i82557.c revision 1.73
1/*	$NetBSD: i82557.c,v 1.73 2003/02/26 06:31:09 matt Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the NetBSD
22 *	Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 *    contributors may be used to endorse or promote products derived
25 *    from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40/*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 *    notice unmodified, this list of conditions, and the following
50 *    disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 *    notice, this list of conditions and the following disclaimer in the
53 *    documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70/*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75#include <sys/cdefs.h>
76__KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.73 2003/02/26 06:31:09 matt Exp $");
77
78#include "bpfilter.h"
79#include "rnd.h"
80
81#include <sys/param.h>
82#include <sys/systm.h>
83#include <sys/callout.h>
84#include <sys/mbuf.h>
85#include <sys/malloc.h>
86#include <sys/kernel.h>
87#include <sys/socket.h>
88#include <sys/ioctl.h>
89#include <sys/errno.h>
90#include <sys/device.h>
91
92#include <machine/endian.h>
93
94#include <uvm/uvm_extern.h>
95
96#if NRND > 0
97#include <sys/rnd.h>
98#endif
99
100#include <net/if.h>
101#include <net/if_dl.h>
102#include <net/if_media.h>
103#include <net/if_ether.h>
104
105#if NBPFILTER > 0
106#include <net/bpf.h>
107#endif
108
109#include <machine/bus.h>
110#include <machine/intr.h>
111
112#include <dev/mii/miivar.h>
113
114#include <dev/ic/i82557reg.h>
115#include <dev/ic/i82557var.h>
116
117#include <dev/microcode/i8255x/rcvbundl.h>
118
119/*
120 * NOTE!  On the Alpha, we have an alignment constraint.  The
121 * card DMAs the packet immediately following the RFA.  However,
122 * the first thing in the packet is a 14-byte Ethernet header.
123 * This means that the packet is misaligned.  To compensate,
124 * we actually offset the RFA 2 bytes into the cluster.  This
125 * alignes the packet after the Ethernet header at a 32-bit
126 * boundary.  HOWEVER!  This means that the RFA is misaligned!
127 */
128#define	RFA_ALIGNMENT_FUDGE	2
129
130/*
131 * The configuration byte map has several undefined fields which
132 * must be one or must be zero.  Set up a template for these bits
133 * only (assuming an i82557 chip), leaving the actual configuration
134 * for fxp_init().
135 *
136 * See the definition of struct fxp_cb_config for the bit definitions.
137 */
138const u_int8_t fxp_cb_config_template[] = {
139	0x0, 0x0,		/* cb_status */
140	0x0, 0x0,		/* cb_command */
141	0x0, 0x0, 0x0, 0x0,	/* link_addr */
142	0x0,	/*  0 */
143	0x0,	/*  1 */
144	0x0,	/*  2 */
145	0x0,	/*  3 */
146	0x0,	/*  4 */
147	0x0,	/*  5 */
148	0x32,	/*  6 */
149	0x0,	/*  7 */
150	0x0,	/*  8 */
151	0x0,	/*  9 */
152	0x6,	/* 10 */
153	0x0,	/* 11 */
154	0x0,	/* 12 */
155	0x0,	/* 13 */
156	0xf2,	/* 14 */
157	0x48,	/* 15 */
158	0x0,	/* 16 */
159	0x40,	/* 17 */
160	0xf0,	/* 18 */
161	0x0,	/* 19 */
162	0x3f,	/* 20 */
163	0x5,	/* 21 */
164	0x0,	/* 22 */
165	0x0,	/* 23 */
166	0x0,	/* 24 */
167	0x0,	/* 25 */
168	0x0,	/* 26 */
169	0x0,	/* 27 */
170	0x0,	/* 28 */
171	0x0,	/* 29 */
172	0x0,	/* 30 */
173	0x0,	/* 31 */
174};
175
176void	fxp_mii_initmedia(struct fxp_softc *);
177int	fxp_mii_mediachange(struct ifnet *);
178void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
179
180void	fxp_80c24_initmedia(struct fxp_softc *);
181int	fxp_80c24_mediachange(struct ifnet *);
182void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
183
184void	fxp_start(struct ifnet *);
185int	fxp_ioctl(struct ifnet *, u_long, caddr_t);
186void	fxp_watchdog(struct ifnet *);
187int	fxp_init(struct ifnet *);
188void	fxp_stop(struct ifnet *, int);
189
190void	fxp_txintr(struct fxp_softc *);
191void	fxp_rxintr(struct fxp_softc *);
192
193void	fxp_rxdrain(struct fxp_softc *);
194int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
195int	fxp_mdi_read(struct device *, int, int);
196void	fxp_statchg(struct device *);
197void	fxp_mdi_write(struct device *, int, int, int);
198void	fxp_autosize_eeprom(struct fxp_softc*);
199void	fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
200void	fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
201void	fxp_eeprom_update_cksum(struct fxp_softc *);
202void	fxp_get_info(struct fxp_softc *, u_int8_t *);
203void	fxp_tick(void *);
204void	fxp_mc_setup(struct fxp_softc *);
205void	fxp_load_ucode(struct fxp_softc *);
206
207void	fxp_shutdown(void *);
208void	fxp_power(int, void *);
209
210int	fxp_copy_small = 0;
211
212/*
213 * Variables for interrupt mitigating microcode.
214 */
215int	fxp_int_delay = 1000;		/* usec */
216int	fxp_bundle_max = 6;		/* packets */
217
218struct fxp_phytype {
219	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
220	void	(*fp_init)(struct fxp_softc *);
221} fxp_phytype_table[] = {
222	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
223	{ -1,				fxp_mii_initmedia },
224};
225
226/*
227 * Set initial transmit threshold at 64 (512 bytes). This is
228 * increased by 64 (512 bytes) at a time, to maximum of 192
229 * (1536 bytes), if an underrun occurs.
230 */
231static int tx_threshold = 64;
232
233/*
234 * Wait for the previous command to be accepted (but not necessarily
235 * completed).
236 */
237static __inline void
238fxp_scb_wait(struct fxp_softc *sc)
239{
240	int i = 10000;
241
242	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
243		delay(2);
244	if (i == 0)
245		printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
246}
247
248/*
249 * Submit a command to the i82557.
250 */
251static __inline void
252fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
253{
254
255	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
256}
257
258/*
259 * Finish attaching an i82557 interface.  Called by bus-specific front-end.
260 */
261void
262fxp_attach(struct fxp_softc *sc)
263{
264	u_int8_t enaddr[ETHER_ADDR_LEN];
265	struct ifnet *ifp;
266	bus_dma_segment_t seg;
267	int rseg, i, error;
268	struct fxp_phytype *fp;
269
270	callout_init(&sc->sc_callout);
271
272	/* Start out using the standard RFA. */
273	sc->sc_rfa_size = RFA_SIZE;
274
275	/*
276	 * Enable some good stuff on i82558 and later.
277	 */
278	if (sc->sc_rev >= FXP_REV_82558_A4) {
279		/* Enable the extended TxCB. */
280		sc->sc_flags |= FXPF_EXT_TXCB;
281	}
282
283	/*
284	 * Allocate the control data structures, and create and load the
285	 * DMA map for it.
286	 */
287	if ((error = bus_dmamem_alloc(sc->sc_dmat,
288	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
289	    0)) != 0) {
290		aprint_error(
291		    "%s: unable to allocate control data, error = %d\n",
292		    sc->sc_dev.dv_xname, error);
293		goto fail_0;
294	}
295
296	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
297	    sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
298	    BUS_DMA_COHERENT)) != 0) {
299		aprint_error("%s: unable to map control data, error = %d\n",
300		    sc->sc_dev.dv_xname, error);
301		goto fail_1;
302	}
303	sc->sc_cdseg = seg;
304	sc->sc_cdnseg = rseg;
305
306	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
307
308	if ((error = bus_dmamap_create(sc->sc_dmat,
309	    sizeof(struct fxp_control_data), 1,
310	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
311		aprint_error("%s: unable to create control data DMA map, "
312		    "error = %d\n", sc->sc_dev.dv_xname, error);
313		goto fail_2;
314	}
315
316	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
317	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
318	    0)) != 0) {
319		aprint_error(
320		    "%s: can't load control data DMA map, error = %d\n",
321		    sc->sc_dev.dv_xname, error);
322		goto fail_3;
323	}
324
325	/*
326	 * Create the transmit buffer DMA maps.
