i82557.c revision 1.79
1/*	$NetBSD: i82557.c,v 1.79 2004/02/09 22:29:26 hpeyerl Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the NetBSD
22 *	Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 *    contributors may be used to endorse or promote products derived
25 *    from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40/*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 *    notice unmodified, this list of conditions, and the following
50 *    disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 *    notice, this list of conditions and the following disclaimer in the
53 *    documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70/*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75#include <sys/cdefs.h>
76__KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.79 2004/02/09 22:29:26 hpeyerl Exp $");
77
78#include "bpfilter.h"
79#include "rnd.h"
80
81#include <sys/param.h>
82#include <sys/systm.h>
83#include <sys/callout.h>
84#include <sys/mbuf.h>
85#include <sys/malloc.h>
86#include <sys/kernel.h>
87#include <sys/socket.h>
88#include <sys/ioctl.h>
89#include <sys/errno.h>
90#include <sys/device.h>
91
92#include <machine/endian.h>
93
94#include <uvm/uvm_extern.h>
95
96#if NRND > 0
97#include <sys/rnd.h>
98#endif
99
100#include <net/if.h>
101#include <net/if_dl.h>
102#include <net/if_media.h>
103#include <net/if_ether.h>
104
105#if NBPFILTER > 0
106#include <net/bpf.h>
107#endif
108
109#include <machine/bus.h>
110#include <machine/intr.h>
111
112#include <dev/mii/miivar.h>
113
114#include <dev/ic/i82557reg.h>
115#include <dev/ic/i82557var.h>
116
117#include <dev/microcode/i8255x/rcvbundl.h>
118
119/*
120 * NOTE!  On the Alpha, we have an alignment constraint.  The
121 * card DMAs the packet immediately following the RFA.  However,
122 * the first thing in the packet is a 14-byte Ethernet header.
123 * This means that the packet is misaligned.  To compensate,
124 * we actually offset the RFA 2 bytes into the cluster.  This
125 * alignes the packet after the Ethernet header at a 32-bit
126 * boundary.  HOWEVER!  This means that the RFA is misaligned!
127 */
128#define	RFA_ALIGNMENT_FUDGE	2
129
130/*
131 * The configuration byte map has several undefined fields which
132 * must be one or must be zero.  Set up a template for these bits
133 * only (assuming an i82557 chip), leaving the actual configuration
134 * for fxp_init().
135 *
136 * See the definition of struct fxp_cb_config for the bit definitions.
137 */
138const u_int8_t fxp_cb_config_template[] = {
139	0x0, 0x0,		/* cb_status */
140	0x0, 0x0,		/* cb_command */
141	0x0, 0x0, 0x0, 0x0,	/* link_addr */
142	0x0,	/*  0 */
143	0x0,	/*  1 */
144	0x0,	/*  2 */
145	0x0,	/*  3 */
146	0x0,	/*  4 */
147	0x0,	/*  5 */
148	0x32,	/*  6 */
149	0x0,	/*  7 */
150	0x0,	/*  8 */
151	0x0,	/*  9 */
152	0x6,	/* 10 */
153	0x0,	/* 11 */
154	0x0,	/* 12 */
155	0x0,	/* 13 */
156	0xf2,	/* 14 */
157	0x48,	/* 15 */
158	0x0,	/* 16 */
159	0x40,	/* 17 */
160	0xf0,	/* 18 */
161	0x0,	/* 19 */
162	0x3f,	/* 20 */
163	0x5,	/* 21 */
164	0x0,	/* 22 */
165	0x0,	/* 23 */
166	0x0,	/* 24 */
167	0x0,	/* 25 */
168	0x0,	/* 26 */
169	0x0,	/* 27 */
170	0x0,	/* 28 */
171	0x0,	/* 29 */
172	0x0,	/* 30 */
173	0x0,	/* 31 */
174};
175
176void	fxp_mii_initmedia(struct fxp_softc *);
177int	fxp_mii_mediachange(struct ifnet *);
178void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
179
180void	fxp_80c24_initmedia(struct fxp_softc *);
181int	fxp_80c24_mediachange(struct ifnet *);
182void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
183
184void	fxp_start(struct ifnet *);
185int	fxp_ioctl(struct ifnet *, u_long, caddr_t);
186void	fxp_watchdog(struct ifnet *);
187int	fxp_init(struct ifnet *);
188void	fxp_stop(struct ifnet *, int);
189
190void	fxp_txintr(struct fxp_softc *);
191void	fxp_rxintr(struct fxp_softc *);
192
193void	fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
194
195void	fxp_rxdrain(struct fxp_softc *);
196int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
197int	fxp_mdi_read(struct device *, int, int);
198void	fxp_statchg(struct device *);
199void	fxp_mdi_write(struct device *, int, int, int);
200void	fxp_autosize_eeprom(struct fxp_softc*);
201void	fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
202void	fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
203void	fxp_eeprom_update_cksum(struct fxp_softc *);
204void	fxp_get_info(struct fxp_softc *, u_int8_t *);
205void	fxp_tick(void *);
206void	fxp_mc_setup(struct fxp_softc *);
207void	fxp_load_ucode(struct fxp_softc *);
208
209void	fxp_shutdown(void *);
210void	fxp_power(int, void *);
211
212int	fxp_copy_small = 0;
213
214/*
215 * Variables for interrupt mitigating microcode.
216 */
217int	fxp_int_delay = 1000;		/* usec */
218int	fxp_bundle_max = 6;		/* packets */
219
220struct fxp_phytype {
221	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
222	void	(*fp_init)(struct fxp_softc *);
223} fxp_phytype_table[] = {
224	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
225	{ -1,				fxp_mii_initmedia },
226};
227
228/*
229 * Set initial transmit threshold at 64 (512 bytes). This is
230 * increased by 64 (512 bytes) at a time, to maximum of 192
231 * (1536 bytes), if an underrun occurs.
232 */
233static int tx_threshold = 64;
234
235/*
236 * Wait for the previous command to be accepted (but not necessarily
237 * completed).
238 */
239static __inline void
240fxp_scb_wait(struct fxp_softc *sc)
241{
242	int i = 10000;
243
244	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
245		delay(2);
246	if (i == 0)
247		printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
248}
249
250/*
251 * Submit a command to the i82557.
252 */
253static __inline void
254fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
255{
256
257	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
258}
259
260/*
261 * Finish attaching an i82557 interface.  Called by bus-specific front-end.
262 */
263void
264fxp_attach(struct fxp_softc *sc)
265{
266	u_int8_t enaddr[ETHER_ADDR_LEN];
267	struct ifnet *ifp;
268	bus_dma_segment_t seg;
269	int rseg, i, error;
270	struct fxp_phytype *fp;
271
272	callout_init(&sc->sc_callout);
273
274	/*
275	 * Enable some good stuff on i82558 and later.
276	 */
277	if (sc->sc_rev >= FXP_REV_82558_A4) {
278		/* Enable the extended TxCB. */
279		sc->sc_flags |= FXPF_EXT_TXCB;
280	}
281
282        /*
283	 * Enable use of extended RFDs and TCBs for 82550
284	 * and later chips. Note: we need extended TXCB support
285	 * too, but that's already enabled by the code above.
286	 * Be careful to do this only on the right devices.
287	 */
288	if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
289		sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
290		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
291	} else {
292		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
293	}
294
295	sc->sc_rfa_size =
296	    (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
297
298	/*
299	 * Allocate the control data structures, and create and load the
300	 * DMA map for it.
301	 */
302	if ((error = bus_dmamem_alloc(sc->sc_dmat,
303	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
304	    0)) != 0) {
305		aprint_error(
306		    "%s: unable to allocate control data, error = %d\n",
307		    sc->sc_dev.dv_xname, error);
308		goto fail_0;
309	}
310
311	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
312	    sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
313	    BUS_DMA_COHERENT)) != 0) {
314		aprint_error("%s: unable to map control data, error = %d\n",
315		    sc->sc_dev.dv_xname, error);
316		goto fail_1;
317	}
318	sc->sc_cdseg = seg;
319	sc->sc_cdnseg = rseg;
320
321	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
322
323	if ((error = bus_dmamap_create(sc->sc_dmat,
324	    sizeof(struct fxp_control_data), 1,
325	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
326		aprint_error("%s: unable to create control data DMA map, "
327		    "error = %d\n", sc->sc_dev.dv_xname, error);
328		goto fail_2;
329	}
330
331	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
332	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
333	    0)) != 0) {
334		aprint_error(
335		    "%s: can't load control data DMA map, error = %d\n",
336		    sc->sc_dev.dv_xname, error);
337		goto fail_3;
338	}
339
340	/*
341	 * Create the transmit buffer DMA maps.
