i82557.c revision 1.35
1/*	$NetBSD: i82557.c,v 1.35 2000/06/28 17:12:57 mrg Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the NetBSD
22 *	Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 *    contributors may be used to endorse or promote products derived
25 *    from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40/*
41 * Copyright (c) 1995, David Greenman
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 *    notice unmodified, this list of conditions, and the following
49 *    disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 *    notice, this list of conditions and the following disclaimer in the
52 *    documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 *	Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
67 */
68
69/*
70 * Device driver for the Intel i82557 fast Ethernet controller,
71 * and its successors, the i82558 and i82559.
72 */
73
74#include "opt_inet.h"
75#include "opt_ns.h"
76#include "bpfilter.h"
77#include "rnd.h"
78
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/callout.h>
82#include <sys/mbuf.h>
83#include <sys/malloc.h>
84#include <sys/kernel.h>
85#include <sys/socket.h>
86#include <sys/ioctl.h>
87#include <sys/errno.h>
88#include <sys/device.h>
89
90#include <machine/endian.h>
91
92#include <uvm/uvm_extern.h>
93
94#if NRND > 0
95#include <sys/rnd.h>
96#endif
97
98#include <net/if.h>
99#include <net/if_dl.h>
100#include <net/if_media.h>
101#include <net/if_ether.h>
102
103#if NBPFILTER > 0
104#include <net/bpf.h>
105#endif
106
107#ifdef INET
108#include <netinet/in.h>
109#include <netinet/if_inarp.h>
110#endif
111
112#ifdef NS
113#include <netns/ns.h>
114#include <netns/ns_if.h>
115#endif
116
117#include <machine/bus.h>
118#include <machine/intr.h>
119
120#include <dev/mii/miivar.h>
121
122#include <dev/ic/i82557reg.h>
123#include <dev/ic/i82557var.h>
124
125/*
126 * NOTE!  On the Alpha, we have an alignment constraint.  The
127 * card DMAs the packet immediately following the RFA.  However,
128 * the first thing in the packet is a 14-byte Ethernet header.
129 * This means that the packet is misaligned.  To compensate,
130 * we actually offset the RFA 2 bytes into the cluster.  This
131 * alignes the packet after the Ethernet header at a 32-bit
132 * boundary.  HOWEVER!  This means that the RFA is misaligned!
133 */
134#define	RFA_ALIGNMENT_FUDGE	2
135
136/*
137 * Template for default configuration parameters.
138 * See struct fxp_cb_config for the bit definitions.
139 */
140u_int8_t fxp_cb_config_template[] = {
141	0x0, 0x0,		/* cb_status */
142	0x80, 0x2,		/* cb_command */
143	0xff, 0xff, 0xff, 0xff,	/* link_addr */
144	0x16,	/*  0 */
145	0x8,	/*  1 */
146	0x0,	/*  2 */
147	0x0,	/*  3 */
148	0x0,	/*  4 */
149	0x80,	/*  5 */
150	0xb2,	/*  6 */
151	0x3,	/*  7 */
152	0x1,	/*  8 */
153	0x0,	/*  9 */
154	0x26,	/* 10 */
155	0x0,	/* 11 */
156	0x60,	/* 12 */
157	0x0,	/* 13 */
158	0xf2,	/* 14 */
159	0x48,	/* 15 */
160	0x0,	/* 16 */
161	0x40,	/* 17 */
162	0xf3,	/* 18 */
163	0x0,	/* 19 */
164	0x3f,	/* 20 */
165	0x5	/* 21 */
166};
167
168void	fxp_mii_initmedia __P((struct fxp_softc *));
169int	fxp_mii_mediachange __P((struct ifnet *));
170void	fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
171
172void	fxp_80c24_initmedia __P((struct fxp_softc *));
173int	fxp_80c24_mediachange __P((struct ifnet *));
174void	fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
175
176inline void fxp_scb_wait __P((struct fxp_softc *));
177
178void	fxp_start __P((struct ifnet *));
179int	fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
180int	fxp_init __P((struct fxp_softc *));
181void	fxp_rxdrain __P((struct fxp_softc *));
182void	fxp_stop __P((struct fxp_softc *, int));
183void	fxp_watchdog __P((struct ifnet *));
184int	fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
185int	fxp_mdi_read __P((struct device *, int, int));
186void	fxp_statchg __P((struct device *));
187void	fxp_mdi_write __P((struct device *, int, int, int));
188void	fxp_autosize_eeprom __P((struct fxp_softc*));
189void	fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
190void	fxp_get_info __P((struct fxp_softc *, u_int8_t *));
191void	fxp_tick __P((void *));
192void	fxp_mc_setup __P((struct fxp_softc *));
193
194void	fxp_shutdown __P((void *));
195void	fxp_power __P((int, void *));
196
197int	fxp_copy_small = 0;
198
199struct fxp_phytype {
200	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
201	void	(*fp_init) __P((struct fxp_softc *));
202} fxp_phytype_table[] = {
203	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
204	{ -1,				fxp_mii_initmedia },
205};
206
207/*
208 * Set initial transmit threshold at 64 (512 bytes). This is
209 * increased by 64 (512 bytes) at a time, to maximum of 192
210 * (1536 bytes), if an underrun occurs.
211 */
212static int tx_threshold = 64;
213
214/*
215 * Wait for the previous command to be accepted (but not necessarily
216 * completed).
217 */
218inline void
219fxp_scb_wait(sc)
220	struct fxp_softc *sc;
221{
222	int i = 10000;
223
224	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
225		delay(2);
226	if (i == 0)
227		printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
228}
229
230/*
231 * Finish attaching an i82557 interface.  Called by bus-specific front-end.
232 */
233void
234fxp_attach(sc)
235	struct fxp_softc *sc;
236{
237	u_int8_t enaddr[6];
238	struct ifnet *ifp;
239	bus_dma_segment_t seg;
240	int rseg, i, error;
241	struct fxp_phytype *fp;
242
243	callout_init(&sc->sc_callout);
244
245	/*
246	 * Allocate the control data structures, and create and load the
247	 * DMA map for it.
248	 */
249	if ((error = bus_dmamem_alloc(sc->sc_dmat,
250	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
251	    0)) != 0) {
252		printf("%s: unable to allocate control data, error = %d\n",
253		    sc->sc_dev.dv_xname, error);
254		goto fail_0;
255	}
256
257	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
258	    sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
259	    BUS_DMA_COHERENT)) != 0) {
260		printf("%s: unable to map control data, error = %d\n",
261		    sc->sc_dev.dv_xname, error);
262		goto fail_1;
263	}
264	sc->sc_cdseg = seg;
265	sc->sc_cdnseg = rseg;
266
267	bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
268
269	if ((error = bus_dmamap_create(sc->sc_dmat,
270	    sizeof(struct fxp_control_data), 1,
271	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
272		printf("%s: unable to create control data DMA map, "
273		    "error = %d\n", sc->sc_dev.dv_xname, error);
274		goto fail_2;
275	}
276
277	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
278	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
279	    0)) != 0) {
280		printf("%s: can't load control data DMA map, error = %d\n",
281		    sc->sc_dev.dv_xname, error);
282		goto fail_3;
283	}
284
285	/*
286	 * Create the transmit buffer DMA maps.