327	 */
328	for (i = 0; i < FXP_NTXCB; i++) {
329		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
330		    FXP_NTXSEG, MCLBYTES, 0, 0,
331		    &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
332			aprint_error("%s: unable to create tx DMA map %d, "
333			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
334			goto fail_4;
335		}
336	}
337
338	/*
339	 * Create the receive buffer DMA maps.
340	 */
341	for (i = 0; i < FXP_NRFABUFS; i++) {
342		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
343		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
344			aprint_error("%s: unable to create rx DMA map %d, "
345			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
346			goto fail_5;
347		}
348	}
349
350	/* Initialize MAC address and media structures. */
351	fxp_get_info(sc, enaddr);
352
353	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
354	    ether_sprintf(enaddr));
355
356	ifp = &sc->sc_ethercom.ec_if;
357
358	/*
359	 * Get info about our media interface, and initialize it.  Note
360	 * the table terminates itself with a phy of -1, indicating
361	 * that we're using MII.
362	 */
363	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
364		if (fp->fp_phy == sc->phy_primary_device)
365			break;
366	(*fp->fp_init)(sc);
367
368	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
369	ifp->if_softc = sc;
370	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
371	ifp->if_ioctl = fxp_ioctl;
372	ifp->if_start = fxp_start;
373	ifp->if_watchdog = fxp_watchdog;
374	ifp->if_init = fxp_init;
375	ifp->if_stop = fxp_stop;
376	IFQ_SET_READY(&ifp->if_snd);
377
378	/*
379	 * We can support 802.1Q VLAN-sized frames.
380	 */
381	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
382
383	/*
384	 * Attach the interface.
385	 */
386	if_attach(ifp);
387	ether_ifattach(ifp, enaddr);
388#if NRND > 0
389	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
390	    RND_TYPE_NET, 0);
391#endif
392
393#ifdef FXP_EVENT_COUNTERS
394	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
395	    NULL, sc->sc_dev.dv_xname, "txstall");
396	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
397	    NULL, sc->sc_dev.dv_xname, "txintr");
398	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
399	    NULL, sc->sc_dev.dv_xname, "rxintr");
400#endif /* FXP_EVENT_COUNTERS */
401
402	/*
403	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
404	 * doing do could allow DMA to corrupt kernel memory during the
405	 * reboot before the driver initializes.
406	 */
407	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
408	if (sc->sc_sdhook == NULL)
409		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
410		    sc->sc_dev.dv_xname);
411	/*
412  	 * Add suspend hook, for similar reasons..
413	 */
414	sc->sc_powerhook = powerhook_establish(fxp_power, sc);
415	if (sc->sc_powerhook == NULL)
416		aprint_error("%s: WARNING: unable to establish power hook\n",
417		    sc->sc_dev.dv_xname);
418
419	/* The attach is successful. */
420	sc->sc_flags |= FXPF_ATTACHED;
421
422	return;
423
424	/*
425	 * Free any resources we've allocated during the failed attach
426	 * attempt.  Do this in reverse order and fall though.
427	 */
428 fail_5:
429	for (i = 0; i < FXP_NRFABUFS; i++) {
430		if (sc->sc_rxmaps[i] != NULL)
431			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
432	}
433 fail_4:
434	for (i = 0; i < FXP_NTXCB; i++) {
435		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
436			bus_dmamap_destroy(sc->sc_dmat,
437			    FXP_DSTX(sc, i)->txs_dmamap);
438	}
439	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
440 fail_3:
441	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
442 fail_2:
443	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
444	    sizeof(struct fxp_control_data));
445 fail_1:
446	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
447 fail_0:
448	return;
449}
450
451void
452fxp_mii_initmedia(struct fxp_softc *sc)
453{
454	int flags;
455
456	sc->sc_flags |= FXPF_MII;
457
458	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
459	sc->sc_mii.mii_readreg = fxp_mdi_read;
460	sc->sc_mii.mii_writereg = fxp_mdi_write;
461	sc->sc_mii.mii_statchg = fxp_statchg;
462	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, fxp_mii_mediachange,
463	    fxp_mii_mediastatus);
464
465	flags = MIIF_NOISOLATE;
466	if (sc->sc_rev >= FXP_REV_82558_A4)
467		flags |= MIIF_DOPAUSE;
468	/*
469	 * The i82557 wedges if all of its PHYs are isolated!
470	 */
471	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
472	    MII_OFFSET_ANY, flags);
473	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
474		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
475		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
476	} else
477		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
478}
479
480void
481fxp_80c24_initmedia(struct fxp_softc *sc)
482{
483
484	/*
485	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
486	 * doesn't have a programming interface of any sort.  The
487	 * media is sensed automatically based on how the link partner
488	 * is configured.  This is, in essence, manual configuration.
489	 */
490	aprint_normal("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
491	    sc->sc_dev.dv_xname);
492	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
493	    fxp_80c24_mediastatus);
494	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
495	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
496}
497
498/*
499 * Device shutdown routine. Called at system shutdown after sync. The
500 * main purpose of this routine is to shut off receiver DMA so that
501 * kernel memory doesn't get clobbered during warmboot.
502 */
503void
504fxp_shutdown(void *arg)
505{
506	struct fxp_softc *sc = arg;
507
508	/*
509	 * Since the system's going to halt shortly, don't bother
510	 * freeing mbufs.
511	 */
512	fxp_stop(&sc->sc_ethercom.ec_if, 0);
513}
514/*
515 * Power handler routine. Called when the system is transitioning
516 * into/out of power save modes.  As with fxp_shutdown, the main
517 * purpose of this routine is to shut off receiver DMA so it doesn't
518 * clobber kernel memory at the wrong time.
519 */
520void
521fxp_power(int why, void *arg)
522{
523	struct fxp_softc *sc = arg;
524	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
525	int s;
526
527	s = splnet();
528	switch (why) {
529	case PWR_SUSPEND:
530	case PWR_STANDBY:
531		fxp_stop(ifp, 0);
532		break;
533	case PWR_RESUME:
534		if (ifp->if_flags & IFF_UP)
535			fxp_init(ifp);
536		break;
537	case PWR_SOFTSUSPEND:
538	case PWR_SOFTSTANDBY:
539	case PWR_SOFTRESUME:
540		break;
541	}
542	splx(s);
543}
544
545/*
546 * Initialize the interface media.
547 */
548void
549fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
550{
551	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
552
553	/*
554	 * Reset to a stable state.
555	 */
556	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
557	DELAY(10);
558
559	sc->sc_eeprom_size = 0;
560	fxp_autosize_eeprom(sc);
561	if (sc->sc_eeprom_size == 0) {
562		aprint_error("%s: failed to detect EEPROM size\n",
563		    sc->sc_dev.dv_xname);
564		sc->sc_eeprom_size = 6; /* XXX panic here? */
565	}
566#ifdef DEBUG
567	aprint_debug("%s: detected %d word EEPROM\n",
568	    sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
569#endif
570
571	/*
572	 * Get info about the primary PHY
573	 */
574	fxp_read_eeprom(sc, &data, 6, 1);
575	sc->phy_primary_device =
576	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
577
578	/*
579	 * Read MAC address.
580	 */
581	fxp_read_eeprom(sc, myea, 0, 3);
582	enaddr[0] = myea[0] & 0xff;
583	enaddr[1] = myea[0] >> 8;
584	enaddr[2] = myea[1] & 0xff;
585	enaddr[3] = myea[1] >> 8;
586	enaddr[4] = myea[2] & 0xff;
587	enaddr[5] = myea[2] >> 8;
588
589	/*
590	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
591	 * as some i82559 designs, have a defect where the chip can
592	 * cause a PCI protocol violation if it receives a CU_RESUME
593	 * command when it is entering the IDLE state.
