i82557.c revision 1.43
1/*	$NetBSD: i82557.c,v 1.43 2000/12/14 06:27:25 thorpej Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the NetBSD
22 *	Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 *    contributors may be used to endorse or promote products derived
25 *    from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40/*
41 * Copyright (c) 1995, David Greenman
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 *    notice unmodified, this list of conditions, and the following
49 *    disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 *    notice, this list of conditions and the following disclaimer in the
52 *    documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 *	Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
67 */
68
69/*
70 * Device driver for the Intel i82557 fast Ethernet controller,
71 * and its successors, the i82558 and i82559.
72 */
73
74#include "opt_inet.h"
75#include "opt_ns.h"
76#include "bpfilter.h"
77#include "rnd.h"
78
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/callout.h>
82#include <sys/mbuf.h>
83#include <sys/malloc.h>
84#include <sys/kernel.h>
85#include <sys/socket.h>
86#include <sys/ioctl.h>
87#include <sys/errno.h>
88#include <sys/device.h>
89
90#include <machine/endian.h>
91
92#include <uvm/uvm_extern.h>
93
94#if NRND > 0
95#include <sys/rnd.h>
96#endif
97
98#include <net/if.h>
99#include <net/if_dl.h>
100#include <net/if_media.h>
101#include <net/if_ether.h>
102
103#if NBPFILTER > 0
104#include <net/bpf.h>
105#endif
106
107#ifdef INET
108#include <netinet/in.h>
109#include <netinet/if_inarp.h>
110#endif
111
112#ifdef NS
113#include <netns/ns.h>
114#include <netns/ns_if.h>
115#endif
116
117#include <machine/bus.h>
118#include <machine/intr.h>
119
120#include <dev/mii/miivar.h>
121
122#include <dev/ic/i82557reg.h>
123#include <dev/ic/i82557var.h>
124
125/*
126 * NOTE!  On the Alpha, we have an alignment constraint.  The
127 * card DMAs the packet immediately following the RFA.  However,
128 * the first thing in the packet is a 14-byte Ethernet header.
129 * This means that the packet is misaligned.  To compensate,
130 * we actually offset the RFA 2 bytes into the cluster.  This
131 * alignes the packet after the Ethernet header at a 32-bit
132 * boundary.  HOWEVER!  This means that the RFA is misaligned!
133 */
134#define	RFA_ALIGNMENT_FUDGE	2
135
136/*
137 * Template for default configuration parameters.
138 * See struct fxp_cb_config for the bit definitions.
139 */
140u_int8_t fxp_cb_config_template[] = {
141	0x0, 0x0,		/* cb_status */
142	0x80, 0x2,		/* cb_command */
143	0xff, 0xff, 0xff, 0xff,	/* link_addr */
144	0x16,	/*  0 */
145	0x8,	/*  1 */
146	0x0,	/*  2 */
147	0x0,	/*  3 */
148	0x0,	/*  4 */
149	0x80,	/*  5 */
150	0xb2,	/*  6 */
151	0x3,	/*  7 */
152	0x1,	/*  8 */
153	0x0,	/*  9 */
154	0x26,	/* 10 */
155	0x0,	/* 11 */
156	0x60,	/* 12 */
157	0x0,	/* 13 */
158	0xf2,	/* 14 */
159	0x48,	/* 15 */
160	0x0,	/* 16 */
161	0x40,	/* 17 */
162	0xf3,	/* 18 */
163	0x0,	/* 19 */
164	0x3f,	/* 20 */
165	0x5	/* 21 */
166};
167
168void	fxp_mii_initmedia __P((struct fxp_softc *));
169int	fxp_mii_mediachange __P((struct ifnet *));
170void	fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
171
172void	fxp_80c24_initmedia __P((struct fxp_softc *));
173int	fxp_80c24_mediachange __P((struct ifnet *));
174void	fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
175
176inline void fxp_scb_wait __P((struct fxp_softc *));
177
178void	fxp_start __P((struct ifnet *));
179int	fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
180void	fxp_watchdog __P((struct ifnet *));
181int	fxp_init __P((struct ifnet *));
182void	fxp_stop __P((struct ifnet *, int));
183
184void	fxp_rxdrain __P((struct fxp_softc *));
185int	fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
186int	fxp_mdi_read __P((struct device *, int, int));
187void	fxp_statchg __P((struct device *));
188void	fxp_mdi_write __P((struct device *, int, int, int));
189void	fxp_autosize_eeprom __P((struct fxp_softc*));
190void	fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
191void	fxp_get_info __P((struct fxp_softc *, u_int8_t *));
192void	fxp_tick __P((void *));
193void	fxp_mc_setup __P((struct fxp_softc *));
194
195void	fxp_shutdown __P((void *));
196void	fxp_power __P((int, void *));
197
198int	fxp_copy_small = 0;
199
200struct fxp_phytype {
201	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
202	void	(*fp_init) __P((struct fxp_softc *));
203} fxp_phytype_table[] = {
204	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
205	{ -1,				fxp_mii_initmedia },
206};
207
208/*
209 * Set initial transmit threshold at 64 (512 bytes). This is
210 * increased by 64 (512 bytes) at a time, to maximum of 192
211 * (1536 bytes), if an underrun occurs.
212 */
213static int tx_threshold = 64;
214
215/*
216 * Wait for the previous command to be accepted (but not necessarily
217 * completed).
218 */
219inline void
220fxp_scb_wait(sc)
221	struct fxp_softc *sc;
222{
223	int i = 10000;
224
225	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
226		delay(2);
227	if (i == 0)
228		printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
229}
230
231/*
232 * Finish attaching an i82557 interface.  Called by bus-specific front-end.
233 */
234void
235fxp_attach(sc)
236	struct fxp_softc *sc;
237{
238	u_int8_t enaddr[ETHER_ADDR_LEN];
239	struct ifnet *ifp;
240	bus_dma_segment_t seg;
241	int rseg, i, error;
242	struct fxp_phytype *fp;
243
244	callout_init(&sc->sc_callout);
245
246	/*
247	 * Allocate the control data structures, and create and load the
248	 * DMA map for it.
249	 */
250	if ((error = bus_dmamem_alloc(sc->sc_dmat,
251	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
252	    0)) != 0) {
253		printf("%s: unable to allocate control data, error = %d\n",
254		    sc->sc_dev.dv_xname, error);
255		goto fail_0;
256	}
257
258	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
259	    sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
260	    BUS_DMA_COHERENT)) != 0) {
261		printf("%s: unable to map control data, error = %d\n",
262		    sc->sc_dev.dv_xname, error);
263		goto fail_1;
264	}
265	sc->sc_cdseg = seg;
266	sc->sc_cdnseg = rseg;
267
268	bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
269
270	if ((error = bus_dmamap_create(sc->sc_dmat,
271	    sizeof(struct fxp_control_data), 1,
272	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
273		printf("%s: unable to create control data DMA map, "
274		    "error = %d\n", sc->sc_dev.dv_xname, error);
275		goto fail_2;
276	}
277
278	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
279	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
280	    0)) != 0) {
281		printf("%s: can't load control data DMA map, error = %d\n",
282		    sc->sc_dev.dv_xname, error);
283		goto fail_3;
284	}
285
286	/*
287	 * Create the transmit buffer DMA maps.
