i82557.c revision 1.32
1/*	$NetBSD: i82557.c,v 1.32 2000/05/26 19:11:24 tsutsui Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the NetBSD
22 *	Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 *    contributors may be used to endorse or promote products derived
25 *    from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40/*
41 * Copyright (c) 1995, David Greenman
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 *    notice unmodified, this list of conditions, and the following
49 *    disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 *    notice, this list of conditions and the following disclaimer in the
52 *    documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 *	Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
67 */
68
69/*
70 * Device driver for the Intel i82557 fast Ethernet controller,
71 * and its successors, the i82558 and i82559.
72 */
73
74#include "opt_inet.h"
75#include "opt_ns.h"
76#include "bpfilter.h"
77#include "rnd.h"
78
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/callout.h>
82#include <sys/mbuf.h>
83#include <sys/malloc.h>
84#include <sys/kernel.h>
85#include <sys/socket.h>
86#include <sys/ioctl.h>
87#include <sys/errno.h>
88#include <sys/device.h>
89
90#include <machine/endian.h>
91
92#include <vm/vm.h>		/* for PAGE_SIZE */
93
94#if NRND > 0
95#include <sys/rnd.h>
96#endif
97
98#include <net/if.h>
99#include <net/if_dl.h>
100#include <net/if_media.h>
101#include <net/if_ether.h>
102
103#if NBPFILTER > 0
104#include <net/bpf.h>
105#endif
106
107#ifdef INET
108#include <netinet/in.h>
109#include <netinet/if_inarp.h>
110#endif
111
112#ifdef NS
113#include <netns/ns.h>
114#include <netns/ns_if.h>
115#endif
116
117#include <machine/bus.h>
118#include <machine/intr.h>
119
120#include <dev/mii/miivar.h>
121
122#include <dev/ic/i82557reg.h>
123#include <dev/ic/i82557var.h>
124
125/*
126 * NOTE!  On the Alpha, we have an alignment constraint.  The
127 * card DMAs the packet immediately following the RFA.  However,
128 * the first thing in the packet is a 14-byte Ethernet header.
129 * This means that the packet is misaligned.  To compensate,
130 * we actually offset the RFA 2 bytes into the cluster.  This
131 * alignes the packet after the Ethernet header at a 32-bit
132 * boundary.  HOWEVER!  This means that the RFA is misaligned!
133 */
134#define	RFA_ALIGNMENT_FUDGE	2
135
136/*
137 * Template for default configuration parameters.
138 * See struct fxp_cb_config for the bit definitions.
139 */
140u_int8_t fxp_cb_config_template[] = {
141	0x0, 0x0,		/* cb_status */
142	0x80, 0x2,		/* cb_command */
143	0xff, 0xff, 0xff, 0xff,	/* link_addr */
144	0x16,	/*  0 */
145	0x8,	/*  1 */
146	0x0,	/*  2 */
147	0x0,	/*  3 */
148	0x0,	/*  4 */
149	0x80,	/*  5 */
150	0xb2,	/*  6 */
151	0x3,	/*  7 */
152	0x1,	/*  8 */
153	0x0,	/*  9 */
154	0x26,	/* 10 */
155	0x0,	/* 11 */
156	0x60,	/* 12 */
157	0x0,	/* 13 */
158	0xf2,	/* 14 */
159	0x48,	/* 15 */
160	0x0,	/* 16 */
161	0x40,	/* 17 */
162	0xf3,	/* 18 */
163	0x0,	/* 19 */
164	0x3f,	/* 20 */
165	0x5	/* 21 */
166};
167
168void	fxp_mii_initmedia __P((struct fxp_softc *));
169int	fxp_mii_mediachange __P((struct ifnet *));
170void	fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
171
172void	fxp_80c24_initmedia __P((struct fxp_softc *));
173int	fxp_80c24_mediachange __P((struct ifnet *));
174void	fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
175
176inline void fxp_scb_wait __P((struct fxp_softc *));
177
178void	fxp_start __P((struct ifnet *));
179int	fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
180int	fxp_init __P((struct fxp_softc *));
181void	fxp_rxdrain __P((struct fxp_softc *));
182void	fxp_stop __P((struct fxp_softc *, int));
183void	fxp_watchdog __P((struct ifnet *));
184int	fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
185int	fxp_mdi_read __P((struct device *, int, int));
186void	fxp_statchg __P((struct device *));
187void	fxp_mdi_write __P((struct device *, int, int, int));
188void	fxp_autosize_eeprom __P((struct fxp_softc*));
189void	fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
190void	fxp_get_info __P((struct fxp_softc *, u_int8_t *));
191void	fxp_tick __P((void *));
192void	fxp_mc_setup __P((struct fxp_softc *));
193
194void	fxp_shutdown __P((void *));
195void	fxp_power __P((int, void *));
196
197int	fxp_copy_small = 0;
198
199struct fxp_phytype {
200	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
201	void	(*fp_init) __P((struct fxp_softc *));
202} fxp_phytype_table[] = {
203	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
204	{ -1,				fxp_mii_initmedia },
205};
206
207/*
208 * Set initial transmit threshold at 64 (512 bytes). This is
209 * increased by 64 (512 bytes) at a time, to maximum of 192
210 * (1536 bytes), if an underrun occurs.
211 */
212static int tx_threshold = 64;
213
214/*
215 * Wait for the previous command to be accepted (but not necessarily
216 * completed).
217 */
218inline void
219fxp_scb_wait(sc)
220	struct fxp_softc *sc;
221{
222	int i = 10000;
223
224	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
225		delay(2);
226	if (i == 0)
227		printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
228}
229
230/*
231 * Finish attaching an i82557 interface.  Called by bus-specific front-end.
232 */
233void
234fxp_attach(sc)
235	struct fxp_softc *sc;
236{
237	u_int8_t enaddr[6];
238	struct ifnet *ifp;
239	bus_dma_segment_t seg;
240	int rseg, i, error;
241	struct fxp_phytype *fp;
242
243	callout_init(&sc->sc_callout);
244
245	/*
246	 * Allocate the control data structures, and create and load the
247	 * DMA map for it.
248	 */
249	if ((error = bus_dmamem_alloc(sc->sc_dmat,
250	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
251	    0)) != 0) {
252		printf("%s: unable to allocate control data, error = %d\n",
253		    sc->sc_dev.dv_xname, error);
254		goto fail_0;
255	}
256
257	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
258	    sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
259	    BUS_DMA_COHERENT)) != 0) {
260		printf("%s: unable to map control data, error = %d\n",
261		    sc->sc_dev.dv_xname, error);
262		goto fail_1;
263	}
264	sc->sc_cdseg = seg;
265	sc->sc_cdnseg = rseg;
266
267	bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
268
269	if ((error = bus_dmamap_create(sc->sc_dmat,
270	    sizeof(struct fxp_control_data), 1,
271	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
272		printf("%s: unable to create control data DMA map, "
273		    "error = %d\n", sc->sc_dev.dv_xname, error);
274		goto fail_2;
275	}
276
277	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
278	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
279	    0)) != 0) {
280		printf("%s: can't load control data DMA map, error = %d\n",
281		    sc->sc_dev.dv_xname, error);
282		goto fail_3;
283	}
284
285	/*
286	 * Create the transmit buffer DMA maps.
