i82557.c revision 1.53
1/*	$NetBSD: i82557.c,v 1.53 2001/06/02 01:04:01 thorpej Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the NetBSD
22 *	Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 *    contributors may be used to endorse or promote products derived
25 *    from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40/*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 *    notice unmodified, this list of conditions, and the following
50 *    disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 *    notice, this list of conditions and the following disclaimer in the
53 *    documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70/*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75#include "opt_inet.h"
76#include "opt_ns.h"
77#include "bpfilter.h"
78#include "rnd.h"
79
80#include <sys/param.h>
81#include <sys/systm.h>
82#include <sys/callout.h>
83#include <sys/mbuf.h>
84#include <sys/malloc.h>
85#include <sys/kernel.h>
86#include <sys/socket.h>
87#include <sys/ioctl.h>
88#include <sys/errno.h>
89#include <sys/device.h>
90
91#include <machine/endian.h>
92
93#include <uvm/uvm_extern.h>
94
95#if NRND > 0
96#include <sys/rnd.h>
97#endif
98
99#include <net/if.h>
100#include <net/if_dl.h>
101#include <net/if_media.h>
102#include <net/if_ether.h>
103
104#if NBPFILTER > 0
105#include <net/bpf.h>
106#endif
107
108#ifdef INET
109#include <netinet/in.h>
110#include <netinet/if_inarp.h>
111#endif
112
113#ifdef NS
114#include <netns/ns.h>
115#include <netns/ns_if.h>
116#endif
117
118#include <machine/bus.h>
119#include <machine/intr.h>
120
121#include <dev/mii/miivar.h>
122
123#include <dev/ic/i82557reg.h>
124#include <dev/ic/i82557var.h>
125
126/*
127 * NOTE!  On the Alpha, we have an alignment constraint.  The
128 * card DMAs the packet immediately following the RFA.  However,
129 * the first thing in the packet is a 14-byte Ethernet header.
130 * This means that the packet is misaligned.  To compensate,
131 * we actually offset the RFA 2 bytes into the cluster.  This
132 * alignes the packet after the Ethernet header at a 32-bit
133 * boundary.  HOWEVER!  This means that the RFA is misaligned!
134 */
135#define	RFA_ALIGNMENT_FUDGE	2
136
137/*
138 * The configuration byte map has several undefined fields which
139 * must be one or must be zero.  Set up a template for these bits
140 * only (assuming an i82557 chip), leaving the actual configuration
141 * for fxp_init().
142 *
143 * See the definition of struct fxp_cb_config for the bit definitions.
144 */
145const u_int8_t fxp_cb_config_template[] = {
146	0x0, 0x0,		/* cb_status */
147	0x0, 0x0,		/* cb_command */
148	0x0, 0x0, 0x0, 0x0,	/* link_addr */
149	0x0,	/*  0 */
150	0x0,	/*  1 */
151	0x0,	/*  2 */
152	0x0,	/*  3 */
153	0x0,	/*  4 */
154	0x0,	/*  5 */
155	0x32,	/*  6 */
156	0x0,	/*  7 */
157	0x0,	/*  8 */
158	0x0,	/*  9 */
159	0x6,	/* 10 */
160	0x0,	/* 11 */
161	0x0,	/* 12 */
162	0x0,	/* 13 */
163	0xf2,	/* 14 */
164	0x48,	/* 15 */
165	0x0,	/* 16 */
166	0x40,	/* 17 */
167	0xf0,	/* 18 */
168	0x0,	/* 19 */
169	0x3f,	/* 20 */
170	0x5,	/* 21 */
171	0x0,	/* 22 */
172	0x0,	/* 23 */
173	0x0,	/* 24 */
174	0x0,	/* 25 */
175	0x0,	/* 26 */
176	0x0,	/* 27 */
177	0x0,	/* 28 */
178	0x0,	/* 29 */
179	0x0,	/* 30 */
180	0x0,	/* 31 */
181};
182
183void	fxp_mii_initmedia(struct fxp_softc *);
184int	fxp_mii_mediachange(struct ifnet *);
185void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
186
187void	fxp_80c24_initmedia(struct fxp_softc *);
188int	fxp_80c24_mediachange(struct ifnet *);
189void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
190
191void	fxp_start(struct ifnet *);
192int	fxp_ioctl(struct ifnet *, u_long, caddr_t);
193void	fxp_watchdog(struct ifnet *);
194int	fxp_init(struct ifnet *);
195void	fxp_stop(struct ifnet *, int);
196
197void	fxp_rxdrain(struct fxp_softc *);
198int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
199int	fxp_mdi_read(struct device *, int, int);
200void	fxp_statchg(struct device *);
201void	fxp_mdi_write(struct device *, int, int, int);
202void	fxp_autosize_eeprom(struct fxp_softc*);
203void	fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
204void	fxp_get_info(struct fxp_softc *, u_int8_t *);
205void	fxp_tick(void *);
206void	fxp_mc_setup(struct fxp_softc *);
207
208void	fxp_shutdown(void *);
209void	fxp_power(int, void *);
210
211int	fxp_copy_small = 0;
212
213struct fxp_phytype {
214	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
215	void	(*fp_init)(struct fxp_softc *);
216} fxp_phytype_table[] = {
217	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
218	{ -1,				fxp_mii_initmedia },
219};
220
221/*
222 * Set initial transmit threshold at 64 (512 bytes). This is
223 * increased by 64 (512 bytes) at a time, to maximum of 192
224 * (1536 bytes), if an underrun occurs.
225 */
226static int tx_threshold = 64;
227
228/*
229 * Wait for the previous command to be accepted (but not necessarily
230 * completed).
231 */
232static __inline void
233fxp_scb_wait(struct fxp_softc *sc)
234{
235	int i = 10000;
236
237	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
238		delay(2);
239	if (i == 0)
240		printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
241}
242
243/*
244 * Submit a command to the i82557.
245 */
246static __inline void
247fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
248{
249
250	if (cmd == FXP_SCB_COMMAND_CU_RESUME &&
251	    (sc->sc_flags & FXPF_FIX_RESUME_BUG) != 0) {
252		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_NOP);
253		fxp_scb_wait(sc);
254	}
255	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
256}
257
258/*
259 * Finish attaching an i82557 interface.  Called by bus-specific front-end.
260 */
261void
262fxp_attach(struct fxp_softc *sc)
263{
264	u_int8_t enaddr[ETHER_ADDR_LEN];
265	struct ifnet *ifp;
266	bus_dma_segment_t seg;
267	int rseg, i, error;
268	struct fxp_phytype *fp;
269
270	callout_init(&sc->sc_callout);
271
272	/* Start out using the standard RFA. */
273	sc->sc_rfa_size = RFA_SIZE;
274
275	/*
276	 * Enable some good stuff on i82558 and later.
277	 */
278	if (sc->sc_rev >= FXP_REV_82558_A4) {
279		/* Enable the extended TxCB. */
280		sc->sc_flags |= FXPF_EXT_TXCB;
281	}
282
283	/*
284	 * Allocate the control data structures, and create and load the
285	 * DMA map for it.