288	 */
289	for (i = 0; i < FXP_NTXCB; i++) {
290		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
291		    FXP_NTXSEG, MCLBYTES, 0, 0,
292		    &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
293			printf("%s: unable to create tx DMA map %d, "
294			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
295			goto fail_4;
296		}
297	}
298
299	/*
300	 * Create the receive buffer DMA maps.
301	 */
302	for (i = 0; i < FXP_NRFABUFS; i++) {
303		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
304		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
305			printf("%s: unable to create rx DMA map %d, "
306			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
307			goto fail_5;
308		}
309	}
310
311	/* Initialize MAC address and media structures. */
312	fxp_get_info(sc, enaddr);
313
314	printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
315	    ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
316
317	ifp = &sc->sc_ethercom.ec_if;
318
319	/*
320	 * Get info about our media interface, and initialize it.  Note
321	 * the table terminates itself with a phy of -1, indicating
322	 * that we're using MII.
323	 */
324	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
325		if (fp->fp_phy == sc->phy_primary_device)
326			break;
327	(*fp->fp_init)(sc);
328
329	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
330	ifp->if_softc = sc;
331	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
332	ifp->if_ioctl = fxp_ioctl;
333	ifp->if_start = fxp_start;
334	ifp->if_watchdog = fxp_watchdog;
335	ifp->if_init = fxp_init;
336	ifp->if_stop = fxp_stop;
337	IFQ_SET_READY(&ifp->if_snd);
338
339	/*
340	 * We can support 802.1Q VLAN-sized frames.
341	 */
342	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
343
344	/*
345	 * Attach the interface.
346	 */
347	if_attach(ifp);
348	ether_ifattach(ifp, enaddr);
349#if NRND > 0
350	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
351	    RND_TYPE_NET, 0);
352#endif
353
354	/*
355	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
356	 * doing do could allow DMA to corrupt kernel memory during the
357	 * reboot before the driver initializes.
358	 */
359	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
360	if (sc->sc_sdhook == NULL)
361		printf("%s: WARNING: unable to establish shutdown hook\n",
362		    sc->sc_dev.dv_xname);
363	/*
364  	 * Add suspend hook, for similar reasons..
365	 */
366	sc->sc_powerhook = powerhook_establish(fxp_power, sc);
367	if (sc->sc_powerhook == NULL)
368		printf("%s: WARNING: unable to establish power hook\n",
369		    sc->sc_dev.dv_xname);
370
371	/* The attach is successful. */
372	sc->sc_flags |= FXPF_ATTACHED;
373
374	return;
375
376	/*
377	 * Free any resources we've allocated during the failed attach
378	 * attempt.  Do this in reverse order and fall though.
379	 */
380 fail_5:
381	for (i = 0; i < FXP_NRFABUFS; i++) {
382		if (sc->sc_rxmaps[i] != NULL)
383			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
384	}
385 fail_4:
386	for (i = 0; i < FXP_NTXCB; i++) {
387		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
388			bus_dmamap_destroy(sc->sc_dmat,
389			    FXP_DSTX(sc, i)->txs_dmamap);
390	}
391	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
392 fail_3:
393	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
394 fail_2:
395	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
396	    sizeof(struct fxp_control_data));
397 fail_1:
398	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
399 fail_0:
400	return;
401}
402
403void
404fxp_mii_initmedia(sc)
405	struct fxp_softc *sc;
406{
407
408	sc->sc_flags |= FXPF_MII;
409
410	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
411	sc->sc_mii.mii_readreg = fxp_mdi_read;
412	sc->sc_mii.mii_writereg = fxp_mdi_write;
413	sc->sc_mii.mii_statchg = fxp_statchg;
414	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
415	    fxp_mii_mediastatus);
416	/*
417	 * The i82557 wedges if all of its PHYs are isolated!
418	 */
419	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
420	    MII_OFFSET_ANY, MIIF_NOISOLATE);
421	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
422		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
423		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
424	} else
425		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
426}
427
428void
429fxp_80c24_initmedia(sc)
430	struct fxp_softc *sc;
431{
432
433	/*
434	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
435	 * doesn't have a programming interface of any sort.  The
436	 * media is sensed automatically based on how the link partner
437	 * is configured.  This is, in essence, manual configuration.
438	 */
439	printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
440	    sc->sc_dev.dv_xname);
441	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
442	    fxp_80c24_mediastatus);
443	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
444	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
445}
446
447/*
448 * Device shutdown routine. Called at system shutdown after sync. The
449 * main purpose of this routine is to shut off receiver DMA so that
450 * kernel memory doesn't get clobbered during warmboot.
451 */
452void
453fxp_shutdown(arg)
454	void *arg;
455{
456	struct fxp_softc *sc = arg;
457
458	/*
459	 * Since the system's going to halt shortly, don't bother
460	 * freeing mbufs.
461	 */
462	fxp_stop(&sc->sc_ethercom.ec_if, 0);
463}
464/*
465 * Power handler routine. Called when the system is transitioning
466 * into/out of power save modes.  As with fxp_shutdown, the main
467 * purpose of this routine is to shut off receiver DMA so it doesn't
468 * clobber kernel memory at the wrong time.
469 */
470void
471fxp_power(why, arg)
472	int why;
473	void *arg;
474{
475	struct fxp_softc *sc = arg;
476	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
477	int s;
478
479	s = splnet();
480	switch (why) {
481	case PWR_SUSPEND:
482	case PWR_STANDBY:
483		fxp_stop(ifp, 0);
484		break;
485	case PWR_RESUME:
486		if (ifp->if_flags & IFF_UP)
487			fxp_init(ifp);
488		break;
489	case PWR_SOFTSUSPEND:
490	case PWR_SOFTSTANDBY:
491	case PWR_SOFTRESUME:
492		break;
493	}
494	splx(s);
495}
496
497/*
498 * Initialize the interface media.
499 */
500void
501fxp_get_info(sc, enaddr)
502	struct fxp_softc *sc;
503	u_int8_t *enaddr;
504{
505	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
506
507	/*
508	 * Reset to a stable state.
509	 */
510	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
511	DELAY(10);
512
513	sc->sc_eeprom_size = 0;
514	fxp_autosize_eeprom(sc);
515	if(sc->sc_eeprom_size == 0) {
516	    printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
517	    sc->sc_eeprom_size = 6; /* XXX panic here? */
518	}
519#ifdef DEBUG
520	printf("%s: detected %d word EEPROM\n",
521	       sc->sc_dev.dv_xname,
522	       1 << sc->sc_eeprom_size);
523#endif
524
525	/*
526	 * Get info about the primary PHY
527	 */
528	fxp_read_eeprom(sc, &data, 6, 1);
529	sc->phy_primary_addr = data & 0xff;
530	sc->phy_primary_device = (data >> 8) & 0x3f;
531	sc->phy_10Mbps_only = data >> 15;
532
533	/*
534	 * Read MAC address.