287	 */
288	for (i = 0; i < FXP_NTXCB; i++) {
289		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
290		    FXP_NTXSEG, MCLBYTES, 0, 0,
291		    &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
292			printf("%s: unable to create tx DMA map %d, "
293			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
294			goto fail_4;
295		}
296	}
297
298	/*
299	 * Create the receive buffer DMA maps.
300	 */
301	for (i = 0; i < FXP_NRFABUFS; i++) {
302		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
303		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
304			printf("%s: unable to create rx DMA map %d, "
305			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
306			goto fail_5;
307		}
308	}
309
310	/* Initialize MAC address and media structures. */
311	fxp_get_info(sc, enaddr);
312
313	printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
314	    ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
315
316	ifp = &sc->sc_ethercom.ec_if;
317
318	/*
319	 * Get info about our media interface, and initialize it.  Note
320	 * the table terminates itself with a phy of -1, indicating
321	 * that we're using MII.
322	 */
323	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
324		if (fp->fp_phy == sc->phy_primary_device)
325			break;
326	(*fp->fp_init)(sc);
327
328	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
329	ifp->if_softc = sc;
330	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
331	ifp->if_ioctl = fxp_ioctl;
332	ifp->if_start = fxp_start;
333	ifp->if_watchdog = fxp_watchdog;
334
335	/*
336	 * Attach the interface.
337	 */
338	if_attach(ifp);
339	ether_ifattach(ifp, enaddr);
340#if NBPFILTER > 0
341	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
342	    sizeof(struct ether_header));
343#endif
344#if NRND > 0
345	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
346	    RND_TYPE_NET, 0);
347#endif
348
349	/*
350	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
351	 * doing do could allow DMA to corrupt kernel memory during the
352	 * reboot before the driver initializes.
353	 */
354	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
355	if (sc->sc_sdhook == NULL)
356		printf("%s: WARNING: unable to establish shutdown hook\n",
357		    sc->sc_dev.dv_xname);
358	/*
359  	 * Add suspend hook, for similar reasons..
360	 */
361	sc->sc_powerhook = powerhook_establish(fxp_power, sc);
362	if (sc->sc_powerhook == NULL)
363		printf("%s: WARNING: unable to establish power hook\n",
364		    sc->sc_dev.dv_xname);
365	return;
366
367	/*
368	 * Free any resources we've allocated during the failed attach
369	 * attempt.  Do this in reverse order and fall though.
370	 */
371 fail_5:
372	for (i = 0; i < FXP_NRFABUFS; i++) {
373		if (sc->sc_rxmaps[i] != NULL)
374			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
375	}
376 fail_4:
377	for (i = 0; i < FXP_NTXCB; i++) {
378		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
379			bus_dmamap_destroy(sc->sc_dmat,
380			    FXP_DSTX(sc, i)->txs_dmamap);
381	}
382	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
383 fail_3:
384	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
385 fail_2:
386	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
387	    sizeof(struct fxp_control_data));
388 fail_1:
389	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
390 fail_0:
391	return;
392}
393
394void
395fxp_mii_initmedia(sc)
396	struct fxp_softc *sc;
397{
398
399	sc->sc_flags |= FXPF_MII;
400
401	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
402	sc->sc_mii.mii_readreg = fxp_mdi_read;
403	sc->sc_mii.mii_writereg = fxp_mdi_write;
404	sc->sc_mii.mii_statchg = fxp_statchg;
405	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
406	    fxp_mii_mediastatus);
407	/*
408	 * The i82557 wedges if all of its PHYs are isolated!
409	 */
410	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
411	    MII_OFFSET_ANY, MIIF_NOISOLATE);
412	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
413		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
414		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
415	} else
416		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
417}
418
419void
420fxp_80c24_initmedia(sc)
421	struct fxp_softc *sc;
422{
423
424	/*
425	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
426	 * doesn't have a programming interface of any sort.  The
427	 * media is sensed automatically based on how the link partner
428	 * is configured.  This is, in essence, manual configuration.
429	 */
430	printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
431	    sc->sc_dev.dv_xname);
432	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
433	    fxp_80c24_mediastatus);
434	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
435	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
436}
437
438/*
439 * Device shutdown routine. Called at system shutdown after sync. The
440 * main purpose of this routine is to shut off receiver DMA so that
441 * kernel memory doesn't get clobbered during warmboot.
442 */
443void
444fxp_shutdown(arg)
445	void *arg;
446{
447	struct fxp_softc *sc = arg;
448
449	/*
450	 * Since the system's going to halt shortly, don't bother
451	 * freeing mbufs.
452	 */
453	fxp_stop(sc, 0);
454}
455/*
456 * Power handler routine. Called when the system is transitioning
457 * into/out of power save modes.  As with fxp_shutdown, the main
458 * purpose of this routine is to shut off receiver DMA so it doesn't
459 * clobber kernel memory at the wrong time.
460 */
461void
462fxp_power(why, arg)
463	int why;
464	void *arg;
465{
466	struct fxp_softc *sc = arg;
467	struct ifnet *ifp;
468	int s;
469
470	s = splnet();
471	if (why != PWR_RESUME)
472		fxp_stop(sc, 0);
473	else {
474		ifp = &sc->sc_ethercom.ec_if;
475		if (ifp->if_flags & IFF_UP)
476			fxp_init(sc);
477	}
478	splx(s);
479}
480
481/*
482 * Initialize the interface media.
483 */
484void
485fxp_get_info(sc, enaddr)
486	struct fxp_softc *sc;
487	u_int8_t *enaddr;
488{
489	u_int16_t data, myea[3];
490
491	/*
492	 * Reset to a stable state.
493	 */
494	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
495	DELAY(10);
496
497	sc->sc_eeprom_size = 0;
498	fxp_autosize_eeprom(sc);
499	if(sc->sc_eeprom_size == 0) {
500	    printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
501	    sc->sc_eeprom_size = 6; /* XXX panic here? */
502	}
503#ifdef DEBUG
504	printf("%s: detected %d word EEPROM\n",
505	       sc->sc_dev.dv_xname,
506	       1 << sc->sc_eeprom_size);
507#endif
508
509	/*
510	 * Get info about the primary PHY
511	 */
512	fxp_read_eeprom(sc, &data, 6, 1);
513	sc->phy_primary_addr = data & 0xff;
514	sc->phy_primary_device = (data >> 8) & 0x3f;
515	sc->phy_10Mbps_only = data >> 15;
516
517	/*
518	 * Read MAC address.