342	 */
343	for (i = 0; i < FXP_NTXCB; i++) {
344		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
345		    (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
346		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
347			aprint_error("%s: unable to create tx DMA map %d, "
348			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
349			goto fail_4;
350		}
351	}
352
353	/*
354	 * Create the receive buffer DMA maps.
355	 */
356	for (i = 0; i < FXP_NRFABUFS; i++) {
357		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
358		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
359			aprint_error("%s: unable to create rx DMA map %d, "
360			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
361			goto fail_5;
362		}
363	}
364
365	/* Initialize MAC address and media structures. */
366	fxp_get_info(sc, enaddr);
367
368	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
369	    ether_sprintf(enaddr));
370
371	ifp = &sc->sc_ethercom.ec_if;
372
373	/*
374	 * Get info about our media interface, and initialize it.  Note
375	 * the table terminates itself with a phy of -1, indicating
376	 * that we're using MII.
377	 */
378	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
379		if (fp->fp_phy == sc->phy_primary_device)
380			break;
381	(*fp->fp_init)(sc);
382
383	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
384	ifp->if_softc = sc;
385	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
386	ifp->if_ioctl = fxp_ioctl;
387	ifp->if_start = fxp_start;
388	ifp->if_watchdog = fxp_watchdog;
389	ifp->if_init = fxp_init;
390	ifp->if_stop = fxp_stop;
391	IFQ_SET_READY(&ifp->if_snd);
392
393	if (sc->sc_flags & FXPF_IPCB) {
394		KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
395		/*
396		 * IFCAP_CSUM_IPv4 seems to have a problem,
397		 * at least, on i82550 rev.12.
398		 * specifically, it doesn't calculate ipv4 checksum correctly
399		 * when sending 20 byte ipv4 header + 1 or 2 byte data.
400		 * FreeBSD driver has related comments.
401		 *
402		 * XXX we should have separate IFCAP flags
403		 * for transmit and receive.
404		 */
405		ifp->if_capabilities =
406		    /*IFCAP_CSUM_IPv4 |*/ IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
407	}
408
409	/*
410	 * We can support 802.1Q VLAN-sized frames.
411	 */
412	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
413
414	/*
415	 * Attach the interface.
416	 */
417	if_attach(ifp);
418	ether_ifattach(ifp, enaddr);
419#if NRND > 0
420	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
421	    RND_TYPE_NET, 0);
422#endif
423
424#ifdef FXP_EVENT_COUNTERS
425	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
426	    NULL, sc->sc_dev.dv_xname, "txstall");
427	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
428	    NULL, sc->sc_dev.dv_xname, "txintr");
429	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
430	    NULL, sc->sc_dev.dv_xname, "rxintr");
431#endif /* FXP_EVENT_COUNTERS */
432
433	/*
434	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
435	 * doing do could allow DMA to corrupt kernel memory during the
436	 * reboot before the driver initializes.
437	 */
438	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
439	if (sc->sc_sdhook == NULL)
440		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
441		    sc->sc_dev.dv_xname);
442	/*
443  	 * Add suspend hook, for similar reasons..
444	 */
445	sc->sc_powerhook = powerhook_establish(fxp_power, sc);
446	if (sc->sc_powerhook == NULL)
447		aprint_error("%s: WARNING: unable to establish power hook\n",
448		    sc->sc_dev.dv_xname);
449
450	/* The attach is successful. */
451	sc->sc_flags |= FXPF_ATTACHED;
452
453	return;
454
455	/*
456	 * Free any resources we've allocated during the failed attach
457	 * attempt.  Do this in reverse order and fall though.
458	 */
459 fail_5:
460	for (i = 0; i < FXP_NRFABUFS; i++) {
461		if (sc->sc_rxmaps[i] != NULL)
462			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
463	}
464 fail_4:
465	for (i = 0; i < FXP_NTXCB; i++) {
466		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
467			bus_dmamap_destroy(sc->sc_dmat,
468			    FXP_DSTX(sc, i)->txs_dmamap);
469	}
470	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
471 fail_3:
472	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
473 fail_2:
474	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
475	    sizeof(struct fxp_control_data));
476 fail_1:
477	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
478 fail_0:
479	return;
480}
481
482void
483fxp_mii_initmedia(struct fxp_softc *sc)
484{
485	int flags;
486
487	sc->sc_flags |= FXPF_MII;
488
489	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
490	sc->sc_mii.mii_readreg = fxp_mdi_read;
491	sc->sc_mii.mii_writereg = fxp_mdi_write;
492	sc->sc_mii.mii_statchg = fxp_statchg;
493	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, fxp_mii_mediachange,
494	    fxp_mii_mediastatus);
495
496	flags = MIIF_NOISOLATE;
497	if (sc->sc_rev >= FXP_REV_82558_A4)
498		flags |= MIIF_DOPAUSE;
499	/*
500	 * The i82557 wedges if all of its PHYs are isolated!
501	 */
502	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
503	    MII_OFFSET_ANY, flags);
504	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
505		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
506		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
507	} else
508		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
509}
510
511void
512fxp_80c24_initmedia(struct fxp_softc *sc)
513{
514
515	/*
516	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
517	 * doesn't have a programming interface of any sort.  The
518	 * media is sensed automatically based on how the link partner
519	 * is configured.  This is, in essence, manual configuration.
520	 */
521	aprint_normal("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
522	    sc->sc_dev.dv_xname);
523	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
524	    fxp_80c24_mediastatus);
525	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
526	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
527}
528
529/*
530 * Device shutdown routine. Called at system shutdown after sync. The
531 * main purpose of this routine is to shut off receiver DMA so that
532 * kernel memory doesn't get clobbered during warmboot.
533 */
534void
535fxp_shutdown(void *arg)
536{
537	struct fxp_softc *sc = arg;
538
539	/*
540	 * Since the system's going to halt shortly, don't bother
541	 * freeing mbufs.
542	 */
543	fxp_stop(&sc->sc_ethercom.ec_if, 0);
544}
545/*
546 * Power handler routine. Called when the system is transitioning
547 * into/out of power save modes.  As with fxp_shutdown, the main
548 * purpose of this routine is to shut off receiver DMA so it doesn't
549 * clobber kernel memory at the wrong time.
550 */
551void
552fxp_power(int why, void *arg)
553{
554	struct fxp_softc *sc = arg;
555	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
556	int s;
557
558	s = splnet();
559	switch (why) {
560	case PWR_SUSPEND:
561	case PWR_STANDBY:
562		fxp_stop(ifp, 0);
563		break;
564	case PWR_RESUME:
565		if (ifp->if_flags & IFF_UP)
566			fxp_init(ifp);
567		break;
568	case PWR_SOFTSUSPEND:
569	case PWR_SOFTSTANDBY:
570	case PWR_SOFTRESUME:
571		break;
572	}
573	splx(s);
574}
575
576/*
577 * Initialize the interface media.
578 */
579void
580fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
581{
582	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
583
584	/*
585	 * Reset to a stable state.
586	 */
587	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
588	DELAY(100);
589
590	sc->sc_eeprom_size = 0;
591	fxp_autosize_eeprom(sc);
592	if (sc->sc_eeprom_size == 0) {
593		aprint_error("%s: failed to detect EEPROM size\n",
594		    sc->sc_dev.dv_xname);
595		sc->sc_eeprom_size = 6; /* XXX panic here? */
596	}
597#ifdef DEBUG
598	aprint_debug("%s: detected %d word EEPROM\n",
599	    sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
600#endif
601
602	/*
603	 * Get info about the primary PHY
604	 */
605	fxp_read_eeprom(sc, &data, 6, 1);
606	sc->phy_primary_device =
607	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
608
609	/*
610	 * Read MAC address.
611	 */
612	fxp_read_eeprom(sc, myea, 0, 3);
613	enaddr[0] = myea[0] & 0xff;
614	enaddr[1] = myea[0] >> 8;
615	enaddr[2] = myea[1] & 0xff;
616	enaddr[3] = myea[1] >> 8;
617	enaddr[4] = myea[2] & 0xff;
618	enaddr[5] = myea[2] >> 8;
619
620	/*
621	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
622	 * as some i82559 designs, have a defect where the chip can
623	 * cause a PCI protocol violation if it receives a CU_RESUME
624	 * command when it is entering the IDLE state.