287	 */
288	for (i = 0; i < FXP_NTXCB; i++) {
289		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
290		    FXP_NTXSEG, MCLBYTES, 0, 0,
291		    &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
292			printf("%s: unable to create tx DMA map %d, "
293			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
294			goto fail_4;
295		}
296	}
297
298	/*
299	 * Create the receive buffer DMA maps.
300	 */
301	for (i = 0; i < FXP_NRFABUFS; i++) {
302		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
303		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
304			printf("%s: unable to create rx DMA map %d, "
305			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
306			goto fail_5;
307		}
308	}
309
310	/* Initialize MAC address and media structures. */
311	fxp_get_info(sc, enaddr);
312
313	printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
314	    ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
315
316	ifp = &sc->sc_ethercom.ec_if;
317
318	/*
319	 * Get info about our media interface, and initialize it.  Note
320	 * the table terminates itself with a phy of -1, indicating
321	 * that we're using MII.
322	 */
323	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
324		if (fp->fp_phy == sc->phy_primary_device)
325			break;
326	(*fp->fp_init)(sc);
327
328	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
329	ifp->if_softc = sc;
330	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
331	ifp->if_ioctl = fxp_ioctl;
332	ifp->if_start = fxp_start;
333	ifp->if_watchdog = fxp_watchdog;
334
335	/*
336	 * Attach the interface.
337	 */
338	if_attach(ifp);
339	ether_ifattach(ifp, enaddr);
340#if NBPFILTER > 0
341	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
342	    sizeof(struct ether_header));
343#endif
344#if NRND > 0
345	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
346	    RND_TYPE_NET, 0);
347#endif
348
349	/*
350	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
351	 * doing do could allow DMA to corrupt kernel memory during the
352	 * reboot before the driver initializes.
353	 */
354	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
355	if (sc->sc_sdhook == NULL)
356		printf("%s: WARNING: unable to establish shutdown hook\n",
357		    sc->sc_dev.dv_xname);
358	/*
359  	 * Add suspend hook, for similar reasons..
360	 */
361	sc->sc_powerhook = powerhook_establish(fxp_power, sc);
362	if (sc->sc_powerhook == NULL)
363		printf("%s: WARNING: unable to establish power hook\n",
364		    sc->sc_dev.dv_xname);
365
366	/* The attach is successful. */
367	sc->sc_flags |= FXPF_ATTACHED;
368
369	return;
370
371	/*
372	 * Free any resources we've allocated during the failed attach
373	 * attempt.  Do this in reverse order and fall though.
374	 */
375 fail_5:
376	for (i = 0; i < FXP_NRFABUFS; i++) {
377		if (sc->sc_rxmaps[i] != NULL)
378			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
379	}
380 fail_4:
381	for (i = 0; i < FXP_NTXCB; i++) {
382		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
383			bus_dmamap_destroy(sc->sc_dmat,
384			    FXP_DSTX(sc, i)->txs_dmamap);
385	}
386	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
387 fail_3:
388	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
389 fail_2:
390	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
391	    sizeof(struct fxp_control_data));
392 fail_1:
393	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
394 fail_0:
395	return;
396}
397
398void
399fxp_mii_initmedia(sc)
400	struct fxp_softc *sc;
401{
402
403	sc->sc_flags |= FXPF_MII;
404
405	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
406	sc->sc_mii.mii_readreg = fxp_mdi_read;
407	sc->sc_mii.mii_writereg = fxp_mdi_write;
408	sc->sc_mii.mii_statchg = fxp_statchg;
409	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
410	    fxp_mii_mediastatus);
411	/*
412	 * The i82557 wedges if all of its PHYs are isolated!
413	 */
414	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
415	    MII_OFFSET_ANY, MIIF_NOISOLATE);
416	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
417		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
418		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
419	} else
420		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
421}
422
423void
424fxp_80c24_initmedia(sc)
425	struct fxp_softc *sc;
426{
427
428	/*
429	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
430	 * doesn't have a programming interface of any sort.  The
431	 * media is sensed automatically based on how the link partner
432	 * is configured.  This is, in essence, manual configuration.
433	 */
434	printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
435	    sc->sc_dev.dv_xname);
436	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
437	    fxp_80c24_mediastatus);
438	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
439	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
440}
441
442/*
443 * Device shutdown routine. Called at system shutdown after sync. The
444 * main purpose of this routine is to shut off receiver DMA so that
445 * kernel memory doesn't get clobbered during warmboot.
446 */
447void
448fxp_shutdown(arg)
449	void *arg;
450{
451	struct fxp_softc *sc = arg;
452
453	/*
454	 * Since the system's going to halt shortly, don't bother
455	 * freeing mbufs.
456	 */
457	fxp_stop(sc, 0);
458}
459/*
460 * Power handler routine. Called when the system is transitioning
461 * into/out of power save modes.  As with fxp_shutdown, the main
462 * purpose of this routine is to shut off receiver DMA so it doesn't
463 * clobber kernel memory at the wrong time.
464 */
465void
466fxp_power(why, arg)
467	int why;
468	void *arg;
469{
470	struct fxp_softc *sc = arg;
471	struct ifnet *ifp;
472	int s;
473
474	s = splnet();
475	if (why != PWR_RESUME)
476		fxp_stop(sc, 0);
477	else {
478		ifp = &sc->sc_ethercom.ec_if;
479		if (ifp->if_flags & IFF_UP)
480			fxp_init(sc);
481	}
482	splx(s);
483}
484
485/*
486 * Initialize the interface media.
487 */
488void
489fxp_get_info(sc, enaddr)
490	struct fxp_softc *sc;
491	u_int8_t *enaddr;
492{
493	u_int16_t data, myea[3];
494
495	/*
496	 * Reset to a stable state.
497	 */
498	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
499	DELAY(10);
500
501	sc->sc_eeprom_size = 0;
502	fxp_autosize_eeprom(sc);
503	if(sc->sc_eeprom_size == 0) {
504	    printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
505	    sc->sc_eeprom_size = 6; /* XXX panic here? */
506	}
507#ifdef DEBUG
508	printf("%s: detected %d word EEPROM\n",
509	       sc->sc_dev.dv_xname,
510	       1 << sc->sc_eeprom_size);
511#endif
512
513	/*
514	 * Get info about the primary PHY
515	 */
516	fxp_read_eeprom(sc, &data, 6, 1);
517	sc->phy_primary_addr = data & 0xff;
518	sc->phy_primary_device = (data >> 8) & 0x3f;
519	sc->phy_10Mbps_only = data >> 15;
520
521	/*
522	 * Read MAC address.
523	 */
524	fxp_read_eeprom(sc, myea, 0, 3);
525	enaddr[0] = myea[0] & 0xff;
526	enaddr[1] = myea[0] >> 8;
527	enaddr[2] = myea[1] & 0xff;
528	enaddr[3] = myea[1] >> 8;
529	enaddr[4] = myea[2] & 0xff;
530	enaddr[5] = myea[2] >> 8;
531}
532
533/*
534 * Figure out EEPROM size.