519	 */
520	fxp_read_eeprom(sc, myea, 0, 3);
521	enaddr[0] = myea[0] & 0xff;
522	enaddr[1] = myea[0] >> 8;
523	enaddr[2] = myea[1] & 0xff;
524	enaddr[3] = myea[1] >> 8;
525	enaddr[4] = myea[2] & 0xff;
526	enaddr[5] = myea[2] >> 8;
527}
528
529/*
530 * Figure out EEPROM size.
531 *
532 * 559's can have either 64-word or 256-word EEPROMs, the 558
533 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
534 * talks about the existance of 16 to 256 word EEPROMs.
535 *
536 * The only known sizes are 64 and 256, where the 256 version is used
537 * by CardBus cards to store CIS information.
538 *
539 * The address is shifted in msb-to-lsb, and after the last
540 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
541 * after which follows the actual data. We try to detect this zero, by
542 * probing the data-out bit in the EEPROM control register just after
543 * having shifted in a bit. If the bit is zero, we assume we've
544 * shifted enough address bits. The data-out should be tri-state,
545 * before this, which should translate to a logical one.
546 *
547 * Other ways to do this would be to try to read a register with known
548 * contents with a varying number of address bits, but no such
549 * register seem to be available. The high bits of register 10 are 01
550 * on the 558 and 559, but apparently not on the 557.
551 *
552 * The Linux driver computes a checksum on the EEPROM data, but the
553 * value of this checksum is not very well documented.
554 */
555
556void
557fxp_autosize_eeprom(sc)
558	struct fxp_softc *sc;
559{
560	u_int16_t reg;
561	int x;
562
563	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
564	/*
565	 * Shift in read opcode.
566	 */
567	for (x = 3; x > 0; x--) {
568		if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
569			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
570		} else {
571			reg = FXP_EEPROM_EECS;
572		}
573		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
574		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
575			    reg | FXP_EEPROM_EESK);
576		DELAY(1);
577		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
578		DELAY(1);
579	}
580	/*
581	 * Shift in address, wait for the dummy zero following a correct
582	 * address shift.
583	 */
584	for (x = 1; x <=  8; x++) {
585		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
586		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
587		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
588		DELAY(1);
589		if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
590		    FXP_EEPROM_EEDO) == 0)
591			break;
592		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
593		DELAY(1);
594	}
595	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
596	DELAY(1);
597	if(x != 6 && x != 8) {
598#ifdef DEBUG
599		printf("%s: strange EEPROM size (%d)\n",
600		       sc->sc_dev.dv_xname, 1 << x);
601#endif
602	} else
603		sc->sc_eeprom_size = x;
604}
605
606/*
607 * Read from the serial EEPROM. Basically, you manually shift in
608 * the read opcode (one bit at a time) and then shift in the address,
609 * and then you shift out the data (all of this one bit at a time).
610 * The word size is 16 bits, so you have to provide the address for
611 * every 16 bits of data.
612 */
613void
614fxp_read_eeprom(sc, data, offset, words)
615	struct fxp_softc *sc;
616	u_int16_t *data;
617	int offset;
618	int words;
619{
620	u_int16_t reg;
621	int i, x;
622
623	for (i = 0; i < words; i++) {
624		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
625		/*
626		 * Shift in read opcode.
627		 */
628		for (x = 3; x > 0; x--) {
629			if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
630				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
631			} else {
632				reg = FXP_EEPROM_EECS;
633			}
634			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
635			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
636			    reg | FXP_EEPROM_EESK);
637			DELAY(1);
638			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
639			DELAY(1);
640		}
641		/*
642		 * Shift in address.
643		 */
644		for (x = sc->sc_eeprom_size; x > 0; x--) {
645			if ((i + offset) & (1 << (x - 1))) {
646			    reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
647			} else {
648			    reg = FXP_EEPROM_EECS;
649			}
650			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
651			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
652			    reg | FXP_EEPROM_EESK);
653			DELAY(1);
654			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
655			DELAY(1);
656		}
657		reg = FXP_EEPROM_EECS;
658		data[i] = 0;
659		/*
660		 * Shift out data.
661		 */
662		for (x = 16; x > 0; x--) {
663			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
664			    reg | FXP_EEPROM_EESK);
665			DELAY(1);
666			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
667			    FXP_EEPROM_EEDO)
668				data[i] |= (1 << (x - 1));
669			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
670			DELAY(1);
671		}
672		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
673		DELAY(1);
674	}
675}
676
677/*
678 * Start packet transmission on the interface.
679 */
680void
681fxp_start(ifp)
682	struct ifnet *ifp;
683{
684	struct fxp_softc *sc = ifp->if_softc;
685	struct mbuf *m0, *m;
686	struct fxp_cb_tx *txd;
687	struct fxp_txsoft *txs;
688	struct fxp_tbdlist *tbd;
689	bus_dmamap_t dmamap;
690	int error, lasttx, nexttx, opending, seg;
691
692	/*
693	 * If we want a re-init, bail out now.
694	 */
695	if (sc->sc_flags & FXPF_WANTINIT) {
696		ifp->if_flags |= IFF_OACTIVE;
697		return;
698	}
699
700	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
701		return;
702
703	/*
704	 * Remember the previous txpending and the current lasttx.
705	 */
706	opending = sc->sc_txpending;
707	lasttx = sc->sc_txlast;
708
709	/*
710	 * Loop through the send queue, setting up transmit descriptors
711	 * until we drain the queue, or use up all available transmit
712	 * descriptors.
713	 */
714	while (sc->sc_txpending < FXP_NTXCB) {
715		/*
716		 * Grab a packet off the queue.
717		 */
718		IF_DEQUEUE(&ifp->if_snd, m0);
719		if (m0 == NULL)
720			break;
721
722		/*
723		 * Get the next available transmit descriptor.
724		 */
725		nexttx = FXP_NEXTTX(sc->sc_txlast);
726		txd = FXP_CDTX(sc, nexttx);
727		tbd = FXP_CDTBD(sc, nexttx);
728		txs = FXP_DSTX(sc, nexttx);
729		dmamap = txs->txs_dmamap;
730
731		/*
732		 * Load the DMA map.  If this fails, the packet either
733		 * didn't fit in the allotted number of frags, or we were
734		 * short on resources.  In this case, we'll copy and try
735		 * again.