535	 */
536	fxp_read_eeprom(sc, myea, 0, 3);
537	enaddr[0] = myea[0] & 0xff;
538	enaddr[1] = myea[0] >> 8;
539	enaddr[2] = myea[1] & 0xff;
540	enaddr[3] = myea[1] >> 8;
541	enaddr[4] = myea[2] & 0xff;
542	enaddr[5] = myea[2] >> 8;
543}
544
545/*
546 * Figure out EEPROM size.
547 *
548 * 559's can have either 64-word or 256-word EEPROMs, the 558
549 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
550 * talks about the existance of 16 to 256 word EEPROMs.
551 *
552 * The only known sizes are 64 and 256, where the 256 version is used
553 * by CardBus cards to store CIS information.
554 *
555 * The address is shifted in msb-to-lsb, and after the last
556 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
557 * after which follows the actual data. We try to detect this zero, by
558 * probing the data-out bit in the EEPROM control register just after
559 * having shifted in a bit. If the bit is zero, we assume we've
560 * shifted enough address bits. The data-out should be tri-state,
561 * before this, which should translate to a logical one.
562 *
563 * Other ways to do this would be to try to read a register with known
564 * contents with a varying number of address bits, but no such
565 * register seem to be available. The high bits of register 10 are 01
566 * on the 558 and 559, but apparently not on the 557.
567 *
568 * The Linux driver computes a checksum on the EEPROM data, but the
569 * value of this checksum is not very well documented.
570 */
571
572void
573fxp_autosize_eeprom(sc)
574	struct fxp_softc *sc;
575{
576	u_int16_t reg;
577	int x;
578
579	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
580	/*
581	 * Shift in read opcode.
582	 */
583	for (x = 3; x > 0; x--) {
584		if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
585			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
586		} else {
587			reg = FXP_EEPROM_EECS;
588		}
589		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
590		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
591			    reg | FXP_EEPROM_EESK);
592		DELAY(4);
593		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
594		DELAY(4);
595	}
596	/*
597	 * Shift in address, wait for the dummy zero following a correct
598	 * address shift.
599	 */
600	for (x = 1; x <=  8; x++) {
601		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
602		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
603		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
604		DELAY(4);
605		if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
606		    FXP_EEPROM_EEDO) == 0)
607			break;
608		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
609		DELAY(4);
610	}
611	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
612	DELAY(4);
613	if(x != 6 && x != 8) {
614#ifdef DEBUG
615		printf("%s: strange EEPROM size (%d)\n",
616		       sc->sc_dev.dv_xname, 1 << x);
617#endif
618	} else
619		sc->sc_eeprom_size = x;
620}
621
622/*
623 * Read from the serial EEPROM. Basically, you manually shift in
624 * the read opcode (one bit at a time) and then shift in the address,
625 * and then you shift out the data (all of this one bit at a time).
626 * The word size is 16 bits, so you have to provide the address for
627 * every 16 bits of data.
628 */
629void
630fxp_read_eeprom(sc, data, offset, words)
631	struct fxp_softc *sc;
632	u_int16_t *data;
633	int offset;
634	int words;
635{
636	u_int16_t reg;
637	int i, x;
638
639	for (i = 0; i < words; i++) {
640		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
641		/*
642		 * Shift in read opcode.
643		 */
644		for (x = 3; x > 0; x--) {
645			if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
646				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
647			} else {
648				reg = FXP_EEPROM_EECS;
649			}
650			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
651			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
652			    reg | FXP_EEPROM_EESK);
653			DELAY(4);
654			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
655			DELAY(4);
656		}
657		/*
658		 * Shift in address.
659		 */
660		for (x = sc->sc_eeprom_size; x > 0; x--) {
661			if ((i + offset) & (1 << (x - 1))) {
662			    reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
663			} else {
664			    reg = FXP_EEPROM_EECS;
665			}
666			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
667			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
668			    reg | FXP_EEPROM_EESK);
669			DELAY(4);
670			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
671			DELAY(4);
672		}
673		reg = FXP_EEPROM_EECS;
674		data[i] = 0;
675		/*
676		 * Shift out data.
677		 */
678		for (x = 16; x > 0; x--) {
679			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
680			    reg | FXP_EEPROM_EESK);
681			DELAY(4);
682			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
683			    FXP_EEPROM_EEDO)
684				data[i] |= (1 << (x - 1));
685			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
686			DELAY(4);
687		}
688		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
689		DELAY(4);
690	}
691}
692
693/*
694 * Start packet transmission on the interface.
695 */
696void
697fxp_start(ifp)
698	struct ifnet *ifp;
699{
700	struct fxp_softc *sc = ifp->if_softc;
701	struct mbuf *m0, *m;
702	struct fxp_cb_tx *txd;
703	struct fxp_txsoft *txs;
704	struct fxp_tbdlist *tbd;
705	bus_dmamap_t dmamap;
706	int error, lasttx, nexttx, opending, seg;
707
708	/*
709	 * If we want a re-init, bail out now.
710	 */
711	if (sc->sc_flags & FXPF_WANTINIT) {
712		ifp->if_flags |= IFF_OACTIVE;
713		return;
714	}
715
716	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
717		return;
718
719	/*
720	 * Remember the previous txpending and the current lasttx.
721	 */
722	opending = sc->sc_txpending;
723	lasttx = sc->sc_txlast;
724
725	/*
726	 * Loop through the send queue, setting up transmit descriptors
727	 * until we drain the queue, or use up all available transmit
728	 * descriptors.
729	 */
730	while (sc->sc_txpending < FXP_NTXCB) {
731		/*
732		 * Grab a packet off the queue.
733		 */
734		IFQ_POLL(&ifp->if_snd, m0);
735		if (m0 == NULL)
736			break;
737
738		/*
739		 * Get the next available transmit descriptor.
740		 */
741		nexttx = FXP_NEXTTX(sc->sc_txlast);
742		txd = FXP_CDTX(sc, nexttx);
743		tbd = FXP_CDTBD(sc, nexttx);
744		txs = FXP_DSTX(sc, nexttx);
745		dmamap = txs->txs_dmamap;
746
747		/*
748		 * Load the DMA map.  If this fails, the packet either
749		 * didn't fit in the allotted number of frags, or we were
750		 * short on resources.  In this case, we'll copy and try
751		 * again.