625	 *
626	 * The work-around is to disable Dynamic Standby Mode, so that
627	 * the chip never deasserts #CLKRUN, and always remains in the
628	 * active state.
629	 *
630	 * Unfortunately, the only way to disable Dynamic Standby is
631	 * to frob an EEPROM setting and reboot (the EEPROM setting
632	 * is only consulted when the PCI bus comes out of reset).
633	 *
634	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
635	 */
636	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
637		fxp_read_eeprom(sc, &data, 10, 1);
638		if (data & 0x02) {		/* STB enable */
639			aprint_error("%s: WARNING: "
640			    "Disabling dynamic standby mode in EEPROM "
641			    "to work around a\n",
642			    sc->sc_dev.dv_xname);
643			aprint_normal(
644			    "%s: WARNING: hardware bug.  You must reset "
645			    "the system before using this\n",
646			    sc->sc_dev.dv_xname);
647			aprint_normal("%s: WARNING: interface.\n",
648			    sc->sc_dev.dv_xname);
649			data &= ~0x02;
650			fxp_write_eeprom(sc, &data, 10, 1);
651			aprint_normal("%s: new EEPROM ID: 0x%04x\n",
652			    sc->sc_dev.dv_xname, data);
653			fxp_eeprom_update_cksum(sc);
654		}
655	}
656}
657
658static void
659fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
660{
661	uint16_t reg;
662	int x;
663
664	for (x = 1 << (len - 1); x != 0; x >>= 1) {
665		DELAY(40);
666		if (data & x)
667			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
668		else
669			reg = FXP_EEPROM_EECS;
670		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
671		DELAY(40);
672		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
673		    reg | FXP_EEPROM_EESK);
674		DELAY(40);
675		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
676	}
677	DELAY(40);
678}
679
680/*
681 * Figure out EEPROM size.
682 *
683 * 559's can have either 64-word or 256-word EEPROMs, the 558
684 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
685 * talks about the existence of 16 to 256 word EEPROMs.
686 *
687 * The only known sizes are 64 and 256, where the 256 version is used
688 * by CardBus cards to store CIS information.
689 *
690 * The address is shifted in msb-to-lsb, and after the last
691 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
692 * after which follows the actual data. We try to detect this zero, by
693 * probing the data-out bit in the EEPROM control register just after
694 * having shifted in a bit. If the bit is zero, we assume we've
695 * shifted enough address bits. The data-out should be tri-state,
696 * before this, which should translate to a logical one.
697 *
698 * Other ways to do this would be to try to read a register with known
699 * contents with a varying number of address bits, but no such
700 * register seem to be available. The high bits of register 10 are 01
701 * on the 558 and 559, but apparently not on the 557.
702 *
703 * The Linux driver computes a checksum on the EEPROM data, but the
704 * value of this checksum is not very well documented.
705 */
706
707void
708fxp_autosize_eeprom(struct fxp_softc *sc)
709{
710	int x;
711
712	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
713	DELAY(40);
714
715	/* Shift in read opcode. */
716	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
717
718	/*
719	 * Shift in address, wait for the dummy zero following a correct
720	 * address shift.
721	 */
722	for (x = 1; x <= 8; x++) {
723		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
724		DELAY(40);
725		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
726		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
727		DELAY(40);
728		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
729		    FXP_EEPROM_EEDO) == 0)
730			break;
731		DELAY(40);
732		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
733		DELAY(40);
734	}
735	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
736	DELAY(40);
737	if (x != 6 && x != 8) {
738#ifdef DEBUG
739		printf("%s: strange EEPROM size (%d)\n",
740		    sc->sc_dev.dv_xname, 1 << x);
741#endif
742	} else
743		sc->sc_eeprom_size = x;
744}
745
746/*
747 * Read from the serial EEPROM. Basically, you manually shift in
748 * the read opcode (one bit at a time) and then shift in the address,
749 * and then you shift out the data (all of this one bit at a time).
750 * The word size is 16 bits, so you have to provide the address for
751 * every 16 bits of data.
752 */
753void
754fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
755{
756	u_int16_t reg;
757	int i, x;
758
759	for (i = 0; i < words; i++) {
760		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
761
762		/* Shift in read opcode. */
763		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
764
765		/* Shift in address. */
766		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
767
768		reg = FXP_EEPROM_EECS;
769		data[i] = 0;
770
771		/* Shift out data. */
772		for (x = 16; x > 0; x--) {
773			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
774			    reg | FXP_EEPROM_EESK);
775			DELAY(40);
776			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
777			    FXP_EEPROM_EEDO)
778				data[i] |= (1 << (x - 1));
779			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
780			DELAY(40);
781		}
782		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
783		DELAY(40);
784	}
785}
786
787/*
788 * Write data to the serial EEPROM.
789 */
790void
791fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
792{
793	int i, j;
794
795	for (i = 0; i < words; i++) {
796		/* Erase/write enable. */
797		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
798		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
799		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
800		    sc->sc_eeprom_size);
801		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
802		DELAY(4);
803
804		/* Shift in write opcode, address, data. */
805		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
806		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
807		fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
808		fxp_eeprom_shiftin(sc, data[i], 16);
809		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
810		DELAY(4);
811
812		/* Wait for the EEPROM to finish up. */
813		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
814		DELAY(4);
815		for (j = 0; j < 1000; j++) {
816			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
817			    FXP_EEPROM_EEDO)
818				break;
819			DELAY(50);
820		}
821		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
822		DELAY(4);
823
824		/* Erase/write disable. */
825		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
826		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
827		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
828		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
829		DELAY(4);
830	}
831}
832
833/*
834 * Update the checksum of the EEPROM.
835 */
836void
837fxp_eeprom_update_cksum(struct fxp_softc *sc)
838{
839	int i;
840	uint16_t data, cksum;
841
842	cksum = 0;
843	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
844		fxp_read_eeprom(sc, &data, i, 1);
845		cksum += data;
846	}
847	i = (1 << sc->sc_eeprom_size) - 1;
848	cksum = 0xbaba - cksum;
849	fxp_read_eeprom(sc, &data, i, 1);
850	fxp_write_eeprom(sc, &cksum, i, 1);
851	printf("%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
852	    sc->sc_dev.dv_xname, i, data, cksum);
853}
854
855/*
856 * Start packet transmission on the interface.
857 */
858void
859fxp_start(struct ifnet *ifp)
860{
861	struct fxp_softc *sc = ifp->if_softc;
862	struct mbuf *m0, *m;
863	struct fxp_txdesc *txd;
864	struct fxp_txsoft *txs;
865	bus_dmamap_t dmamap;
866	int error, lasttx, nexttx, opending, seg;
867
868	/*
869	 * If we want a re-init, bail out now.
870	 */
871	if (sc->sc_flags & FXPF_WANTINIT) {
872		ifp->if_flags |= IFF_OACTIVE;
873		return;
874	}
875
876	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
877		return;
878
879	/*
880	 * Remember the previous txpending and the current lasttx.
881	 */
882	opending = sc->sc_txpending;
883	lasttx = sc->sc_txlast;
884
885	/*
886	 * Loop through the send queue, setting up transmit descriptors
887	 * until we drain the queue, or use up all available transmit
888	 * descriptors.
889	 */
890	for (;;) {
891		struct fxp_tbd *tbdp;
892		int csum_flags;
893
894		/*
895		 * Grab a packet off the queue.
896		 */
897		IFQ_POLL(&ifp->if_snd, m0);
898		if (m0 == NULL)
899			break;
900		m = NULL;
901
902		if (sc->sc_txpending == FXP_NTXCB) {
903			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
904			break;
905		}
906
907		/*
908		 * Get the next available transmit descriptor.
909		 */
910		nexttx = FXP_NEXTTX(sc->sc_txlast);
911		txd = FXP_CDTX(sc, nexttx);
912		txs = FXP_DSTX(sc, nexttx);
913		dmamap = txs->txs_dmamap;
914
915		/*
916		 * Load the DMA map.  If this fails, the packet either
917		 * didn't fit in the allotted number of frags, or we were
918		 * short on resources.  In this case, we'll copy and try
919		 * again.