736		 */
737		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
738		    BUS_DMA_NOWAIT) != 0) {
739			MGETHDR(m, M_DONTWAIT, MT_DATA);
740			if (m == NULL) {
741				printf("%s: unable to allocate Tx mbuf\n",
742				    sc->sc_dev.dv_xname);
743				IF_PREPEND(&ifp->if_snd, m0);
744				break;
745			}
746			if (m0->m_pkthdr.len > MHLEN) {
747				MCLGET(m, M_DONTWAIT);
748				if ((m->m_flags & M_EXT) == 0) {
749					printf("%s: unable to allocate Tx "
750					    "cluster\n", sc->sc_dev.dv_xname);
751					m_freem(m);
752					IF_PREPEND(&ifp->if_snd, m0);
753					break;
754				}
755			}
756			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
757			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
758			m_freem(m0);
759			m0 = m;
760			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
761			    m0, BUS_DMA_NOWAIT);
762			if (error) {
763				printf("%s: unable to load Tx buffer, "
764				    "error = %d\n", sc->sc_dev.dv_xname, error);
765				IF_PREPEND(&ifp->if_snd, m0);
766				break;
767			}
768		}
769
770		/* Initialize the fraglist. */
771		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
772			tbd->tbd_d[seg].tb_addr =
773			    htole32(dmamap->dm_segs[seg].ds_addr);
774			tbd->tbd_d[seg].tb_size =
775			    htole32(dmamap->dm_segs[seg].ds_len);
776		}
777
778		FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
779
780		/* Sync the DMA map. */
781		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
782		    BUS_DMASYNC_PREWRITE);
783
784		/*
785		 * Store a pointer to the packet so we can free it later.
786		 */
787		txs->txs_mbuf = m0;
788
789		/*
790		 * Initialize the transmit descriptor.
791		 */
792		/* BIG_ENDIAN: no need to swap to store 0 */
793		txd->cb_status = 0;
794		txd->cb_command =
795		    htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
796		txd->tx_threshold = tx_threshold;
797		txd->tbd_number = dmamap->dm_nsegs;
798
799		FXP_CDTXSYNC(sc, nexttx,
800		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
801
802		/* Advance the tx pointer. */
803		sc->sc_txpending++;
804		sc->sc_txlast = nexttx;
805
806#if NBPFILTER > 0
807		/*
808		 * Pass packet to bpf if there is a listener.
809		 */
810		if (ifp->if_bpf)
811			bpf_mtap(ifp->if_bpf, m0);
812#endif
813	}
814
815	if (sc->sc_txpending == FXP_NTXCB) {
816		/* No more slots; notify upper layer. */
817		ifp->if_flags |= IFF_OACTIVE;
818	}
819
820	if (sc->sc_txpending != opending) {
821		/*
822		 * We enqueued packets.  If the transmitter was idle,
823		 * reset the txdirty pointer.
824		 */
825		if (opending == 0)
826			sc->sc_txdirty = FXP_NEXTTX(lasttx);
827
828		/*
829		 * Cause the chip to interrupt and suspend command
830		 * processing once the last packet we've enqueued
831		 * has been transmitted.
832		 */
833		FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
834		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
835		FXP_CDTXSYNC(sc, sc->sc_txlast,
836		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
837
838		/*
839		 * The entire packet chain is set up.  Clear the suspend bit
840		 * on the command prior to the first packet we set up.
841		 */
842		FXP_CDTXSYNC(sc, lasttx,
843		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
844		FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
845		FXP_CDTXSYNC(sc, lasttx,
846		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
847
848		/*
849		 * Issue a Resume command in case the chip was suspended.
850		 */
851		fxp_scb_wait(sc);
852		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
853
854		/* Set a watchdog timer in case the chip flakes out. */
855		ifp->if_timer = 5;
856	}
857}
858
859/*
860 * Process interface interrupts.
861 */
862int
863fxp_intr(arg)
864	void *arg;
865{
866	struct fxp_softc *sc = arg;
867	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
868	struct fxp_cb_tx *txd;
869	struct fxp_txsoft *txs;
870	struct mbuf *m, *m0;
871	bus_dmamap_t rxmap;
872	struct fxp_rfa *rfa;
873	struct ether_header *eh;
874	int i, claimed = 0;
875	u_int16_t len, rxstat, txstat;
876	u_int8_t statack;
877
878	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
879		return (0);
880	/*
881	 * If the interface isn't running, don't try to
882	 * service the interrupt.. just ack it and bail.
883	 */
884	if ((ifp->if_flags & IFF_RUNNING) == 0) {
885		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
886		if (statack) {
887			claimed = 1;
888			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
889		}
890		return (claimed);
891	}
892
893	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
894		claimed = 1;
895
896		/*
897		 * First ACK all the interrupts in this pass.
898		 */
899		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
900
901		/*
902		 * Process receiver interrupts. If a no-resource (RNR)
903		 * condition exists, get whatever packets we can and
904		 * re-start the receiver.
905		 */
906		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
907 rcvloop:
908			m = sc->sc_rxq.ifq_head;
909			rfa = FXP_MTORFA(m);
910			rxmap = M_GETCTX(m, bus_dmamap_t);
911
912			FXP_RFASYNC(sc, m,
913			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
914
915			rxstat = le16toh(rfa->rfa_status);
916
917			if ((rxstat & FXP_RFA_STATUS_C) == 0) {
918				/*
919				 * We have processed all of the
920				 * receive buffers.
921				 */
922				goto do_transmit;
923			}
924
925			IF_DEQUEUE(&sc->sc_rxq, m);
926
927			FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
928
929			len = le16toh(rfa->actual_size) &
930			    (m->m_ext.ext_size - 1);
931
932			if (len < sizeof(struct ether_header)) {
933				/*
934				 * Runt packet; drop it now.
935				 */
936				FXP_INIT_RFABUF(sc, m);
937				goto rcvloop;
938			}
939
940			/*
941			 * If the packet is small enough to fit in a
942			 * single header mbuf, allocate one and copy
943			 * the data into it.  This greatly reduces
944			 * memory consumption when we receive lots
945			 * of small packets.
946			 *
947			 * Otherwise, we add a new buffer to the receive
948			 * chain.  If this fails, we drop the packet and
949			 * recycle the old buffer.
950			 */
951			if (fxp_copy_small != 0 && len <= MHLEN) {
952				MGETHDR(m0, M_DONTWAIT, MT_DATA);
953				if (m == NULL)
954					goto dropit;
955				memcpy(mtod(m0, caddr_t),
956				    mtod(m, caddr_t), len);
957				FXP_INIT_RFABUF(sc, m);
958				m = m0;
959			} else {
960				if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
961 dropit:
962					ifp->if_ierrors++;
963					FXP_INIT_RFABUF(sc, m);
964					goto rcvloop;
965				}
966			}
967
968			m->m_pkthdr.rcvif = ifp;
969			m->m_pkthdr.len = m->m_len = len;
970			eh = mtod(m, struct ether_header *);
971
972#if NBPFILTER > 0
973			/*
974			 * Pass this up to any BPF listeners, but only
975			 * pass it up the stack it its for us.