286	 */
287	if ((error = bus_dmamem_alloc(sc->sc_dmat,
288	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
289	    0)) != 0) {
290		printf("%s: unable to allocate control data, error = %d\n",
291		    sc->sc_dev.dv_xname, error);
292		goto fail_0;
293	}
294
295	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
296	    sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
297	    BUS_DMA_COHERENT)) != 0) {
298		printf("%s: unable to map control data, error = %d\n",
299		    sc->sc_dev.dv_xname, error);
300		goto fail_1;
301	}
302	sc->sc_cdseg = seg;
303	sc->sc_cdnseg = rseg;
304
305	bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
306
307	if ((error = bus_dmamap_create(sc->sc_dmat,
308	    sizeof(struct fxp_control_data), 1,
309	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
310		printf("%s: unable to create control data DMA map, "
311		    "error = %d\n", sc->sc_dev.dv_xname, error);
312		goto fail_2;
313	}
314
315	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
316	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
317	    0)) != 0) {
318		printf("%s: can't load control data DMA map, error = %d\n",
319		    sc->sc_dev.dv_xname, error);
320		goto fail_3;
321	}
322
323	/*
324	 * Create the transmit buffer DMA maps.
325	 */
326	for (i = 0; i < FXP_NTXCB; i++) {
327		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
328		    FXP_NTXSEG, MCLBYTES, 0, 0,
329		    &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
330			printf("%s: unable to create tx DMA map %d, "
331			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
332			goto fail_4;
333		}
334	}
335
336	/*
337	 * Create the receive buffer DMA maps.
338	 */
339	for (i = 0; i < FXP_NRFABUFS; i++) {
340		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
341		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
342			printf("%s: unable to create rx DMA map %d, "
343			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
344			goto fail_5;
345		}
346	}
347
348	/* Initialize MAC address and media structures. */
349	fxp_get_info(sc, enaddr);
350
351	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
352	    ether_sprintf(enaddr));
353
354	ifp = &sc->sc_ethercom.ec_if;
355
356	/*
357	 * Get info about our media interface, and initialize it.  Note
358	 * the table terminates itself with a phy of -1, indicating
359	 * that we're using MII.
360	 */
361	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
362		if (fp->fp_phy == sc->phy_primary_device)
363			break;
364	(*fp->fp_init)(sc);
365
366	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
367	ifp->if_softc = sc;
368	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
369	ifp->if_ioctl = fxp_ioctl;
370	ifp->if_start = fxp_start;
371	ifp->if_watchdog = fxp_watchdog;
372	ifp->if_init = fxp_init;
373	ifp->if_stop = fxp_stop;
374	IFQ_SET_READY(&ifp->if_snd);
375
376	/*
377	 * We can support 802.1Q VLAN-sized frames.
378	 */
379	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
380
381	/*
382	 * Attach the interface.
383	 */
384	if_attach(ifp);
385	ether_ifattach(ifp, enaddr);
386#if NRND > 0
387	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
388	    RND_TYPE_NET, 0);
389#endif
390
391	/*
392	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
393	 * doing do could allow DMA to corrupt kernel memory during the
394	 * reboot before the driver initializes.
395	 */
396	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
397	if (sc->sc_sdhook == NULL)
398		printf("%s: WARNING: unable to establish shutdown hook\n",
399		    sc->sc_dev.dv_xname);
400	/*
401  	 * Add suspend hook, for similar reasons..
402	 */
403	sc->sc_powerhook = powerhook_establish(fxp_power, sc);
404	if (sc->sc_powerhook == NULL)
405		printf("%s: WARNING: unable to establish power hook\n",
406		    sc->sc_dev.dv_xname);
407
408	/* The attach is successful. */
409	sc->sc_flags |= FXPF_ATTACHED;
410
411	return;
412
413	/*
414	 * Free any resources we've allocated during the failed attach
415	 * attempt.  Do this in reverse order and fall though.
416	 */
417 fail_5:
418	for (i = 0; i < FXP_NRFABUFS; i++) {
419		if (sc->sc_rxmaps[i] != NULL)
420			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
421	}
422 fail_4:
423	for (i = 0; i < FXP_NTXCB; i++) {
424		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
425			bus_dmamap_destroy(sc->sc_dmat,
426			    FXP_DSTX(sc, i)->txs_dmamap);
427	}
428	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
429 fail_3:
430	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
431 fail_2:
432	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
433	    sizeof(struct fxp_control_data));
434 fail_1:
435	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
436 fail_0:
437	return;
438}
439
440void
441fxp_mii_initmedia(struct fxp_softc *sc)
442{
443
444	sc->sc_flags |= FXPF_MII;
445
446	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
447	sc->sc_mii.mii_readreg = fxp_mdi_read;
448	sc->sc_mii.mii_writereg = fxp_mdi_write;
449	sc->sc_mii.mii_statchg = fxp_statchg;
450	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
451	    fxp_mii_mediastatus);
452	/*
453	 * The i82557 wedges if all of its PHYs are isolated!
454	 */
455	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
456	    MII_OFFSET_ANY, MIIF_NOISOLATE);
457	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
458		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
459		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
460	} else
461		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
462}
463
464void
465fxp_80c24_initmedia(struct fxp_softc *sc)
466{
467
468	/*
469	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
470	 * doesn't have a programming interface of any sort.  The
471	 * media is sensed automatically based on how the link partner
472	 * is configured.  This is, in essence, manual configuration.
473	 */
474	printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
475	    sc->sc_dev.dv_xname);
476	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
477	    fxp_80c24_mediastatus);
478	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
479	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
480}
481
482/*
483 * Device shutdown routine. Called at system shutdown after sync. The
484 * main purpose of this routine is to shut off receiver DMA so that
485 * kernel memory doesn't get clobbered during warmboot.
486 */
487void
488fxp_shutdown(void *arg)
489{
490	struct fxp_softc *sc = arg;
491
492	/*
493	 * Since the system's going to halt shortly, don't bother
494	 * freeing mbufs.
495	 */
496	fxp_stop(&sc->sc_ethercom.ec_if, 0);
497}
498/*
499 * Power handler routine. Called when the system is transitioning
500 * into/out of power save modes.  As with fxp_shutdown, the main
501 * purpose of this routine is to shut off receiver DMA so it doesn't
502 * clobber kernel memory at the wrong time.
503 */
504void
505fxp_power(int why, void *arg)
506{
507	struct fxp_softc *sc = arg;
508	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
509	int s;
510
511	s = splnet();
512	switch (why) {
513	case PWR_SUSPEND:
514	case PWR_STANDBY:
515		fxp_stop(ifp, 0);
516		break;
517	case PWR_RESUME:
518		if (ifp->if_flags & IFF_UP)
519			fxp_init(ifp);
520		break;
521	case PWR_SOFTSUSPEND:
522	case PWR_SOFTSTANDBY:
523	case PWR_SOFTRESUME:
524		break;
525	}
526	splx(s);
527}
528
529/*
530 * Initialize the interface media.
531 */
532void
533fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
534{
535	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
536
537	/*
538	 * Reset to a stable state.
