1107		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1108
1109		/* Set a watchdog timer in case the chip flakes out. */
1110		ifp->if_timer = 5;
1111	}
1112}
1113
1114/*
1115 * Process interface interrupts.
1116 */
1117int
1118fxp_intr(void *arg)
1119{
1120	struct fxp_softc *sc = arg;
1121	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1122	bus_dmamap_t rxmap;
1123	int claimed = 0;
1124	u_int8_t statack;
1125
1126	if (!device_is_active(&sc->sc_dev) || sc->sc_enabled == 0)
1127		return (0);
1128	/*
1129	 * If the interface isn't running, don't try to
1130	 * service the interrupt.. just ack it and bail.
1131	 */
1132	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1133		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1134		if (statack) {
1135			claimed = 1;
1136			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1137		}
1138		return (claimed);
1139	}
1140
1141	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1142		claimed = 1;
1143
1144		/*
1145		 * First ACK all the interrupts in this pass.
1146		 */
1147		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1148
1149		/*
1150		 * Process receiver interrupts. If a no-resource (RNR)
1151		 * condition exists, get whatever packets we can and
1152		 * re-start the receiver.
1153		 */
1154		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1155			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1156			fxp_rxintr(sc);
1157		}
1158
1159		if (statack & FXP_SCB_STATACK_RNR) {
1160			fxp_scb_wait(sc);
1161			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1162			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1163			fxp_scb_wait(sc);
1164			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1165			    rxmap->dm_segs[0].ds_addr +
1166			    RFA_ALIGNMENT_FUDGE);
1167			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1168		}
1169
1170		/*
1171		 * Free any finished transmit mbuf chains.
1172		 */
1173		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1174			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1175			fxp_txintr(sc);
1176
1177			/*
1178			 * Try to get more packets going.
1179			 */
1180			fxp_start(ifp);
1181
1182			if (sc->sc_txpending == 0) {
1183				/*
1184				 * If we want a re-init, do that now.
1185				 */
1186				if (sc->sc_flags & FXPF_WANTINIT)
1187					(void) fxp_init(ifp);
1188			}
1189		}
1190	}
1191
1192#if NRND > 0
1193	if (claimed)
1194		rnd_add_uint32(&sc->rnd_source, statack);
1195#endif
1196	return (claimed);
1197}
1198
1199/*
1200 * Handle transmit completion interrupts.
1201 */
1202void
1203fxp_txintr(struct fxp_softc *sc)
1204{
1205	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1206	struct fxp_txdesc *txd;
1207	struct fxp_txsoft *txs;
1208	int i;
1209	u_int16_t txstat;
1210
1211	ifp->if_flags &= ~IFF_OACTIVE;
1212	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1213	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
1214		txd = FXP_CDTX(sc, i);
1215		txs = FXP_DSTX(sc, i);
1216
1217		FXP_CDTXSYNC(sc, i,
1218		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1219
1220		txstat = le16toh(txd->txd_txcb.cb_status);
1221
1222		if ((txstat & FXP_CB_STATUS_C) == 0)
1223			break;
1224
1225		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1226		    0, txs->txs_dmamap->dm_mapsize,
1227		    BUS_DMASYNC_POSTWRITE);
1228		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1229		m_freem(txs->txs_mbuf);
1230		txs->txs_mbuf = NULL;
1231	}
1232
1233	/* Update the dirty transmit buffer pointer. */
1234	sc->sc_txdirty = i;
1235
1236	/*
1237	 * Cancel the watchdog timer if there are no pending
1238	 * transmissions.
1239	 */
1240	if (sc->sc_txpending == 0)
1241		ifp->if_timer = 0;
1242}
1243
1244/*
1245 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1246 */
1247
1248int
1249fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1250{
1251	u_int16_t rxparsestat;
1252	u_int16_t csum_stat;
1253	u_int32_t csum_data;
1254	int csum_flags;
1255
1256	/*
1257	 * check VLAN tag stripping.
1258	 */
1259
1260	if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
1261		struct m_tag *vtag;
1262
1263		vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
1264		if (vtag == NULL)
1265			return ENOMEM;
1266		*(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1267		m_tag_prepend(m, vtag);
1268	}
1269
1270	/*
1271	 * check H/W Checksumming.
1272	 */
1273
1274	csum_stat = le16toh(rfa->cksum_stat);
1275	rxparsestat = le16toh(rfa->rx_parse_stat);
1276	if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1277		return 0;
1278
1279	csum_flags = 0;
1280	csum_data = 0;
1281
1282	if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1283		csum_flags = M_CSUM_IPv4;
1284		if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1285			csum_flags |= M_CSUM_IPv4_BAD;
1286	}
1287
1288	if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1289		csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1290		if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1291			csum_flags |= M_CSUM_TCP_UDP_BAD;
1292	}
1293
1294	m->m_pkthdr.csum_flags = csum_flags;
1295	m->m_pkthdr.csum_data = csum_data;
1296
1297	return 0;
1298}
1299
1300/*
1301 * Handle receive interrupts.