535 *
536 * 559's can have either 64-word or 256-word EEPROMs, the 558
537 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
538 * talks about the existance of 16 to 256 word EEPROMs.
539 *
540 * The only known sizes are 64 and 256, where the 256 version is used
541 * by CardBus cards to store CIS information.
542 *
543 * The address is shifted in msb-to-lsb, and after the last
544 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
545 * after which follows the actual data. We try to detect this zero, by
546 * probing the data-out bit in the EEPROM control register just after
547 * having shifted in a bit. If the bit is zero, we assume we've
548 * shifted enough address bits. The data-out should be tri-state,
549 * before this, which should translate to a logical one.
550 *
551 * Other ways to do this would be to try to read a register with known
552 * contents with a varying number of address bits, but no such
553 * register seem to be available. The high bits of register 10 are 01
554 * on the 558 and 559, but apparently not on the 557.
555 *
556 * The Linux driver computes a checksum on the EEPROM data, but the
557 * value of this checksum is not very well documented.
558 */
559
560void
561fxp_autosize_eeprom(sc)
562	struct fxp_softc *sc;
563{
564	u_int16_t reg;
565	int x;
566
567	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
568	/*
569	 * Shift in read opcode.
570	 */
571	for (x = 3; x > 0; x--) {
572		if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
573			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
574		} else {
575			reg = FXP_EEPROM_EECS;
576		}
577		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
578		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
579			    reg | FXP_EEPROM_EESK);
580		DELAY(4);
581		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
582		DELAY(4);
583	}
584	/*
585	 * Shift in address, wait for the dummy zero following a correct
586	 * address shift.
587	 */
588	for (x = 1; x <=  8; x++) {
589		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
590		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
591		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
592		DELAY(4);
593		if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
594		    FXP_EEPROM_EEDO) == 0)
595			break;
596		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
597		DELAY(4);
598	}
599	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
600	DELAY(4);
601	if(x != 6 && x != 8) {
602#ifdef DEBUG
603		printf("%s: strange EEPROM size (%d)\n",
604		       sc->sc_dev.dv_xname, 1 << x);
605#endif
606	} else
607		sc->sc_eeprom_size = x;
608}
609
610/*
611 * Read from the serial EEPROM. Basically, you manually shift in
612 * the read opcode (one bit at a time) and then shift in the address,
613 * and then you shift out the data (all of this one bit at a time).
614 * The word size is 16 bits, so you have to provide the address for
615 * every 16 bits of data.
616 */
617void
618fxp_read_eeprom(sc, data, offset, words)
619	struct fxp_softc *sc;
620	u_int16_t *data;
621	int offset;
622	int words;
623{
624	u_int16_t reg;
625	int i, x;
626
627	for (i = 0; i < words; i++) {
628		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
629		/*
630		 * Shift in read opcode.
631		 */
632		for (x = 3; x > 0; x--) {
633			if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
634				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
635			} else {
636				reg = FXP_EEPROM_EECS;
637			}
638			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
639			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
640			    reg | FXP_EEPROM_EESK);
641			DELAY(4);
642			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
643			DELAY(4);
644		}
645		/*
646		 * Shift in address.
647		 */
648		for (x = sc->sc_eeprom_size; x > 0; x--) {
649			if ((i + offset) & (1 << (x - 1))) {
650			    reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
651			} else {
652			    reg = FXP_EEPROM_EECS;
653			}
654			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
655			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
656			    reg | FXP_EEPROM_EESK);
657			DELAY(4);
658			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
659			DELAY(4);
660		}
661		reg = FXP_EEPROM_EECS;
662		data[i] = 0;
663		/*
664		 * Shift out data.
665		 */
666		for (x = 16; x > 0; x--) {
667			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
668			    reg | FXP_EEPROM_EESK);
669			DELAY(4);
670			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
671			    FXP_EEPROM_EEDO)
672				data[i] |= (1 << (x - 1));
673			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
674			DELAY(4);
675		}
676		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
677		DELAY(4);
678	}
679}
680
681/*
682 * Start packet transmission on the interface.
683 */
684void
685fxp_start(ifp)
686	struct ifnet *ifp;
687{
688	struct fxp_softc *sc = ifp->if_softc;
689	struct mbuf *m0, *m;
690	struct fxp_cb_tx *txd;
691	struct fxp_txsoft *txs;
692	struct fxp_tbdlist *tbd;
693	bus_dmamap_t dmamap;
694	int error, lasttx, nexttx, opending, seg;
695
696	/*
697	 * If we want a re-init, bail out now.
698	 */
699	if (sc->sc_flags & FXPF_WANTINIT) {
700		ifp->if_flags |= IFF_OACTIVE;
701		return;
702	}
703
704	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
705		return;
706
707	/*
708	 * Remember the previous txpending and the current lasttx.
709	 */
710	opending = sc->sc_txpending;
711	lasttx = sc->sc_txlast;
712
713	/*
714	 * Loop through the send queue, setting up transmit descriptors
715	 * until we drain the queue, or use up all available transmit
716	 * descriptors.
717	 */
718	while (sc->sc_txpending < FXP_NTXCB) {
719		/*
720		 * Grab a packet off the queue.
721		 */
722		IF_DEQUEUE(&ifp->if_snd, m0);
723		if (m0 == NULL)
724			break;
725
726		/*
727		 * Get the next available transmit descriptor.
728		 */
729		nexttx = FXP_NEXTTX(sc->sc_txlast);
730		txd = FXP_CDTX(sc, nexttx);
731		tbd = FXP_CDTBD(sc, nexttx);
732		txs = FXP_DSTX(sc, nexttx);
733		dmamap = txs->txs_dmamap;
734
735		/*
736		 * Load the DMA map.  If this fails, the packet either
737		 * didn't fit in the allotted number of frags, or we were
738		 * short on resources.  In this case, we'll copy and try
739		 * again.
740		 */
741		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
742		    BUS_DMA_NOWAIT) != 0) {
743			MGETHDR(m, M_DONTWAIT, MT_DATA);
744			if (m == NULL) {
745				printf("%s: unable to allocate Tx mbuf\n",
746				    sc->sc_dev.dv_xname);
747				IF_PREPEND(&ifp->if_snd, m0);
748				break;
749			}
750			if (m0->m_pkthdr.len > MHLEN) {
751				MCLGET(m, M_DONTWAIT);
752				if ((m->m_flags & M_EXT) == 0) {
753					printf("%s: unable to allocate Tx "
754					    "cluster\n", sc->sc_dev.dv_xname);
755					m_freem(m);
756					IF_PREPEND(&ifp->if_snd, m0);
757					break;
758				}
759			}
760			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
761			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
762			m_freem(m0);
763			m0 = m;
764			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
765			    m0, BUS_DMA_NOWAIT);
766			if (error) {
767				printf("%s: unable to load Tx buffer, "
768				    "error = %d\n", sc->sc_dev.dv_xname, error);
769				IF_PREPEND(&ifp->if_snd, m0);
770				break;
771			}
772		}
773
774		/* Initialize the fraglist. */
775		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
776			tbd->tbd_d[seg].tb_addr =
777			    htole32(dmamap->dm_segs[seg].ds_addr);
778			tbd->tbd_d[seg].tb_size =
779			    htole32(dmamap->dm_segs[seg].ds_len);
780		}
781
782		FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
783
784		/* Sync the DMA map. */
785		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
786		    BUS_DMASYNC_PREWRITE);
787
788		/*
789		 * Store a pointer to the packet so we can free it later.