594	 *
595	 * The work-around is to disable Dynamic Standby Mode, so that
596	 * the chip never deasserts #CLKRUN, and always remains in the
597	 * active state.
598	 *
599	 * Unfortunately, the only way to disable Dynamic Standby is
600	 * to frob an EEPROM setting and reboot (the EEPROM setting
601	 * is only consulted when the PCI bus comes out of reset).
602	 *
603	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
604	 */
605	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
606		fxp_read_eeprom(sc, &data, 10, 1);
607		if (data & 0x02) {		/* STB enable */
608			aprint_error("%s: WARNING: "
609			    "Disabling dynamic standby mode in EEPROM "
610			    "to work around a\n",
611			    sc->sc_dev.dv_xname);
612			aprint_normal(
613			    "%s: WARNING: hardware bug.  You must reset "
614			    "the system before using this\n",
615			    sc->sc_dev.dv_xname);
616			aprint_normal("%s: WARNING: interface.\n",
617			    sc->sc_dev.dv_xname);
618			data &= ~0x02;
619			fxp_write_eeprom(sc, &data, 10, 1);
620			aprint_normal("%s: new EEPROM ID: 0x%04x\n",
621			    sc->sc_dev.dv_xname, data);
622			fxp_eeprom_update_cksum(sc);
623		}
624	}
625}
626
627static void
628fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
629{
630	uint16_t reg;
631	int x;
632
633	for (x = 1 << (len - 1); x != 0; x >>= 1) {
634		if (data & x)
635			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
636		else
637			reg = FXP_EEPROM_EECS;
638		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
639		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
640		    reg | FXP_EEPROM_EESK);
641		DELAY(4);
642		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
643		DELAY(4);
644	}
645}
646
647/*
648 * Figure out EEPROM size.
649 *
650 * 559's can have either 64-word or 256-word EEPROMs, the 558
651 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
652 * talks about the existance of 16 to 256 word EEPROMs.
653 *
654 * The only known sizes are 64 and 256, where the 256 version is used
655 * by CardBus cards to store CIS information.
656 *
657 * The address is shifted in msb-to-lsb, and after the last
658 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
659 * after which follows the actual data. We try to detect this zero, by
660 * probing the data-out bit in the EEPROM control register just after
661 * having shifted in a bit. If the bit is zero, we assume we've
662 * shifted enough address bits. The data-out should be tri-state,
663 * before this, which should translate to a logical one.
664 *
665 * Other ways to do this would be to try to read a register with known
666 * contents with a varying number of address bits, but no such
667 * register seem to be available. The high bits of register 10 are 01
668 * on the 558 and 559, but apparently not on the 557.
669 *
670 * The Linux driver computes a checksum on the EEPROM data, but the
671 * value of this checksum is not very well documented.
672 */
673
674void
675fxp_autosize_eeprom(struct fxp_softc *sc)
676{
677	int x;
678
679	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
680
681	/* Shift in read opcode. */
682	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
683
684	/*
685	 * Shift in address, wait for the dummy zero following a correct
686	 * address shift.
687	 */
688	for (x = 1; x <= 8; x++) {
689		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
690		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
691		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
692		DELAY(4);
693		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
694		    FXP_EEPROM_EEDO) == 0)
695			break;
696		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
697		DELAY(4);
698	}
699	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
700	DELAY(4);
701	if (x != 6 && x != 8) {
702#ifdef DEBUG
703		printf("%s: strange EEPROM size (%d)\n",
704		    sc->sc_dev.dv_xname, 1 << x);
705#endif
706	} else
707		sc->sc_eeprom_size = x;
708}
709
710/*
711 * Read from the serial EEPROM. Basically, you manually shift in
712 * the read opcode (one bit at a time) and then shift in the address,
713 * and then you shift out the data (all of this one bit at a time).
714 * The word size is 16 bits, so you have to provide the address for
715 * every 16 bits of data.
716 */
717void
718fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
719{
720	u_int16_t reg;
721	int i, x;
722
723	for (i = 0; i < words; i++) {
724		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
725
726		/* Shift in read opcode. */
727		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
728
729		/* Shift in address. */
730		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
731
732		reg = FXP_EEPROM_EECS;
733		data[i] = 0;
734
735		/* Shift out data. */
736		for (x = 16; x > 0; x--) {
737			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
738			    reg | FXP_EEPROM_EESK);
739			DELAY(4);
740			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
741			    FXP_EEPROM_EEDO)
742				data[i] |= (1 << (x - 1));
743			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
744			DELAY(4);
745		}
746		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
747		DELAY(4);
748	}
749}
750
751/*
752 * Write data to the serial EEPROM.
753 */
754void
755fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
756{
757	int i, j;
758
759	for (i = 0; i < words; i++) {
760		/* Erase/write enable. */
761		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
762		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
763		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
764		    sc->sc_eeprom_size);
765		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
766		DELAY(4);
767
768		/* Shift in write opcode, address, data. */
769		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
770		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
771		fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
772		fxp_eeprom_shiftin(sc, data[i], 16);
773		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
774		DELAY(4);
775
776		/* Wait for the EEPROM to finish up. */
777		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
778		DELAY(4);
779		for (j = 0; j < 1000; j++) {
780			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
781			    FXP_EEPROM_EEDO)
782				break;
783			DELAY(50);
784		}
785		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
786		DELAY(4);
787
788		/* Erase/write disable. */
789		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
790		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
791		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
792		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
793		DELAY(4);
794	}
795}
796
797/*
798 * Update the checksum of the EEPROM.
799 */
800void
801fxp_eeprom_update_cksum(struct fxp_softc *sc)
802{
803	int i;
804	uint16_t data, cksum;
805
806	cksum = 0;
807	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
808		fxp_read_eeprom(sc, &data, i, 1);
809		cksum += data;
810	}
811	i = (1 << sc->sc_eeprom_size) - 1;
812	cksum = 0xbaba - cksum;
813	fxp_read_eeprom(sc, &data, i, 1);
814	fxp_write_eeprom(sc, &cksum, i, 1);
815	printf("%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
816	    sc->sc_dev.dv_xname, i, data, cksum);
817}
818
819/*
820 * Start packet transmission on the interface.
821 */
822void
823fxp_start(struct ifnet *ifp)
824{
825	struct fxp_softc *sc = ifp->if_softc;
826	struct mbuf *m0, *m;
827	struct fxp_txdesc *txd;
828	struct fxp_txsoft *txs;
829	bus_dmamap_t dmamap;
830	int error, lasttx, nexttx, opending, seg;
831
832	/*
833	 * If we want a re-init, bail out now.
834	 */
835	if (sc->sc_flags & FXPF_WANTINIT) {
836		ifp->if_flags |= IFF_OACTIVE;
837		return;
838	}
839
840	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
841		return;
842
843	/*
844	 * Remember the previous txpending and the current lasttx.
845	 */
846	opending = sc->sc_txpending;
847	lasttx = sc->sc_txlast;
848
849	/*
850	 * Loop through the send queue, setting up transmit descriptors
851	 * until we drain the queue, or use up all available transmit
852	 * descriptors.
853	 */
854	for (;;) {
855		/*
856		 * Grab a packet off the queue.
857		 */
858		IFQ_POLL(&ifp->if_snd, m0);
859		if (m0 == NULL)
860			break;
861		m = NULL;
862
863		if (sc->sc_txpending == FXP_NTXCB) {
864			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
865			break;
866		}
867
868		/*
869		 * Get the next available transmit descriptor.