920		 */
921		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
922		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
923			MGETHDR(m, M_DONTWAIT, MT_DATA);
924			if (m == NULL) {
925				printf("%s: unable to allocate Tx mbuf\n",
926				    sc->sc_dev.dv_xname);
927				break;
928			}
929			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
930			if (m0->m_pkthdr.len > MHLEN) {
931				MCLGET(m, M_DONTWAIT);
932				if ((m->m_flags & M_EXT) == 0) {
933					printf("%s: unable to allocate Tx "
934					    "cluster\n", sc->sc_dev.dv_xname);
935					m_freem(m);
936					break;
937				}
938			}
939			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
940			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
941			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
942			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
943			if (error) {
944				printf("%s: unable to load Tx buffer, "
945				    "error = %d\n", sc->sc_dev.dv_xname, error);
946				break;
947			}
948		}
949
950		IFQ_DEQUEUE(&ifp->if_snd, m0);
951		csum_flags = m0->m_pkthdr.csum_flags;
952		if (m != NULL) {
953			m_freem(m0);
954			m0 = m;
955		}
956
957		/* Initialize the fraglist. */
958		tbdp = txd->txd_tbd;
959		if (sc->sc_flags & FXPF_IPCB)
960			tbdp++;
961		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
962			tbdp[seg].tb_addr =
963			    htole32(dmamap->dm_segs[seg].ds_addr);
964			tbdp[seg].tb_size =
965			    htole32(dmamap->dm_segs[seg].ds_len);
966		}
967
968		/* Sync the DMA map. */
969		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
970		    BUS_DMASYNC_PREWRITE);
971
972		/*
973		 * Store a pointer to the packet so we can free it later.
974		 */
975		txs->txs_mbuf = m0;
976
977		/*
978		 * Initialize the transmit descriptor.
979		 */
980		/* BIG_ENDIAN: no need to swap to store 0 */
981		txd->txd_txcb.cb_status = 0;
982		txd->txd_txcb.cb_command =
983		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
984		txd->txd_txcb.tx_threshold = tx_threshold;
985		txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
986
987		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
988		if (sc->sc_flags & FXPF_IPCB) {
989			struct fxp_ipcb *ipcb;
990			/*
991			 * Deal with TCP/IP checksum offload. Note that
992			 * in order for TCP checksum offload to work,
993			 * the pseudo header checksum must have already
994			 * been computed and stored in the checksum field
995			 * in the TCP header. The stack should have
996			 * already done this for us.
997			 */
998			ipcb = &txd->txd_u.txdu_ipcb;
999			memset(ipcb, 0, sizeof(*ipcb));
1000			/*
1001			 * always do hardware parsing.
1002			 */
1003			ipcb->ipcb_ip_activation_high =
1004			    FXP_IPCB_HARDWAREPARSING_ENABLE;
1005			/*
1006			 * ip checksum offloading.
1007			 */
1008			if (csum_flags & M_CSUM_IPv4) {
1009				ipcb->ipcb_ip_schedule |=
1010				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1011			}
1012			/*
1013			 * TCP/UDP checksum offloading.
1014			 */
1015			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1016				ipcb->ipcb_ip_schedule |=
1017				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1018			}
1019		} else {
1020			KASSERT((csum_flags &
1021			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
1022		}
1023
1024		FXP_CDTXSYNC(sc, nexttx,
1025		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1026
1027		/* Advance the tx pointer. */
1028		sc->sc_txpending++;
1029		sc->sc_txlast = nexttx;
1030
1031#if NBPFILTER > 0
1032		/*
1033		 * Pass packet to bpf if there is a listener.
1034		 */
1035		if (ifp->if_bpf)
1036			bpf_mtap(ifp->if_bpf, m0);
1037#endif
1038	}
1039
1040	if (sc->sc_txpending == FXP_NTXCB) {
1041		/* No more slots; notify upper layer. */
1042		ifp->if_flags |= IFF_OACTIVE;
1043	}
1044
1045	if (sc->sc_txpending != opending) {
1046		/*
1047		 * We enqueued packets.  If the transmitter was idle,
1048		 * reset the txdirty pointer.
1049		 */
1050		if (opending == 0)
1051			sc->sc_txdirty = FXP_NEXTTX(lasttx);
1052
1053		/*
1054		 * Cause the chip to interrupt and suspend command
1055		 * processing once the last packet we've enqueued
1056		 * has been transmitted.
1057		 */
1058		FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
1059		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1060		FXP_CDTXSYNC(sc, sc->sc_txlast,
1061		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1062
1063		/*
1064		 * The entire packet chain is set up.  Clear the suspend bit
1065		 * on the command prior to the first packet we set up.
1066		 */
1067		FXP_CDTXSYNC(sc, lasttx,
1068		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1069		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1070		    htole16(~FXP_CB_COMMAND_S);
1071		FXP_CDTXSYNC(sc, lasttx,
1072		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1073
1074		/*
1075		 * Issue a Resume command in case the chip was suspended.
1076		 */
1077		fxp_scb_wait(sc);
1078		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1079
1080		/* Set a watchdog timer in case the chip flakes out. */
1081		ifp->if_timer = 5;
1082	}
1083}
1084
1085/*
1086 * Process interface interrupts.
1087 */
1088int
1089fxp_intr(void *arg)
1090{
1091	struct fxp_softc *sc = arg;
1092	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1093	bus_dmamap_t rxmap;
1094	int claimed = 0;
1095	u_int8_t statack;
1096
1097	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 || sc->sc_enabled == 0)
1098		return (0);
1099	/*
1100	 * If the interface isn't running, don't try to
1101	 * service the interrupt.. just ack it and bail.
1102	 */
1103	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1104		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1105		if (statack) {
1106			claimed = 1;
1107			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1108		}
1109		return (claimed);
1110	}
1111
1112	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1113		claimed = 1;
1114
1115		/*
1116		 * First ACK all the interrupts in this pass.
1117		 */
1118		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1119
1120		/*
1121		 * Process receiver interrupts. If a no-resource (RNR)
1122		 * condition exists, get whatever packets we can and
1123		 * re-start the receiver.
1124		 */
1125		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1126			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1127			fxp_rxintr(sc);
1128		}
1129
1130		if (statack & FXP_SCB_STATACK_RNR) {
1131			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1132			fxp_scb_wait(sc);
1133			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1134			    rxmap->dm_segs[0].ds_addr +
1135			    RFA_ALIGNMENT_FUDGE);
1136			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1137		}
1138
1139		/*
1140		 * Free any finished transmit mbuf chains.
1141		 */
1142		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1143			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1144			fxp_txintr(sc);
1145
1146			/*
1147			 * Try to get more packets going.
1148			 */
1149			fxp_start(ifp);
1150
1151			if (sc->sc_txpending == 0) {
1152				/*
1153				 * If we want a re-init, do that now.
1154				 */
1155				if (sc->sc_flags & FXPF_WANTINIT)
1156					(void) fxp_init(ifp);
1157			}
1158		}
1159	}
1160
1161#if NRND > 0
1162	if (claimed)
1163		rnd_add_uint32(&sc->rnd_source, statack);
1164#endif
1165	return (claimed);
1166}
1167
1168/*
1169 * Handle transmit completion interrupts.
1170 */
1171void
1172fxp_txintr(struct fxp_softc *sc)
1173{
1174	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1175	struct fxp_txdesc *txd;
1176	struct fxp_txsoft *txs;
1177	int i;
1178	u_int16_t txstat;
1179
1180	ifp->if_flags &= ~IFF_OACTIVE;
1181	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1182	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
1183		txd = FXP_CDTX(sc, i);
1184		txs = FXP_DSTX(sc, i);
1185
1186		FXP_CDTXSYNC(sc, i,
1187		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1188
1189		txstat = le16toh(txd->txd_txcb.cb_status);
1190
1191		if ((txstat & FXP_CB_STATUS_C) == 0)
1192			break;
1193
1194		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1195		    0, txs->txs_dmamap->dm_mapsize,
1196		    BUS_DMASYNC_POSTWRITE);
1197		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1198		m_freem(txs->txs_mbuf);
1199		txs->txs_mbuf = NULL;
1200	}
1201
1202	/* Update the dirty transmit buffer pointer. */
1203	sc->sc_txdirty = i;
1204
1205	/*
1206	 * Cancel the watchdog timer if there are no pending
1207	 * transmissions.