752		 */
753		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
754		    BUS_DMA_NOWAIT) != 0) {
755			MGETHDR(m, M_DONTWAIT, MT_DATA);
756			if (m == NULL) {
757				printf("%s: unable to allocate Tx mbuf\n",
758				    sc->sc_dev.dv_xname);
759				break;
760			}
761			if (m0->m_pkthdr.len > MHLEN) {
762				MCLGET(m, M_DONTWAIT);
763				if ((m->m_flags & M_EXT) == 0) {
764					printf("%s: unable to allocate Tx "
765					    "cluster\n", sc->sc_dev.dv_xname);
766					m_freem(m);
767					break;
768				}
769			}
770			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
771			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
772			m_freem(m0);
773			m0 = m;
774			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
775			    m0, BUS_DMA_NOWAIT);
776			if (error) {
777				printf("%s: unable to load Tx buffer, "
778				    "error = %d\n", sc->sc_dev.dv_xname, error);
779				break;
780			}
781		}
782
783		IFQ_DEQUEUE(&ifp->if_snd, m0);
784
785		/* Initialize the fraglist. */
786		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
787			tbd->tbd_d[seg].tb_addr =
788			    htole32(dmamap->dm_segs[seg].ds_addr);
789			tbd->tbd_d[seg].tb_size =
790			    htole32(dmamap->dm_segs[seg].ds_len);
791		}
792
793		FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
794
795		/* Sync the DMA map. */
796		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
797		    BUS_DMASYNC_PREWRITE);
798
799		/*
800		 * Store a pointer to the packet so we can free it later.
801		 */
802		txs->txs_mbuf = m0;
803
804		/*
805		 * Initialize the transmit descriptor.
806		 */
807		/* BIG_ENDIAN: no need to swap to store 0 */
808		txd->cb_status = 0;
809		txd->cb_command =
810		    htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
811		txd->tx_threshold = tx_threshold;
812		txd->tbd_number = dmamap->dm_nsegs;
813
814		FXP_CDTXSYNC(sc, nexttx,
815		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
816
817		/* Advance the tx pointer. */
818		sc->sc_txpending++;
819		sc->sc_txlast = nexttx;
820
821#if NBPFILTER > 0
822		/*
823		 * Pass packet to bpf if there is a listener.
824		 */
825		if (ifp->if_bpf)
826			bpf_mtap(ifp->if_bpf, m0);
827#endif
828	}
829
830	if (sc->sc_txpending == FXP_NTXCB) {
831		/* No more slots; notify upper layer. */
832		ifp->if_flags |= IFF_OACTIVE;
833	}
834
835	if (sc->sc_txpending != opending) {
836		/*
837		 * We enqueued packets.  If the transmitter was idle,
838		 * reset the txdirty pointer.
839		 */
840		if (opending == 0)
841			sc->sc_txdirty = FXP_NEXTTX(lasttx);
842
843		/*
844		 * Cause the chip to interrupt and suspend command
845		 * processing once the last packet we've enqueued
846		 * has been transmitted.
847		 */
848		FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
849		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
850		FXP_CDTXSYNC(sc, sc->sc_txlast,
851		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
852
853		/*
854		 * The entire packet chain is set up.  Clear the suspend bit
855		 * on the command prior to the first packet we set up.
856		 */
857		FXP_CDTXSYNC(sc, lasttx,
858		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
859		FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
860		FXP_CDTXSYNC(sc, lasttx,
861		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
862
863		/*
864		 * Issue a Resume command in case the chip was suspended.
865		 */
866		fxp_scb_wait(sc);
867		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
868
869		/* Set a watchdog timer in case the chip flakes out. */
870		ifp->if_timer = 5;
871	}
872}
873
874/*
875 * Process interface interrupts.
876 */
877int
878fxp_intr(arg)
879	void *arg;
880{
881	struct fxp_softc *sc = arg;
882	struct ethercom *ec = &sc->sc_ethercom;
883	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
884	struct fxp_cb_tx *txd;
885	struct fxp_txsoft *txs;
886	struct mbuf *m, *m0;
887	bus_dmamap_t rxmap;
888	struct fxp_rfa *rfa;
889	int i, claimed = 0;
890	u_int16_t len, rxstat, txstat;
891	u_int8_t statack;
892
893	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
894		return (0);
895	/*
896	 * If the interface isn't running, don't try to
897	 * service the interrupt.. just ack it and bail.
898	 */
899	if ((ifp->if_flags & IFF_RUNNING) == 0) {
900		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
901		if (statack) {
902			claimed = 1;
903			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
904		}
905		return (claimed);
906	}
907
908	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
909		claimed = 1;
910
911		/*
912		 * First ACK all the interrupts in this pass.
913		 */
914		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
915
916		/*
917		 * Process receiver interrupts. If a no-resource (RNR)
918		 * condition exists, get whatever packets we can and
919		 * re-start the receiver.
920		 */
921		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
922 rcvloop:
923			m = sc->sc_rxq.ifq_head;
924			rfa = FXP_MTORFA(m);
925			rxmap = M_GETCTX(m, bus_dmamap_t);
926
927			FXP_RFASYNC(sc, m,
928			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
929
930			rxstat = le16toh(rfa->rfa_status);
931
932			if ((rxstat & FXP_RFA_STATUS_C) == 0) {
933				/*
934				 * We have processed all of the
935				 * receive buffers.
936				 */
937				FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
938				goto do_transmit;
939			}
940
941			IF_DEQUEUE(&sc->sc_rxq, m);
942
943			FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
944
945			len = le16toh(rfa->actual_size) &
946			    (m->m_ext.ext_size - 1);
947
948			if (len < sizeof(struct ether_header)) {
949				/*
950				 * Runt packet; drop it now.
951				 */
952				FXP_INIT_RFABUF(sc, m);
953				goto rcvloop;
954			}
955
956			/*
957			 * If support for 802.1Q VLAN sized frames is
958			 * enabled, we need to do some additional error
959			 * checking (as we are saving bad frames, in
960			 * order to receive the larger ones).
961			 */
962			if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
963			    (rxstat & (FXP_RFA_STATUS_OVERRUN|
964				       FXP_RFA_STATUS_RNR|
965				       FXP_RFA_STATUS_ALIGN|
966				       FXP_RFA_STATUS_CRC)) != 0) {
967				FXP_INIT_RFABUF(sc, m);
968				goto rcvloop;
969			}
970
971			/*
972			 * If the packet is small enough to fit in a
973			 * single header mbuf, allocate one and copy
974			 * the data into it.  This greatly reduces
975			 * memory consumption when we receive lots
976			 * of small packets.
977			 *
978			 * Otherwise, we add a new buffer to the receive
979			 * chain.  If this fails, we drop the packet and
980			 * recycle the old buffer.
981			 */
982			if (fxp_copy_small != 0 && len <= MHLEN) {
983				MGETHDR(m0, M_DONTWAIT, MT_DATA);
984				if (m == NULL)
985					goto dropit;
986				memcpy(mtod(m0, caddr_t),
987				    mtod(m, caddr_t), len);
988				FXP_INIT_RFABUF(sc, m);
989				m = m0;
990			} else {
991				if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
992 dropit:
993					ifp->if_ierrors++;
994					FXP_INIT_RFABUF(sc, m);
995					goto rcvloop;
996				}
997			}
998
999			m->m_pkthdr.rcvif = ifp;
1000			m->m_pkthdr.len = m->m_len = len;
1001
1002#if NBPFILTER > 0
1003			/*
1004			 * Pass this up to any BPF listeners, but only
1005			 * pass it up the stack it its for us.