539	 */
540	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
541	DELAY(10);
542
543	sc->sc_eeprom_size = 0;
544	fxp_autosize_eeprom(sc);
545	if(sc->sc_eeprom_size == 0) {
546	    printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
547	    sc->sc_eeprom_size = 6; /* XXX panic here? */
548	}
549#ifdef DEBUG
550	printf("%s: detected %d word EEPROM\n",
551	       sc->sc_dev.dv_xname,
552	       1 << sc->sc_eeprom_size);
553#endif
554
555	/*
556	 * Get info about the primary PHY
557	 */
558	fxp_read_eeprom(sc, &data, 6, 1);
559	sc->phy_primary_device =
560	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
561
562	/*
563	 * Read MAC address.
564	 */
565	fxp_read_eeprom(sc, myea, 0, 3);
566	enaddr[0] = myea[0] & 0xff;
567	enaddr[1] = myea[0] >> 8;
568	enaddr[2] = myea[1] & 0xff;
569	enaddr[3] = myea[1] >> 8;
570	enaddr[4] = myea[2] & 0xff;
571	enaddr[5] = myea[2] >> 8;
572}
573
574/*
575 * Figure out EEPROM size.
576 *
577 * 559's can have either 64-word or 256-word EEPROMs, the 558
578 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
579 * talks about the existance of 16 to 256 word EEPROMs.
580 *
581 * The only known sizes are 64 and 256, where the 256 version is used
582 * by CardBus cards to store CIS information.
583 *
584 * The address is shifted in msb-to-lsb, and after the last
585 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
586 * after which follows the actual data. We try to detect this zero, by
587 * probing the data-out bit in the EEPROM control register just after
588 * having shifted in a bit. If the bit is zero, we assume we've
589 * shifted enough address bits. The data-out should be tri-state,
590 * before this, which should translate to a logical one.
591 *
592 * Other ways to do this would be to try to read a register with known
593 * contents with a varying number of address bits, but no such
594 * register seem to be available. The high bits of register 10 are 01
595 * on the 558 and 559, but apparently not on the 557.
596 *
597 * The Linux driver computes a checksum on the EEPROM data, but the
598 * value of this checksum is not very well documented.
599 */
600
601void
602fxp_autosize_eeprom(struct fxp_softc *sc)
603{
604	u_int16_t reg;
605	int x;
606
607	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
608	/*
609	 * Shift in read opcode.
610	 */
611	for (x = 3; x > 0; x--) {
612		if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
613			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
614		} else {
615			reg = FXP_EEPROM_EECS;
616		}
617		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
618		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
619			    reg | FXP_EEPROM_EESK);
620		DELAY(4);
621		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
622		DELAY(4);
623	}
624	/*
625	 * Shift in address, wait for the dummy zero following a correct
626	 * address shift.
627	 */
628	for (x = 1; x <=  8; x++) {
629		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
630		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
631		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
632		DELAY(4);
633		if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
634		    FXP_EEPROM_EEDO) == 0)
635			break;
636		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
637		DELAY(4);
638	}
639	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
640	DELAY(4);
641	if(x != 6 && x != 8) {
642#ifdef DEBUG
643		printf("%s: strange EEPROM size (%d)\n",
644		       sc->sc_dev.dv_xname, 1 << x);
645#endif
646	} else
647		sc->sc_eeprom_size = x;
648}
649
650/*
651 * Read from the serial EEPROM. Basically, you manually shift in
652 * the read opcode (one bit at a time) and then shift in the address,
653 * and then you shift out the data (all of this one bit at a time).
654 * The word size is 16 bits, so you have to provide the address for
655 * every 16 bits of data.
656 */
657void
658fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
659{
660	u_int16_t reg;
661	int i, x;
662
663	for (i = 0; i < words; i++) {
664		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
665		/*
666		 * Shift in read opcode.
667		 */
668		for (x = 3; x > 0; x--) {
669			if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
670				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
671			} else {
672				reg = FXP_EEPROM_EECS;
673			}
674			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
675			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
676			    reg | FXP_EEPROM_EESK);
677			DELAY(4);
678			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
679			DELAY(4);
680		}
681		/*
682		 * Shift in address.
683		 */
684		for (x = sc->sc_eeprom_size; x > 0; x--) {
685			if ((i + offset) & (1 << (x - 1))) {
686			    reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
687			} else {
688			    reg = FXP_EEPROM_EECS;
689			}
690			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
691			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
692			    reg | FXP_EEPROM_EESK);
693			DELAY(4);
694			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
695			DELAY(4);
696		}
697		reg = FXP_EEPROM_EECS;
698		data[i] = 0;
699		/*
700		 * Shift out data.
701		 */
702		for (x = 16; x > 0; x--) {
703			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
704			    reg | FXP_EEPROM_EESK);
705			DELAY(4);
706			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
707			    FXP_EEPROM_EEDO)
708				data[i] |= (1 << (x - 1));
709			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
710			DELAY(4);
711		}
712		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
713		DELAY(4);
714	}
715}
716
717/*
718 * Start packet transmission on the interface.
719 */
720void
721fxp_start(struct ifnet *ifp)
722{
723	struct fxp_softc *sc = ifp->if_softc;
724	struct mbuf *m0, *m;
725	struct fxp_txdesc *txd;
726	struct fxp_txsoft *txs;
727	bus_dmamap_t dmamap;
728	int error, lasttx, nexttx, opending, seg;
729
730	/*
731	 * If we want a re-init, bail out now.
732	 */
733	if (sc->sc_flags & FXPF_WANTINIT) {
734		ifp->if_flags |= IFF_OACTIVE;
735		return;
736	}
737
738	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
739		return;
740
741	/*
742	 * Remember the previous txpending and the current lasttx.
743	 */
744	opending = sc->sc_txpending;
745	lasttx = sc->sc_txlast;
746
747	/*
748	 * Loop through the send queue, setting up transmit descriptors
749	 * until we drain the queue, or use up all available transmit
750	 * descriptors.
751	 */
752	while (sc->sc_txpending < FXP_NTXCB) {
753		/*
754		 * Grab a packet off the queue.
755		 */
756		IFQ_POLL(&ifp->if_snd, m0);
757		if (m0 == NULL)
758			break;
759		m = NULL;
760
761		/*
762		 * Get the next available transmit descriptor.
763		 */
764		nexttx = FXP_NEXTTX(sc->sc_txlast);
765		txd = FXP_CDTX(sc, nexttx);
766		txs = FXP_DSTX(sc, nexttx);
767		dmamap = txs->txs_dmamap;
768
769		/*
770		 * Load the DMA map.  If this fails, the packet either
771		 * didn't fit in the allotted number of frags, or we were
772		 * short on resources.  In this case, we'll copy and try
773		 * again.