1302 */
1303void
1304fxp_rxintr(struct fxp_softc *sc)
1305{
1306	struct ethercom *ec = &sc->sc_ethercom;
1307	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1308	struct mbuf *m, *m0;
1309	bus_dmamap_t rxmap;
1310	struct fxp_rfa *rfa;
1311	u_int16_t len, rxstat;
1312
1313	for (;;) {
1314		m = sc->sc_rxq.ifq_head;
1315		rfa = FXP_MTORFA(m);
1316		rxmap = M_GETCTX(m, bus_dmamap_t);
1317
1318		FXP_RFASYNC(sc, m,
1319		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1320
1321		rxstat = le16toh(rfa->rfa_status);
1322
1323		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1324			/*
1325			 * We have processed all of the
1326			 * receive buffers.
1327			 */
1328			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1329			return;
1330		}
1331
1332		IF_DEQUEUE(&sc->sc_rxq, m);
1333
1334		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1335
1336		len = le16toh(rfa->actual_size) &
1337		    (m->m_ext.ext_size - 1);
1338
1339		if (len < sizeof(struct ether_header)) {
1340			/*
1341			 * Runt packet; drop it now.
1342			 */
1343			FXP_INIT_RFABUF(sc, m);
1344			continue;
1345		}
1346
1347		/*
1348		 * If support for 802.1Q VLAN sized frames is
1349		 * enabled, we need to do some additional error
1350		 * checking (as we are saving bad frames, in
1351		 * order to receive the larger ones).
1352		 */
1353		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1354		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
1355			       FXP_RFA_STATUS_RNR|
1356			       FXP_RFA_STATUS_ALIGN|
1357			       FXP_RFA_STATUS_CRC)) != 0) {
1358			FXP_INIT_RFABUF(sc, m);
1359			continue;
1360		}
1361
1362		/* Do checksum checking. */
1363		m->m_pkthdr.csum_flags = 0;
1364		if (sc->sc_flags & FXPF_EXT_RFA)
1365			if (fxp_rx_hwcksum(m, rfa))
1366				goto dropit;
1367
1368		/*
1369		 * If the packet is small enough to fit in a
1370		 * single header mbuf, allocate one and copy
1371		 * the data into it.  This greatly reduces
1372		 * memory consumption when we receive lots
1373		 * of small packets.
1374		 *
1375		 * Otherwise, we add a new buffer to the receive
1376		 * chain.  If this fails, we drop the packet and
1377		 * recycle the old buffer.
1378		 */
1379		if (fxp_copy_small != 0 && len <= MHLEN) {
1380			MGETHDR(m0, M_DONTWAIT, MT_DATA);
1381			if (m0 == NULL)
1382				goto dropit;
1383			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1384			memcpy(mtod(m0, caddr_t),
1385			    mtod(m, caddr_t), len);
1386			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1387			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1388			FXP_INIT_RFABUF(sc, m);
1389			m = m0;
1390		} else {
1391			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1392 dropit:
1393				ifp->if_ierrors++;
1394				FXP_INIT_RFABUF(sc, m);
1395				continue;
1396			}
1397		}
1398
1399		m->m_pkthdr.rcvif = ifp;
1400		m->m_pkthdr.len = m->m_len = len;
1401
1402#if NBPFILTER > 0
1403		/*
1404		 * Pass this up to any BPF listeners, but only
1405		 * pass it up the stack it its for us.
1406		 */
1407		if (ifp->if_bpf)
1408			bpf_mtap(ifp->if_bpf, m);
1409#endif
1410
1411		/* Pass it on. */
1412		(*ifp->if_input)(ifp, m);
1413	}
1414}
1415
1416/*
1417 * Update packet in/out/collision statistics. The i82557 doesn't
1418 * allow you to access these counters without doing a fairly
1419 * expensive DMA to get _all_ of the statistics it maintains, so
1420 * we do this operation here only once per second. The statistics
1421 * counters in the kernel are updated from the previous dump-stats
1422 * DMA and then a new dump-stats DMA is started. The on-chip
1423 * counters are zeroed when the DMA completes. If we can't start
1424 * the DMA immediately, we don't wait - we just prepare to read
1425 * them again next time.
1426 */
1427void
1428fxp_tick(void *arg)
1429{
1430	struct fxp_softc *sc = arg;
1431	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1432	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1433	int s;
1434
1435	if (!device_is_active(&sc->sc_dev))
1436		return;
1437
1438	s = splnet();
1439
1440	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1441
1442	ifp->if_opackets += le32toh(sp->tx_good);
1443	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1444	if (sp->rx_good) {
1445		ifp->if_ipackets += le32toh(sp->rx_good);
1446		sc->sc_rxidle = 0;
1447	} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1448		sc->sc_rxidle++;
1449	}
1450	ifp->if_ierrors +=
1451	    le32toh(sp->rx_crc_errors) +
1452	    le32toh(sp->rx_alignment_errors) +
1453	    le32toh(sp->rx_rnr_errors) +
1454	    le32toh(sp->rx_overrun_errors);
1455	/*
1456	 * If any transmit underruns occurred, bump up the transmit
1457	 * threshold by another 512 bytes (64 * 8).