976			 */
977			if (ifp->if_bpf) {
978				bpf_mtap(ifp->if_bpf, m);
979
980				if ((ifp->if_flags & IFF_PROMISC) != 0 &&
981				    (rxstat & FXP_RFA_STATUS_IAMATCH) != 0 &&
982				    (eh->ether_dhost[0] & 1) == 0) {
983					m_freem(m);
984					goto rcvloop;
985				}
986			}
987#endif /* NBPFILTER > 0 */
988
989			/* Pass it on. */
990			(*ifp->if_input)(ifp, m);
991			goto rcvloop;
992		}
993
994 do_transmit:
995		if (statack & FXP_SCB_STATACK_RNR) {
996			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
997			fxp_scb_wait(sc);
998			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
999			    rxmap->dm_segs[0].ds_addr +
1000			    RFA_ALIGNMENT_FUDGE);
1001			CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1002			    FXP_SCB_COMMAND_RU_START);
1003		}
1004
1005		/*
1006		 * Free any finished transmit mbuf chains.
1007		 */
1008		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1009			ifp->if_flags &= ~IFF_OACTIVE;
1010			for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1011			     i = FXP_NEXTTX(i), sc->sc_txpending--) {
1012				txd = FXP_CDTX(sc, i);
1013				txs = FXP_DSTX(sc, i);
1014
1015				FXP_CDTXSYNC(sc, i,
1016				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1017
1018				txstat = le16toh(txd->cb_status);
1019
1020				if ((txstat & FXP_CB_STATUS_C) == 0)
1021					break;
1022
1023				FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
1024
1025				bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1026				    0, txs->txs_dmamap->dm_mapsize,
1027				    BUS_DMASYNC_POSTWRITE);
1028				bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1029				m_freem(txs->txs_mbuf);
1030				txs->txs_mbuf = NULL;
1031			}
1032
1033			/* Update the dirty transmit buffer pointer. */
1034			sc->sc_txdirty = i;
1035
1036			/*
1037			 * Cancel the watchdog timer if there are no pending
1038			 * transmissions.
1039			 */
1040			if (sc->sc_txpending == 0) {
1041				ifp->if_timer = 0;
1042
1043				/*
1044				 * If we want a re-init, do that now.
1045				 */
1046				if (sc->sc_flags & FXPF_WANTINIT)
1047					(void) fxp_init(sc);
1048			}
1049
1050			/*
1051			 * Try to get more packets going.
1052			 */
1053			fxp_start(ifp);
1054		}
1055	}
1056
1057#if NRND > 0
1058	if (claimed)
1059		rnd_add_uint32(&sc->rnd_source, statack);
1060#endif
1061	return (claimed);
1062}
1063
1064/*
1065 * Update packet in/out/collision statistics. The i82557 doesn't
1066 * allow you to access these counters without doing a fairly
1067 * expensive DMA to get _all_ of the statistics it maintains, so
1068 * we do this operation here only once per second. The statistics
1069 * counters in the kernel are updated from the previous dump-stats
1070 * DMA and then a new dump-stats DMA is started. The on-chip
1071 * counters are zeroed when the DMA completes. If we can't start
1072 * the DMA immediately, we don't wait - we just prepare to read
1073 * them again next time.
1074 */
1075void
1076fxp_tick(arg)
1077	void *arg;
1078{
1079	struct fxp_softc *sc = arg;
1080	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1081	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1082	int s;
1083
1084	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1085		return;
1086
1087	s = splnet();
1088
1089	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1090
1091	ifp->if_opackets += le32toh(sp->tx_good);
1092	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1093	if (sp->rx_good) {
1094		ifp->if_ipackets += le32toh(sp->rx_good);
1095		sc->sc_rxidle = 0;
1096	} else {
1097		sc->sc_rxidle++;
1098	}
1099	ifp->if_ierrors +=
1100	    le32toh(sp->rx_crc_errors) +
1101	    le32toh(sp->rx_alignment_errors) +
1102	    le32toh(sp->rx_rnr_errors) +
1103	    le32toh(sp->rx_overrun_errors);
1104	/*
1105	 * If any transmit underruns occured, bump up the transmit
1106	 * threshold by another 512 bytes (64 * 8).
1107	 */
1108	if (sp->tx_underruns) {
1109		ifp->if_oerrors += le32toh(sp->tx_underruns);
1110		if (tx_threshold < 192)
1111			tx_threshold += 64;
1112	}
1113
1114	/*
1115	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1116	 * then assume the receiver has locked up and attempt to clear
1117	 * the condition by reprogramming the multicast filter (actually,
1118	 * resetting the interface). This is a work-around for a bug in
1119	 * the 82557 where the receiver locks up if it gets certain types
1120	 * of garbage in the syncronization bits prior to the packet header.
1121	 * This bug is supposed to only occur in 10Mbps mode, but has been
1122	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1123	 * speed transition).
1124	 */
1125	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1126		(void) fxp_init(sc);
1127		splx(s);
1128		return;
1129	}
1130	/*
1131	 * If there is no pending command, start another stats
1132	 * dump. Otherwise punt for now.
1133	 */
1134	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1135		/*
1136		 * Start another stats dump.
1137		 */
1138		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1139		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1140		    FXP_SCB_COMMAND_CU_DUMPRESET);
1141	} else {
1142		/*
1143		 * A previous command is still waiting to be accepted.
1144		 * Just zero our copy of the stats and wait for the
1145		 * next timer event to update them.
1146		 */
1147		/* BIG_ENDIAN: no swap required to store 0 */
1148		sp->tx_good = 0;
1149		sp->tx_underruns = 0;
1150		sp->tx_total_collisions = 0;
1151
1152		sp->rx_good = 0;
1153		sp->rx_crc_errors = 0;
1154		sp->rx_alignment_errors = 0;
1155		sp->rx_rnr_errors = 0;
1156		sp->rx_overrun_errors = 0;
1157	}
1158
1159	if (sc->sc_flags & FXPF_MII) {
1160		/* Tick the MII clock. */
1161		mii_tick(&sc->sc_mii);
1162	}
1163
1164	splx(s);
1165
1166	/*
1167	 * Schedule another timeout one second from now.
1168	 */
1169	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1170}
1171
1172/*
1173 * Drain the receive queue.
1174 */
1175void
1176fxp_rxdrain(sc)
1177	struct fxp_softc *sc;
1178{
1179	bus_dmamap_t rxmap;
1180	struct mbuf *m;
1181
1182	for (;;) {
1183		IF_DEQUEUE(&sc->sc_rxq, m);
1184		if (m == NULL)
1185			break;
1186		rxmap = M_GETCTX(m, bus_dmamap_t);
1187		bus_dmamap_unload(sc->sc_dmat, rxmap);
1188		FXP_RXMAP_PUT(sc, rxmap);
1189		m_freem(m);
1190	}
1191}
1192
1193/*
1194 * Stop the interface. Cancels the statistics updater and resets
1195 * the interface.