790		 */
791		txs->txs_mbuf = m0;
792
793		/*
794		 * Initialize the transmit descriptor.
795		 */
796		/* BIG_ENDIAN: no need to swap to store 0 */
797		txd->cb_status = 0;
798		txd->cb_command =
799		    htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
800		txd->tx_threshold = tx_threshold;
801		txd->tbd_number = dmamap->dm_nsegs;
802
803		FXP_CDTXSYNC(sc, nexttx,
804		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
805
806		/* Advance the tx pointer. */
807		sc->sc_txpending++;
808		sc->sc_txlast = nexttx;
809
810#if NBPFILTER > 0
811		/*
812		 * Pass packet to bpf if there is a listener.
813		 */
814		if (ifp->if_bpf)
815			bpf_mtap(ifp->if_bpf, m0);
816#endif
817	}
818
819	if (sc->sc_txpending == FXP_NTXCB) {
820		/* No more slots; notify upper layer. */
821		ifp->if_flags |= IFF_OACTIVE;
822	}
823
824	if (sc->sc_txpending != opending) {
825		/*
826		 * We enqueued packets.  If the transmitter was idle,
827		 * reset the txdirty pointer.
828		 */
829		if (opending == 0)
830			sc->sc_txdirty = FXP_NEXTTX(lasttx);
831
832		/*
833		 * Cause the chip to interrupt and suspend command
834		 * processing once the last packet we've enqueued
835		 * has been transmitted.
836		 */
837		FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
838		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
839		FXP_CDTXSYNC(sc, sc->sc_txlast,
840		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
841
842		/*
843		 * The entire packet chain is set up.  Clear the suspend bit
844		 * on the command prior to the first packet we set up.
845		 */
846		FXP_CDTXSYNC(sc, lasttx,
847		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
848		FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
849		FXP_CDTXSYNC(sc, lasttx,
850		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
851
852		/*
853		 * Issue a Resume command in case the chip was suspended.
854		 */
855		fxp_scb_wait(sc);
856		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
857
858		/* Set a watchdog timer in case the chip flakes out. */
859		ifp->if_timer = 5;
860	}
861}
862
863/*
864 * Process interface interrupts.
865 */
866int
867fxp_intr(arg)
868	void *arg;
869{
870	struct fxp_softc *sc = arg;
871	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
872	struct fxp_cb_tx *txd;
873	struct fxp_txsoft *txs;
874	struct mbuf *m, *m0;
875	bus_dmamap_t rxmap;
876	struct fxp_rfa *rfa;
877	struct ether_header *eh;
878	int i, claimed = 0;
879	u_int16_t len, rxstat, txstat;
880	u_int8_t statack;
881
882	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
883		return (0);
884	/*
885	 * If the interface isn't running, don't try to
886	 * service the interrupt.. just ack it and bail.
887	 */
888	if ((ifp->if_flags & IFF_RUNNING) == 0) {
889		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
890		if (statack) {
891			claimed = 1;
892			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
893		}
894		return (claimed);
895	}
896
897	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
898		claimed = 1;
899
900		/*
901		 * First ACK all the interrupts in this pass.
902		 */
903		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
904
905		/*
906		 * Process receiver interrupts. If a no-resource (RNR)
907		 * condition exists, get whatever packets we can and
908		 * re-start the receiver.
909		 */
910		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
911 rcvloop:
912			m = sc->sc_rxq.ifq_head;
913			rfa = FXP_MTORFA(m);
914			rxmap = M_GETCTX(m, bus_dmamap_t);
915
916			FXP_RFASYNC(sc, m,
917			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
918
919			rxstat = le16toh(rfa->rfa_status);
920
921			if ((rxstat & FXP_RFA_STATUS_C) == 0) {
922				/*
923				 * We have processed all of the
924				 * receive buffers.
925				 */
926				goto do_transmit;
927			}
928
929			IF_DEQUEUE(&sc->sc_rxq, m);
930
931			FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
932
933			len = le16toh(rfa->actual_size) &
934			    (m->m_ext.ext_size - 1);
935
936			if (len < sizeof(struct ether_header)) {
937				/*
938				 * Runt packet; drop it now.
939				 */
940				FXP_INIT_RFABUF(sc, m);
941				goto rcvloop;
942			}
943
944			/*
945			 * If the packet is small enough to fit in a
946			 * single header mbuf, allocate one and copy
947			 * the data into it.  This greatly reduces
948			 * memory consumption when we receive lots
949			 * of small packets.
950			 *
951			 * Otherwise, we add a new buffer to the receive
952			 * chain.  If this fails, we drop the packet and
953			 * recycle the old buffer.
954			 */
955			if (fxp_copy_small != 0 && len <= MHLEN) {
956				MGETHDR(m0, M_DONTWAIT, MT_DATA);
957				if (m == NULL)
958					goto dropit;
959				memcpy(mtod(m0, caddr_t),
960				    mtod(m, caddr_t), len);
961				FXP_INIT_RFABUF(sc, m);
962				m = m0;
963			} else {
964				if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
965 dropit:
966					ifp->if_ierrors++;
967					FXP_INIT_RFABUF(sc, m);
968					goto rcvloop;
969				}
970			}
971
972			m->m_pkthdr.rcvif = ifp;
973			m->m_pkthdr.len = m->m_len = len;
974			eh = mtod(m, struct ether_header *);
975
976#if NBPFILTER > 0
977			/*
978			 * Pass this up to any BPF listeners, but only
979			 * pass it up the stack it its for us.
980			 */
981			if (ifp->if_bpf) {
982				bpf_mtap(ifp->if_bpf, m);
983
984				if ((ifp->if_flags & IFF_PROMISC) != 0 &&
985				    (rxstat & FXP_RFA_STATUS_IAMATCH) != 0 &&
986				    (eh->ether_dhost[0] & 1) == 0) {
987					m_freem(m);
988					goto rcvloop;
989				}
990			}
991#endif /* NBPFILTER > 0 */
992
993			/* Pass it on. */
994			(*ifp->if_input)(ifp, m);
995			goto rcvloop;
996		}
997
998 do_transmit:
999		if (statack & FXP_SCB_STATACK_RNR) {
1000			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1001			fxp_scb_wait(sc);
1002			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1003			    rxmap->dm_segs[0].ds_addr +
1004			    RFA_ALIGNMENT_FUDGE);
1005			CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1006			    FXP_SCB_COMMAND_RU_START);
1007		}
1008
1009		/*
1010		 * Free any finished transmit mbuf chains.