774		 */
775		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
776		    BUS_DMA_NOWAIT) != 0) {
777			MGETHDR(m, M_DONTWAIT, MT_DATA);
778			if (m == NULL) {
779				printf("%s: unable to allocate Tx mbuf\n",
780				    sc->sc_dev.dv_xname);
781				break;
782			}
783			if (m0->m_pkthdr.len > MHLEN) {
784				MCLGET(m, M_DONTWAIT);
785				if ((m->m_flags & M_EXT) == 0) {
786					printf("%s: unable to allocate Tx "
787					    "cluster\n", sc->sc_dev.dv_xname);
788					m_freem(m);
789					break;
790				}
791			}
792			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
793			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
794			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
795			    m, BUS_DMA_NOWAIT);
796			if (error) {
797				printf("%s: unable to load Tx buffer, "
798				    "error = %d\n", sc->sc_dev.dv_xname, error);
799				break;
800			}
801		}
802
803		IFQ_DEQUEUE(&ifp->if_snd, m0);
804		if (m != NULL) {
805			m_freem(m0);
806			m0 = m;
807		}
808
809		/* Initialize the fraglist. */
810		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
811			txd->txd_tbd[seg].tb_addr =
812			    htole32(dmamap->dm_segs[seg].ds_addr);
813			txd->txd_tbd[seg].tb_size =
814			    htole32(dmamap->dm_segs[seg].ds_len);
815		}
816
817		/* Sync the DMA map. */
818		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
819		    BUS_DMASYNC_PREWRITE);
820
821		/*
822		 * Store a pointer to the packet so we can free it later.
823		 */
824		txs->txs_mbuf = m0;
825
826		/*
827		 * Initialize the transmit descriptor.
828		 */
829		/* BIG_ENDIAN: no need to swap to store 0 */
830		txd->txd_txcb.cb_status = 0;
831		txd->txd_txcb.cb_command =
832		    htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
833		txd->txd_txcb.tx_threshold = tx_threshold;
834		txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
835
836		FXP_CDTXSYNC(sc, nexttx,
837		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
838
839		/* Advance the tx pointer. */
840		sc->sc_txpending++;
841		sc->sc_txlast = nexttx;
842
843#if NBPFILTER > 0
844		/*
845		 * Pass packet to bpf if there is a listener.
846		 */
847		if (ifp->if_bpf)
848			bpf_mtap(ifp->if_bpf, m0);
849#endif
850	}
851
852	if (sc->sc_txpending == FXP_NTXCB) {
853		/* No more slots; notify upper layer. */
854		ifp->if_flags |= IFF_OACTIVE;
855	}
856
857	if (sc->sc_txpending != opending) {
858		/*
859		 * We enqueued packets.  If the transmitter was idle,
860		 * reset the txdirty pointer.
861		 */
862		if (opending == 0)
863			sc->sc_txdirty = FXP_NEXTTX(lasttx);
864
865		/*
866		 * Cause the chip to interrupt and suspend command
867		 * processing once the last packet we've enqueued
868		 * has been transmitted.
869		 */
870		FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
871		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
872		FXP_CDTXSYNC(sc, sc->sc_txlast,
873		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
874
875		/*
876		 * The entire packet chain is set up.  Clear the suspend bit
877		 * on the command prior to the first packet we set up.
878		 */
879		FXP_CDTXSYNC(sc, lasttx,
880		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
881		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
882		    htole16(~FXP_CB_COMMAND_S);
883		FXP_CDTXSYNC(sc, lasttx,
884		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
885
886		/*
887		 * Issue a Resume command in case the chip was suspended.
888		 */
889		fxp_scb_wait(sc);
890		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
891
892		/* Set a watchdog timer in case the chip flakes out. */
893		ifp->if_timer = 5;
894	}
895}
896
897/*
898 * Process interface interrupts.
899 */
900int
901fxp_intr(void *arg)
902{
903	struct fxp_softc *sc = arg;
904	struct ethercom *ec = &sc->sc_ethercom;
905	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
906	struct fxp_txdesc *txd;
907	struct fxp_txsoft *txs;
908	struct mbuf *m, *m0;
909	bus_dmamap_t rxmap;
910	struct fxp_rfa *rfa;
911	int i, claimed = 0;
912	u_int16_t len, rxstat, txstat;
913	u_int8_t statack;
914
915	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
916		return (0);
917	/*
918	 * If the interface isn't running, don't try to
919	 * service the interrupt.. just ack it and bail.
920	 */
921	if ((ifp->if_flags & IFF_RUNNING) == 0) {
922		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
923		if (statack) {
924			claimed = 1;
925			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
926		}
927		return (claimed);
928	}
929
930	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
931		claimed = 1;
932
933		/*
934		 * First ACK all the interrupts in this pass.
935		 */
936		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
937
938		/*
939		 * Process receiver interrupts. If a no-resource (RNR)
940		 * condition exists, get whatever packets we can and
941		 * re-start the receiver.
942		 */
943		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
944 rcvloop:
945			m = sc->sc_rxq.ifq_head;
946			rfa = FXP_MTORFA(m);
947			rxmap = M_GETCTX(m, bus_dmamap_t);
948
949			FXP_RFASYNC(sc, m,
950			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
951
952			rxstat = le16toh(rfa->rfa_status);
953
954			if ((rxstat & FXP_RFA_STATUS_C) == 0) {
955				/*
956				 * We have processed all of the
957				 * receive buffers.
958				 */
959				FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
960				goto do_transmit;
961			}
962
963			IF_DEQUEUE(&sc->sc_rxq, m);
964
965			FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
966
967			len = le16toh(rfa->actual_size) &
968			    (m->m_ext.ext_size - 1);
969
970			if (len < sizeof(struct ether_header)) {
971				/*
972				 * Runt packet; drop it now.
973				 */
974				FXP_INIT_RFABUF(sc, m);
975				goto rcvloop;
976			}
977
978			/*
979			 * If support for 802.1Q VLAN sized frames is
980			 * enabled, we need to do some additional error
981			 * checking (as we are saving bad frames, in
982			 * order to receive the larger ones).
983			 */
984			if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
985			    (rxstat & (FXP_RFA_STATUS_OVERRUN|
986				       FXP_RFA_STATUS_RNR|
987				       FXP_RFA_STATUS_ALIGN|
988				       FXP_RFA_STATUS_CRC)) != 0) {
989				FXP_INIT_RFABUF(sc, m);
990				goto rcvloop;
991			}
992
993			/*
994			 * If the packet is small enough to fit in a
995			 * single header mbuf, allocate one and copy
996			 * the data into it.  This greatly reduces
997			 * memory consumption when we receive lots
998			 * of small packets.
999			 *
1000			 * Otherwise, we add a new buffer to the receive
1001			 * chain.  If this fails, we drop the packet and
1002			 * recycle the old buffer.
1003			 */
1004			if (fxp_copy_small != 0 && len <= MHLEN) {
1005				MGETHDR(m0, M_DONTWAIT, MT_DATA);
1006				if (m == NULL)
1007					goto dropit;
1008				memcpy(mtod(m0, caddr_t),
1009				    mtod(m, caddr_t), len);
1010				FXP_INIT_RFABUF(sc, m);
1011				m = m0;
1012			} else {
1013				if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1014 dropit:
1015					ifp->if_ierrors++;
1016					FXP_INIT_RFABUF(sc, m);
1017					goto rcvloop;
1018				}
1019			}
1020
1021			m->m_pkthdr.rcvif = ifp;
1022			m->m_pkthdr.len = m->m_len = len;
1023
1024#if NBPFILTER > 0
1025			/*
1026			 * Pass this up to any BPF listeners, but only
1027			 * pass it up the stack it its for us.