1196 */
1197void
1198fxp_stop(sc, drain)
1199	struct fxp_softc *sc;
1200	int drain;
1201{
1202	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1203	struct fxp_txsoft *txs;
1204	int i;
1205
1206	/*
1207	 * Turn down interface (done early to avoid bad interactions
1208	 * between panics, shutdown hooks, and the watchdog timer)
1209	 */
1210	ifp->if_timer = 0;
1211	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1212
1213	/*
1214	 * Cancel stats updater.
1215	 */
1216	callout_stop(&sc->sc_callout);
1217	if (sc->sc_flags & FXPF_MII) {
1218		/* Down the MII. */
1219		mii_down(&sc->sc_mii);
1220	}
1221
1222	/*
1223	 * Issue software reset
1224	 */
1225	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1226	DELAY(10);
1227
1228	/*
1229	 * Release any xmit buffers.
1230	 */
1231	for (i = 0; i < FXP_NTXCB; i++) {
1232		txs = FXP_DSTX(sc, i);
1233		if (txs->txs_mbuf != NULL) {
1234			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1235			m_freem(txs->txs_mbuf);
1236			txs->txs_mbuf = NULL;
1237		}
1238	}
1239	sc->sc_txpending = 0;
1240
1241	if (drain) {
1242		/*
1243		 * Release the receive buffers.
1244		 */
1245		fxp_rxdrain(sc);
1246	}
1247
1248}
1249
1250/*
1251 * Watchdog/transmission transmit timeout handler. Called when a
1252 * transmission is started on the interface, but no interrupt is
1253 * received before the timeout. This usually indicates that the
1254 * card has wedged for some reason.
1255 */
1256void
1257fxp_watchdog(ifp)
1258	struct ifnet *ifp;
1259{
1260	struct fxp_softc *sc = ifp->if_softc;
1261
1262	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1263	ifp->if_oerrors++;
1264
1265	(void) fxp_init(sc);
1266}
1267
1268/*
1269 * Initialize the interface.  Must be called at splnet().
1270 */
1271int
1272fxp_init(sc)
1273	struct fxp_softc *sc;
1274{
1275	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1276	struct fxp_cb_config *cbp;
1277	struct fxp_cb_ias *cb_ias;
1278	struct fxp_cb_tx *txd;
1279	bus_dmamap_t rxmap;
1280	int i, prm, allm, error = 0;
1281
1282	/*
1283	 * Cancel any pending I/O
1284	 */
1285	fxp_stop(sc, 0);
1286
1287	/*
1288	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1289	 * flag, and this prevents the MII from detaching resulting in
1290	 * a panic. The flags field should perhaps be split in runtime
1291	 * flags and more static information. For now, just clear the
1292	 * only other flag set.
1293	 */
1294
1295	sc->sc_flags &= ~FXPF_WANTINIT;
1296
1297	/*
1298	 * Initialize base of CBL and RFA memory. Loading with zero
1299	 * sets it up for regular linear addressing.
1300	 */
1301	fxp_scb_wait(sc);
1302	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1303	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1304
1305	fxp_scb_wait(sc);
1306	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1307
1308	/*
1309	 * Initialize the multicast filter.  Do this now, since we might
1310	 * have to setup the config block differently.
1311	 */
1312	fxp_mc_setup(sc);
1313
1314	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1315	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1316
1317	/*
1318	 * Initialize base of dump-stats buffer.
1319	 */
1320	fxp_scb_wait(sc);
1321	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1322	    sc->sc_cddma + FXP_CDSTATSOFF);
1323	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1324	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1325
1326	cbp = &sc->sc_control_data->fcd_configcb;
1327	memset(cbp, 0, sizeof(struct fxp_cb_config));
1328
1329	/*
1330	 * This copy is kind of disgusting, but there are a bunch of must be
1331	 * zero and must be one bits in this structure and this is the easiest
1332	 * way to initialize them all to proper values.
1333	 */
1334	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1335
1336	/* BIG_ENDIAN: no need to swap to store 0 */
1337	cbp->cb_status =	0;
1338	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1339				    FXP_CB_COMMAND_EL);
1340	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1341	cbp->link_addr =	0xffffffff; /* (no) next command */
1342	cbp->byte_count =	22;	/* (22) bytes to config */
1343	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1344	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1345	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1346	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1347	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1348	cbp->dma_bce =		0;	/* (disable) dma max counters */
1349	cbp->late_scb =		0;	/* (don't) defer SCB update */
1350	cbp->tno_int =		0;	/* (disable) tx not okay interrupt */
1351	cbp->ci_int =		1;	/* interrupt on CU idle */
1352	cbp->save_bf =		prm;	/* save bad frames */
1353	cbp->disc_short_rx =	!prm;	/* discard short packets */
1354	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1355	cbp->mediatype =	!sc->phy_10Mbps_only; /* interface mode */
1356	cbp->nsai =		1;	/* (don't) disable source addr insert */
1357	cbp->preamble_length =	2;	/* (7 byte) preamble */
1358	cbp->loopback =		0;	/* (don't) loopback */
1359	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1360	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1361	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1362	cbp->promiscuous =	prm;	/* promiscuous mode */
1363	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1364	cbp->crscdt =		0;	/* (CRS only) */
1365	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1366	cbp->padding =		1;	/* (do) pad short tx packets */
1367	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1368	cbp->force_fdx =	0;	/* (don't) force full duplex */
1369	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1370	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1371	cbp->mc_all =		allm;	/* accept all multicasts */
1372
1373	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1374
1375	/*
1376	 * Start the config command/DMA.
1377	 */
1378	fxp_scb_wait(sc);
1379	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1380	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1381	/* ...and wait for it to complete. */
1382	i = 1000;
1383	do {
1384		FXP_CDCONFIGSYNC(sc,
1385		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1386		DELAY(1);
1387	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1388	if (i == 0) {
1389		printf("%s at line %d: dmasync timeout\n",
1390		    sc->sc_dev.dv_xname, __LINE__);
1391		return ETIMEDOUT;
1392	}
1393
1394	/*
1395	 * Initialize the station address.
1396	 */
1397	cb_ias = &sc->sc_control_data->fcd_iascb;
1398	/* BIG_ENDIAN: no need to swap to store 0 */
1399	cb_ias->cb_status = 0;
1400	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1401	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1402	cb_ias->link_addr = 0xffffffff;
1403	memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1404
1405	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1406
1407	/*
1408	 * Start the IAS (Individual Address Setup) command/DMA.