1208	 */
1209	if (sc->sc_txpending == 0)
1210		ifp->if_timer = 0;
1211}
1212
1213void
1214fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1215{
1216	u_int16_t rxparsestat;
1217	u_int16_t csum_stat;
1218	u_int32_t csum_data;
1219	int csum_flags;
1220
1221	rxparsestat = le16toh(rfa->rx_parse_stat);
1222	csum_stat = le16toh(rfa->cksum_stat);
1223	if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1224		return;
1225
1226	csum_flags = 0;
1227	csum_data = 0;
1228
1229	if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1230		csum_flags = M_CSUM_IPv4;
1231		if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1232			csum_flags |= M_CSUM_IPv4_BAD;
1233	}
1234
1235	if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1236		csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1237		if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1238			csum_flags |= M_CSUM_TCP_UDP_BAD;
1239	}
1240
1241	m->m_pkthdr.csum_flags = csum_flags;
1242	m->m_pkthdr.csum_data = csum_data;
1243}
1244
1245/*
1246 * Handle receive interrupts.
1247 */
1248void
1249fxp_rxintr(struct fxp_softc *sc)
1250{
1251	struct ethercom *ec = &sc->sc_ethercom;
1252	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1253	struct mbuf *m, *m0;
1254	bus_dmamap_t rxmap;
1255	struct fxp_rfa *rfa;
1256	u_int16_t len, rxstat;
1257
1258	for (;;) {
1259		m = sc->sc_rxq.ifq_head;
1260		rfa = FXP_MTORFA(m);
1261		rxmap = M_GETCTX(m, bus_dmamap_t);
1262
1263		FXP_RFASYNC(sc, m,
1264		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1265
1266		rxstat = le16toh(rfa->rfa_status);
1267
1268		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1269			/*
1270			 * We have processed all of the
1271			 * receive buffers.
1272			 */
1273			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1274			return;
1275		}
1276
1277		IF_DEQUEUE(&sc->sc_rxq, m);
1278
1279		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1280
1281		len = le16toh(rfa->actual_size) &
1282		    (m->m_ext.ext_size - 1);
1283
1284		if (len < sizeof(struct ether_header)) {
1285			/*
1286			 * Runt packet; drop it now.
1287			 */
1288			FXP_INIT_RFABUF(sc, m);
1289			continue;
1290		}
1291
1292		/*
1293		 * If support for 802.1Q VLAN sized frames is
1294		 * enabled, we need to do some additional error
1295		 * checking (as we are saving bad frames, in
1296		 * order to receive the larger ones).
1297		 */
1298		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1299		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
1300			       FXP_RFA_STATUS_RNR|
1301			       FXP_RFA_STATUS_ALIGN|
1302			       FXP_RFA_STATUS_CRC)) != 0) {
1303			FXP_INIT_RFABUF(sc, m);
1304			continue;
1305		}
1306
1307		/* Do checksum checking. */
1308		m->m_pkthdr.csum_flags = 0;
1309		if (sc->sc_flags & FXPF_EXT_RFA)
1310			fxp_rx_hwcksum(m, rfa);
1311
1312		/*
1313		 * If the packet is small enough to fit in a
1314		 * single header mbuf, allocate one and copy
1315		 * the data into it.  This greatly reduces
1316		 * memory consumption when we receive lots
1317		 * of small packets.
1318		 *
1319		 * Otherwise, we add a new buffer to the receive
1320		 * chain.  If this fails, we drop the packet and
1321		 * recycle the old buffer.
1322		 */
1323		if (fxp_copy_small != 0 && len <= MHLEN) {
1324			MGETHDR(m0, M_DONTWAIT, MT_DATA);
1325			if (m0 == NULL)
1326				goto dropit;
1327			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1328			memcpy(mtod(m0, caddr_t),
1329			    mtod(m, caddr_t), len);
1330			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1331			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1332			FXP_INIT_RFABUF(sc, m);
1333			m = m0;
1334		} else {
1335			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1336 dropit:
1337				ifp->if_ierrors++;
1338				FXP_INIT_RFABUF(sc, m);
1339				continue;
1340			}
1341		}
1342
1343		m->m_pkthdr.rcvif = ifp;
1344		m->m_pkthdr.len = m->m_len = len;
1345
1346#if NBPFILTER > 0
1347		/*
1348		 * Pass this up to any BPF listeners, but only
1349		 * pass it up the stack it its for us.
1350		 */
1351		if (ifp->if_bpf)
1352			bpf_mtap(ifp->if_bpf, m);
1353#endif
1354
1355		/* Pass it on. */
1356		(*ifp->if_input)(ifp, m);
1357	}
1358}
1359
1360/*
1361 * Update packet in/out/collision statistics. The i82557 doesn't
1362 * allow you to access these counters without doing a fairly
1363 * expensive DMA to get _all_ of the statistics it maintains, so
1364 * we do this operation here only once per second. The statistics
1365 * counters in the kernel are updated from the previous dump-stats
1366 * DMA and then a new dump-stats DMA is started. The on-chip
1367 * counters are zeroed when the DMA completes. If we can't start
1368 * the DMA immediately, we don't wait - we just prepare to read
1369 * them again next time.
1370 */
1371void
1372fxp_tick(void *arg)
1373{
1374	struct fxp_softc *sc = arg;
1375	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1376	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1377	int s;
1378
1379	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1380		return;
1381
1382	s = splnet();
1383
1384	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1385
1386	ifp->if_opackets += le32toh(sp->tx_good);
1387	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1388	if (sp->rx_good) {
1389		ifp->if_ipackets += le32toh(sp->rx_good);
1390		sc->sc_rxidle = 0;
1391	} else {
1392		sc->sc_rxidle++;
1393	}
1394	ifp->if_ierrors +=
1395	    le32toh(sp->rx_crc_errors) +
1396	    le32toh(sp->rx_alignment_errors) +
1397	    le32toh(sp->rx_rnr_errors) +
1398	    le32toh(sp->rx_overrun_errors);
1399	/*
1400	 * If any transmit underruns occurred, bump up the transmit
1401	 * threshold by another 512 bytes (64 * 8).
1402	 */
1403	if (sp->tx_underruns) {
1404		ifp->if_oerrors += le32toh(sp->tx_underruns);
1405		if (tx_threshold < 192)
1406			tx_threshold += 64;
1407	}
1408
1409	/*
1410	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1411	 * then assume the receiver has locked up and attempt to clear
1412	 * the condition by reprogramming the multicast filter (actually,
1413	 * resetting the interface). This is a work-around for a bug in
1414	 * the 82557 where the receiver locks up if it gets certain types
1415	 * of garbage in the synchronization bits prior to the packet header.
1416	 * This bug is supposed to only occur in 10Mbps mode, but has been
1417	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1418	 * speed transition).
1419	 */
1420	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1421		(void) fxp_init(ifp);
1422		splx(s);
1423		return;
1424	}
1425	/*
1426	 * If there is no pending command, start another stats
1427	 * dump. Otherwise punt for now.
1428	 */
1429	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1430		/*
1431		 * Start another stats dump.
1432		 */
1433		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1434		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1435	} else {
1436		/*
1437		 * A previous command is still waiting to be accepted.
1438		 * Just zero our copy of the stats and wait for the
1439		 * next timer event to update them.
1440		 */
1441		/* BIG_ENDIAN: no swap required to store 0 */
1442		sp->tx_good = 0;
1443		sp->tx_underruns = 0;
1444		sp->tx_total_collisions = 0;
1445
1446		sp->rx_good = 0;
1447		sp->rx_crc_errors = 0;
1448		sp->rx_alignment_errors = 0;
1449		sp->rx_rnr_errors = 0;
1450		sp->rx_overrun_errors = 0;
1451	}
1452
1453	if (sc->sc_flags & FXPF_MII) {
1454		/* Tick the MII clock. */
1455		mii_tick(&sc->sc_mii);
1456	}
1457
1458	splx(s);
1459
1460	/*
1461	 * Schedule another timeout one second from now.
1462	 */
1463	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1464}
1465
1466/*
1467 * Drain the receive queue.
1468 */
1469void
1470fxp_rxdrain(struct fxp_softc *sc)
1471{
1472	bus_dmamap_t rxmap;
1473	struct mbuf *m;
1474
1475	for (;;) {
1476		IF_DEQUEUE(&sc->sc_rxq, m);
1477		if (m == NULL)
1478			break;
1479		rxmap = M_GETCTX(m, bus_dmamap_t);
1480		bus_dmamap_unload(sc->sc_dmat, rxmap);
1481		FXP_RXMAP_PUT(sc, rxmap);
1482		m_freem(m);
1483	}
1484}
1485
1486/*
1487 * Stop the interface. Cancels the statistics updater and resets
1488 * the interface.