1006			 */
1007			if (ifp->if_bpf)
1008				bpf_mtap(ifp->if_bpf, m);
1009#endif
1010
1011			/* Pass it on. */
1012			(*ifp->if_input)(ifp, m);
1013			goto rcvloop;
1014		}
1015
1016 do_transmit:
1017		if (statack & FXP_SCB_STATACK_RNR) {
1018			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1019			fxp_scb_wait(sc);
1020			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1021			    rxmap->dm_segs[0].ds_addr +
1022			    RFA_ALIGNMENT_FUDGE);
1023			CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1024			    FXP_SCB_COMMAND_RU_START);
1025		}
1026
1027		/*
1028		 * Free any finished transmit mbuf chains.
1029		 */
1030		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1031			ifp->if_flags &= ~IFF_OACTIVE;
1032			for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1033			     i = FXP_NEXTTX(i), sc->sc_txpending--) {
1034				txd = FXP_CDTX(sc, i);
1035				txs = FXP_DSTX(sc, i);
1036
1037				FXP_CDTXSYNC(sc, i,
1038				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1039
1040				txstat = le16toh(txd->cb_status);
1041
1042				if ((txstat & FXP_CB_STATUS_C) == 0)
1043					break;
1044
1045				FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
1046
1047				bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1048				    0, txs->txs_dmamap->dm_mapsize,
1049				    BUS_DMASYNC_POSTWRITE);
1050				bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1051				m_freem(txs->txs_mbuf);
1052				txs->txs_mbuf = NULL;
1053			}
1054
1055			/* Update the dirty transmit buffer pointer. */
1056			sc->sc_txdirty = i;
1057
1058			/*
1059			 * Cancel the watchdog timer if there are no pending
1060			 * transmissions.
1061			 */
1062			if (sc->sc_txpending == 0) {
1063				ifp->if_timer = 0;
1064
1065				/*
1066				 * If we want a re-init, do that now.
1067				 */
1068				if (sc->sc_flags & FXPF_WANTINIT)
1069					(void) fxp_init(ifp);
1070			}
1071
1072			/*
1073			 * Try to get more packets going.
1074			 */
1075			fxp_start(ifp);
1076		}
1077	}
1078
1079#if NRND > 0
1080	if (claimed)
1081		rnd_add_uint32(&sc->rnd_source, statack);
1082#endif
1083	return (claimed);
1084}
1085
1086/*
1087 * Update packet in/out/collision statistics. The i82557 doesn't
1088 * allow you to access these counters without doing a fairly
1089 * expensive DMA to get _all_ of the statistics it maintains, so
1090 * we do this operation here only once per second. The statistics
1091 * counters in the kernel are updated from the previous dump-stats
1092 * DMA and then a new dump-stats DMA is started. The on-chip
1093 * counters are zeroed when the DMA completes. If we can't start
1094 * the DMA immediately, we don't wait - we just prepare to read
1095 * them again next time.
1096 */
1097void
1098fxp_tick(arg)
1099	void *arg;
1100{
1101	struct fxp_softc *sc = arg;
1102	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1103	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1104	int s;
1105
1106	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1107		return;
1108
1109	s = splnet();
1110
1111	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1112
1113	ifp->if_opackets += le32toh(sp->tx_good);
1114	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1115	if (sp->rx_good) {
1116		ifp->if_ipackets += le32toh(sp->rx_good);
1117		sc->sc_rxidle = 0;
1118	} else {
1119		sc->sc_rxidle++;
1120	}
1121	ifp->if_ierrors +=
1122	    le32toh(sp->rx_crc_errors) +
1123	    le32toh(sp->rx_alignment_errors) +
1124	    le32toh(sp->rx_rnr_errors) +
1125	    le32toh(sp->rx_overrun_errors);
1126	/*
1127	 * If any transmit underruns occured, bump up the transmit
1128	 * threshold by another 512 bytes (64 * 8).
1129	 */
1130	if (sp->tx_underruns) {
1131		ifp->if_oerrors += le32toh(sp->tx_underruns);
1132		if (tx_threshold < 192)
1133			tx_threshold += 64;
1134	}
1135
1136	/*
1137	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1138	 * then assume the receiver has locked up and attempt to clear
1139	 * the condition by reprogramming the multicast filter (actually,
1140	 * resetting the interface). This is a work-around for a bug in
1141	 * the 82557 where the receiver locks up if it gets certain types
1142	 * of garbage in the syncronization bits prior to the packet header.
1143	 * This bug is supposed to only occur in 10Mbps mode, but has been
1144	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1145	 * speed transition).
1146	 */
1147	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1148		(void) fxp_init(ifp);
1149		splx(s);
1150		return;
1151	}
1152	/*
1153	 * If there is no pending command, start another stats
1154	 * dump. Otherwise punt for now.
1155	 */
1156	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1157		/*
1158		 * Start another stats dump.
1159		 */
1160		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1161		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1162		    FXP_SCB_COMMAND_CU_DUMPRESET);
1163	} else {
1164		/*
1165		 * A previous command is still waiting to be accepted.
1166		 * Just zero our copy of the stats and wait for the
1167		 * next timer event to update them.
1168		 */
1169		/* BIG_ENDIAN: no swap required to store 0 */
1170		sp->tx_good = 0;
1171		sp->tx_underruns = 0;
1172		sp->tx_total_collisions = 0;
1173
1174		sp->rx_good = 0;
1175		sp->rx_crc_errors = 0;
1176		sp->rx_alignment_errors = 0;
1177		sp->rx_rnr_errors = 0;
1178		sp->rx_overrun_errors = 0;
1179	}
1180
1181	if (sc->sc_flags & FXPF_MII) {
1182		/* Tick the MII clock. */
1183		mii_tick(&sc->sc_mii);
1184	}
1185
1186	splx(s);
1187
1188	/*
1189	 * Schedule another timeout one second from now.
1190	 */
1191	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1192}
1193
1194/*
1195 * Drain the receive queue.
1196 */
1197void
1198fxp_rxdrain(sc)
1199	struct fxp_softc *sc;
1200{
1201	bus_dmamap_t rxmap;
1202	struct mbuf *m;
1203
1204	for (;;) {
1205		IF_DEQUEUE(&sc->sc_rxq, m);
1206		if (m == NULL)
1207			break;
1208		rxmap = M_GETCTX(m, bus_dmamap_t);
1209		bus_dmamap_unload(sc->sc_dmat, rxmap);
1210		FXP_RXMAP_PUT(sc, rxmap);
1211		m_freem(m);
1212	}
1213}
1214
1215/*
1216 * Stop the interface. Cancels the statistics updater and resets
1217 * the interface.