1409	 */
1410	fxp_scb_wait(sc);
1411	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1412	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1413	/* ...and wait for it to complete. */
1414	i = 1000;
1415	do {
1416		FXP_CDIASSYNC(sc,
1417		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1418		DELAY(1);
1419	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1420	if (i == 0) {
1421		printf("%s at line %d: dmasync timeout\n",
1422		    sc->sc_dev.dv_xname, __LINE__);
1423		return ETIMEDOUT;
1424	}
1425
1426	/*
1427	 * Initialize the transmit descriptor ring.  txlast is initialized
1428	 * to the end of the list so that it will wrap around to the first
1429	 * descriptor when the first packet is transmitted.
1430	 */
1431	for (i = 0; i < FXP_NTXCB; i++) {
1432		txd = FXP_CDTX(sc, i);
1433		memset(txd, 0, sizeof(struct fxp_cb_tx));
1434		txd->cb_command =
1435		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1436		txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
1437		txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1438		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1439	}
1440	sc->sc_txpending = 0;
1441	sc->sc_txdirty = 0;
1442	sc->sc_txlast = FXP_NTXCB - 1;
1443
1444	/*
1445	 * Initialize the receive buffer list.
1446	 */
1447	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1448	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1449		rxmap = FXP_RXMAP_GET(sc);
1450		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1451			printf("%s: unable to allocate or map rx "
1452			    "buffer %d, error = %d\n",
1453			    sc->sc_dev.dv_xname,
1454			    sc->sc_rxq.ifq_len, error);
1455			/*
1456			 * XXX Should attempt to run with fewer receive
1457			 * XXX buffers instead of just failing.
1458			 */
1459			FXP_RXMAP_PUT(sc, rxmap);
1460			fxp_rxdrain(sc);
1461			goto out;
1462		}
1463	}
1464	sc->sc_rxidle = 0;
1465
1466	/*
1467	 * Give the transmit ring to the chip.  We do this by pointing
1468	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1469	 * issuing a start command.  It will execute the NOP and then
1470	 * suspend, pointing at the first descriptor.
1471	 */
1472	fxp_scb_wait(sc);
1473	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1474	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1475
1476	/*
1477	 * Initialize receiver buffer area - RFA.
1478	 */
1479	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1480	fxp_scb_wait(sc);
1481	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1482	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1483	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1484
1485	if (sc->sc_flags & FXPF_MII) {
1486		/*
1487		 * Set current media.
1488		 */
1489		mii_mediachg(&sc->sc_mii);
1490	}
1491
1492	/*
1493	 * ...all done!
1494	 */
1495	ifp->if_flags |= IFF_RUNNING;
1496	ifp->if_flags &= ~IFF_OACTIVE;
1497
1498	/*
1499	 * Start the one second timer.
1500	 */
1501	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1502
1503	/*
1504	 * Attempt to start output on the interface.
1505	 */
1506	fxp_start(ifp);
1507
1508 out:
1509	if (error)
1510		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1511	return (error);
1512}
1513
1514/*
1515 * Change media according to request.
1516 */
1517int
1518fxp_mii_mediachange(ifp)
1519	struct ifnet *ifp;
1520{
1521	struct fxp_softc *sc = ifp->if_softc;
1522
1523	if (ifp->if_flags & IFF_UP)
1524		mii_mediachg(&sc->sc_mii);
1525	return (0);
1526}
1527
1528/*
1529 * Notify the world which media we're using.
1530 */
1531void
1532fxp_mii_mediastatus(ifp, ifmr)
1533	struct ifnet *ifp;
1534	struct ifmediareq *ifmr;
1535{
1536	struct fxp_softc *sc = ifp->if_softc;
1537
1538	if(sc->sc_enabled == 0) {
1539		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1540		ifmr->ifm_status = 0;
1541		return;
1542	}
1543
1544	mii_pollstat(&sc->sc_mii);
1545	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1546	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1547}
1548
1549int
1550fxp_80c24_mediachange(ifp)
1551	struct ifnet *ifp;
1552{
1553
1554	/* Nothing to do here. */
1555	return (0);
1556}
1557
1558void
1559fxp_80c24_mediastatus(ifp, ifmr)
1560	struct ifnet *ifp;
1561	struct ifmediareq *ifmr;
1562{
1563	struct fxp_softc *sc = ifp->if_softc;
1564
1565	/*
1566	 * Media is currently-selected media.  We cannot determine
1567	 * the link status.
1568	 */
1569	ifmr->ifm_status = 0;
1570	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1571}
1572
1573/*
1574 * Add a buffer to the end of the RFA buffer list.
1575 * Return 0 if successful, error code on failure.
1576 *
1577 * The RFA struct is stuck at the beginning of mbuf cluster and the
1578 * data pointer is fixed up to point just past it.
1579 */
1580int
1581fxp_add_rfabuf(sc, rxmap, unload)
1582	struct fxp_softc *sc;
1583	bus_dmamap_t rxmap;
1584	int unload;
1585{
1586	struct mbuf *m;
1587	int error;
1588
1589	MGETHDR(m, M_DONTWAIT, MT_DATA);
1590	if (m == NULL)
1591		return (ENOBUFS);
1592
1593	MCLGET(m, M_DONTWAIT);
1594	if ((m->m_flags & M_EXT) == 0) {
1595		m_freem(m);
1596		return (ENOBUFS);
1597	}
1598
1599	if (unload)
1600		bus_dmamap_unload(sc->sc_dmat, rxmap);
1601
1602	M_SETCTX(m, rxmap);
1603
1604	error = bus_dmamap_load(sc->sc_dmat, rxmap,
1605	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1606	if (error) {
1607		printf("%s: can't load rx DMA map %d, error = %d\n",
1608		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1609		panic("fxp_add_rfabuf");		/* XXX */
1610	}
1611
1612	FXP_INIT_RFABUF(sc, m);
1613
1614	return (0);
1615}
1616
1617volatile int
1618fxp_mdi_read(self, phy, reg)
1619	struct device *self;
1620	int phy;
1621	int reg;
1622{
1623	struct fxp_softc *sc = (struct fxp_softc *)self;
1624	int count = 10000;
1625	int value;
1626
1627	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1628	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1629
1630	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1631	    && count--)
1632		DELAY(10);
1633
1634	if (count <= 0)
1635		printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1636
1637	return (value & 0xffff);
1638}
1639
1640void
1641fxp_statchg(self)
1642	struct device *self;
1643{
1644
1645	/* Nothing to do. */
1646}
1647
1648void
1649fxp_mdi_write(self, phy, reg, value)
1650	struct device *self;
1651	int phy;
1652	int reg;
1653	int value;
1654{
1655	struct fxp_softc *sc = (struct fxp_softc *)self;
1656	int count = 10000;
1657
1658	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1659	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1660	    (value & 0xffff));
1661
1662	while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1663	    count--)
1664		DELAY(10);
1665
1666	if (count <= 0)
1667		printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1668}
1669
1670int
1671fxp_ioctl(ifp, command, data)
1672	struct ifnet *ifp;
1673	u_long command;
1674	caddr_t data;
1675{
1676	struct fxp_softc *sc = ifp->if_softc;
1677	struct ifreq *ifr = (struct ifreq *)data;
1678	struct ifaddr *ifa = (struct ifaddr *)data;
1679	int s, error = 0;
1680
1681	s = splnet();
1682
1683	switch (command) {
1684	case SIOCSIFADDR:
1685		if ((error = fxp_enable(sc)) != 0)
1686			break;
1687		ifp->if_flags |= IFF_UP;
1688
1689		switch (ifa->ifa_addr->sa_family) {
1690#ifdef INET
1691		case AF_INET:
1692			if ((error = fxp_init(sc)) != 0)
1693				break;
1694			arp_ifinit(ifp, ifa);
1695			break;
1696#endif /* INET */
1697#ifdef NS
1698		case AF_NS:
1699		    {
1700			 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1701
1702			 if (ns_nullhost(*ina))
1703				ina->x_host = *(union ns_host *)
1704				    LLADDR(ifp->if_sadl);
1705			 else
1706				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1707				    ifp->if_addrlen);
1708			 /* Set new address. */
1709			 error = fxp_init(sc);
1710			 break;
1711		    }
1712#endif /* NS */
1713		default:
1714			error = fxp_init(sc);
1715			break;
1716		}
1717		break;
1718
1719	case SIOCSIFMTU:
1720		if (ifr->ifr_mtu > ETHERMTU)
1721			error = EINVAL;
1722		else
1723			ifp->if_mtu = ifr->ifr_mtu;
1724		break;
1725
1726	case SIOCSIFFLAGS:
1727		if ((ifp->if_flags & IFF_UP) == 0 &&
1728		    (ifp->if_flags & IFF_RUNNING) != 0) {
1729			/*
1730			 * If interface is marked down and it is running, then
1731			 * stop it.