1011		 */
1012		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1013			ifp->if_flags &= ~IFF_OACTIVE;
1014			for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1015			     i = FXP_NEXTTX(i), sc->sc_txpending--) {
1016				txd = FXP_CDTX(sc, i);
1017				txs = FXP_DSTX(sc, i);
1018
1019				FXP_CDTXSYNC(sc, i,
1020				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1021
1022				txstat = le16toh(txd->cb_status);
1023
1024				if ((txstat & FXP_CB_STATUS_C) == 0)
1025					break;
1026
1027				FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
1028
1029				bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1030				    0, txs->txs_dmamap->dm_mapsize,
1031				    BUS_DMASYNC_POSTWRITE);
1032				bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1033				m_freem(txs->txs_mbuf);
1034				txs->txs_mbuf = NULL;
1035			}
1036
1037			/* Update the dirty transmit buffer pointer. */
1038			sc->sc_txdirty = i;
1039
1040			/*
1041			 * Cancel the watchdog timer if there are no pending
1042			 * transmissions.
1043			 */
1044			if (sc->sc_txpending == 0) {
1045				ifp->if_timer = 0;
1046
1047				/*
1048				 * If we want a re-init, do that now.
1049				 */
1050				if (sc->sc_flags & FXPF_WANTINIT)
1051					(void) fxp_init(sc);
1052			}
1053
1054			/*
1055			 * Try to get more packets going.
1056			 */
1057			fxp_start(ifp);
1058		}
1059	}
1060
1061#if NRND > 0
1062	if (claimed)
1063		rnd_add_uint32(&sc->rnd_source, statack);
1064#endif
1065	return (claimed);
1066}
1067
1068/*
1069 * Update packet in/out/collision statistics. The i82557 doesn't
1070 * allow you to access these counters without doing a fairly
1071 * expensive DMA to get _all_ of the statistics it maintains, so
1072 * we do this operation here only once per second. The statistics
1073 * counters in the kernel are updated from the previous dump-stats
1074 * DMA and then a new dump-stats DMA is started. The on-chip
1075 * counters are zeroed when the DMA completes. If we can't start
1076 * the DMA immediately, we don't wait - we just prepare to read
1077 * them again next time.
1078 */
1079void
1080fxp_tick(arg)
1081	void *arg;
1082{
1083	struct fxp_softc *sc = arg;
1084	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1085	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1086	int s;
1087
1088	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1089		return;
1090
1091	s = splnet();
1092
1093	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1094
1095	ifp->if_opackets += le32toh(sp->tx_good);
1096	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1097	if (sp->rx_good) {
1098		ifp->if_ipackets += le32toh(sp->rx_good);
1099		sc->sc_rxidle = 0;
1100	} else {
1101		sc->sc_rxidle++;
1102	}
1103	ifp->if_ierrors +=
1104	    le32toh(sp->rx_crc_errors) +
1105	    le32toh(sp->rx_alignment_errors) +
1106	    le32toh(sp->rx_rnr_errors) +
1107	    le32toh(sp->rx_overrun_errors);
1108	/*
1109	 * If any transmit underruns occured, bump up the transmit
1110	 * threshold by another 512 bytes (64 * 8).
1111	 */
1112	if (sp->tx_underruns) {
1113		ifp->if_oerrors += le32toh(sp->tx_underruns);
1114		if (tx_threshold < 192)
1115			tx_threshold += 64;
1116	}
1117
1118	/*
1119	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1120	 * then assume the receiver has locked up and attempt to clear
1121	 * the condition by reprogramming the multicast filter (actually,
1122	 * resetting the interface). This is a work-around for a bug in
1123	 * the 82557 where the receiver locks up if it gets certain types
1124	 * of garbage in the syncronization bits prior to the packet header.
1125	 * This bug is supposed to only occur in 10Mbps mode, but has been
1126	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1127	 * speed transition).
1128	 */
1129	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1130		(void) fxp_init(sc);
1131		splx(s);
1132		return;
1133	}
1134	/*
1135	 * If there is no pending command, start another stats
1136	 * dump. Otherwise punt for now.
1137	 */
1138	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1139		/*
1140		 * Start another stats dump.
1141		 */
1142		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1143		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1144		    FXP_SCB_COMMAND_CU_DUMPRESET);
1145	} else {
1146		/*
1147		 * A previous command is still waiting to be accepted.
1148		 * Just zero our copy of the stats and wait for the
1149		 * next timer event to update them.
1150		 */
1151		/* BIG_ENDIAN: no swap required to store 0 */
1152		sp->tx_good = 0;
1153		sp->tx_underruns = 0;
1154		sp->tx_total_collisions = 0;
1155
1156		sp->rx_good = 0;
1157		sp->rx_crc_errors = 0;
1158		sp->rx_alignment_errors = 0;
1159		sp->rx_rnr_errors = 0;
1160		sp->rx_overrun_errors = 0;
1161	}
1162
1163	if (sc->sc_flags & FXPF_MII) {
1164		/* Tick the MII clock. */
1165		mii_tick(&sc->sc_mii);
1166	}
1167
1168	splx(s);
1169
1170	/*
1171	 * Schedule another timeout one second from now.
1172	 */
1173	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1174}
1175
1176/*
1177 * Drain the receive queue.
1178 */
1179void
1180fxp_rxdrain(sc)
1181	struct fxp_softc *sc;
1182{
1183	bus_dmamap_t rxmap;
1184	struct mbuf *m;
1185
1186	for (;;) {
1187		IF_DEQUEUE(&sc->sc_rxq, m);
1188		if (m == NULL)
1189			break;
1190		rxmap = M_GETCTX(m, bus_dmamap_t);
1191		bus_dmamap_unload(sc->sc_dmat, rxmap);
1192		FXP_RXMAP_PUT(sc, rxmap);
1193		m_freem(m);
1194	}
1195}
1196
1197/*
1198 * Stop the interface. Cancels the statistics updater and resets
1199 * the interface.
1200 */
1201void
1202fxp_stop(sc, drain)
1203	struct fxp_softc *sc;
1204	int drain;
1205{
1206	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1207	struct fxp_txsoft *txs;
1208	int i;
1209
1210	/*
1211	 * Turn down interface (done early to avoid bad interactions
1212	 * between panics, shutdown hooks, and the watchdog timer)
1213	 */
1214	ifp->if_timer = 0;
1215	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1216
1217	/*
1218	 * Cancel stats updater.
1219	 */
1220	callout_stop(&sc->sc_callout);
1221	if (sc->sc_flags & FXPF_MII) {
1222		/* Down the MII. */
1223		mii_down(&sc->sc_mii);
1224	}
1225
1226	/*
1227	 * Issue software reset
1228	 */
1229	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1230	DELAY(10);
1231
1232	/*
1233	 * Release any xmit buffers.
1234	 */
1235	for (i = 0; i < FXP_NTXCB; i++) {
1236		txs = FXP_DSTX(sc, i);
1237		if (txs->txs_mbuf != NULL) {
1238			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1239			m_freem(txs->txs_mbuf);
1240			txs->txs_mbuf = NULL;
1241		}
1242	}
1243	sc->sc_txpending = 0;
1244
1245	if (drain) {
1246		/*
1247		 * Release the receive buffers.
1248		 */
1249		fxp_rxdrain(sc);
1250	}
1251
1252}
1253
1254/*
1255 * Watchdog/transmission transmit timeout handler. Called when a
1256 * transmission is started on the interface, but no interrupt is
1257 * received before the timeout. This usually indicates that the
1258 * card has wedged for some reason.