1458	 */
1459	if (sp->tx_underruns) {
1460		ifp->if_oerrors += le32toh(sp->tx_underruns);
1461		if (tx_threshold < 192)
1462			tx_threshold += 64;
1463	}
1464#ifdef FXP_EVENT_COUNTERS
1465	if (sc->sc_rev >= FXP_REV_82558_A4) {
1466		sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1467		sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1468	}
1469#endif
1470
1471	/*
1472	 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1473	 * then assume the receiver has locked up and attempt to clear
1474	 * the condition by reprogramming the multicast filter (actually,
1475	 * resetting the interface). This is a work-around for a bug in
1476	 * the 82557 where the receiver locks up if it gets certain types
1477	 * of garbage in the synchronization bits prior to the packet header.
1478	 * This bug is supposed to only occur in 10Mbps mode, but has been
1479	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1480	 * speed transition).
1481	 */
1482	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1483		(void) fxp_init(ifp);
1484		splx(s);
1485		return;
1486	}
1487	/*
1488	 * If there is no pending command, start another stats
1489	 * dump. Otherwise punt for now.
1490	 */
1491	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1492		/*
1493		 * Start another stats dump.
1494		 */
1495		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1496		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1497	} else {
1498		/*
1499		 * A previous command is still waiting to be accepted.
1500		 * Just zero our copy of the stats and wait for the
1501		 * next timer event to update them.
1502		 */
1503		/* BIG_ENDIAN: no swap required to store 0 */
1504		sp->tx_good = 0;
1505		sp->tx_underruns = 0;
1506		sp->tx_total_collisions = 0;
1507
1508		sp->rx_good = 0;
1509		sp->rx_crc_errors = 0;
1510		sp->rx_alignment_errors = 0;
1511		sp->rx_rnr_errors = 0;
1512		sp->rx_overrun_errors = 0;
1513		if (sc->sc_rev >= FXP_REV_82558_A4) {
1514			sp->tx_pauseframes = 0;
1515			sp->rx_pauseframes = 0;
1516		}
1517	}
1518
1519	if (sc->sc_flags & FXPF_MII) {
1520		/* Tick the MII clock. */
1521		mii_tick(&sc->sc_mii);
1522	}
1523
1524	splx(s);
1525
1526	/*
1527	 * Schedule another timeout one second from now.
1528	 */
1529	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1530}
1531
1532/*
1533 * Drain the receive queue.
1534 */
1535void
1536fxp_rxdrain(struct fxp_softc *sc)
1537{
1538	bus_dmamap_t rxmap;
1539	struct mbuf *m;
1540
1541	for (;;) {
1542		IF_DEQUEUE(&sc->sc_rxq, m);
1543		if (m == NULL)
1544			break;
1545		rxmap = M_GETCTX(m, bus_dmamap_t);
1546		bus_dmamap_unload(sc->sc_dmat, rxmap);
1547		FXP_RXMAP_PUT(sc, rxmap);
1548		m_freem(m);
1549	}
1550}
1551
1552/*
1553 * Stop the interface. Cancels the statistics updater and resets
1554 * the interface.
1555 */
1556void
1557fxp_stop(struct ifnet *ifp, int disable)
1558{
1559	struct fxp_softc *sc = ifp->if_softc;
1560	struct fxp_txsoft *txs;
1561	int i;
1562
1563	/*
1564	 * Turn down interface (done early to avoid bad interactions
1565	 * between panics, shutdown hooks, and the watchdog timer)
1566	 */
1567	ifp->if_timer = 0;
1568	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1569
1570	/*
1571	 * Cancel stats updater.
1572	 */
1573	callout_stop(&sc->sc_callout);
1574	if (sc->sc_flags & FXPF_MII) {
1575		/* Down the MII. */
1576		mii_down(&sc->sc_mii);
1577	}
1578
1579	/*
1580	 * Issue software reset.  This unloads any microcode that
1581	 * might already be loaded.
1582	 */
1583	sc->sc_flags &= ~FXPF_UCODE_LOADED;
1584	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1585	DELAY(50);
1586
1587	/*
1588	 * Release any xmit buffers.
1589	 */
1590	for (i = 0; i < FXP_NTXCB; i++) {
1591		txs = FXP_DSTX(sc, i);
1592		if (txs->txs_mbuf != NULL) {
1593			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1594			m_freem(txs->txs_mbuf);
1595			txs->txs_mbuf = NULL;
1596		}
1597	}
1598	sc->sc_txpending = 0;
1599
1600	if (disable) {
1601		fxp_rxdrain(sc);
1602		fxp_disable(sc);
1603	}
1604
1605}
1606
1607/*
1608 * Watchdog/transmission transmit timeout handler. Called when a
1609 * transmission is started on the interface, but no interrupt is
1610 * received before the timeout. This usually indicates that the
1611 * card has wedged for some reason.