1489 */
1490void
1491fxp_stop(struct ifnet *ifp, int disable)
1492{
1493	struct fxp_softc *sc = ifp->if_softc;
1494	struct fxp_txsoft *txs;
1495	int i;
1496
1497	/*
1498	 * Turn down interface (done early to avoid bad interactions
1499	 * between panics, shutdown hooks, and the watchdog timer)
1500	 */
1501	ifp->if_timer = 0;
1502	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1503
1504	/*
1505	 * Cancel stats updater.
1506	 */
1507	callout_stop(&sc->sc_callout);
1508	if (sc->sc_flags & FXPF_MII) {
1509		/* Down the MII. */
1510		mii_down(&sc->sc_mii);
1511	}
1512
1513	/*
1514	 * Issue software reset.  This unloads any microcode that
1515	 * might already be loaded.
1516	 */
1517	sc->sc_flags &= ~FXPF_UCODE_LOADED;
1518	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1519	DELAY(50);
1520
1521	/*
1522	 * Release any xmit buffers.
1523	 */
1524	for (i = 0; i < FXP_NTXCB; i++) {
1525		txs = FXP_DSTX(sc, i);
1526		if (txs->txs_mbuf != NULL) {
1527			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1528			m_freem(txs->txs_mbuf);
1529			txs->txs_mbuf = NULL;
1530		}
1531	}
1532	sc->sc_txpending = 0;
1533
1534	if (disable) {
1535		fxp_rxdrain(sc);
1536		fxp_disable(sc);
1537	}
1538
1539}
1540
1541/*
1542 * Watchdog/transmission transmit timeout handler. Called when a
1543 * transmission is started on the interface, but no interrupt is
1544 * received before the timeout. This usually indicates that the
1545 * card has wedged for some reason.
1546 */
1547void
1548fxp_watchdog(struct ifnet *ifp)
1549{
1550	struct fxp_softc *sc = ifp->if_softc;
1551
1552	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1553	ifp->if_oerrors++;
1554
1555	(void) fxp_init(ifp);
1556}
1557
1558/*
1559 * Initialize the interface.  Must be called at splnet().
1560 */
1561int
1562fxp_init(struct ifnet *ifp)
1563{
1564	struct fxp_softc *sc = ifp->if_softc;
1565	struct fxp_cb_config *cbp;
1566	struct fxp_cb_ias *cb_ias;
1567	struct fxp_txdesc *txd;
1568	bus_dmamap_t rxmap;
1569	int i, prm, save_bf, lrxen, allm, error = 0;
1570
1571	if ((error = fxp_enable(sc)) != 0)
1572		goto out;
1573
1574	/*
1575	 * Cancel any pending I/O
1576	 */
1577	fxp_stop(ifp, 0);
1578
1579	/*
1580	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1581	 * flag, and this prevents the MII from detaching resulting in
1582	 * a panic. The flags field should perhaps be split in runtime
1583	 * flags and more static information. For now, just clear the
1584	 * only other flag set.
1585	 */
1586
1587	sc->sc_flags &= ~FXPF_WANTINIT;
1588
1589	/*
1590	 * Initialize base of CBL and RFA memory. Loading with zero
1591	 * sets it up for regular linear addressing.
1592	 */
1593	fxp_scb_wait(sc);
1594	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1595	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1596
1597	fxp_scb_wait(sc);
1598	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1599
1600	/*
1601	 * Initialize the multicast filter.  Do this now, since we might
1602	 * have to setup the config block differently.
1603	 */
1604	fxp_mc_setup(sc);
1605
1606	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1607	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1608
1609	/*
1610	 * In order to support receiving 802.1Q VLAN frames, we have to
1611	 * enable "save bad frames", since they are 4 bytes larger than
1612	 * the normal Ethernet maximum frame length.  On i82558 and later,
1613	 * we have a better mechanism for this.
1614	 */
1615	save_bf = 0;
1616	lrxen = 0;
1617	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1618		if (sc->sc_rev < FXP_REV_82558_A4)
1619			save_bf = 1;
1620		else
1621			lrxen = 1;
1622	}
1623
1624	/*
1625	 * Initialize base of dump-stats buffer.
1626	 */
1627	fxp_scb_wait(sc);
1628	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1629	    sc->sc_cddma + FXP_CDSTATSOFF);
1630	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1631	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1632
1633	cbp = &sc->sc_control_data->fcd_configcb;
1634	memset(cbp, 0, sizeof(struct fxp_cb_config));
1635
1636	/*
1637	 * Load microcode for this controller.
1638	 */
1639	fxp_load_ucode(sc);
1640
1641	/*
1642	 * This copy is kind of disgusting, but there are a bunch of must be
1643	 * zero and must be one bits in this structure and this is the easiest
1644	 * way to initialize them all to proper values.
1645	 */
1646	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1647
1648	/* BIG_ENDIAN: no need to swap to store 0 */
1649	cbp->cb_status =	0;
1650	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1651				    FXP_CB_COMMAND_EL);
1652	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1653	cbp->link_addr =	0xffffffff; /* (no) next command */
1654					/* bytes in config block */
1655	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
1656				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1657	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1658	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1659	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1660	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
1661	cbp->type_enable =	0;	/* actually reserved */
1662	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1663	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1664	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1665	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1666	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1667	cbp->late_scb =		0;	/* (don't) defer SCB update */
1668	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1669	cbp->ci_int =		1;	/* interrupt on CU idle */
1670	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1671	cbp->ext_stats_dis =	1;	/* disable extended counters */
1672	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
1673	cbp->save_bf =		save_bf;/* save bad frames */
1674	cbp->disc_short_rx =	!prm;	/* discard short packets */
1675	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1676	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1677	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1678	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1679					/* interface mode */
1680	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
1681	cbp->csma_dis =		0;	/* (don't) disable link */
1682	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1683	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1684	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1685	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1686	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
1687	cbp->nsai =		1;	/* (don't) disable source addr insert */
1688	cbp->preamble_length =	2;	/* (7 byte) preamble */
1689	cbp->loopback =		0;	/* (don't) loopback */
1690	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1691	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1692	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1693	cbp->promiscuous =	prm;	/* promiscuous mode */
1694	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1695	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1696	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1697	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1698	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
1699	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1700	cbp->padding =		1;	/* (do) pad short tx packets */
1701	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1702	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
1703	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1704	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1705					/* must set wake_en in PMCSR also */
1706	cbp->force_fdx =	0;	/* (don't) force full duplex */
1707	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1708	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1709	cbp->mc_all =		allm;	/* accept all multicasts */
1710	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1711
1712	if (sc->sc_rev < FXP_REV_82558_A4) {
1713		/*
1714		 * The i82557 has no hardware flow control, the values
1715		 * here are the defaults for the chip.
1716		 */
1717		cbp->fc_delay_lsb =	0;
1718		cbp->fc_delay_msb =	0x40;
1719		cbp->pri_fc_thresh =	3;
1720		cbp->tx_fc_dis =	0;
1721		cbp->rx_fc_restop =	0;
1722		cbp->rx_fc_restart =	0;
1723		cbp->fc_filter =	0;
1724		cbp->pri_fc_loc =	1;
1725	} else {
1726		cbp->fc_delay_lsb =	0x1f;
1727		cbp->fc_delay_msb =	0x01;
1728		cbp->pri_fc_thresh =	3;
1729		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1730		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1731		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1732		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1733		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1734	}
1735
1736	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1737
1738	/*
1739	 * Start the config command/DMA.
1740	 */
1741	fxp_scb_wait(sc);
1742	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1743	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1744	/* ...and wait for it to complete. */
1745	i = 1000;
1746	do {
1747		FXP_CDCONFIGSYNC(sc,
1748		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1749		DELAY(1);
1750	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1751	if (i == 0) {
1752		printf("%s at line %d: dmasync timeout\n",
1753		    sc->sc_dev.dv_xname, __LINE__);
1754		return (ETIMEDOUT);
1755	}
1756
1757	/*
1758	 * Initialize the station address.