1259 */
1260void
1261fxp_watchdog(ifp)
1262	struct ifnet *ifp;
1263{
1264	struct fxp_softc *sc = ifp->if_softc;
1265
1266	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1267	ifp->if_oerrors++;
1268
1269	(void) fxp_init(sc);
1270}
1271
1272/*
1273 * Initialize the interface.  Must be called at splnet().
1274 */
1275int
1276fxp_init(sc)
1277	struct fxp_softc *sc;
1278{
1279	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1280	struct fxp_cb_config *cbp;
1281	struct fxp_cb_ias *cb_ias;
1282	struct fxp_cb_tx *txd;
1283	bus_dmamap_t rxmap;
1284	int i, prm, allm, error = 0;
1285
1286	/*
1287	 * Cancel any pending I/O
1288	 */
1289	fxp_stop(sc, 0);
1290
1291	/*
1292	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1293	 * flag, and this prevents the MII from detaching resulting in
1294	 * a panic. The flags field should perhaps be split in runtime
1295	 * flags and more static information. For now, just clear the
1296	 * only other flag set.
1297	 */
1298
1299	sc->sc_flags &= ~FXPF_WANTINIT;
1300
1301	/*
1302	 * Initialize base of CBL and RFA memory. Loading with zero
1303	 * sets it up for regular linear addressing.
1304	 */
1305	fxp_scb_wait(sc);
1306	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1307	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1308
1309	fxp_scb_wait(sc);
1310	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1311
1312	/*
1313	 * Initialize the multicast filter.  Do this now, since we might
1314	 * have to setup the config block differently.
1315	 */
1316	fxp_mc_setup(sc);
1317
1318	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1319	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1320
1321	/*
1322	 * Initialize base of dump-stats buffer.
1323	 */
1324	fxp_scb_wait(sc);
1325	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1326	    sc->sc_cddma + FXP_CDSTATSOFF);
1327	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1328	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1329
1330	cbp = &sc->sc_control_data->fcd_configcb;
1331	memset(cbp, 0, sizeof(struct fxp_cb_config));
1332
1333	/*
1334	 * This copy is kind of disgusting, but there are a bunch of must be
1335	 * zero and must be one bits in this structure and this is the easiest
1336	 * way to initialize them all to proper values.
1337	 */
1338	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1339
1340	/* BIG_ENDIAN: no need to swap to store 0 */
1341	cbp->cb_status =	0;
1342	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1343				    FXP_CB_COMMAND_EL);
1344	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1345	cbp->link_addr =	0xffffffff; /* (no) next command */
1346	cbp->byte_count =	22;	/* (22) bytes to config */
1347	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1348	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1349	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1350	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1351	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1352	cbp->dma_bce =		0;	/* (disable) dma max counters */
1353	cbp->late_scb =		0;	/* (don't) defer SCB update */
1354	cbp->tno_int =		0;	/* (disable) tx not okay interrupt */
1355	cbp->ci_int =		1;	/* interrupt on CU idle */
1356	cbp->save_bf =		prm;	/* save bad frames */
1357	cbp->disc_short_rx =	!prm;	/* discard short packets */
1358	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1359	cbp->mediatype =	!sc->phy_10Mbps_only; /* interface mode */
1360	cbp->nsai =		1;	/* (don't) disable source addr insert */
1361	cbp->preamble_length =	2;	/* (7 byte) preamble */
1362	cbp->loopback =		0;	/* (don't) loopback */
1363	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1364	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1365	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1366	cbp->promiscuous =	prm;	/* promiscuous mode */
1367	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1368	cbp->crscdt =		0;	/* (CRS only) */
1369	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1370	cbp->padding =		1;	/* (do) pad short tx packets */
1371	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1372	cbp->force_fdx =	0;	/* (don't) force full duplex */
1373	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1374	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1375	cbp->mc_all =		allm;	/* accept all multicasts */
1376
1377	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1378
1379	/*
1380	 * Start the config command/DMA.
1381	 */
1382	fxp_scb_wait(sc);
1383	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1384	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1385	/* ...and wait for it to complete. */
1386	i = 1000;
1387	do {
1388		FXP_CDCONFIGSYNC(sc,
1389		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1390		DELAY(1);
1391	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1392	if (i == 0) {
1393		printf("%s at line %d: dmasync timeout\n",
1394		    sc->sc_dev.dv_xname, __LINE__);
1395		return ETIMEDOUT;
1396	}
1397
1398	/*
1399	 * Initialize the station address.
1400	 */
1401	cb_ias = &sc->sc_control_data->fcd_iascb;
1402	/* BIG_ENDIAN: no need to swap to store 0 */
1403	cb_ias->cb_status = 0;
1404	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1405	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1406	cb_ias->link_addr = 0xffffffff;
1407	memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1408
1409	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1410
1411	/*
1412	 * Start the IAS (Individual Address Setup) command/DMA.
1413	 */
1414	fxp_scb_wait(sc);
1415	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1416	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1417	/* ...and wait for it to complete. */
1418	i = 1000;
1419	do {
1420		FXP_CDIASSYNC(sc,
1421		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1422		DELAY(1);
1423	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1424	if (i == 0) {
1425		printf("%s at line %d: dmasync timeout\n",
1426		    sc->sc_dev.dv_xname, __LINE__);
1427		return ETIMEDOUT;
1428	}
1429
1430	/*
1431	 * Initialize the transmit descriptor ring.  txlast is initialized
1432	 * to the end of the list so that it will wrap around to the first
1433	 * descriptor when the first packet is transmitted.
1434	 */
1435	for (i = 0; i < FXP_NTXCB; i++) {
1436		txd = FXP_CDTX(sc, i);
1437		memset(txd, 0, sizeof(struct fxp_cb_tx));
1438		txd->cb_command =
1439		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1440		txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
1441		txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1442		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1443	}
1444	sc->sc_txpending = 0;
1445	sc->sc_txdirty = 0;
1446	sc->sc_txlast = FXP_NTXCB - 1;
1447
1448	/*
1449	 * Initialize the receive buffer list.
1450	 */
1451	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1452	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1453		rxmap = FXP_RXMAP_GET(sc);
1454		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1455			printf("%s: unable to allocate or map rx "
1456			    "buffer %d, error = %d\n",
1457			    sc->sc_dev.dv_xname,
1458			    sc->sc_rxq.ifq_len, error);
1459			/*
1460			 * XXX Should attempt to run with fewer receive
1461			 * XXX buffers instead of just failing.
1462			 */
1463			FXP_RXMAP_PUT(sc, rxmap);
1464			fxp_rxdrain(sc);
1465			goto out;
1466		}
1467	}
1468	sc->sc_rxidle = 0;
1469
1470	/*
1471	 * Give the transmit ring to the chip.  We do this by pointing
1472	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1473	 * issuing a start command.  It will execute the NOP and then
1474	 * suspend, pointing at the first descriptor.
1475	 */
1476	fxp_scb_wait(sc);
1477	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1478	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1479
1480	/*
1481	 * Initialize receiver buffer area - RFA.