1612 */
1613void
1614fxp_watchdog(struct ifnet *ifp)
1615{
1616	struct fxp_softc *sc = ifp->if_softc;
1617
1618	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1619	ifp->if_oerrors++;
1620
1621	(void) fxp_init(ifp);
1622}
1623
1624/*
1625 * Initialize the interface.  Must be called at splnet().
1626 */
1627int
1628fxp_init(struct ifnet *ifp)
1629{
1630	struct fxp_softc *sc = ifp->if_softc;
1631	struct fxp_cb_config *cbp;
1632	struct fxp_cb_ias *cb_ias;
1633	struct fxp_txdesc *txd;
1634	bus_dmamap_t rxmap;
1635	int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1636
1637	if ((error = fxp_enable(sc)) != 0)
1638		goto out;
1639
1640	/*
1641	 * Cancel any pending I/O
1642	 */
1643	fxp_stop(ifp, 0);
1644
1645	/*
1646	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1647	 * flag, and this prevents the MII from detaching resulting in
1648	 * a panic. The flags field should perhaps be split in runtime
1649	 * flags and more static information. For now, just clear the
1650	 * only other flag set.
1651	 */
1652
1653	sc->sc_flags &= ~FXPF_WANTINIT;
1654
1655	/*
1656	 * Initialize base of CBL and RFA memory. Loading with zero
1657	 * sets it up for regular linear addressing.
1658	 */
1659	fxp_scb_wait(sc);
1660	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1661	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1662
1663	fxp_scb_wait(sc);
1664	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1665
1666	/*
1667	 * Initialize the multicast filter.  Do this now, since we might
1668	 * have to setup the config block differently.
1669	 */
1670	fxp_mc_setup(sc);
1671
1672	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1673	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1674
1675	/*
1676	 * In order to support receiving 802.1Q VLAN frames, we have to
1677	 * enable "save bad frames", since they are 4 bytes larger than
1678	 * the normal Ethernet maximum frame length.  On i82558 and later,
1679	 * we have a better mechanism for this.
1680	 */
1681	save_bf = 0;
1682	lrxen = 0;
1683	vlan_drop = 0;
1684	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1685		if (sc->sc_rev < FXP_REV_82558_A4)
1686			save_bf = 1;
1687		else
1688			lrxen = 1;
1689		if (sc->sc_rev >= FXP_REV_82550)
1690			vlan_drop = 1;
1691	}
1692
1693	/*
1694	 * Initialize base of dump-stats buffer.
1695	 */
1696	fxp_scb_wait(sc);
1697	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1698	    sc->sc_cddma + FXP_CDSTATSOFF);
1699	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1700	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1701
1702	cbp = &sc->sc_control_data->fcd_configcb;
1703	memset(cbp, 0, sizeof(struct fxp_cb_config));
1704
1705	/*
1706	 * Load microcode for this controller.
1707	 */
1708	fxp_load_ucode(sc);
1709
1710	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1711		sc->sc_flags |= FXPF_RECV_WORKAROUND;
1712	else
1713		sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1714
1715	/*
1716	 * This copy is kind of disgusting, but there are a bunch of must be
1717	 * zero and must be one bits in this structure and this is the easiest
1718	 * way to initialize them all to proper values.
1719	 */
1720	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1721
1722	/* BIG_ENDIAN: no need to swap to store 0 */
1723	cbp->cb_status =	0;
1724	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1725				    FXP_CB_COMMAND_EL);
1726	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1727	cbp->link_addr =	0xffffffff; /* (no) next command */
1728					/* bytes in config block */
1729	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
1730				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1731	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1732	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1733	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1734	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
1735	cbp->type_enable =	0;	/* actually reserved */
1736	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1737	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1738	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1739	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1740	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1741	cbp->late_scb =		0;	/* (don't) defer SCB update */
1742	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1743	cbp->ci_int =		1;	/* interrupt on CU idle */
1744	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1745	cbp->ext_stats_dis =	1;	/* disable extended counters */
1746	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
1747	cbp->save_bf =		save_bf;/* save bad frames */
1748	cbp->disc_short_rx =	!prm;	/* discard short packets */
1749	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1750	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1751	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1752	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1753					/* interface mode */
1754	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
1755	cbp->csma_dis =		0;	/* (don't) disable link */
1756	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1757	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1758	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1759	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1760	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
1761	cbp->nsai =		1;	/* (don't) disable source addr insert */
1762	cbp->preamble_length =	2;	/* (7 byte) preamble */
1763	cbp->loopback =		0;	/* (don't) loopback */
1764	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1765	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1766	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1767	cbp->promiscuous =	prm;	/* promiscuous mode */
1768	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1769	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1770	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1771	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1772	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
1773	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1774	cbp->padding =		1;	/* (do) pad short tx packets */
1775	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1776	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
1777	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1778	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1779					/* must set wake_en in PMCSR also */
1780	cbp->force_fdx =	0;	/* (don't) force full duplex */
1781	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1782	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1783	cbp->mc_all =		allm;	/* accept all multicasts */
1784	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1785	cbp->vlan_drop_en =	vlan_drop;
1786
1787	if (sc->sc_rev < FXP_REV_82558_A4) {
1788		/*
1789		 * The i82557 has no hardware flow control, the values
1790		 * here are the defaults for the chip.