1218 */
1219void
1220fxp_stop(ifp, disable)
1221	struct ifnet *ifp;
1222	int disable;
1223{
1224	struct fxp_softc *sc = ifp->if_softc;
1225	struct fxp_txsoft *txs;
1226	int i;
1227
1228	/*
1229	 * Turn down interface (done early to avoid bad interactions
1230	 * between panics, shutdown hooks, and the watchdog timer)
1231	 */
1232	ifp->if_timer = 0;
1233	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1234
1235	/*
1236	 * Cancel stats updater.
1237	 */
1238	callout_stop(&sc->sc_callout);
1239	if (sc->sc_flags & FXPF_MII) {
1240		/* Down the MII. */
1241		mii_down(&sc->sc_mii);
1242	}
1243
1244	/*
1245	 * Issue software reset
1246	 */
1247	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1248	DELAY(10);
1249
1250	/*
1251	 * Release any xmit buffers.
1252	 */
1253	for (i = 0; i < FXP_NTXCB; i++) {
1254		txs = FXP_DSTX(sc, i);
1255		if (txs->txs_mbuf != NULL) {
1256			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1257			m_freem(txs->txs_mbuf);
1258			txs->txs_mbuf = NULL;
1259		}
1260	}
1261	sc->sc_txpending = 0;
1262
1263	if (disable) {
1264		fxp_rxdrain(sc);
1265		fxp_disable(sc);
1266	}
1267
1268}
1269
1270/*
1271 * Watchdog/transmission transmit timeout handler. Called when a
1272 * transmission is started on the interface, but no interrupt is
1273 * received before the timeout. This usually indicates that the
1274 * card has wedged for some reason.
1275 */
1276void
1277fxp_watchdog(ifp)
1278	struct ifnet *ifp;
1279{
1280	struct fxp_softc *sc = ifp->if_softc;
1281
1282	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1283	ifp->if_oerrors++;
1284
1285	(void) fxp_init(ifp);
1286}
1287
1288/*
1289 * Initialize the interface.  Must be called at splnet().
1290 */
1291int
1292fxp_init(ifp)
1293	struct ifnet *ifp;
1294{
1295	struct fxp_softc *sc = ifp->if_softc;
1296	struct fxp_cb_config *cbp;
1297	struct fxp_cb_ias *cb_ias;
1298	struct fxp_cb_tx *txd;
1299	bus_dmamap_t rxmap;
1300	int i, prm, save_bf, allm, error = 0;
1301
1302	if ((error = fxp_enable(sc)) != 0)
1303		goto out;
1304
1305	/*
1306	 * Cancel any pending I/O
1307	 */
1308	fxp_stop(ifp, 0);
1309
1310	/*
1311	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1312	 * flag, and this prevents the MII from detaching resulting in
1313	 * a panic. The flags field should perhaps be split in runtime
1314	 * flags and more static information. For now, just clear the
1315	 * only other flag set.
1316	 */
1317
1318	sc->sc_flags &= ~FXPF_WANTINIT;
1319
1320	/*
1321	 * Initialize base of CBL and RFA memory. Loading with zero
1322	 * sets it up for regular linear addressing.
1323	 */
1324	fxp_scb_wait(sc);
1325	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1326	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1327
1328	fxp_scb_wait(sc);
1329	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1330
1331	/*
1332	 * Initialize the multicast filter.  Do this now, since we might
1333	 * have to setup the config block differently.
1334	 */
1335	fxp_mc_setup(sc);
1336
1337	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1338	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1339
1340	/*
1341	 * In order to support receiving 802.1Q VLAN frames, we have to
1342	 * enable "save bad frames", since they are 4 bytes larger than
1343	 * the normal Ethernet maximum frame length.
1344	 */
1345	save_bf = (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 1 : 0;
1346
1347	/*
1348	 * Initialize base of dump-stats buffer.
1349	 */
1350	fxp_scb_wait(sc);
1351	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1352	    sc->sc_cddma + FXP_CDSTATSOFF);
1353	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1354	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1355
1356	cbp = &sc->sc_control_data->fcd_configcb;
1357	memset(cbp, 0, sizeof(struct fxp_cb_config));
1358
1359	/*
1360	 * This copy is kind of disgusting, but there are a bunch of must be
1361	 * zero and must be one bits in this structure and this is the easiest
1362	 * way to initialize them all to proper values.
1363	 */
1364	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1365
1366	/* BIG_ENDIAN: no need to swap to store 0 */
1367	cbp->cb_status =	0;
1368	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1369				    FXP_CB_COMMAND_EL);
1370	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1371	cbp->link_addr =	0xffffffff; /* (no) next command */
1372	cbp->byte_count =	22;	/* (22) bytes to config */
1373	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1374	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1375	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1376	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1377	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1378	cbp->dma_bce =		0;	/* (disable) dma max counters */
1379	cbp->late_scb =		0;	/* (don't) defer SCB update */
1380	cbp->tno_int =		0;	/* (disable) tx not okay interrupt */
1381	cbp->ci_int =		1;	/* interrupt on CU idle */
1382	cbp->save_bf =		save_bf;/* save bad frames */
1383	cbp->disc_short_rx =	!prm;	/* discard short packets */
1384	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1385	cbp->mediatype =	!sc->phy_10Mbps_only; /* interface mode */
1386	cbp->nsai =		1;	/* (don't) disable source addr insert */
1387	cbp->preamble_length =	2;	/* (7 byte) preamble */
1388	cbp->loopback =		0;	/* (don't) loopback */
1389	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1390	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1391	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1392	cbp->promiscuous =	prm;	/* promiscuous mode */
1393	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1394	cbp->crscdt =		0;	/* (CRS only) */
1395	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1396	cbp->padding =		1;	/* (do) pad short tx packets */
1397	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1398	cbp->force_fdx =	0;	/* (don't) force full duplex */
1399	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1400	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1401	cbp->mc_all =		allm;	/* accept all multicasts */
1402
1403	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1404
1405	/*
1406	 * Start the config command/DMA.
1407	 */
1408	fxp_scb_wait(sc);
1409	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1410	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1411	/* ...and wait for it to complete. */
1412	i = 1000;
1413	do {
1414		FXP_CDCONFIGSYNC(sc,
1415		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1416		DELAY(1);
1417	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1418	if (i == 0) {
1419		printf("%s at line %d: dmasync timeout\n",
1420		    sc->sc_dev.dv_xname, __LINE__);
1421		return ETIMEDOUT;
1422	}
1423
1424	/*
1425	 * Initialize the station address.
1426	 */
1427	cb_ias = &sc->sc_control_data->fcd_iascb;
1428	/* BIG_ENDIAN: no need to swap to store 0 */
1429	cb_ias->cb_status = 0;
1430	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1431	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1432	cb_ias->link_addr = 0xffffffff;
1433	memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1434
1435	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1436
1437	/*
1438	 * Start the IAS (Individual Address Setup) command/DMA.