870		 */
871		nexttx = FXP_NEXTTX(sc->sc_txlast);
872		txd = FXP_CDTX(sc, nexttx);
873		txs = FXP_DSTX(sc, nexttx);
874		dmamap = txs->txs_dmamap;
875
876		/*
877		 * Load the DMA map.  If this fails, the packet either
878		 * didn't fit in the allotted number of frags, or we were
879		 * short on resources.  In this case, we'll copy and try
880		 * again.
881		 */
882		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
883		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
884			MGETHDR(m, M_DONTWAIT, MT_DATA);
885			if (m == NULL) {
886				printf("%s: unable to allocate Tx mbuf\n",
887				    sc->sc_dev.dv_xname);
888				break;
889			}
890			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
891			if (m0->m_pkthdr.len > MHLEN) {
892				MCLGET(m, M_DONTWAIT);
893				if ((m->m_flags & M_EXT) == 0) {
894					printf("%s: unable to allocate Tx "
895					    "cluster\n", sc->sc_dev.dv_xname);
896					m_freem(m);
897					break;
898				}
899			}
900			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
901			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
902			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
903			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
904			if (error) {
905				printf("%s: unable to load Tx buffer, "
906				    "error = %d\n", sc->sc_dev.dv_xname, error);
907				break;
908			}
909		}
910
911		IFQ_DEQUEUE(&ifp->if_snd, m0);
912		if (m != NULL) {
913			m_freem(m0);
914			m0 = m;
915		}
916
917		/* Initialize the fraglist. */
918		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
919			txd->txd_tbd[seg].tb_addr =
920			    htole32(dmamap->dm_segs[seg].ds_addr);
921			txd->txd_tbd[seg].tb_size =
922			    htole32(dmamap->dm_segs[seg].ds_len);
923		}
924
925		/* Sync the DMA map. */
926		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
927		    BUS_DMASYNC_PREWRITE);
928
929		/*
930		 * Store a pointer to the packet so we can free it later.
931		 */
932		txs->txs_mbuf = m0;
933
934		/*
935		 * Initialize the transmit descriptor.
936		 */
937		/* BIG_ENDIAN: no need to swap to store 0 */
938		txd->txd_txcb.cb_status = 0;
939		txd->txd_txcb.cb_command =
940		    htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
941		txd->txd_txcb.tx_threshold = tx_threshold;
942		txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
943
944		FXP_CDTXSYNC(sc, nexttx,
945		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
946
947		/* Advance the tx pointer. */
948		sc->sc_txpending++;
949		sc->sc_txlast = nexttx;
950
951#if NBPFILTER > 0
952		/*
953		 * Pass packet to bpf if there is a listener.
954		 */
955		if (ifp->if_bpf)
956			bpf_mtap(ifp->if_bpf, m0);
957#endif
958	}
959
960	if (sc->sc_txpending == FXP_NTXCB) {
961		/* No more slots; notify upper layer. */
962		ifp->if_flags |= IFF_OACTIVE;
963	}
964
965	if (sc->sc_txpending != opending) {
966		/*
967		 * We enqueued packets.  If the transmitter was idle,
968		 * reset the txdirty pointer.
969		 */
970		if (opending == 0)
971			sc->sc_txdirty = FXP_NEXTTX(lasttx);
972
973		/*
974		 * Cause the chip to interrupt and suspend command
975		 * processing once the last packet we've enqueued
976		 * has been transmitted.
977		 */
978		FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
979		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
980		FXP_CDTXSYNC(sc, sc->sc_txlast,
981		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
982
983		/*
984		 * The entire packet chain is set up.  Clear the suspend bit
985		 * on the command prior to the first packet we set up.
986		 */
987		FXP_CDTXSYNC(sc, lasttx,
988		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
989		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
990		    htole16(~FXP_CB_COMMAND_S);
991		FXP_CDTXSYNC(sc, lasttx,
992		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
993
994		/*
995		 * Issue a Resume command in case the chip was suspended.
996		 */
997		fxp_scb_wait(sc);
998		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
999
1000		/* Set a watchdog timer in case the chip flakes out. */
1001		ifp->if_timer = 5;
1002	}
1003}
1004
1005/*
1006 * Process interface interrupts.
1007 */
1008int
1009fxp_intr(void *arg)
1010{
1011	struct fxp_softc *sc = arg;
1012	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1013	bus_dmamap_t rxmap;
1014	int claimed = 0;
1015	u_int8_t statack;
1016
1017	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1018		return (0);
1019	/*
1020	 * If the interface isn't running, don't try to
1021	 * service the interrupt.. just ack it and bail.
1022	 */
1023	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1024		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1025		if (statack) {
1026			claimed = 1;
1027			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1028		}
1029		return (claimed);
1030	}
1031
1032	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1033		claimed = 1;
1034
1035		/*
1036		 * First ACK all the interrupts in this pass.
1037		 */
1038		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1039
1040		/*
1041		 * Process receiver interrupts. If a no-resource (RNR)
1042		 * condition exists, get whatever packets we can and
1043		 * re-start the receiver.
1044		 */
1045		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1046			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1047			fxp_rxintr(sc);
1048		}
1049
1050		if (statack & FXP_SCB_STATACK_RNR) {
1051			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1052			fxp_scb_wait(sc);
1053			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1054			    rxmap->dm_segs[0].ds_addr +
1055			    RFA_ALIGNMENT_FUDGE);
1056			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1057		}
1058
1059		/*
1060		 * Free any finished transmit mbuf chains.
1061		 */
1062		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1063			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1064			fxp_txintr(sc);
1065
1066			/*
1067			 * Try to get more packets going.
1068			 */
1069			fxp_start(ifp);
1070
1071			if (sc->sc_txpending == 0) {
1072				/*
1073				 * If we want a re-init, do that now.
1074				 */
1075				if (sc->sc_flags & FXPF_WANTINIT)
1076					(void) fxp_init(ifp);
1077			}
1078		}
1079	}
1080
1081#if NRND > 0
1082	if (claimed)
1083		rnd_add_uint32(&sc->rnd_source, statack);
1084#endif
1085	return (claimed);
1086}
1087
1088/*
1089 * Handle transmit completion interrupts.
1090 */
1091void
1092fxp_txintr(struct fxp_softc *sc)
1093{
1094	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1095	struct fxp_txdesc *txd;
1096	struct fxp_txsoft *txs;
1097	int i;
1098	u_int16_t txstat;
1099
1100	ifp->if_flags &= ~IFF_OACTIVE;
1101	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1102	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
1103		txd = FXP_CDTX(sc, i);
1104		txs = FXP_DSTX(sc, i);
1105
1106		FXP_CDTXSYNC(sc, i,
1107		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1108
1109		txstat = le16toh(txd->txd_txcb.cb_status);
1110
1111		if ((txstat & FXP_CB_STATUS_C) == 0)
1112			break;
1113
1114		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1115		    0, txs->txs_dmamap->dm_mapsize,
1116		    BUS_DMASYNC_POSTWRITE);
1117		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1118		m_freem(txs->txs_mbuf);
1119		txs->txs_mbuf = NULL;
1120	}
1121
1122	/* Update the dirty transmit buffer pointer. */
1123	sc->sc_txdirty = i;
1124
1125	/*
1126	 * Cancel the watchdog timer if there are no pending
1127	 * transmissions.
1128	 */
1129	if (sc->sc_txpending == 0)
1130		ifp->if_timer = 0;
1131}
1132
1133/*
1134 * Handle receive interrupts.
1135 */
1136void
1137fxp_rxintr(struct fxp_softc *sc)
1138{
1139	struct ethercom *ec = &sc->sc_ethercom;
1140	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1141	struct mbuf *m, *m0;
1142	bus_dmamap_t rxmap;
1143	struct fxp_rfa *rfa;
1144	u_int16_t len, rxstat;
1145
1146	for (;;) {
1147		m = sc->sc_rxq.ifq_head;
1148		rfa = FXP_MTORFA(m);
1149		rxmap = M_GETCTX(m, bus_dmamap_t);
1150
1151		FXP_RFASYNC(sc, m,
1152		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1153
1154		rxstat = le16toh(rfa->rfa_status);
1155
1156		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1157			/*
1158			 * We have processed all of the
1159			 * receive buffers.