1791		 */
1792		cbp->fc_delay_lsb =	0;
1793		cbp->fc_delay_msb =	0x40;
1794		cbp->pri_fc_thresh =	3;
1795		cbp->tx_fc_dis =	0;
1796		cbp->rx_fc_restop =	0;
1797		cbp->rx_fc_restart =	0;
1798		cbp->fc_filter =	0;
1799		cbp->pri_fc_loc =	1;
1800	} else {
1801		cbp->fc_delay_lsb =	0x1f;
1802		cbp->fc_delay_msb =	0x01;
1803		cbp->pri_fc_thresh =	3;
1804		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1805		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1806		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1807		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1808		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1809		cbp->ext_stats_dis =	0;	/* enable extended stats */
1810	}
1811
1812	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1813
1814	/*
1815	 * Start the config command/DMA.
1816	 */
1817	fxp_scb_wait(sc);
1818	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1819	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1820	/* ...and wait for it to complete. */
1821	i = 1000;
1822	do {
1823		FXP_CDCONFIGSYNC(sc,
1824		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1825		DELAY(1);
1826	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1827	if (i == 0) {
1828		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1829		    sc->sc_dev.dv_xname, __LINE__);
1830		return (ETIMEDOUT);
1831	}
1832
1833	/*
1834	 * Initialize the station address.
1835	 */
1836	cb_ias = &sc->sc_control_data->fcd_iascb;
1837	/* BIG_ENDIAN: no need to swap to store 0 */
1838	cb_ias->cb_status = 0;
1839	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1840	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1841	cb_ias->link_addr = 0xffffffff;
1842	memcpy(cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1843
1844	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1845
1846	/*
1847	 * Start the IAS (Individual Address Setup) command/DMA.
1848	 */
1849	fxp_scb_wait(sc);
1850	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1851	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1852	/* ...and wait for it to complete. */
1853	i = 1000;
1854	do {
1855		FXP_CDIASSYNC(sc,
1856		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1857		DELAY(1);
1858	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1859	if (i == 0) {
1860		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1861		    sc->sc_dev.dv_xname, __LINE__);
1862		return (ETIMEDOUT);
1863	}
1864
1865	/*
1866	 * Initialize the transmit descriptor ring.  txlast is initialized
1867	 * to the end of the list so that it will wrap around to the first
1868	 * descriptor when the first packet is transmitted.
1869	 */
1870	for (i = 0; i < FXP_NTXCB; i++) {
1871		txd = FXP_CDTX(sc, i);
1872		memset(txd, 0, sizeof(*txd));
1873		txd->txd_txcb.cb_command =
1874		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1875		txd->txd_txcb.link_addr =
1876		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1877		if (sc->sc_flags & FXPF_EXT_TXCB)
1878			txd->txd_txcb.tbd_array_addr =
1879			    htole32(FXP_CDTBDADDR(sc, i) +
1880				    (2 * sizeof(struct fxp_tbd)));
1881		else
1882			txd->txd_txcb.tbd_array_addr =
1883			    htole32(FXP_CDTBDADDR(sc, i));
1884		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1885	}
1886	sc->sc_txpending = 0;
1887	sc->sc_txdirty = 0;
1888	sc->sc_txlast = FXP_NTXCB - 1;
1889
1890	/*
1891	 * Initialize the receive buffer list.
1892	 */
1893	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1894	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1895		rxmap = FXP_RXMAP_GET(sc);
1896		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1897			log(LOG_ERR, "%s: unable to allocate or map rx "
1898			    "buffer %d, error = %d\n",
1899			    sc->sc_dev.dv_xname,
1900			    sc->sc_rxq.ifq_len, error);
1901			/*
1902			 * XXX Should attempt to run with fewer receive
1903			 * XXX buffers instead of just failing.
1904			 */
1905			FXP_RXMAP_PUT(sc, rxmap);
1906			fxp_rxdrain(sc);
1907			goto out;
1908		}
1909	}
1910	sc->sc_rxidle = 0;
1911
1912	/*
1913	 * Give the transmit ring to the chip.  We do this by pointing
1914	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1915	 * issuing a start command.  It will execute the NOP and then
1916	 * suspend, pointing at the first descriptor.