1439	 */
1440	fxp_scb_wait(sc);
1441	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1442	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1443	/* ...and wait for it to complete. */
1444	i = 1000;
1445	do {
1446		FXP_CDIASSYNC(sc,
1447		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1448		DELAY(1);
1449	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1450	if (i == 0) {
1451		printf("%s at line %d: dmasync timeout\n",
1452		    sc->sc_dev.dv_xname, __LINE__);
1453		return ETIMEDOUT;
1454	}
1455
1456	/*
1457	 * Initialize the transmit descriptor ring.  txlast is initialized
1458	 * to the end of the list so that it will wrap around to the first
1459	 * descriptor when the first packet is transmitted.
1460	 */
1461	for (i = 0; i < FXP_NTXCB; i++) {
1462		txd = FXP_CDTX(sc, i);
1463		memset(txd, 0, sizeof(struct fxp_cb_tx));
1464		txd->cb_command =
1465		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1466		txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
1467		txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1468		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1469	}
1470	sc->sc_txpending = 0;
1471	sc->sc_txdirty = 0;
1472	sc->sc_txlast = FXP_NTXCB - 1;
1473
1474	/*
1475	 * Initialize the receive buffer list.
1476	 */
1477	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1478	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1479		rxmap = FXP_RXMAP_GET(sc);
1480		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1481			printf("%s: unable to allocate or map rx "
1482			    "buffer %d, error = %d\n",
1483			    sc->sc_dev.dv_xname,
1484			    sc->sc_rxq.ifq_len, error);
1485			/*
1486			 * XXX Should attempt to run with fewer receive
1487			 * XXX buffers instead of just failing.
1488			 */
1489			FXP_RXMAP_PUT(sc, rxmap);
1490			fxp_rxdrain(sc);
1491			goto out;
1492		}
1493	}
1494	sc->sc_rxidle = 0;
1495
1496	/*
1497	 * Give the transmit ring to the chip.  We do this by pointing
1498	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1499	 * issuing a start command.  It will execute the NOP and then
1500	 * suspend, pointing at the first descriptor.
1501	 */
1502	fxp_scb_wait(sc);
1503	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1504	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1505
1506	/*
1507	 * Initialize receiver buffer area - RFA.
1508	 */
1509	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1510	fxp_scb_wait(sc);
1511	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1512	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1513	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1514
1515	if (sc->sc_flags & FXPF_MII) {
1516		/*
1517		 * Set current media.
1518		 */
1519		mii_mediachg(&sc->sc_mii);
1520	}
1521
1522	/*
1523	 * ...all done!
1524	 */
1525	ifp->if_flags |= IFF_RUNNING;
1526	ifp->if_flags &= ~IFF_OACTIVE;
1527
1528	/*
1529	 * Start the one second timer.
1530	 */
1531	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1532
1533	/*
1534	 * Attempt to start output on the interface.
1535	 */
1536	fxp_start(ifp);
1537
1538 out:
1539	if (error) {
1540		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1541		ifp->if_timer = 0;
1542		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1543	}
1544	return (error);
1545}
1546
1547/*
1548 * Change media according to request.
1549 */
1550int
1551fxp_mii_mediachange(ifp)
1552	struct ifnet *ifp;
1553{
1554	struct fxp_softc *sc = ifp->if_softc;
1555
1556	if (ifp->if_flags & IFF_UP)
1557		mii_mediachg(&sc->sc_mii);
1558	return (0);
1559}
1560
1561/*
1562 * Notify the world which media we're using.
1563 */
1564void
1565fxp_mii_mediastatus(ifp, ifmr)
1566	struct ifnet *ifp;
1567	struct ifmediareq *ifmr;
1568{
1569	struct fxp_softc *sc = ifp->if_softc;
1570
1571	if(sc->sc_enabled == 0) {
1572		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1573		ifmr->ifm_status = 0;
1574		return;
1575	}
1576
1577	mii_pollstat(&sc->sc_mii);
1578	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1579	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1580}
1581
1582int
1583fxp_80c24_mediachange(ifp)
1584	struct ifnet *ifp;
1585{
1586
1587	/* Nothing to do here. */
1588	return (0);
1589}
1590
1591void
1592fxp_80c24_mediastatus(ifp, ifmr)
1593	struct ifnet *ifp;
1594	struct ifmediareq *ifmr;
1595{
1596	struct fxp_softc *sc = ifp->if_softc;
1597
1598	/*
1599	 * Media is currently-selected media.  We cannot determine
1600	 * the link status.
1601	 */
1602	ifmr->ifm_status = 0;
1603	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1604}
1605
1606/*
1607 * Add a buffer to the end of the RFA buffer list.
1608 * Return 0 if successful, error code on failure.
1609 *
1610 * The RFA struct is stuck at the beginning of mbuf cluster and the
1611 * data pointer is fixed up to point just past it.
1612 */
1613int
1614fxp_add_rfabuf(sc, rxmap, unload)
1615	struct fxp_softc *sc;
1616	bus_dmamap_t rxmap;
1617	int unload;
1618{
1619	struct mbuf *m;
1620	int error;
1621
1622	MGETHDR(m, M_DONTWAIT, MT_DATA);
1623	if (m == NULL)
1624		return (ENOBUFS);
1625
1626	MCLGET(m, M_DONTWAIT);
1627	if ((m->m_flags & M_EXT) == 0) {
1628		m_freem(m);
1629		return (ENOBUFS);
1630	}
1631
1632	if (unload)
1633		bus_dmamap_unload(sc->sc_dmat, rxmap);
1634
1635	M_SETCTX(m, rxmap);
1636
1637	error = bus_dmamap_load(sc->sc_dmat, rxmap,
1638	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1639	if (error) {
1640		printf("%s: can't load rx DMA map %d, error = %d\n",
1641		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1642		panic("fxp_add_rfabuf");		/* XXX */
1643	}
1644
1645	FXP_INIT_RFABUF(sc, m);
1646
1647	return (0);
1648}
1649
1650volatile int
1651fxp_mdi_read(self, phy, reg)
1652	struct device *self;
1653	int phy;
1654	int reg;
1655{
1656	struct fxp_softc *sc = (struct fxp_softc *)self;
1657	int count = 10000;
1658	int value;
1659
1660	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1661	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1662
1663	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1664	    && count--)
1665		DELAY(10);
1666
1667	if (count <= 0)
1668		printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1669
1670	return (value & 0xffff);
1671}
1672
1673void
1674fxp_statchg(self)
1675	struct device *self;
1676{
1677
1678	/* Nothing to do. */
1679}
1680
1681void
1682fxp_mdi_write(self, phy, reg, value)
1683	struct device *self;
1684	int phy;
1685	int reg;
1686	int value;
1687{
1688	struct fxp_softc *sc = (struct fxp_softc *)self;
1689	int count = 10000;
1690
1691	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1692	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1693	    (value & 0xffff));
1694
1695	while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1696	    count--)
1697		DELAY(10);
1698
1699	if (count <= 0)
1700		printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1701}
1702
1703int
1704fxp_ioctl(ifp, cmd, data)
1705	struct ifnet *ifp;
1706	u_long cmd;
1707	caddr_t data;
1708{
1709	struct fxp_softc *sc = ifp->if_softc;
1710	struct ifreq *ifr = (struct ifreq *)data;
1711	int s, error;
1712
1713	s = splnet();
1714
1715	switch (cmd) {
1716	case SIOCSIFMEDIA:
1717	case SIOCGIFMEDIA:
1718		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1719		break;
1720
1721	default:
1722		error = ether_ioctl(ifp, cmd, data);
1723		if (error == ENETRESET) {
1724			if (sc->sc_enabled) {
1725				/*
1726				 * Multicast list has changed; set the
1727				 * hardware filter accordingly.