1028			 */
1029			if (ifp->if_bpf)
1030				bpf_mtap(ifp->if_bpf, m);
1031#endif
1032
1033			/* Pass it on. */
1034			(*ifp->if_input)(ifp, m);
1035			goto rcvloop;
1036		}
1037
1038 do_transmit:
1039		if (statack & FXP_SCB_STATACK_RNR) {
1040			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1041			fxp_scb_wait(sc);
1042			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1043			    rxmap->dm_segs[0].ds_addr +
1044			    RFA_ALIGNMENT_FUDGE);
1045			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1046		}
1047
1048		/*
1049		 * Free any finished transmit mbuf chains.
1050		 */
1051		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1052			ifp->if_flags &= ~IFF_OACTIVE;
1053			for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1054			     i = FXP_NEXTTX(i), sc->sc_txpending--) {
1055				txd = FXP_CDTX(sc, i);
1056				txs = FXP_DSTX(sc, i);
1057
1058				FXP_CDTXSYNC(sc, i,
1059				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1060
1061				txstat = le16toh(txd->txd_txcb.cb_status);
1062
1063				if ((txstat & FXP_CB_STATUS_C) == 0)
1064					break;
1065
1066				bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1067				    0, txs->txs_dmamap->dm_mapsize,
1068				    BUS_DMASYNC_POSTWRITE);
1069				bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1070				m_freem(txs->txs_mbuf);
1071				txs->txs_mbuf = NULL;
1072			}
1073
1074			/* Update the dirty transmit buffer pointer. */
1075			sc->sc_txdirty = i;
1076
1077			/*
1078			 * Cancel the watchdog timer if there are no pending
1079			 * transmissions.
1080			 */
1081			if (sc->sc_txpending == 0) {
1082				ifp->if_timer = 0;
1083
1084				/*
1085				 * If we want a re-init, do that now.
1086				 */
1087				if (sc->sc_flags & FXPF_WANTINIT)
1088					(void) fxp_init(ifp);
1089			}
1090
1091			/*
1092			 * Try to get more packets going.
1093			 */
1094			fxp_start(ifp);
1095		}
1096	}
1097
1098#if NRND > 0
1099	if (claimed)
1100		rnd_add_uint32(&sc->rnd_source, statack);
1101#endif
1102	return (claimed);
1103}
1104
1105/*
1106 * Update packet in/out/collision statistics. The i82557 doesn't
1107 * allow you to access these counters without doing a fairly
1108 * expensive DMA to get _all_ of the statistics it maintains, so
1109 * we do this operation here only once per second. The statistics
1110 * counters in the kernel are updated from the previous dump-stats
1111 * DMA and then a new dump-stats DMA is started. The on-chip
1112 * counters are zeroed when the DMA completes. If we can't start
1113 * the DMA immediately, we don't wait - we just prepare to read
1114 * them again next time.
1115 */
1116void
1117fxp_tick(void *arg)
1118{
1119	struct fxp_softc *sc = arg;
1120	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1121	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1122	int s;
1123
1124	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1125		return;
1126
1127	s = splnet();
1128
1129	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1130
1131	ifp->if_opackets += le32toh(sp->tx_good);
1132	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1133	if (sp->rx_good) {
1134		ifp->if_ipackets += le32toh(sp->rx_good);
1135		sc->sc_rxidle = 0;
1136	} else {
1137		sc->sc_rxidle++;
1138	}
1139	ifp->if_ierrors +=
1140	    le32toh(sp->rx_crc_errors) +
1141	    le32toh(sp->rx_alignment_errors) +
1142	    le32toh(sp->rx_rnr_errors) +
1143	    le32toh(sp->rx_overrun_errors);
1144	/*
1145	 * If any transmit underruns occured, bump up the transmit
1146	 * threshold by another 512 bytes (64 * 8).
1147	 */
1148	if (sp->tx_underruns) {
1149		ifp->if_oerrors += le32toh(sp->tx_underruns);
1150		if (tx_threshold < 192)
1151			tx_threshold += 64;
1152	}
1153
1154	/*
1155	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1156	 * then assume the receiver has locked up and attempt to clear
1157	 * the condition by reprogramming the multicast filter (actually,
1158	 * resetting the interface). This is a work-around for a bug in
1159	 * the 82557 where the receiver locks up if it gets certain types
1160	 * of garbage in the syncronization bits prior to the packet header.
1161	 * This bug is supposed to only occur in 10Mbps mode, but has been
1162	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1163	 * speed transition).
1164	 */
1165	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1166		(void) fxp_init(ifp);
1167		splx(s);
1168		return;
1169	}
1170	/*
1171	 * If there is no pending command, start another stats
1172	 * dump. Otherwise punt for now.
1173	 */
1174	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1175		/*
1176		 * Start another stats dump.
1177		 */
1178		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1179		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1180	} else {
1181		/*
1182		 * A previous command is still waiting to be accepted.
1183		 * Just zero our copy of the stats and wait for the
1184		 * next timer event to update them.
1185		 */
1186		/* BIG_ENDIAN: no swap required to store 0 */
1187		sp->tx_good = 0;
1188		sp->tx_underruns = 0;
1189		sp->tx_total_collisions = 0;
1190
1191		sp->rx_good = 0;
1192		sp->rx_crc_errors = 0;
1193		sp->rx_alignment_errors = 0;
1194		sp->rx_rnr_errors = 0;
1195		sp->rx_overrun_errors = 0;
1196	}
1197
1198	if (sc->sc_flags & FXPF_MII) {
1199		/* Tick the MII clock. */
1200		mii_tick(&sc->sc_mii);
1201	}
1202
1203	splx(s);
1204
1205	/*
1206	 * Schedule another timeout one second from now.
1207	 */
1208	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1209}
1210
1211/*
1212 * Drain the receive queue.
1213 */
1214void
1215fxp_rxdrain(struct fxp_softc *sc)
1216{
1217	bus_dmamap_t rxmap;
1218	struct mbuf *m;
1219
1220	for (;;) {
1221		IF_DEQUEUE(&sc->sc_rxq, m);
1222		if (m == NULL)
1223			break;
1224		rxmap = M_GETCTX(m, bus_dmamap_t);
1225		bus_dmamap_unload(sc->sc_dmat, rxmap);
1226		FXP_RXMAP_PUT(sc, rxmap);
1227		m_freem(m);
1228	}
1229}
1230
1231/*
1232 * Stop the interface. Cancels the statistics updater and resets
1233 * the interface.
1234 */
1235void
1236fxp_stop(struct ifnet *ifp, int disable)
1237{
1238	struct fxp_softc *sc = ifp->if_softc;
1239	struct fxp_txsoft *txs;
1240	int i;
1241
1242	/*
1243	 * Turn down interface (done early to avoid bad interactions
1244	 * between panics, shutdown hooks, and the watchdog timer)
1245	 */
1246	ifp->if_timer = 0;
1247	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1248
1249	/*
1250	 * Cancel stats updater.