1160			 */
1161			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1162			return;
1163		}
1164
1165		IF_DEQUEUE(&sc->sc_rxq, m);
1166
1167		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1168
1169		len = le16toh(rfa->actual_size) &
1170		    (m->m_ext.ext_size - 1);
1171
1172		if (len < sizeof(struct ether_header)) {
1173			/*
1174			 * Runt packet; drop it now.
1175			 */
1176			FXP_INIT_RFABUF(sc, m);
1177			continue;
1178		}
1179
1180		/*
1181		 * If support for 802.1Q VLAN sized frames is
1182		 * enabled, we need to do some additional error
1183		 * checking (as we are saving bad frames, in
1184		 * order to receive the larger ones).
1185		 */
1186		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1187		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
1188			       FXP_RFA_STATUS_RNR|
1189			       FXP_RFA_STATUS_ALIGN|
1190			       FXP_RFA_STATUS_CRC)) != 0) {
1191			FXP_INIT_RFABUF(sc, m);
1192			continue;
1193		}
1194
1195		/*
1196		 * If the packet is small enough to fit in a
1197		 * single header mbuf, allocate one and copy
1198		 * the data into it.  This greatly reduces
1199		 * memory consumption when we receive lots
1200		 * of small packets.
1201		 *
1202		 * Otherwise, we add a new buffer to the receive
1203		 * chain.  If this fails, we drop the packet and
1204		 * recycle the old buffer.
1205		 */
1206		if (fxp_copy_small != 0 && len <= MHLEN) {
1207			MGETHDR(m0, M_DONTWAIT, MT_DATA);
1208			if (m == NULL)
1209				goto dropit;
1210			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1211			memcpy(mtod(m0, caddr_t),
1212			    mtod(m, caddr_t), len);
1213			FXP_INIT_RFABUF(sc, m);
1214			m = m0;
1215		} else {
1216			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1217 dropit:
1218				ifp->if_ierrors++;
1219				FXP_INIT_RFABUF(sc, m);
1220				continue;
1221			}
1222		}
1223
1224		m->m_pkthdr.rcvif = ifp;
1225		m->m_pkthdr.len = m->m_len = len;
1226
1227#if NBPFILTER > 0
1228		/*
1229		 * Pass this up to any BPF listeners, but only
1230		 * pass it up the stack it its for us.
1231		 */
1232		if (ifp->if_bpf)
1233			bpf_mtap(ifp->if_bpf, m);
1234#endif
1235
1236		/* Pass it on. */
1237		(*ifp->if_input)(ifp, m);
1238	}
1239}
1240
1241/*
1242 * Update packet in/out/collision statistics. The i82557 doesn't
1243 * allow you to access these counters without doing a fairly
1244 * expensive DMA to get _all_ of the statistics it maintains, so
1245 * we do this operation here only once per second. The statistics
1246 * counters in the kernel are updated from the previous dump-stats
1247 * DMA and then a new dump-stats DMA is started. The on-chip
1248 * counters are zeroed when the DMA completes. If we can't start
1249 * the DMA immediately, we don't wait - we just prepare to read
1250 * them again next time.
1251 */
1252void
1253fxp_tick(void *arg)
1254{
1255	struct fxp_softc *sc = arg;
1256	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1257	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1258	int s;
1259
1260	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1261		return;
1262
1263	s = splnet();
1264
1265	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1266
1267	ifp->if_opackets += le32toh(sp->tx_good);
1268	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1269	if (sp->rx_good) {
1270		ifp->if_ipackets += le32toh(sp->rx_good);
1271		sc->sc_rxidle = 0;
1272	} else {
1273		sc->sc_rxidle++;
1274	}
1275	ifp->if_ierrors +=
1276	    le32toh(sp->rx_crc_errors) +
1277	    le32toh(sp->rx_alignment_errors) +
1278	    le32toh(sp->rx_rnr_errors) +
1279	    le32toh(sp->rx_overrun_errors);
1280	/*
1281	 * If any transmit underruns occurred, bump up the transmit
1282	 * threshold by another 512 bytes (64 * 8).
1283	 */
1284	if (sp->tx_underruns) {
1285		ifp->if_oerrors += le32toh(sp->tx_underruns);
1286		if (tx_threshold < 192)
1287			tx_threshold += 64;
1288	}
1289
1290	/*
1291	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1292	 * then assume the receiver has locked up and attempt to clear
1293	 * the condition by reprogramming the multicast filter (actually,
1294	 * resetting the interface). This is a work-around for a bug in
1295	 * the 82557 where the receiver locks up if it gets certain types
1296	 * of garbage in the synchronization bits prior to the packet header.
1297	 * This bug is supposed to only occur in 10Mbps mode, but has been
1298	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1299	 * speed transition).
1300	 */
1301	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1302		(void) fxp_init(ifp);
1303		splx(s);
1304		return;
1305	}
1306	/*
1307	 * If there is no pending command, start another stats
1308	 * dump. Otherwise punt for now.
1309	 */
1310	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1311		/*
1312		 * Start another stats dump.
1313		 */
1314		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1315		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1316	} else {
1317		/*
1318		 * A previous command is still waiting to be accepted.
1319		 * Just zero our copy of the stats and wait for the
1320		 * next timer event to update them.
1321		 */
1322		/* BIG_ENDIAN: no swap required to store 0 */
1323		sp->tx_good = 0;
1324		sp->tx_underruns = 0;
1325		sp->tx_total_collisions = 0;
1326
1327		sp->rx_good = 0;
1328		sp->rx_crc_errors = 0;
1329		sp->rx_alignment_errors = 0;
1330		sp->rx_rnr_errors = 0;
1331		sp->rx_overrun_errors = 0;
1332	}
1333
1334	if (sc->sc_flags & FXPF_MII) {
1335		/* Tick the MII clock. */
1336		mii_tick(&sc->sc_mii);
1337	}
1338
1339	splx(s);
1340
1341	/*
1342	 * Schedule another timeout one second from now.
1343	 */
1344	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1345}
1346
1347/*
1348 * Drain the receive queue.
1349 */
1350void
1351fxp_rxdrain(struct fxp_softc *sc)
1352{
1353	bus_dmamap_t rxmap;
1354	struct mbuf *m;
1355
1356	for (;;) {
1357		IF_DEQUEUE(&sc->sc_rxq, m);
1358		if (m == NULL)
1359			break;
1360		rxmap = M_GETCTX(m, bus_dmamap_t);
1361		bus_dmamap_unload(sc->sc_dmat, rxmap);
1362		FXP_RXMAP_PUT(sc, rxmap);
1363		m_freem(m);
1364	}
1365}
1366
1367/*
1368 * Stop the interface. Cancels the statistics updater and resets
1369 * the interface.
1370 */
1371void
1372fxp_stop(struct ifnet *ifp, int disable)
1373{
1374	struct fxp_softc *sc = ifp->if_softc;
1375	struct fxp_txsoft *txs;
1376	int i;
1377
1378	/*
1379	 * Turn down interface (done early to avoid bad interactions
1380	 * between panics, shutdown hooks, and the watchdog timer)
1381	 */
1382	ifp->if_timer = 0;
1383	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1384
1385	/*
1386	 * Cancel stats updater.
1387	 */
1388	callout_stop(&sc->sc_callout);
1389	if (sc->sc_flags & FXPF_MII) {
1390		/* Down the MII. */
1391		mii_down(&sc->sc_mii);
1392	}
1393
1394	/*
1395	 * Issue software reset.  This unloads any microcode that
1396	 * might already be loaded.
1397	 */
1398	sc->sc_flags &= ~FXPF_UCODE_LOADED;
1399	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1400	DELAY(50);
1401
1402	/*
1403	 * Release any xmit buffers.