1917	 */
1918	fxp_scb_wait(sc);
1919	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1920	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1921
1922	/*
1923	 * Initialize receiver buffer area - RFA.
1924	 */
1925	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1926	fxp_scb_wait(sc);
1927	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1928	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1929	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1930
1931	if (sc->sc_flags & FXPF_MII) {
1932		/*
1933		 * Set current media.
1934		 */
1935		mii_mediachg(&sc->sc_mii);
1936	}
1937
1938	/*
1939	 * ...all done!
1940	 */
1941	ifp->if_flags |= IFF_RUNNING;
1942	ifp->if_flags &= ~IFF_OACTIVE;
1943
1944	/*
1945	 * Start the one second timer.
1946	 */
1947	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1948
1949	/*
1950	 * Attempt to start output on the interface.
1951	 */
1952	fxp_start(ifp);
1953
1954 out:
1955	if (error) {
1956		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1957		ifp->if_timer = 0;
1958		log(LOG_ERR, "%s: interface not running\n",
1959		    sc->sc_dev.dv_xname);
1960	}
1961	return (error);
1962}
1963
1964/*
1965 * Change media according to request.
1966 */
1967int
1968fxp_mii_mediachange(struct ifnet *ifp)
1969{
1970	struct fxp_softc *sc = ifp->if_softc;
1971
1972	if (ifp->if_flags & IFF_UP)
1973		mii_mediachg(&sc->sc_mii);
1974	return (0);
1975}
1976
1977/*
1978 * Notify the world which media we're using.
1979 */
1980void
1981fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1982{
1983	struct fxp_softc *sc = ifp->if_softc;
1984
1985	if (sc->sc_enabled == 0) {
1986		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1987		ifmr->ifm_status = 0;
1988		return;
1989	}
1990
1991	mii_pollstat(&sc->sc_mii);
1992	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1993	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1994
1995	/*
1996	 * XXX Flow control is always turned on if the chip supports
1997	 * XXX it; we can't easily control it dynamically, since it
1998	 * XXX requires sending a setup packet.
1999	 */
2000	if (sc->sc_rev >= FXP_REV_82558_A4)
2001		ifmr->ifm_active |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
2002}
2003
2004int
2005fxp_80c24_mediachange(struct ifnet *ifp)
2006{
2007
2008	/* Nothing to do here. */
2009	return (0);
2010}
2011
2012void
2013fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2014{
2015	struct fxp_softc *sc = ifp->if_softc;
2016
2017	/*
2018	 * Media is currently-selected media.  We cannot determine
2019	 * the link status.
2020	 */
2021	ifmr->ifm_status = 0;
2022	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
2023}
2024
2025/*
2026 * Add a buffer to the end of the RFA buffer list.
2027 * Return 0 if successful, error code on failure.
2028 *
2029 * The RFA struct is stuck at the beginning of mbuf cluster and the
2030 * data pointer is fixed up to point just past it.
2031 */
2032int
2033fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2034{
2035	struct mbuf *m;
2036	int error;
2037
2038	MGETHDR(m, M_DONTWAIT, MT_DATA);
2039	if (m == NULL)
2040		return (ENOBUFS);
2041
2042	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2043	MCLGET(m, M_DONTWAIT);
2044	if ((m->m_flags & M_EXT) == 0) {
2045		m_freem(m);
2046		return (ENOBUFS);
2047	}
2048
2049	if (unload)
2050		bus_dmamap_unload(sc->sc_dmat, rxmap);
2051
2052	M_SETCTX(m, rxmap);
2053
2054	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2055	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2056	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2057	if (error) {
2058		/* XXX XXX XXX */
2059		printf("%s: can't load rx DMA map %d, error = %d\n",
2060		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
2061		panic("fxp_add_rfabuf");
2062	}
2063
2064	FXP_INIT_RFABUF(sc, m);
2065
2066	return (0);
2067}
2068
2069int
2070fxp_mdi_read(struct device *self, int phy, int reg)
2071{
2072	struct fxp_softc *sc = (struct fxp_softc *)self;
2073	int count = 10000;
2074	int value;
2075
2076	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2077	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2078
2079	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2080	    0x10000000) == 0 && count--)
2081		DELAY(10);
2082
2083	if (count <= 0)
2084		log(LOG_WARNING,
2085		    "%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
2086
2087	return (value & 0xffff);
2088}
2089
2090void
2091fxp_statchg(struct device *self)
2092{
2093
2094	/* Nothing to do. */
2095}
2096
2097void
2098fxp_mdi_write(struct device *self, int phy, int reg, int value)
2099{
2100	struct fxp_softc *sc = (struct fxp_softc *)self;
2101	int count = 10000;
2102
2103	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2104	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2105	    (value & 0xffff));
2106
2107	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2108	    count--)
2109		DELAY(10);
2110
2111	if (count <= 0)
2112		log(LOG_WARNING,
2113		    "%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
2114}
2115
2116int
2117fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2118{
2119	struct fxp_softc *sc = ifp->if_softc;
2120	struct ifreq *ifr = (struct ifreq *)data;
2121	int s, error;
2122
2123	s = splnet();
2124
2125	switch (cmd) {
2126	case SIOCSIFMEDIA:
2127	case SIOCGIFMEDIA:
2128		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2129		break;
2130
2131	default:
2132		error = ether_ioctl(ifp, cmd, data);
2133		if (error == ENETRESET) {
2134			if (ifp->if_flags & IFF_RUNNING) {
2135				/*
2136				 * Multicast list has changed; set the
2137				 * hardware filter accordingly.