1728				 */
1729				if (sc->sc_txpending) {
1730					sc->sc_flags |= FXPF_WANTINIT;
1731					error = 0;
1732				} else
1733					error = fxp_init(ifp);
1734			} else
1735				error = 0;
1736		}
1737		break;
1738	}
1739
1740	/* Try to get more packets going. */
1741	if (sc->sc_enabled)
1742		fxp_start(ifp);
1743
1744	splx(s);
1745	return (error);
1746}
1747
1748/*
1749 * Program the multicast filter.
1750 *
1751 * This function must be called at splnet().
1752 */
1753void
1754fxp_mc_setup(sc)
1755	struct fxp_softc *sc;
1756{
1757	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1758	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1759	struct ethercom *ec = &sc->sc_ethercom;
1760	struct ether_multi *enm;
1761	struct ether_multistep step;
1762	int count, nmcasts;
1763
1764#ifdef DIAGNOSTIC
1765	if (sc->sc_txpending)
1766		panic("fxp_mc_setup: pending transmissions");
1767#endif
1768
1769	ifp->if_flags &= ~IFF_ALLMULTI;
1770
1771	/*
1772	 * Initialize multicast setup descriptor.
1773	 */
1774	nmcasts = 0;
1775	ETHER_FIRST_MULTI(step, ec, enm);
1776	while (enm != NULL) {
1777		/*
1778		 * Check for too many multicast addresses or if we're
1779		 * listening to a range.  Either way, we simply have
1780		 * to accept all multicasts.
1781		 */
1782		if (nmcasts >= MAXMCADDR ||
1783		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
1784		    ETHER_ADDR_LEN) != 0) {
1785			/*
1786			 * Callers of this function must do the
1787			 * right thing with this.  If we're called
1788			 * from outside fxp_init(), the caller must
1789			 * detect if the state if IFF_ALLMULTI changes.
1790			 * If it does, the caller must then call
1791			 * fxp_init(), since allmulti is handled by
1792			 * the config block.
1793			 */
1794			ifp->if_flags |= IFF_ALLMULTI;
1795			return;
1796		}
1797		memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1798		    ETHER_ADDR_LEN);
1799		nmcasts++;
1800		ETHER_NEXT_MULTI(step, enm);
1801	}
1802
1803	/* BIG_ENDIAN: no need to swap to store 0 */
1804	mcsp->cb_status = 0;
1805	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1806	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1807	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1808
1809	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1810
1811	/*
1812	 * Wait until the command unit is not active.  This should never
1813	 * happen since nothing is queued, but make sure anyway.
1814	 */
1815	count = 100;
1816	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1817	    FXP_SCB_CUS_ACTIVE && --count)
1818		DELAY(1);
1819	if (count == 0) {
1820		printf("%s at line %d: command queue timeout\n",
1821		    sc->sc_dev.dv_xname, __LINE__);
1822		return;
1823	}
1824
1825	/*
1826	 * Start the multicast setup command/DMA.
1827	 */
1828	fxp_scb_wait(sc);
1829	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1830	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1831
1832	/* ...and wait for it to complete. */
1833	count = 1000;
1834	do {
1835		FXP_CDMCSSYNC(sc,
1836		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1837		DELAY(1);
1838	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
1839	if (count == 0) {
1840		printf("%s at line %d: dmasync timeout\n",
1841		    sc->sc_dev.dv_xname, __LINE__);
1842		return;
1843	}
1844}
1845
1846int
1847fxp_enable(sc)
1848	struct fxp_softc *sc;
1849{
1850
1851	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1852		if ((*sc->sc_enable)(sc) != 0) {
1853			printf("%s: device enable failed\n",
1854			    sc->sc_dev.dv_xname);
1855			return (EIO);
1856		}
1857	}
1858
1859	sc->sc_enabled = 1;
1860	return (0);
1861}
1862
1863void
1864fxp_disable(sc)
1865	struct fxp_softc *sc;
1866{
1867
1868	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1869		(*sc->sc_disable)(sc);
1870		sc->sc_enabled = 0;
1871	}
1872}
1873
1874/*
1875 * fxp_activate:
1876 *
1877 *	Handle device activation/deactivation requests.
1878 */
1879int
1880fxp_activate(self, act)
1881	struct device *self;
1882	enum devact act;
1883{
1884	struct fxp_softc *sc = (void *) self;
1885	int s, error = 0;
1886
1887	s = splnet();
1888	switch (act) {
1889	case DVACT_ACTIVATE:
1890		error = EOPNOTSUPP;
1891		break;
1892
1893	case DVACT_DEACTIVATE:
1894		if (sc->sc_flags & FXPF_MII)
1895			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
1896			    MII_OFFSET_ANY);
1897		if_deactivate(&sc->sc_ethercom.ec_if);
1898		break;
1899	}
1900	splx(s);
1901
1902	return (error);
1903}
1904
1905/*
1906 * fxp_detach:
1907 *
1908 *	Detach an i82557 interface.
1909 */
1910int
1911fxp_detach(sc)
1912	struct fxp_softc *sc;
1913{
1914	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1915	int i;
1916
1917	/* Succeed now if there's no work to do. */
1918	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
1919		return (0);
1920
1921	/* Unhook our tick handler. */
1922	callout_stop(&sc->sc_callout);
1923
1924	if (sc->sc_flags & FXPF_MII) {
1925		/* Detach all PHYs */
1926		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1927	}
1928
1929	/* Delete all remaining media. */
1930	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1931
1932#if NRND > 0
1933	rnd_detach_source(&sc->rnd_source);
1934#endif
1935	ether_ifdetach(ifp);
1936	if_detach(ifp);
1937
1938	for (i = 0; i < FXP_NRFABUFS; i++) {
1939		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
1940		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
1941	}
1942
1943	for (i = 0; i < FXP_NTXCB; i++) {
1944		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1945		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1946	}
1947
1948	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
1949	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
1950	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1951	    sizeof(struct fxp_control_data));
1952	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
1953
1954	shutdownhook_disestablish(sc->sc_sdhook);
1955	powerhook_disestablish(sc->sc_powerhook);
1956
1957	return (0);
1958}
1959