1482	 */
1483	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1484	fxp_scb_wait(sc);
1485	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1486	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1487	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1488
1489	if (sc->sc_flags & FXPF_MII) {
1490		/*
1491		 * Set current media.
1492		 */
1493		mii_mediachg(&sc->sc_mii);
1494	}
1495
1496	/*
1497	 * ...all done!
1498	 */
1499	ifp->if_flags |= IFF_RUNNING;
1500	ifp->if_flags &= ~IFF_OACTIVE;
1501
1502	/*
1503	 * Start the one second timer.
1504	 */
1505	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1506
1507	/*
1508	 * Attempt to start output on the interface.
1509	 */
1510	fxp_start(ifp);
1511
1512 out:
1513	if (error)
1514		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1515	return (error);
1516}
1517
1518/*
1519 * Change media according to request.
1520 */
1521int
1522fxp_mii_mediachange(ifp)
1523	struct ifnet *ifp;
1524{
1525	struct fxp_softc *sc = ifp->if_softc;
1526
1527	if (ifp->if_flags & IFF_UP)
1528		mii_mediachg(&sc->sc_mii);
1529	return (0);
1530}
1531
1532/*
1533 * Notify the world which media we're using.
1534 */
1535void
1536fxp_mii_mediastatus(ifp, ifmr)
1537	struct ifnet *ifp;
1538	struct ifmediareq *ifmr;
1539{
1540	struct fxp_softc *sc = ifp->if_softc;
1541
1542	if(sc->sc_enabled == 0) {
1543		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1544		ifmr->ifm_status = 0;
1545		return;
1546	}
1547
1548	mii_pollstat(&sc->sc_mii);
1549	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1550	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1551}
1552
1553int
1554fxp_80c24_mediachange(ifp)
1555	struct ifnet *ifp;
1556{
1557
1558	/* Nothing to do here. */
1559	return (0);
1560}
1561
1562void
1563fxp_80c24_mediastatus(ifp, ifmr)
1564	struct ifnet *ifp;
1565	struct ifmediareq *ifmr;
1566{
1567	struct fxp_softc *sc = ifp->if_softc;
1568
1569	/*
1570	 * Media is currently-selected media.  We cannot determine
1571	 * the link status.
1572	 */
1573	ifmr->ifm_status = 0;
1574	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1575}
1576
1577/*
1578 * Add a buffer to the end of the RFA buffer list.
1579 * Return 0 if successful, error code on failure.
1580 *
1581 * The RFA struct is stuck at the beginning of mbuf cluster and the
1582 * data pointer is fixed up to point just past it.
1583 */
1584int
1585fxp_add_rfabuf(sc, rxmap, unload)
1586	struct fxp_softc *sc;
1587	bus_dmamap_t rxmap;
1588	int unload;
1589{
1590	struct mbuf *m;
1591	int error;
1592
1593	MGETHDR(m, M_DONTWAIT, MT_DATA);
1594	if (m == NULL)
1595		return (ENOBUFS);
1596
1597	MCLGET(m, M_DONTWAIT);
1598	if ((m->m_flags & M_EXT) == 0) {
1599		m_freem(m);
1600		return (ENOBUFS);
1601	}
1602
1603	if (unload)
1604		bus_dmamap_unload(sc->sc_dmat, rxmap);
1605
1606	M_SETCTX(m, rxmap);
1607
1608	error = bus_dmamap_load(sc->sc_dmat, rxmap,
1609	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1610	if (error) {
1611		printf("%s: can't load rx DMA map %d, error = %d\n",
1612		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1613		panic("fxp_add_rfabuf");		/* XXX */
1614	}
1615
1616	FXP_INIT_RFABUF(sc, m);
1617
1618	return (0);
1619}
1620
1621volatile int
1622fxp_mdi_read(self, phy, reg)
1623	struct device *self;
1624	int phy;
1625	int reg;
1626{
1627	struct fxp_softc *sc = (struct fxp_softc *)self;
1628	int count = 10000;
1629	int value;
1630
1631	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1632	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1633
1634	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1635	    && count--)
1636		DELAY(10);
1637
1638	if (count <= 0)
1639		printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1640
1641	return (value & 0xffff);
1642}
1643
1644void
1645fxp_statchg(self)
1646	struct device *self;
1647{
1648
1649	/* Nothing to do. */
1650}
1651
1652void
1653fxp_mdi_write(self, phy, reg, value)
1654	struct device *self;
1655	int phy;
1656	int reg;
1657	int value;
1658{
1659	struct fxp_softc *sc = (struct fxp_softc *)self;
1660	int count = 10000;
1661
1662	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1663	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1664	    (value & 0xffff));
1665
1666	while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1667	    count--)
1668		DELAY(10);
1669
1670	if (count <= 0)
1671		printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1672}
1673
1674int
1675fxp_ioctl(ifp, command, data)
1676	struct ifnet *ifp;
1677	u_long command;
1678	caddr_t data;
1679{
1680	struct fxp_softc *sc = ifp->if_softc;
1681	struct ifreq *ifr = (struct ifreq *)data;
1682	struct ifaddr *ifa = (struct ifaddr *)data;
1683	int s, error = 0;
1684
1685	s = splnet();
1686
1687	switch (command) {
1688	case SIOCSIFADDR:
1689		if ((error = fxp_enable(sc)) != 0)
1690			break;
1691		ifp->if_flags |= IFF_UP;
1692
1693		switch (ifa->ifa_addr->sa_family) {
1694#ifdef INET
1695		case AF_INET:
1696			if ((error = fxp_init(sc)) != 0)
1697				break;
1698			arp_ifinit(ifp, ifa);
1699			break;
1700#endif /* INET */
1701#ifdef NS
1702		case AF_NS:
1703		    {
1704			 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1705
1706			 if (ns_nullhost(*ina))
1707				ina->x_host = *(union ns_host *)
1708				    LLADDR(ifp->if_sadl);
1709			 else
1710				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1711				    ifp->if_addrlen);
1712			 /* Set new address. */
1713			 error = fxp_init(sc);
1714			 break;
1715		    }
1716#endif /* NS */
1717		default:
1718			error = fxp_init(sc);
1719			break;
1720		}
1721		break;
1722
1723	case SIOCSIFMTU:
1724		if (ifr->ifr_mtu > ETHERMTU)
1725			error = EINVAL;
1726		else
1727			ifp->if_mtu = ifr->ifr_mtu;
1728		break;
1729
1730	case SIOCSIFFLAGS:
1731		if ((ifp->if_flags & IFF_UP) == 0 &&
1732		    (ifp->if_flags & IFF_RUNNING) != 0) {
1733			/*
1734			 * If interface is marked down and it is running, then
1735			 * stop it.
1736			 */
1737			fxp_stop(sc, 1);
1738			fxp_disable(sc);
1739		} else if ((ifp->if_flags & IFF_UP) != 0 &&
1740		    (ifp->if_flags & IFF_RUNNING) == 0) {
1741			/*
1742			 * If interface is marked up and it is stopped, then
1743			 * start it.