2138				 */
2139				if (sc->sc_txpending) {
2140					sc->sc_flags |= FXPF_WANTINIT;
2141					error = 0;
2142				} else
2143					error = fxp_init(ifp);
2144			} else
2145				error = 0;
2146		}
2147		break;
2148	}
2149
2150	/* Try to get more packets going. */
2151	if (sc->sc_enabled)
2152		fxp_start(ifp);
2153
2154	splx(s);
2155	return (error);
2156}
2157
2158/*
2159 * Program the multicast filter.
2160 *
2161 * This function must be called at splnet().
2162 */
2163void
2164fxp_mc_setup(struct fxp_softc *sc)
2165{
2166	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2167	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2168	struct ethercom *ec = &sc->sc_ethercom;
2169	struct ether_multi *enm;
2170	struct ether_multistep step;
2171	int count, nmcasts;
2172
2173#ifdef DIAGNOSTIC
2174	if (sc->sc_txpending)
2175		panic("fxp_mc_setup: pending transmissions");
2176#endif
2177
2178	ifp->if_flags &= ~IFF_ALLMULTI;
2179
2180	/*
2181	 * Initialize multicast setup descriptor.
2182	 */
2183	nmcasts = 0;
2184	ETHER_FIRST_MULTI(step, ec, enm);
2185	while (enm != NULL) {
2186		/*
2187		 * Check for too many multicast addresses or if we're
2188		 * listening to a range.  Either way, we simply have
2189		 * to accept all multicasts.
2190		 */
2191		if (nmcasts >= MAXMCADDR ||
2192		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
2193		    ETHER_ADDR_LEN) != 0) {
2194			/*
2195			 * Callers of this function must do the
2196			 * right thing with this.  If we're called
2197			 * from outside fxp_init(), the caller must
2198			 * detect if the state if IFF_ALLMULTI changes.
2199			 * If it does, the caller must then call
2200			 * fxp_init(), since allmulti is handled by
2201			 * the config block.
2202			 */
2203			ifp->if_flags |= IFF_ALLMULTI;
2204			return;
2205		}
2206		memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2207		    ETHER_ADDR_LEN);
2208		nmcasts++;
2209		ETHER_NEXT_MULTI(step, enm);
2210	}
2211
2212	/* BIG_ENDIAN: no need to swap to store 0 */
2213	mcsp->cb_status = 0;
2214	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2215	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2216	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2217
2218	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2219
2220	/*
2221	 * Wait until the command unit is not active.  This should never
2222	 * happen since nothing is queued, but make sure anyway.
2223	 */
2224	count = 100;
2225	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2226	    FXP_SCB_CUS_ACTIVE && --count)
2227		DELAY(1);
2228	if (count == 0) {
2229		log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2230		    sc->sc_dev.dv_xname, __LINE__);
2231		return;
2232	}
2233
2234	/*
2235	 * Start the multicast setup command/DMA.
2236	 */
2237	fxp_scb_wait(sc);
2238	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2239	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2240
2241	/* ...and wait for it to complete. */
2242	count = 1000;
2243	do {
2244		FXP_CDMCSSYNC(sc,
2245		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2246		DELAY(1);
2247	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2248	if (count == 0) {
2249		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2250		    sc->sc_dev.dv_xname, __LINE__);
2251		return;
2252	}
2253}
2254
2255static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2256static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2257static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2258static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2259static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2260static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2261
2262#define	UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2263
2264static const struct ucode {
2265	int32_t		revision;
2266	const uint32_t	*ucode;
2267	size_t		length;
2268	uint16_t	int_delay_offset;
2269	uint16_t	bundle_max_offset;
2270} ucode_table[] = {
2271	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2272	  D101_CPUSAVER_DWORD, 0 },
2273
2274	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2275	  D101_CPUSAVER_DWORD, 0 },
2276
2277	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2278	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2279
2280	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2281	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2282
2283	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2284	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2285
2286	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2287	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2288
2289	{ 0, NULL, 0, 0, 0 }
2290};
2291
2292void
2293fxp_load_ucode(struct fxp_softc *sc)
2294{
2295	const struct ucode *uc;
2296	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2297	int count, i;
2298
2299	if (sc->sc_flags & FXPF_UCODE_LOADED)
2300		return;
2301
2302	/*
2303	 * Only load the uCode if the user has requested that
2304	 * we do so.