1759	 */
1760	cb_ias = &sc->sc_control_data->fcd_iascb;
1761	/* BIG_ENDIAN: no need to swap to store 0 */
1762	cb_ias->cb_status = 0;
1763	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1764	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1765	cb_ias->link_addr = 0xffffffff;
1766	memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1767
1768	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1769
1770	/*
1771	 * Start the IAS (Individual Address Setup) command/DMA.
1772	 */
1773	fxp_scb_wait(sc);
1774	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1775	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1776	/* ...and wait for it to complete. */
1777	i = 1000;
1778	do {
1779		FXP_CDIASSYNC(sc,
1780		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1781		DELAY(1);
1782	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1783	if (i == 0) {
1784		printf("%s at line %d: dmasync timeout\n",
1785		    sc->sc_dev.dv_xname, __LINE__);
1786		return (ETIMEDOUT);
1787	}
1788
1789	/*
1790	 * Initialize the transmit descriptor ring.  txlast is initialized
1791	 * to the end of the list so that it will wrap around to the first
1792	 * descriptor when the first packet is transmitted.
1793	 */
1794	for (i = 0; i < FXP_NTXCB; i++) {
1795		txd = FXP_CDTX(sc, i);
1796		memset(txd, 0, sizeof(*txd));
1797		txd->txd_txcb.cb_command =
1798		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1799		txd->txd_txcb.link_addr =
1800		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1801		if (sc->sc_flags & FXPF_EXT_TXCB)
1802			txd->txd_txcb.tbd_array_addr =
1803			    htole32(FXP_CDTBDADDR(sc, i) +
1804				    (2 * sizeof(struct fxp_tbd)));
1805		else
1806			txd->txd_txcb.tbd_array_addr =
1807			    htole32(FXP_CDTBDADDR(sc, i));
1808		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1809	}
1810	sc->sc_txpending = 0;
1811	sc->sc_txdirty = 0;
1812	sc->sc_txlast = FXP_NTXCB - 1;
1813
1814	/*
1815	 * Initialize the receive buffer list.
1816	 */
1817	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1818	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1819		rxmap = FXP_RXMAP_GET(sc);
1820		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1821			printf("%s: unable to allocate or map rx "
1822			    "buffer %d, error = %d\n",
1823			    sc->sc_dev.dv_xname,
1824			    sc->sc_rxq.ifq_len, error);
1825			/*
1826			 * XXX Should attempt to run with fewer receive
1827			 * XXX buffers instead of just failing.
1828			 */
1829			FXP_RXMAP_PUT(sc, rxmap);
1830			fxp_rxdrain(sc);
1831			goto out;
1832		}
1833	}
1834	sc->sc_rxidle = 0;
1835
1836	/*
1837	 * Give the transmit ring to the chip.  We do this by pointing
1838	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1839	 * issuing a start command.  It will execute the NOP and then
1840	 * suspend, pointing at the first descriptor.
1841	 */
1842	fxp_scb_wait(sc);
1843	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1844	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1845
1846	/*
1847	 * Initialize receiver buffer area - RFA.
1848	 */
1849	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1850	fxp_scb_wait(sc);
1851	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1852	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1853	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1854
1855	if (sc->sc_flags & FXPF_MII) {
1856		/*
1857		 * Set current media.
1858		 */
1859		mii_mediachg(&sc->sc_mii);
1860	}
1861
1862	/*
1863	 * ...all done!
1864	 */
1865	ifp->if_flags |= IFF_RUNNING;
1866	ifp->if_flags &= ~IFF_OACTIVE;
1867
1868	/*
1869	 * Start the one second timer.
1870	 */
1871	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1872
1873	/*
1874	 * Attempt to start output on the interface.
1875	 */
1876	fxp_start(ifp);
1877
1878 out:
1879	if (error) {
1880		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1881		ifp->if_timer = 0;
1882		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1883	}
1884	return (error);
1885}
1886
1887/*
1888 * Change media according to request.
1889 */
1890int
1891fxp_mii_mediachange(struct ifnet *ifp)
1892{
1893	struct fxp_softc *sc = ifp->if_softc;
1894
1895	if (ifp->if_flags & IFF_UP)
1896		mii_mediachg(&sc->sc_mii);
1897	return (0);
1898}
1899
1900/*
1901 * Notify the world which media we're using.
1902 */
1903void
1904fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1905{
1906	struct fxp_softc *sc = ifp->if_softc;
1907
1908	if (sc->sc_enabled == 0) {
1909		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1910		ifmr->ifm_status = 0;
1911		return;
1912	}
1913
1914	mii_pollstat(&sc->sc_mii);
1915	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1916	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1917}
1918
1919int
1920fxp_80c24_mediachange(struct ifnet *ifp)
1921{
1922
1923	/* Nothing to do here. */
1924	return (0);
1925}
1926
1927void
1928fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1929{
1930	struct fxp_softc *sc = ifp->if_softc;
1931
1932	/*
1933	 * Media is currently-selected media.  We cannot determine
1934	 * the link status.
1935	 */
1936	ifmr->ifm_status = 0;
1937	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1938}
1939
1940/*
1941 * Add a buffer to the end of the RFA buffer list.
1942 * Return 0 if successful, error code on failure.
1943 *
1944 * The RFA struct is stuck at the beginning of mbuf cluster and the
1945 * data pointer is fixed up to point just past it.
1946 */
1947int
1948fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1949{
1950	struct mbuf *m;
1951	int error;
1952
1953	MGETHDR(m, M_DONTWAIT, MT_DATA);
1954	if (m == NULL)
1955		return (ENOBUFS);
1956
1957	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1958	MCLGET(m, M_DONTWAIT);
1959	if ((m->m_flags & M_EXT) == 0) {
1960		m_freem(m);
1961		return (ENOBUFS);
1962	}
1963
1964	if (unload)
1965		bus_dmamap_unload(sc->sc_dmat, rxmap);
1966
1967	M_SETCTX(m, rxmap);
1968
1969	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1970	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
1971	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1972	if (error) {
1973		printf("%s: can't load rx DMA map %d, error = %d\n",
1974		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1975		panic("fxp_add_rfabuf");		/* XXX */
1976	}
1977
1978	FXP_INIT_RFABUF(sc, m);
1979
1980	return (0);
1981}
1982
1983int
1984fxp_mdi_read(struct device *self, int phy, int reg)
1985{
1986	struct fxp_softc *sc = (struct fxp_softc *)self;
1987	int count = 10000;
1988	int value;
1989
1990	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1991	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1992
1993	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
1994	    0x10000000) == 0 && count--)
1995		DELAY(10);
1996
1997	if (count <= 0)
1998		printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1999
2000	return (value & 0xffff);
2001}
2002
2003void
2004fxp_statchg(struct device *self)
2005{
2006
2007	/* Nothing to do. */
2008}
2009
2010void
2011fxp_mdi_write(struct device *self, int phy, int reg, int value)
2012{
2013	struct fxp_softc *sc = (struct fxp_softc *)self;
2014	int count = 10000;
2015
2016	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2017	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2018	    (value & 0xffff));
2019
2020	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2021	    count--)
2022		DELAY(10);
2023
2024	if (count <= 0)
2025		printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
2026}
2027
2028int
2029fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2030{
2031	struct fxp_softc *sc = ifp->if_softc;
2032	struct ifreq *ifr = (struct ifreq *)data;
2033	int s, error;
2034
2035	s = splnet();
2036
2037	switch (cmd) {
2038	case SIOCSIFMEDIA:
2039	case SIOCGIFMEDIA:
2040		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2041		break;
2042
2043	default:
2044		error = ether_ioctl(ifp, cmd, data);
2045		if (error == ENETRESET) {
2046			if (sc->sc_enabled) {
2047				/*
2048				 * Multicast list has changed; set the
2049				 * hardware filter accordingly.
2050				 */
2051				if (sc->sc_txpending) {
2052					sc->sc_flags |= FXPF_WANTINIT;
2053					error = 0;
2054				} else
2055					error = fxp_init(ifp);
2056			} else
2057				error = 0;
2058		}
2059		break;
2060	}
2061
2062	/* Try to get more packets going. */
2063	if (sc->sc_enabled)
2064		fxp_start(ifp);
2065
2066	splx(s);
2067	return (error);
2068}
2069
2070/*
2071 * Program the multicast filter.
2072 *
2073 * This function must be called at splnet().