1404	 */
1405	for (i = 0; i < FXP_NTXCB; i++) {
1406		txs = FXP_DSTX(sc, i);
1407		if (txs->txs_mbuf != NULL) {
1408			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1409			m_freem(txs->txs_mbuf);
1410			txs->txs_mbuf = NULL;
1411		}
1412	}
1413	sc->sc_txpending = 0;
1414
1415	if (disable) {
1416		fxp_rxdrain(sc);
1417		fxp_disable(sc);
1418	}
1419
1420}
1421
1422/*
1423 * Watchdog/transmission transmit timeout handler. Called when a
1424 * transmission is started on the interface, but no interrupt is
1425 * received before the timeout. This usually indicates that the
1426 * card has wedged for some reason.
1427 */
1428void
1429fxp_watchdog(struct ifnet *ifp)
1430{
1431	struct fxp_softc *sc = ifp->if_softc;
1432
1433	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1434	ifp->if_oerrors++;
1435
1436	(void) fxp_init(ifp);
1437}
1438
1439/*
1440 * Initialize the interface.  Must be called at splnet().
1441 */
1442int
1443fxp_init(struct ifnet *ifp)
1444{
1445	struct fxp_softc *sc = ifp->if_softc;
1446	struct fxp_cb_config *cbp;
1447	struct fxp_cb_ias *cb_ias;
1448	struct fxp_txdesc *txd;
1449	bus_dmamap_t rxmap;
1450	int i, prm, save_bf, lrxen, allm, error = 0;
1451
1452	if ((error = fxp_enable(sc)) != 0)
1453		goto out;
1454
1455	/*
1456	 * Cancel any pending I/O
1457	 */
1458	fxp_stop(ifp, 0);
1459
1460	/*
1461	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1462	 * flag, and this prevents the MII from detaching resulting in
1463	 * a panic. The flags field should perhaps be split in runtime
1464	 * flags and more static information. For now, just clear the
1465	 * only other flag set.
1466	 */
1467
1468	sc->sc_flags &= ~FXPF_WANTINIT;
1469
1470	/*
1471	 * Initialize base of CBL and RFA memory. Loading with zero
1472	 * sets it up for regular linear addressing.
1473	 */
1474	fxp_scb_wait(sc);
1475	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1476	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1477
1478	fxp_scb_wait(sc);
1479	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1480
1481	/*
1482	 * Initialize the multicast filter.  Do this now, since we might
1483	 * have to setup the config block differently.
1484	 */
1485	fxp_mc_setup(sc);
1486
1487	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1488	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1489
1490	/*
1491	 * In order to support receiving 802.1Q VLAN frames, we have to
1492	 * enable "save bad frames", since they are 4 bytes larger than
1493	 * the normal Ethernet maximum frame length.  On i82558 and later,
1494	 * we have a better mechanism for this.
1495	 */
1496	save_bf = 0;
1497	lrxen = 0;
1498	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1499		if (sc->sc_rev < FXP_REV_82558_A4)
1500			save_bf = 1;
1501		else
1502			lrxen = 1;
1503	}
1504
1505	/*
1506	 * Initialize base of dump-stats buffer.
1507	 */
1508	fxp_scb_wait(sc);
1509	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1510	    sc->sc_cddma + FXP_CDSTATSOFF);
1511	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1512	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1513
1514	cbp = &sc->sc_control_data->fcd_configcb;
1515	memset(cbp, 0, sizeof(struct fxp_cb_config));
1516
1517	/*
1518	 * Load microcode for this controller.
1519	 */
1520	fxp_load_ucode(sc);
1521
1522	/*
1523	 * This copy is kind of disgusting, but there are a bunch of must be
1524	 * zero and must be one bits in this structure and this is the easiest
1525	 * way to initialize them all to proper values.
1526	 */
1527	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1528
1529	/* BIG_ENDIAN: no need to swap to store 0 */
1530	cbp->cb_status =	0;
1531	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1532				    FXP_CB_COMMAND_EL);
1533	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1534	cbp->link_addr =	0xffffffff; /* (no) next command */
1535					/* bytes in config block */
1536	cbp->byte_count =	FXP_CONFIG_LEN;
1537	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1538	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1539	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1540	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
1541	cbp->type_enable =	0;	/* actually reserved */
1542	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1543	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1544	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1545	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1546	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1547	cbp->late_scb =		0;	/* (don't) defer SCB update */
1548	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1549	cbp->ci_int =		1;	/* interrupt on CU idle */
1550	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1551	cbp->ext_stats_dis =	1;	/* disable extended counters */
1552	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
1553	cbp->save_bf =		save_bf;/* save bad frames */
1554	cbp->disc_short_rx =	!prm;	/* discard short packets */
1555	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1556	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1557	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1558					/* interface mode */
1559	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
1560	cbp->csma_dis =		0;	/* (don't) disable link */
1561	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1562	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1563	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1564	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1565	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
1566	cbp->nsai =		1;	/* (don't) disable source addr insert */
1567	cbp->preamble_length =	2;	/* (7 byte) preamble */
1568	cbp->loopback =		0;	/* (don't) loopback */
1569	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1570	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1571	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1572	cbp->promiscuous =	prm;	/* promiscuous mode */
1573	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1574	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1575	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1576	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1577	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
1578	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1579	cbp->padding =		1;	/* (do) pad short tx packets */
1580	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1581	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
1582	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1583	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1584					/* must set wake_en in PMCSR also */
1585	cbp->force_fdx =	0;	/* (don't) force full duplex */
1586	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1587	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1588	cbp->mc_all =		allm;	/* accept all multicasts */
1589
1590	if (sc->sc_rev < FXP_REV_82558_A4) {
1591		/*
1592		 * The i82557 has no hardware flow control, the values
1593		 * here are the defaults for the chip.
1594		 */
1595		cbp->fc_delay_lsb =	0;
1596		cbp->fc_delay_msb =	0x40;
1597		cbp->pri_fc_thresh =	3;
1598		cbp->tx_fc_dis =	0;
1599		cbp->rx_fc_restop =	0;
1600		cbp->rx_fc_restart =	0;
1601		cbp->fc_filter =	0;
1602		cbp->pri_fc_loc =	1;
1603	} else {
1604		cbp->fc_delay_lsb =	0x1f;
1605		cbp->fc_delay_msb =	0x01;
1606		cbp->pri_fc_thresh =	3;
1607		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1608		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1609		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1610		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1611		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1612	}
1613
1614	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1615
1616	/*
1617	 * Start the config command/DMA.
1618	 */
1619	fxp_scb_wait(sc);
1620	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1621	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1622	/* ...and wait for it to complete. */
1623	i = 1000;
1624	do {
1625		FXP_CDCONFIGSYNC(sc,
1626		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1627		DELAY(1);
1628	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1629	if (i == 0) {
1630		printf("%s at line %d: dmasync timeout\n",
1631		    sc->sc_dev.dv_xname, __LINE__);
1632		return (ETIMEDOUT);
1633	}
1634
1635	/*
1636	 * Initialize the station address.
1637	 */
1638	cb_ias = &sc->sc_control_data->fcd_iascb;
1639	/* BIG_ENDIAN: no need to swap to store 0 */
1640	cb_ias->cb_status = 0;
1641	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1642	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1643	cb_ias->link_addr = 0xffffffff;
1644	memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1645
1646	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1647
1648	/*
1649	 * Start the IAS (Individual Address Setup) command/DMA.
1650	 */
1651	fxp_scb_wait(sc);
1652	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1653	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1654	/* ...and wait for it to complete. */
1655	i = 1000;
1656	do {
1657		FXP_CDIASSYNC(sc,
1658		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1659		DELAY(1);
1660	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1661	if (i == 0) {
1662		printf("%s at line %d: dmasync timeout\n",
1663		    sc->sc_dev.dv_xname, __LINE__);
1664		return (ETIMEDOUT);
1665	}
1666
1667	/*
1668	 * Initialize the transmit descriptor ring.  txlast is initialized
1669	 * to the end of the list so that it will wrap around to the first
1670	 * descriptor when the first packet is transmitted.