2305	 */
2306	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2307		sc->sc_int_delay = 0;
2308		sc->sc_bundle_max = 0;
2309		return;
2310	}
2311
2312	for (uc = ucode_table; uc->ucode != NULL; uc++) {
2313		if (sc->sc_rev == uc->revision)
2314			break;
2315	}
2316	if (uc->ucode == NULL)
2317		return;
2318
2319	/* BIG ENDIAN: no need to swap to store 0 */
2320	cbp->cb_status = 0;
2321	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2322	cbp->link_addr = 0xffffffff;		/* (no) next command */
2323	for (i = 0; i < uc->length; i++)
2324		cbp->ucode[i] = htole32(uc->ucode[i]);
2325
2326	if (uc->int_delay_offset)
2327		*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2328		    htole16(fxp_int_delay + (fxp_int_delay / 2));
2329
2330	if (uc->bundle_max_offset)
2331		*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2332		    htole16(fxp_bundle_max);
2333
2334	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2335
2336	/*
2337	 * Download the uCode to the chip.
2338	 */
2339	fxp_scb_wait(sc);
2340	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2341	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2342
2343	/* ...and wait for it to complete. */
2344	count = 10000;
2345	do {
2346		FXP_CDUCODESYNC(sc,
2347		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2348		DELAY(2);
2349	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2350	if (count == 0) {
2351		sc->sc_int_delay = 0;
2352		sc->sc_bundle_max = 0;
2353		log(LOG_WARNING, "%s: timeout loading microcode\n",
2354		    sc->sc_dev.dv_xname);
2355		return;
2356	}
2357
2358	if (sc->sc_int_delay != fxp_int_delay ||
2359	    sc->sc_bundle_max != fxp_bundle_max) {
2360		sc->sc_int_delay = fxp_int_delay;
2361		sc->sc_bundle_max = fxp_bundle_max;
2362		log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2363		    "max bundle: %d\n", sc->sc_dev.dv_xname,
2364		    sc->sc_int_delay,
2365		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2366	}
2367
2368	sc->sc_flags |= FXPF_UCODE_LOADED;
2369}
2370
2371int
2372fxp_enable(struct fxp_softc *sc)
2373{
2374
2375	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2376		if ((*sc->sc_enable)(sc) != 0) {
2377			log(LOG_ERR, "%s: device enable failed\n",
2378			    sc->sc_dev.dv_xname);
2379			return (EIO);
2380		}
2381	}
2382
2383	sc->sc_enabled = 1;
2384	return (0);
2385}
2386
2387void
2388fxp_disable(struct fxp_softc *sc)
2389{
2390
2391	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2392		(*sc->sc_disable)(sc);
2393		sc->sc_enabled = 0;
2394	}
2395}
2396
2397/*
2398 * fxp_activate:
2399 *
2400 *	Handle device activation/deactivation requests.
2401 */
2402int
2403fxp_activate(struct device *self, enum devact act)
2404{
2405	struct fxp_softc *sc = (void *) self;
2406	int s, error = 0;
2407
2408	s = splnet();
2409	switch (act) {
2410	case DVACT_ACTIVATE:
2411		error = EOPNOTSUPP;
2412		break;
2413
2414	case DVACT_DEACTIVATE:
2415		if (sc->sc_flags & FXPF_MII)
2416			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2417			    MII_OFFSET_ANY);
2418		if_deactivate(&sc->sc_ethercom.ec_if);
2419		break;
2420	}
2421	splx(s);
2422
2423	return (error);
2424}
2425
2426/*
2427 * fxp_detach:
2428 *
2429 *	Detach an i82557 interface.
2430 */
2431int
2432fxp_detach(struct fxp_softc *sc)
2433{
2434	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2435	int i;
2436
2437	/* Succeed now if there's no work to do. */
2438	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2439		return (0);
2440
2441	/* Unhook our tick handler. */
2442	callout_stop(&sc->sc_callout);
2443
2444	if (sc->sc_flags & FXPF_MII) {
2445		/* Detach all PHYs */
2446		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2447	}
2448
2449	/* Delete all remaining media. */
2450	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2451
2452#if NRND > 0
2453	rnd_detach_source(&sc->rnd_source);
2454#endif
2455	ether_ifdetach(ifp);
2456	if_detach(ifp);
2457
2458	for (i = 0; i < FXP_NRFABUFS; i++) {
2459		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2460		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2461	}
2462
2463	for (i = 0; i < FXP_NTXCB; i++) {
2464		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2465		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2466	}
2467
2468	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2469	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2470	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2471	    sizeof(struct fxp_control_data));
2472	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2473
2474	shutdownhook_disestablish(sc->sc_sdhook);
2475	powerhook_disestablish(sc->sc_powerhook);
2476
2477	return (0);
2478}
2479