2074 */
2075void
2076fxp_mc_setup(struct fxp_softc *sc)
2077{
2078	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2079	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2080	struct ethercom *ec = &sc->sc_ethercom;
2081	struct ether_multi *enm;
2082	struct ether_multistep step;
2083	int count, nmcasts;
2084
2085#ifdef DIAGNOSTIC
2086	if (sc->sc_txpending)
2087		panic("fxp_mc_setup: pending transmissions");
2088#endif
2089
2090	ifp->if_flags &= ~IFF_ALLMULTI;
2091
2092	/*
2093	 * Initialize multicast setup descriptor.
2094	 */
2095	nmcasts = 0;
2096	ETHER_FIRST_MULTI(step, ec, enm);
2097	while (enm != NULL) {
2098		/*
2099		 * Check for too many multicast addresses or if we're
2100		 * listening to a range.  Either way, we simply have
2101		 * to accept all multicasts.
2102		 */
2103		if (nmcasts >= MAXMCADDR ||
2104		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
2105		    ETHER_ADDR_LEN) != 0) {
2106			/*
2107			 * Callers of this function must do the
2108			 * right thing with this.  If we're called
2109			 * from outside fxp_init(), the caller must
2110			 * detect if the state if IFF_ALLMULTI changes.
2111			 * If it does, the caller must then call
2112			 * fxp_init(), since allmulti is handled by
2113			 * the config block.
2114			 */
2115			ifp->if_flags |= IFF_ALLMULTI;
2116			return;
2117		}
2118		memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2119		    ETHER_ADDR_LEN);
2120		nmcasts++;
2121		ETHER_NEXT_MULTI(step, enm);
2122	}
2123
2124	/* BIG_ENDIAN: no need to swap to store 0 */
2125	mcsp->cb_status = 0;
2126	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2127	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2128	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2129
2130	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2131
2132	/*
2133	 * Wait until the command unit is not active.  This should never
2134	 * happen since nothing is queued, but make sure anyway.
2135	 */
2136	count = 100;
2137	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2138	    FXP_SCB_CUS_ACTIVE && --count)
2139		DELAY(1);
2140	if (count == 0) {
2141		printf("%s at line %d: command queue timeout\n",
2142		    sc->sc_dev.dv_xname, __LINE__);
2143		return;
2144	}
2145
2146	/*
2147	 * Start the multicast setup command/DMA.
2148	 */
2149	fxp_scb_wait(sc);
2150	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2151	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2152
2153	/* ...and wait for it to complete. */
2154	count = 1000;
2155	do {
2156		FXP_CDMCSSYNC(sc,
2157		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2158		DELAY(1);
2159	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2160	if (count == 0) {
2161		printf("%s at line %d: dmasync timeout\n",
2162		    sc->sc_dev.dv_xname, __LINE__);
2163		return;
2164	}
2165}
2166
2167static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2168static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2169static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2170static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2171static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2172static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2173
2174#define	UCODE(x)	x, sizeof(x)
2175
2176static const struct ucode {
2177	int32_t		revision;
2178	const uint32_t	*ucode;
2179	size_t		length;
2180	uint16_t	int_delay_offset;
2181	uint16_t	bundle_max_offset;
2182} ucode_table[] = {
2183	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2184	  D101_CPUSAVER_DWORD, 0 },
2185
2186	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2187	  D101_CPUSAVER_DWORD, 0 },
2188
2189	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2190	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2191
2192	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2193	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2194
2195	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2196	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2197
2198	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2199	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2200
2201	{ 0, NULL, 0, 0, 0 }
2202};
2203
2204void
2205fxp_load_ucode(struct fxp_softc *sc)
2206{
2207	const struct ucode *uc;
2208	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2209	int count;
2210
2211	if (sc->sc_flags & FXPF_UCODE_LOADED)
2212		return;
2213
2214	/*
2215	 * Only load the uCode if the user has requested that
2216	 * we do so.
2217	 */
2218	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2219		sc->sc_int_delay = 0;
2220		sc->sc_bundle_max = 0;
2221		return;
2222	}
2223
2224	for (uc = ucode_table; uc->ucode != NULL; uc++) {
2225		if (sc->sc_rev == uc->revision)
2226			break;
2227	}
2228	if (uc->ucode == NULL)
2229		return;
2230
2231	/* BIG ENDIAN: no need to swap to store 0 */
2232	cbp->cb_status = 0;
2233	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2234	cbp->link_addr = 0xffffffff;		/* (no) next command */
2235	memcpy((void *) cbp->ucode, uc->ucode, uc->length);
2236
2237	if (uc->int_delay_offset)
2238		*(uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2239		    htole16(fxp_int_delay + (fxp_int_delay / 2));
2240
2241	if (uc->bundle_max_offset)
2242		*(uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2243		    htole16(fxp_bundle_max);
2244
2245	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2246
2247	/*
2248	 * Download the uCode to the chip.
2249	 */
2250	fxp_scb_wait(sc);
2251	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2252	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2253
2254	/* ...and wait for it to complete. */
2255	count = 10000;
2256	do {
2257		FXP_CDUCODESYNC(sc,
2258		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2259		DELAY(2);
2260	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2261	if (count == 0) {
2262		sc->sc_int_delay = 0;
2263		sc->sc_bundle_max = 0;
2264		printf("%s: timeout loading microcode\n",
2265		    sc->sc_dev.dv_xname);
2266		return;
2267	}
2268
2269	if (sc->sc_int_delay != fxp_int_delay ||
2270	    sc->sc_bundle_max != fxp_bundle_max) {
2271		sc->sc_int_delay = fxp_int_delay;
2272		sc->sc_bundle_max = fxp_bundle_max;
2273		printf("%s: Microcode loaded: int delay: %d usec, "
2274		    "max bundle: %d\n", sc->sc_dev.dv_xname,
2275		    sc->sc_int_delay,
2276		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2277	}
2278
2279	sc->sc_flags |= FXPF_UCODE_LOADED;
2280}
2281
2282int
2283fxp_enable(struct fxp_softc *sc)
2284{
2285
2286	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2287		if ((*sc->sc_enable)(sc) != 0) {
2288			printf("%s: device enable failed\n",
2289			    sc->sc_dev.dv_xname);
2290			return (EIO);
2291		}
2292	}
2293
2294	sc->sc_enabled = 1;
2295	return (0);
2296}
2297
2298void
2299fxp_disable(struct fxp_softc *sc)
2300{
2301
2302	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2303		(*sc->sc_disable)(sc);
2304		sc->sc_enabled = 0;
2305	}
2306}
2307
2308/*
2309 * fxp_activate:
2310 *
2311 *	Handle device activation/deactivation requests.
2312 */
2313int
2314fxp_activate(struct device *self, enum devact act)
2315{
2316	struct fxp_softc *sc = (void *) self;
2317	int s, error = 0;
2318
2319	s = splnet();
2320	switch (act) {
2321	case DVACT_ACTIVATE:
2322		error = EOPNOTSUPP;
2323		break;
2324
2325	case DVACT_DEACTIVATE:
2326		if (sc->sc_flags & FXPF_MII)
2327			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2328			    MII_OFFSET_ANY);
2329		if_deactivate(&sc->sc_ethercom.ec_if);
2330		break;
2331	}
2332	splx(s);
2333
2334	return (error);
2335}
2336
2337/*
2338 * fxp_detach:
2339 *
2340 *	Detach an i82557 interface.
2341 */
2342int
2343fxp_detach(struct fxp_softc *sc)
2344{
2345	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2346	int i;
2347
2348	/* Succeed now if there's no work to do. */
2349	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2350		return (0);
2351
2352	/* Unhook our tick handler. */
2353	callout_stop(&sc->sc_callout);
2354
2355	if (sc->sc_flags & FXPF_MII) {
2356		/* Detach all PHYs */
2357		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2358	}
2359
2360	/* Delete all remaining media. */
2361	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2362
2363#if NRND > 0
2364	rnd_detach_source(&sc->rnd_source);
2365#endif
2366	ether_ifdetach(ifp);
2367	if_detach(ifp);
2368
2369	for (i = 0; i < FXP_NRFABUFS; i++) {
2370		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2371		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2372	}
2373
2374	for (i = 0; i < FXP_NTXCB; i++) {
2375		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2376		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2377	}
2378
2379	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2380	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2381	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2382	    sizeof(struct fxp_control_data));
2383	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2384
2385	shutdownhook_disestablish(sc->sc_sdhook);
2386	powerhook_disestablish(sc->sc_powerhook);
2387
2388	return (0);
2389}
2390