1251	 */
1252	callout_stop(&sc->sc_callout);
1253	if (sc->sc_flags & FXPF_MII) {
1254		/* Down the MII. */
1255		mii_down(&sc->sc_mii);
1256	}
1257
1258	/*
1259	 * Issue software reset
1260	 */
1261	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1262	DELAY(10);
1263
1264	/*
1265	 * Release any xmit buffers.
1266	 */
1267	for (i = 0; i < FXP_NTXCB; i++) {
1268		txs = FXP_DSTX(sc, i);
1269		if (txs->txs_mbuf != NULL) {
1270			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1271			m_freem(txs->txs_mbuf);
1272			txs->txs_mbuf = NULL;
1273		}
1274	}
1275	sc->sc_txpending = 0;
1276
1277	if (disable) {
1278		fxp_rxdrain(sc);
1279		fxp_disable(sc);
1280	}
1281
1282}
1283
1284/*
1285 * Watchdog/transmission transmit timeout handler. Called when a
1286 * transmission is started on the interface, but no interrupt is
1287 * received before the timeout. This usually indicates that the
1288 * card has wedged for some reason.
1289 */
1290void
1291fxp_watchdog(struct ifnet *ifp)
1292{
1293	struct fxp_softc *sc = ifp->if_softc;
1294
1295	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1296	ifp->if_oerrors++;
1297
1298	(void) fxp_init(ifp);
1299}
1300
1301/*
1302 * Initialize the interface.  Must be called at splnet().
1303 */
1304int
1305fxp_init(struct ifnet *ifp)
1306{
1307	struct fxp_softc *sc = ifp->if_softc;
1308	struct fxp_cb_config *cbp;
1309	struct fxp_cb_ias *cb_ias;
1310	struct fxp_txdesc *txd;
1311	bus_dmamap_t rxmap;
1312	int i, prm, save_bf, lrxen, allm, error = 0;
1313
1314	if ((error = fxp_enable(sc)) != 0)
1315		goto out;
1316
1317	/*
1318	 * Cancel any pending I/O
1319	 */
1320	fxp_stop(ifp, 0);
1321
1322	/*
1323	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1324	 * flag, and this prevents the MII from detaching resulting in
1325	 * a panic. The flags field should perhaps be split in runtime
1326	 * flags and more static information. For now, just clear the
1327	 * only other flag set.
1328	 */
1329
1330	sc->sc_flags &= ~FXPF_WANTINIT;
1331
1332	/*
1333	 * Initialize base of CBL and RFA memory. Loading with zero
1334	 * sets it up for regular linear addressing.
1335	 */
1336	fxp_scb_wait(sc);
1337	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1338	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1339
1340	fxp_scb_wait(sc);
1341	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1342
1343	/*
1344	 * Initialize the multicast filter.  Do this now, since we might
1345	 * have to setup the config block differently.
1346	 */
1347	fxp_mc_setup(sc);
1348
1349	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1350	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1351
1352	/*
1353	 * In order to support receiving 802.1Q VLAN frames, we have to
1354	 * enable "save bad frames", since they are 4 bytes larger than
1355	 * the normal Ethernet maximum frame length.  On i82558 and later,
1356	 * we have a better mechanism for this.
1357	 */
1358	save_bf = 0;
1359	lrxen = 0;
1360	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1361		if (sc->sc_rev < FXP_REV_82558_A4)
1362			save_bf = 1;
1363		else
1364			lrxen = 1;
1365	}
1366
1367	/*
1368	 * Initialize base of dump-stats buffer.
1369	 */
1370	fxp_scb_wait(sc);
1371	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1372	    sc->sc_cddma + FXP_CDSTATSOFF);
1373	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1374	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1375
1376	cbp = &sc->sc_control_data->fcd_configcb;
1377	memset(cbp, 0, sizeof(struct fxp_cb_config));
1378
1379	/*
1380	 * This copy is kind of disgusting, but there are a bunch of must be
1381	 * zero and must be one bits in this structure and this is the easiest
1382	 * way to initialize them all to proper values.
1383	 */
1384	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1385
1386	/* BIG_ENDIAN: no need to swap to store 0 */
1387	cbp->cb_status =	0;
1388	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1389				    FXP_CB_COMMAND_EL);
1390	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1391	cbp->link_addr =	0xffffffff; /* (no) next command */
1392					/* bytes in config block */
1393	cbp->byte_count =	FXP_CONFIG_LEN;
1394	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1395	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1396	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1397	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
1398	cbp->type_enable =	0;	/* actually reserved */
1399	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1400	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1401	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1402	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1403	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1404	cbp->late_scb =		0;	/* (don't) defer SCB update */
1405	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1406	cbp->ci_int =		1;	/* interrupt on CU idle */
1407	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1408	cbp->ext_stats_dis =	1;	/* disable extended counters */
1409	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
1410	cbp->save_bf =		save_bf;/* save bad frames */
1411	cbp->disc_short_rx =	!prm;	/* discard short packets */
1412	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1413	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1414	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1415					/* interface mode */
1416	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
1417	cbp->csma_dis =		0;	/* (don't) disable link */
1418	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1419	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1420	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1421	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1422	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
1423	cbp->nsai =		1;	/* (don't) disable source addr insert */
1424	cbp->preamble_length =	2;	/* (7 byte) preamble */
1425	cbp->loopback =		0;	/* (don't) loopback */
1426	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1427	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1428	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1429	cbp->promiscuous =	prm;	/* promiscuous mode */
1430	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1431	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1432	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1433	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1434	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
1435	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1436	cbp->padding =		1;	/* (do) pad short tx packets */
1437	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1438	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
1439	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1440	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1441					/* must set wake_en in PMCSR also */
1442	cbp->force_fdx =	0;	/* (don't) force full duplex */
1443	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1444	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1445	cbp->mc_all =		allm;	/* accept all multicasts */
1446
1447	if (sc->sc_rev < FXP_REV_82558_A4) {
1448		/*
1449		 * The i82557 has no hardware flow control, the values
1450		 * here are the defaults for the chip.
1451		 */
1452		cbp->fc_delay_lsb =	0;
1453		cbp->fc_delay_msb =	0x40;
1454		cbp->pri_fc_thresh =	3;
1455		cbp->tx_fc_dis =	0;
1456		cbp->rx_fc_restop =	0;
1457		cbp->rx_fc_restart =	0;
1458		cbp->fc_filter =	0;
1459		cbp->pri_fc_loc =	1;
1460	} else {
1461		cbp->fc_delay_lsb =	0x1f;
1462		cbp->fc_delay_msb =	0x01;
1463		cbp->pri_fc_thresh =	3;
1464		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1465		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1466		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1467		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1468		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1469	}
1470
1471	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1472
1473	/*
1474	 * Start the config command/DMA.
1475	 */
1476	fxp_scb_wait(sc);
1477	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1478	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1479	/* ...and wait for it to complete. */
1480	i = 1000;
1481	do {
1482		FXP_CDCONFIGSYNC(sc,
1483		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1484		DELAY(1);
1485	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1486	if (i == 0) {
1487		printf("%s at line %d: dmasync timeout\n",
1488		    sc->sc_dev.dv_xname, __LINE__);
1489		return ETIMEDOUT;
1490	}
1491
1492	/*
1493	 * Initialize the station address.