1671	 */
1672	for (i = 0; i < FXP_NTXCB; i++) {
1673		txd = FXP_CDTX(sc, i);
1674		memset(txd, 0, sizeof(*txd));
1675		txd->txd_txcb.cb_command =
1676		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1677		txd->txd_txcb.link_addr =
1678		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1679		if (sc->sc_flags & FXPF_EXT_TXCB)
1680			txd->txd_txcb.tbd_array_addr =
1681			    htole32(FXP_CDTBDADDR(sc, i) +
1682				    (2 * sizeof(struct fxp_tbd)));
1683		else
1684			txd->txd_txcb.tbd_array_addr =
1685			    htole32(FXP_CDTBDADDR(sc, i));
1686		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1687	}
1688	sc->sc_txpending = 0;
1689	sc->sc_txdirty = 0;
1690	sc->sc_txlast = FXP_NTXCB - 1;
1691
1692	/*
1693	 * Initialize the receive buffer list.
1694	 */
1695	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1696	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1697		rxmap = FXP_RXMAP_GET(sc);
1698		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1699			printf("%s: unable to allocate or map rx "
1700			    "buffer %d, error = %d\n",
1701			    sc->sc_dev.dv_xname,
1702			    sc->sc_rxq.ifq_len, error);
1703			/*
1704			 * XXX Should attempt to run with fewer receive
1705			 * XXX buffers instead of just failing.
1706			 */
1707			FXP_RXMAP_PUT(sc, rxmap);
1708			fxp_rxdrain(sc);
1709			goto out;
1710		}
1711	}
1712	sc->sc_rxidle = 0;
1713
1714	/*
1715	 * Give the transmit ring to the chip.  We do this by pointing
1716	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1717	 * issuing a start command.  It will execute the NOP and then
1718	 * suspend, pointing at the first descriptor.
1719	 */
1720	fxp_scb_wait(sc);
1721	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1722	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1723
1724	/*
1725	 * Initialize receiver buffer area - RFA.
1726	 */
1727	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1728	fxp_scb_wait(sc);
1729	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1730	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1731	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1732
1733	if (sc->sc_flags & FXPF_MII) {
1734		/*
1735		 * Set current media.
1736		 */
1737		mii_mediachg(&sc->sc_mii);
1738	}
1739
1740	/*
1741	 * ...all done!
1742	 */
1743	ifp->if_flags |= IFF_RUNNING;
1744	ifp->if_flags &= ~IFF_OACTIVE;
1745
1746	/*
1747	 * Start the one second timer.
1748	 */
1749	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1750
1751	/*
1752	 * Attempt to start output on the interface.
1753	 */
1754	fxp_start(ifp);
1755
1756 out:
1757	if (error) {
1758		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1759		ifp->if_timer = 0;
1760		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1761	}
1762	return (error);
1763}
1764
1765/*
1766 * Change media according to request.
1767 */
1768int
1769fxp_mii_mediachange(struct ifnet *ifp)
1770{
1771	struct fxp_softc *sc = ifp->if_softc;
1772
1773	if (ifp->if_flags & IFF_UP)
1774		mii_mediachg(&sc->sc_mii);
1775	return (0);
1776}
1777
1778/*
1779 * Notify the world which media we're using.
1780 */
1781void
1782fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1783{
1784	struct fxp_softc *sc = ifp->if_softc;
1785
1786	if (sc->sc_enabled == 0) {
1787		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1788		ifmr->ifm_status = 0;
1789		return;
1790	}
1791
1792	mii_pollstat(&sc->sc_mii);
1793	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1794	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1795}
1796
1797int
1798fxp_80c24_mediachange(struct ifnet *ifp)
1799{
1800
1801	/* Nothing to do here. */
1802	return (0);
1803}
1804
1805void
1806fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1807{
1808	struct fxp_softc *sc = ifp->if_softc;
1809
1810	/*
1811	 * Media is currently-selected media.  We cannot determine
1812	 * the link status.
1813	 */
1814	ifmr->ifm_status = 0;
1815	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1816}
1817
1818/*
1819 * Add a buffer to the end of the RFA buffer list.
1820 * Return 0 if successful, error code on failure.
1821 *
1822 * The RFA struct is stuck at the beginning of mbuf cluster and the
1823 * data pointer is fixed up to point just past it.
1824 */
1825int
1826fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1827{
1828	struct mbuf *m;
1829	int error;
1830
1831	MGETHDR(m, M_DONTWAIT, MT_DATA);
1832	if (m == NULL)
1833		return (ENOBUFS);
1834
1835	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1836	MCLGET(m, M_DONTWAIT);
1837	if ((m->m_flags & M_EXT) == 0) {
1838		m_freem(m);
1839		return (ENOBUFS);
1840	}
1841
1842	if (unload)
1843		bus_dmamap_unload(sc->sc_dmat, rxmap);
1844
1845	M_SETCTX(m, rxmap);
1846
1847	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1848	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
1849	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1850	if (error) {
1851		printf("%s: can't load rx DMA map %d, error = %d\n",
1852		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1853		panic("fxp_add_rfabuf");		/* XXX */
1854	}
1855
1856	FXP_INIT_RFABUF(sc, m);
1857
1858	return (0);
1859}
1860
1861int
1862fxp_mdi_read(struct device *self, int phy, int reg)
1863{
1864	struct fxp_softc *sc = (struct fxp_softc *)self;
1865	int count = 10000;
1866	int value;
1867
1868	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1869	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1870
1871	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
1872	    0x10000000) == 0 && count--)
1873		DELAY(10);
1874
1875	if (count <= 0)
1876		printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1877
1878	return (value & 0xffff);
1879}
1880
1881void
1882fxp_statchg(struct device *self)
1883{
1884
1885	/* Nothing to do. */
1886}
1887
1888void
1889fxp_mdi_write(struct device *self, int phy, int reg, int value)
1890{
1891	struct fxp_softc *sc = (struct fxp_softc *)self;
1892	int count = 10000;
1893
1894	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1895	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1896	    (value & 0xffff));
1897
1898	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1899	    count--)
1900		DELAY(10);
1901
1902	if (count <= 0)
1903		printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1904}
1905
1906int
1907fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1908{
1909	struct fxp_softc *sc = ifp->if_softc;
1910	struct ifreq *ifr = (struct ifreq *)data;
1911	int s, error;
1912
1913	s = splnet();
1914
1915	switch (cmd) {
1916	case SIOCSIFMEDIA:
1917	case SIOCGIFMEDIA:
1918		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1919		break;
1920
1921	default:
1922		error = ether_ioctl(ifp, cmd, data);
1923		if (error == ENETRESET) {
1924			if (sc->sc_enabled) {
1925				/*
1926				 * Multicast list has changed; set the
1927				 * hardware filter accordingly.
1928				 */
1929				if (sc->sc_txpending) {
1930					sc->sc_flags |= FXPF_WANTINIT;
1931					error = 0;
1932				} else
1933					error = fxp_init(ifp);
1934			} else
1935				error = 0;
1936		}
1937		break;
1938	}
1939
1940	/* Try to get more packets going. */
1941	if (sc->sc_enabled)
1942		fxp_start(ifp);
1943
1944	splx(s);
1945	return (error);
1946}
1947
1948/*
1949 * Program the multicast filter.
1950 *
1951 * This function must be called at splnet().
1952 */
1953void
1954fxp_mc_setup(struct fxp_softc *sc)
1955{
1956	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1957	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1958	struct ethercom *ec = &sc->sc_ethercom;
1959	struct ether_multi *enm;
1960	struct ether_multistep step;
1961	int count, nmcasts;
1962
1963#ifdef DIAGNOSTIC
1964	if (sc->sc_txpending)
1965		panic("fxp_mc_setup: pending transmissions");
1966#endif
1967
1968	ifp->if_flags &= ~IFF_ALLMULTI;
1969
1970	/*
1971	 * Initialize multicast setup descriptor.