1744			 */
1745			if((error = fxp_enable(sc)) != 0)
1746				break;
1747			error = fxp_init(sc);
1748		} else if ((ifp->if_flags & IFF_UP) != 0) {
1749			/*
1750			 * Reset the interface to pick up change in any other
1751			 * flags that affect the hardware state.
1752			 */
1753			if((error = fxp_enable(sc)) != 0)
1754				break;
1755			error = fxp_init(sc);
1756		}
1757		break;
1758
1759	case SIOCADDMULTI:
1760	case SIOCDELMULTI:
1761		if(sc->sc_enabled == 0) {
1762			error = EIO;
1763			break;
1764		}
1765		error = (command == SIOCADDMULTI) ?
1766		    ether_addmulti(ifr, &sc->sc_ethercom) :
1767		    ether_delmulti(ifr, &sc->sc_ethercom);
1768
1769		if (error == ENETRESET) {
1770			/*
1771			 * Multicast list has changed; set the hardware
1772			 * filter accordingly.
1773			 */
1774			if (sc->sc_txpending) {
1775				sc->sc_flags |= FXPF_WANTINIT;
1776				error = 0;
1777			} else
1778				error = fxp_init(sc);
1779		}
1780		break;
1781
1782	case SIOCSIFMEDIA:
1783	case SIOCGIFMEDIA:
1784		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1785		break;
1786
1787	default:
1788		error = EINVAL;
1789		break;
1790	}
1791
1792	splx(s);
1793	return (error);
1794}
1795
1796/*
1797 * Program the multicast filter.
1798 *
1799 * This function must be called at splnet().
1800 */
1801void
1802fxp_mc_setup(sc)
1803	struct fxp_softc *sc;
1804{
1805	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1806	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1807	struct ethercom *ec = &sc->sc_ethercom;
1808	struct ether_multi *enm;
1809	struct ether_multistep step;
1810	int count, nmcasts;
1811
1812#ifdef DIAGNOSTIC
1813	if (sc->sc_txpending)
1814		panic("fxp_mc_setup: pending transmissions");
1815#endif
1816
1817	ifp->if_flags &= ~IFF_ALLMULTI;
1818
1819	/*
1820	 * Initialize multicast setup descriptor.
1821	 */
1822	nmcasts = 0;
1823	ETHER_FIRST_MULTI(step, ec, enm);
1824	while (enm != NULL) {
1825		/*
1826		 * Check for too many multicast addresses or if we're
1827		 * listening to a range.  Either way, we simply have
1828		 * to accept all multicasts.
1829		 */
1830		if (nmcasts >= MAXMCADDR ||
1831		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
1832		    ETHER_ADDR_LEN) != 0) {
1833			/*
1834			 * Callers of this function must do the
1835			 * right thing with this.  If we're called
1836			 * from outside fxp_init(), the caller must
1837			 * detect if the state if IFF_ALLMULTI changes.
1838			 * If it does, the caller must then call
1839			 * fxp_init(), since allmulti is handled by
1840			 * the config block.
1841			 */
1842			ifp->if_flags |= IFF_ALLMULTI;
1843			return;
1844		}
1845		memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1846		    ETHER_ADDR_LEN);
1847		nmcasts++;
1848		ETHER_NEXT_MULTI(step, enm);
1849	}
1850
1851	/* BIG_ENDIAN: no need to swap to store 0 */
1852	mcsp->cb_status = 0;
1853	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1854	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1855	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1856
1857	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1858
1859	/*
1860	 * Wait until the command unit is not active.  This should never
1861	 * happen since nothing is queued, but make sure anyway.
1862	 */
1863	count = 100;
1864	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1865	    FXP_SCB_CUS_ACTIVE && --count)
1866		DELAY(1);
1867	if (count == 0) {
1868		printf("%s at line %d: command queue timeout\n",
1869		    sc->sc_dev.dv_xname, __LINE__);
1870		return;
1871	}
1872
1873	/*
1874	 * Start the multicast setup command/DMA.
1875	 */
1876	fxp_scb_wait(sc);
1877	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1878	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1879
1880	/* ...and wait for it to complete. */
1881	count = 1000;
1882	do {
1883		FXP_CDMCSSYNC(sc,
1884		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1885		DELAY(1);
1886	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
1887	if (count == 0) {
1888		printf("%s at line %d: dmasync timeout\n",
1889		    sc->sc_dev.dv_xname, __LINE__);
1890		return;
1891	}
1892}
1893
1894int
1895fxp_enable(sc)
1896	struct fxp_softc *sc;
1897{
1898
1899	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1900		if ((*sc->sc_enable)(sc) != 0) {
1901			printf("%s: device enable failed\n",
1902			    sc->sc_dev.dv_xname);
1903			return (EIO);
1904		}
1905	}
1906
1907	sc->sc_enabled = 1;
1908	return (0);
1909}
1910
1911void
1912fxp_disable(sc)
1913	struct fxp_softc *sc;
1914{
1915
1916	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1917		(*sc->sc_disable)(sc);
1918		sc->sc_enabled = 0;
1919	}
1920}
1921
1922/*
1923 * fxp_activate:
1924 *
1925 *	Handle device activation/deactivation requests.
1926 */
1927int
1928fxp_activate(self, act)
1929	struct device *self;
1930	enum devact act;
1931{
1932	struct fxp_softc *sc = (void *) self;
1933	int s, error = 0;
1934
1935	s = splnet();
1936	switch (act) {
1937	case DVACT_ACTIVATE:
1938		error = EOPNOTSUPP;
1939		break;
1940
1941	case DVACT_DEACTIVATE:
1942		if (sc->sc_flags & FXPF_MII)
1943			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
1944			    MII_OFFSET_ANY);
1945		if_deactivate(&sc->sc_ethercom.ec_if);
1946		break;
1947	}
1948	splx(s);
1949
1950	return (error);
1951}
1952
1953/*
1954 * fxp_detach:
1955 *
1956 *	Detach an i82557 interface.
1957 */
1958int
1959fxp_detach(sc)
1960	struct fxp_softc *sc;
1961{
1962	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1963	int i;
1964
1965	/* Succeed now if there's no work to do. */
1966	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
1967		return (0);
1968
1969	/* Unhook our tick handler. */
1970	callout_stop(&sc->sc_callout);
1971
1972	if (sc->sc_flags & FXPF_MII) {
1973		/* Detach all PHYs */
1974		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1975	}
1976
1977	/* Delete all remaining media. */
1978	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1979
1980#if NRND > 0
1981	rnd_detach_source(&sc->rnd_source);
1982#endif
1983#if NBPFILTER > 0
1984	bpfdetach(ifp);
1985#endif
1986	ether_ifdetach(ifp);
1987	if_detach(ifp);
1988
1989	for (i = 0; i < FXP_NRFABUFS; i++) {
1990		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
1991		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
1992	}
1993
1994	for (i = 0; i < FXP_NTXCB; i++) {
1995		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1996		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1997	}
1998
1999	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2000	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2001	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2002	    sizeof(struct fxp_control_data));
2003	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2004
2005	shutdownhook_disestablish(sc->sc_sdhook);
2006	powerhook_disestablish(sc->sc_powerhook);
2007
2008	return (0);
2009}
2010