1494	 */
1495	cb_ias = &sc->sc_control_data->fcd_iascb;
1496	/* BIG_ENDIAN: no need to swap to store 0 */
1497	cb_ias->cb_status = 0;
1498	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1499	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1500	cb_ias->link_addr = 0xffffffff;
1501	memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1502
1503	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1504
1505	/*
1506	 * Start the IAS (Individual Address Setup) command/DMA.
1507	 */
1508	fxp_scb_wait(sc);
1509	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1510	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1511	/* ...and wait for it to complete. */
1512	i = 1000;
1513	do {
1514		FXP_CDIASSYNC(sc,
1515		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1516		DELAY(1);
1517	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1518	if (i == 0) {
1519		printf("%s at line %d: dmasync timeout\n",
1520		    sc->sc_dev.dv_xname, __LINE__);
1521		return ETIMEDOUT;
1522	}
1523
1524	/*
1525	 * Initialize the transmit descriptor ring.  txlast is initialized
1526	 * to the end of the list so that it will wrap around to the first
1527	 * descriptor when the first packet is transmitted.
1528	 */
1529	for (i = 0; i < FXP_NTXCB; i++) {
1530		txd = FXP_CDTX(sc, i);
1531		memset(txd, 0, sizeof(*txd));
1532		txd->txd_txcb.cb_command =
1533		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1534		txd->txd_txcb.link_addr =
1535		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1536		if (sc->sc_flags & FXPF_EXT_TXCB)
1537			txd->txd_txcb.tbd_array_addr =
1538			    htole32(FXP_CDTBDADDR(sc, i) +
1539				    (2 * sizeof(struct fxp_tbd)));
1540		else
1541			txd->txd_txcb.tbd_array_addr =
1542			    htole32(FXP_CDTBDADDR(sc, i));
1543		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1544	}
1545	sc->sc_txpending = 0;
1546	sc->sc_txdirty = 0;
1547	sc->sc_txlast = FXP_NTXCB - 1;
1548
1549	/*
1550	 * Initialize the receive buffer list.
1551	 */
1552	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1553	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1554		rxmap = FXP_RXMAP_GET(sc);
1555		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1556			printf("%s: unable to allocate or map rx "
1557			    "buffer %d, error = %d\n",
1558			    sc->sc_dev.dv_xname,
1559			    sc->sc_rxq.ifq_len, error);
1560			/*
1561			 * XXX Should attempt to run with fewer receive
1562			 * XXX buffers instead of just failing.
1563			 */
1564			FXP_RXMAP_PUT(sc, rxmap);
1565			fxp_rxdrain(sc);
1566			goto out;
1567		}
1568	}
1569	sc->sc_rxidle = 0;
1570
1571	/*
1572	 * Give the transmit ring to the chip.  We do this by pointing
1573	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1574	 * issuing a start command.  It will execute the NOP and then
1575	 * suspend, pointing at the first descriptor.
1576	 */
1577	fxp_scb_wait(sc);
1578	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1579	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1580
1581	/*
1582	 * Initialize receiver buffer area - RFA.
1583	 */
1584	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1585	fxp_scb_wait(sc);
1586	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1587	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1588	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1589
1590	if (sc->sc_flags & FXPF_MII) {
1591		/*
1592		 * Set current media.
1593		 */
1594		mii_mediachg(&sc->sc_mii);
1595	}
1596
1597	/*
1598	 * ...all done!
1599	 */
1600	ifp->if_flags |= IFF_RUNNING;
1601	ifp->if_flags &= ~IFF_OACTIVE;
1602
1603	/*
1604	 * Start the one second timer.
1605	 */
1606	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1607
1608	/*
1609	 * Attempt to start output on the interface.
1610	 */
1611	fxp_start(ifp);
1612
1613 out:
1614	if (error) {
1615		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1616		ifp->if_timer = 0;
1617		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1618	}
1619	return (error);
1620}
1621
1622/*
1623 * Change media according to request.
1624 */
1625int
1626fxp_mii_mediachange(struct ifnet *ifp)
1627{
1628	struct fxp_softc *sc = ifp->if_softc;
1629
1630	if (ifp->if_flags & IFF_UP)
1631		mii_mediachg(&sc->sc_mii);
1632	return (0);
1633}
1634
1635/*
1636 * Notify the world which media we're using.
1637 */
1638void
1639fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1640{
1641	struct fxp_softc *sc = ifp->if_softc;
1642
1643	if(sc->sc_enabled == 0) {
1644		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1645		ifmr->ifm_status = 0;
1646		return;
1647	}
1648
1649	mii_pollstat(&sc->sc_mii);
1650	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1651	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1652}
1653
1654int
1655fxp_80c24_mediachange(struct ifnet *ifp)
1656{
1657
1658	/* Nothing to do here. */
1659	return (0);
1660}
1661
1662void
1663fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1664{
1665	struct fxp_softc *sc = ifp->if_softc;
1666
1667	/*
1668	 * Media is currently-selected media.  We cannot determine
1669	 * the link status.
1670	 */
1671	ifmr->ifm_status = 0;
1672	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1673}
1674
1675/*
1676 * Add a buffer to the end of the RFA buffer list.
1677 * Return 0 if successful, error code on failure.
1678 *
1679 * The RFA struct is stuck at the beginning of mbuf cluster and the
1680 * data pointer is fixed up to point just past it.
1681 */
1682int
1683fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1684{
1685	struct mbuf *m;
1686	int error;
1687
1688	MGETHDR(m, M_DONTWAIT, MT_DATA);
1689	if (m == NULL)
1690		return (ENOBUFS);
1691
1692	MCLGET(m, M_DONTWAIT);
1693	if ((m->m_flags & M_EXT) == 0) {
1694		m_freem(m);
1695		return (ENOBUFS);
1696	}
1697
1698	if (unload)
1699		bus_dmamap_unload(sc->sc_dmat, rxmap);
1700
1701	M_SETCTX(m, rxmap);
1702
1703	error = bus_dmamap_load(sc->sc_dmat, rxmap,
1704	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1705	if (error) {
1706		printf("%s: can't load rx DMA map %d, error = %d\n",
1707		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1708		panic("fxp_add_rfabuf");		/* XXX */
1709	}
1710
1711	FXP_INIT_RFABUF(sc, m);
1712
1713	return (0);
1714}
1715
1716int
1717fxp_mdi_read(struct device *self, int phy, int reg)
1718{
1719	struct fxp_softc *sc = (struct fxp_softc *)self;
1720	int count = 10000;
1721	int value;
1722
1723	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1724	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1725
1726	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1727	    && count--)
1728		DELAY(10);
1729
1730	if (count <= 0)
1731		printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1732
1733	return (value & 0xffff);
1734}
1735
1736void
1737fxp_statchg(struct device *self)
1738{
1739	struct fxp_softc *sc = (void *) self;
1740
1741	/*
1742	 * Determine whether or not we have to work-around the
1743	 * Resume Bug.