1972	 */
1973	nmcasts = 0;
1974	ETHER_FIRST_MULTI(step, ec, enm);
1975	while (enm != NULL) {
1976		/*
1977		 * Check for too many multicast addresses or if we're
1978		 * listening to a range.  Either way, we simply have
1979		 * to accept all multicasts.
1980		 */
1981		if (nmcasts >= MAXMCADDR ||
1982		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
1983		    ETHER_ADDR_LEN) != 0) {
1984			/*
1985			 * Callers of this function must do the
1986			 * right thing with this.  If we're called
1987			 * from outside fxp_init(), the caller must
1988			 * detect if the state if IFF_ALLMULTI changes.
1989			 * If it does, the caller must then call
1990			 * fxp_init(), since allmulti is handled by
1991			 * the config block.
1992			 */
1993			ifp->if_flags |= IFF_ALLMULTI;
1994			return;
1995		}
1996		memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1997		    ETHER_ADDR_LEN);
1998		nmcasts++;
1999		ETHER_NEXT_MULTI(step, enm);
2000	}
2001
2002	/* BIG_ENDIAN: no need to swap to store 0 */
2003	mcsp->cb_status = 0;
2004	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2005	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2006	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2007
2008	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2009
2010	/*
2011	 * Wait until the command unit is not active.  This should never
2012	 * happen since nothing is queued, but make sure anyway.
2013	 */
2014	count = 100;
2015	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2016	    FXP_SCB_CUS_ACTIVE && --count)
2017		DELAY(1);
2018	if (count == 0) {
2019		printf("%s at line %d: command queue timeout\n",
2020		    sc->sc_dev.dv_xname, __LINE__);
2021		return;
2022	}
2023
2024	/*
2025	 * Start the multicast setup command/DMA.
2026	 */
2027	fxp_scb_wait(sc);
2028	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2029	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2030
2031	/* ...and wait for it to complete. */
2032	count = 1000;
2033	do {
2034		FXP_CDMCSSYNC(sc,
2035		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2036		DELAY(1);
2037	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2038	if (count == 0) {
2039		printf("%s at line %d: dmasync timeout\n",
2040		    sc->sc_dev.dv_xname, __LINE__);
2041		return;
2042	}
2043}
2044
2045static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2046static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2047static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2048static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2049static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2050static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2051
2052#define	UCODE(x)	x, sizeof(x)
2053
2054static const struct ucode {
2055	int32_t		revision;
2056	const uint32_t	*ucode;
2057	size_t		length;
2058	uint16_t	int_delay_offset;
2059	uint16_t	bundle_max_offset;
2060} ucode_table[] = {
2061	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2062	  D101_CPUSAVER_DWORD, 0 },
2063
2064	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2065	  D101_CPUSAVER_DWORD, 0 },
2066
2067	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2068	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2069
2070	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2071	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2072
2073	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2074	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2075
2076	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2077	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2078
2079	{ 0, NULL, 0, 0, 0 }
2080};
2081
2082void
2083fxp_load_ucode(struct fxp_softc *sc)
2084{
2085	const struct ucode *uc;
2086	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2087	int count;
2088
2089	if (sc->sc_flags & FXPF_UCODE_LOADED)
2090		return;
2091
2092	/*
2093	 * Only load the uCode if the user has requested that
2094	 * we do so.
2095	 */
2096	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2097		sc->sc_int_delay = 0;
2098		sc->sc_bundle_max = 0;
2099		return;
2100	}
2101
2102	for (uc = ucode_table; uc->ucode != NULL; uc++) {
2103		if (sc->sc_rev == uc->revision)
2104			break;
2105	}
2106	if (uc->ucode == NULL)
2107		return;
2108
2109	/* BIG ENDIAN: no need to swap to store 0 */
2110	cbp->cb_status = 0;
2111	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2112	cbp->link_addr = 0xffffffff;		/* (no) next command */
2113	memcpy((void *) cbp->ucode, uc->ucode, uc->length);
2114
2115	if (uc->int_delay_offset)
2116		*(uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2117		    htole16(fxp_int_delay + (fxp_int_delay / 2));
2118
2119	if (uc->bundle_max_offset)
2120		*(uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2121		    htole16(fxp_bundle_max);
2122
2123	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2124
2125	/*
2126	 * Download the uCode to the chip.
2127	 */
2128	fxp_scb_wait(sc);
2129	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2130	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2131
2132	/* ...and wait for it to complete. */
2133	count = 10000;
2134	do {
2135		FXP_CDUCODESYNC(sc,
2136		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2137		DELAY(2);
2138	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2139	if (count == 0) {
2140		sc->sc_int_delay = 0;
2141		sc->sc_bundle_max = 0;
2142		printf("%s: timeout loading microcode\n",
2143		    sc->sc_dev.dv_xname);
2144		return;
2145	}
2146
2147	if (sc->sc_int_delay != fxp_int_delay ||
2148	    sc->sc_bundle_max != fxp_bundle_max) {
2149		sc->sc_int_delay = fxp_int_delay;
2150		sc->sc_bundle_max = fxp_bundle_max;
2151		printf("%s: Microcode loaded: int delay: %d usec, "
2152		    "max bundle: %d\n", sc->sc_dev.dv_xname,
2153		    sc->sc_int_delay,
2154		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2155	}
2156
2157	sc->sc_flags |= FXPF_UCODE_LOADED;
2158}
2159
2160int
2161fxp_enable(struct fxp_softc *sc)
2162{
2163
2164	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2165		if ((*sc->sc_enable)(sc) != 0) {
2166			printf("%s: device enable failed\n",
2167			    sc->sc_dev.dv_xname);
2168			return (EIO);
2169		}
2170	}
2171
2172	sc->sc_enabled = 1;
2173	return (0);
2174}
2175
2176void
2177fxp_disable(struct fxp_softc *sc)
2178{
2179
2180	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2181		(*sc->sc_disable)(sc);
2182		sc->sc_enabled = 0;
2183	}
2184}
2185
2186/*
2187 * fxp_activate:
2188 *
2189 *	Handle device activation/deactivation requests.
2190 */
2191int
2192fxp_activate(struct device *self, enum devact act)
2193{
2194	struct fxp_softc *sc = (void *) self;
2195	int s, error = 0;
2196
2197	s = splnet();
2198	switch (act) {
2199	case DVACT_ACTIVATE:
2200		error = EOPNOTSUPP;
2201		break;
2202
2203	case DVACT_DEACTIVATE:
2204		if (sc->sc_flags & FXPF_MII)
2205			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2206			    MII_OFFSET_ANY);
2207		if_deactivate(&sc->sc_ethercom.ec_if);
2208		break;
2209	}
2210	splx(s);
2211
2212	return (error);
2213}
2214
2215/*
2216 * fxp_detach:
2217 *
2218 *	Detach an i82557 interface.
2219 */
2220int
2221fxp_detach(struct fxp_softc *sc)
2222{
2223	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2224	int i;
2225
2226	/* Succeed now if there's no work to do. */
2227	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2228		return (0);
2229
2230	/* Unhook our tick handler. */
2231	callout_stop(&sc->sc_callout);
2232
2233	if (sc->sc_flags & FXPF_MII) {
2234		/* Detach all PHYs */
2235		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2236	}
2237
2238	/* Delete all remaining media. */
2239	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2240
2241#if NRND > 0
2242	rnd_detach_source(&sc->rnd_source);
2243#endif
2244	ether_ifdetach(ifp);
2245	if_detach(ifp);
2246
2247	for (i = 0; i < FXP_NRFABUFS; i++) {
2248		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2249		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2250	}
2251
2252	for (i = 0; i < FXP_NTXCB; i++) {
2253		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2254		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2255	}
2256
2257	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2258	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2259	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2260	    sizeof(struct fxp_control_data));
2261	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2262
2263	shutdownhook_disestablish(sc->sc_sdhook);
2264	powerhook_disestablish(sc->sc_powerhook);
2265
2266	return (0);
2267}
2268