1744	 */
1745	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
1746		if (IFM_TYPE(sc->sc_mii.mii_media_active) == IFM_10_T)
1747			sc->sc_flags |= FXPF_FIX_RESUME_BUG;
1748		else
1749			sc->sc_flags &= ~FXPF_FIX_RESUME_BUG;
1750	}
1751}
1752
1753void
1754fxp_mdi_write(struct device *self, int phy, int reg, int value)
1755{
1756	struct fxp_softc *sc = (struct fxp_softc *)self;
1757	int count = 10000;
1758
1759	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1760	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1761	    (value & 0xffff));
1762
1763	while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1764	    count--)
1765		DELAY(10);
1766
1767	if (count <= 0)
1768		printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1769}
1770
1771int
1772fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1773{
1774	struct fxp_softc *sc = ifp->if_softc;
1775	struct ifreq *ifr = (struct ifreq *)data;
1776	int s, error;
1777
1778	s = splnet();
1779
1780	switch (cmd) {
1781	case SIOCSIFMEDIA:
1782	case SIOCGIFMEDIA:
1783		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1784		break;
1785
1786	default:
1787		error = ether_ioctl(ifp, cmd, data);
1788		if (error == ENETRESET) {
1789			if (sc->sc_enabled) {
1790				/*
1791				 * Multicast list has changed; set the
1792				 * hardware filter accordingly.
1793				 */
1794				if (sc->sc_txpending) {
1795					sc->sc_flags |= FXPF_WANTINIT;
1796					error = 0;
1797				} else
1798					error = fxp_init(ifp);
1799			} else
1800				error = 0;
1801		}
1802		break;
1803	}
1804
1805	/* Try to get more packets going. */
1806	if (sc->sc_enabled)
1807		fxp_start(ifp);
1808
1809	splx(s);
1810	return (error);
1811}
1812
1813/*
1814 * Program the multicast filter.
1815 *
1816 * This function must be called at splnet().
1817 */
1818void
1819fxp_mc_setup(struct fxp_softc *sc)
1820{
1821	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1822	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1823	struct ethercom *ec = &sc->sc_ethercom;
1824	struct ether_multi *enm;
1825	struct ether_multistep step;
1826	int count, nmcasts;
1827
1828#ifdef DIAGNOSTIC
1829	if (sc->sc_txpending)
1830		panic("fxp_mc_setup: pending transmissions");
1831#endif
1832
1833	ifp->if_flags &= ~IFF_ALLMULTI;
1834
1835	/*
1836	 * Initialize multicast setup descriptor.
1837	 */
1838	nmcasts = 0;
1839	ETHER_FIRST_MULTI(step, ec, enm);
1840	while (enm != NULL) {
1841		/*
1842		 * Check for too many multicast addresses or if we're
1843		 * listening to a range.  Either way, we simply have
1844		 * to accept all multicasts.
1845		 */
1846		if (nmcasts >= MAXMCADDR ||
1847		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
1848		    ETHER_ADDR_LEN) != 0) {
1849			/*
1850			 * Callers of this function must do the
1851			 * right thing with this.  If we're called
1852			 * from outside fxp_init(), the caller must
1853			 * detect if the state if IFF_ALLMULTI changes.
1854			 * If it does, the caller must then call
1855			 * fxp_init(), since allmulti is handled by
1856			 * the config block.
1857			 */
1858			ifp->if_flags |= IFF_ALLMULTI;
1859			return;
1860		}
1861		memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1862		    ETHER_ADDR_LEN);
1863		nmcasts++;
1864		ETHER_NEXT_MULTI(step, enm);
1865	}
1866
1867	/* BIG_ENDIAN: no need to swap to store 0 */
1868	mcsp->cb_status = 0;
1869	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1870	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1871	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1872
1873	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1874
1875	/*
1876	 * Wait until the command unit is not active.  This should never
1877	 * happen since nothing is queued, but make sure anyway.
1878	 */
1879	count = 100;
1880	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1881	    FXP_SCB_CUS_ACTIVE && --count)
1882		DELAY(1);
1883	if (count == 0) {
1884		printf("%s at line %d: command queue timeout\n",
1885		    sc->sc_dev.dv_xname, __LINE__);
1886		return;
1887	}
1888
1889	/*
1890	 * Start the multicast setup command/DMA.
1891	 */
1892	fxp_scb_wait(sc);
1893	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1894	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1895
1896	/* ...and wait for it to complete. */
1897	count = 1000;
1898	do {
1899		FXP_CDMCSSYNC(sc,
1900		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1901		DELAY(1);
1902	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
1903	if (count == 0) {
1904		printf("%s at line %d: dmasync timeout\n",
1905		    sc->sc_dev.dv_xname, __LINE__);
1906		return;
1907	}
1908}
1909
1910int
1911fxp_enable(struct fxp_softc *sc)
1912{
1913
1914	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1915		if ((*sc->sc_enable)(sc) != 0) {
1916			printf("%s: device enable failed\n",
1917			    sc->sc_dev.dv_xname);
1918			return (EIO);
1919		}
1920	}
1921
1922	sc->sc_enabled = 1;
1923	return (0);
1924}
1925
1926void
1927fxp_disable(struct fxp_softc *sc)
1928{
1929
1930	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1931		(*sc->sc_disable)(sc);
1932		sc->sc_enabled = 0;
1933	}
1934}
1935
1936/*
1937 * fxp_activate:
1938 *
1939 *	Handle device activation/deactivation requests.
1940 */
1941int
1942fxp_activate(struct device *self, enum devact act)
1943{
1944	struct fxp_softc *sc = (void *) self;
1945	int s, error = 0;
1946
1947	s = splnet();
1948	switch (act) {
1949	case DVACT_ACTIVATE:
1950		error = EOPNOTSUPP;
1951		break;
1952
1953	case DVACT_DEACTIVATE:
1954		if (sc->sc_flags & FXPF_MII)
1955			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
1956			    MII_OFFSET_ANY);
1957		if_deactivate(&sc->sc_ethercom.ec_if);
1958		break;
1959	}
1960	splx(s);
1961
1962	return (error);
1963}
1964
1965/*
1966 * fxp_detach:
1967 *
1968 *	Detach an i82557 interface.
1969 */
1970int
1971fxp_detach(struct fxp_softc *sc)
1972{
1973	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1974	int i;
1975
1976	/* Succeed now if there's no work to do. */
1977	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
1978		return (0);
1979
1980	/* Unhook our tick handler. */
1981	callout_stop(&sc->sc_callout);
1982
1983	if (sc->sc_flags & FXPF_MII) {
1984		/* Detach all PHYs */
1985		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1986	}
1987
1988	/* Delete all remaining media. */
1989	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1990
1991#if NRND > 0
1992	rnd_detach_source(&sc->rnd_source);
1993#endif
1994	ether_ifdetach(ifp);
1995	if_detach(ifp);
1996
1997	for (i = 0; i < FXP_NRFABUFS; i++) {
1998		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
1999		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2000	}
2001
2002	for (i = 0; i < FXP_NTXCB; i++) {
2003		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2004		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2005	}
2006
2007	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2008	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2009	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2010	    sizeof(struct fxp_control_data));
2011	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2012
2013	shutdownhook_disestablish(sc->sc_sdhook);
2014	powerhook_disestablish(sc->sc_powerhook);
2015
2016	return (0);
2017}
2018