1732			 */
1733			fxp_stop(sc, 1);
1734			fxp_disable(sc);
1735		} else if ((ifp->if_flags & IFF_UP) != 0 &&
1736		    (ifp->if_flags & IFF_RUNNING) == 0) {
1737			/*
1738			 * If interface is marked up and it is stopped, then
1739			 * start it.
1740			 */
1741			if((error = fxp_enable(sc)) != 0)
1742				break;
1743			error = fxp_init(sc);
1744		} else if ((ifp->if_flags & IFF_UP) != 0) {
1745			/*
1746			 * Reset the interface to pick up change in any other
1747			 * flags that affect the hardware state.
1748			 */
1749			if((error = fxp_enable(sc)) != 0)
1750				break;
1751			error = fxp_init(sc);
1752		}
1753		break;
1754
1755	case SIOCADDMULTI:
1756	case SIOCDELMULTI:
1757		if(sc->sc_enabled == 0) {
1758			error = EIO;
1759			break;
1760		}
1761		error = (command == SIOCADDMULTI) ?
1762		    ether_addmulti(ifr, &sc->sc_ethercom) :
1763		    ether_delmulti(ifr, &sc->sc_ethercom);
1764
1765		if (error == ENETRESET) {
1766			/*
1767			 * Multicast list has changed; set the hardware
1768			 * filter accordingly.
1769			 */
1770			if (sc->sc_txpending) {
1771				sc->sc_flags |= FXPF_WANTINIT;
1772				error = 0;
1773			} else
1774				error = fxp_init(sc);
1775		}
1776		break;
1777
1778	case SIOCSIFMEDIA:
1779	case SIOCGIFMEDIA:
1780		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1781		break;
1782
1783	default:
1784		error = EINVAL;
1785		break;
1786	}
1787
1788	splx(s);
1789	return (error);
1790}
1791
1792/*
1793 * Program the multicast filter.
1794 *
1795 * This function must be called at splnet().
1796 */
1797void
1798fxp_mc_setup(sc)
1799	struct fxp_softc *sc;
1800{
1801	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1802	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1803	struct ethercom *ec = &sc->sc_ethercom;
1804	struct ether_multi *enm;
1805	struct ether_multistep step;
1806	int count, nmcasts;
1807
1808#ifdef DIAGNOSTIC
1809	if (sc->sc_txpending)
1810		panic("fxp_mc_setup: pending transmissions");
1811#endif
1812
1813	ifp->if_flags &= ~IFF_ALLMULTI;
1814
1815	/*
1816	 * Initialize multicast setup descriptor.
1817	 */
1818	nmcasts = 0;
1819	ETHER_FIRST_MULTI(step, ec, enm);
1820	while (enm != NULL) {
1821		/*
1822		 * Check for too many multicast addresses or if we're
1823		 * listening to a range.  Either way, we simply have
1824		 * to accept all multicasts.
1825		 */
1826		if (nmcasts >= MAXMCADDR ||
1827		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
1828		    ETHER_ADDR_LEN) != 0) {
1829			/*
1830			 * Callers of this function must do the
1831			 * right thing with this.  If we're called
1832			 * from outside fxp_init(), the caller must
1833			 * detect if the state if IFF_ALLMULTI changes.
1834			 * If it does, the caller must then call
1835			 * fxp_init(), since allmulti is handled by
1836			 * the config block.
1837			 */
1838			ifp->if_flags |= IFF_ALLMULTI;
1839			return;
1840		}
1841		memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1842		    ETHER_ADDR_LEN);
1843		nmcasts++;
1844		ETHER_NEXT_MULTI(step, enm);
1845	}
1846
1847	/* BIG_ENDIAN: no need to swap to store 0 */
1848	mcsp->cb_status = 0;
1849	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1850	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1851	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1852
1853	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1854
1855	/*
1856	 * Wait until the command unit is not active.  This should never
1857	 * happen since nothing is queued, but make sure anyway.
1858	 */
1859	count = 100;
1860	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1861	    FXP_SCB_CUS_ACTIVE && --count)
1862		DELAY(1);
1863	if (count == 0) {
1864		printf("%s at line %d: command queue timeout\n",
1865		    sc->sc_dev.dv_xname, __LINE__);
1866		return;
1867	}
1868
1869	/*
1870	 * Start the multicast setup command/DMA.
1871	 */
1872	fxp_scb_wait(sc);
1873	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1874	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1875
1876	/* ...and wait for it to complete. */
1877	count = 1000;
1878	do {
1879		FXP_CDMCSSYNC(sc,
1880		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1881		DELAY(1);
1882	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
1883	if (count == 0) {
1884		printf("%s at line %d: dmasync timeout\n",
1885		    sc->sc_dev.dv_xname, __LINE__);
1886		return;
1887	}
1888}
1889
1890int
1891fxp_enable(sc)
1892	struct fxp_softc *sc;
1893{
1894
1895	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1896		if ((*sc->sc_enable)(sc) != 0) {
1897			printf("%s: device enable failed\n",
1898			    sc->sc_dev.dv_xname);
1899			return (EIO);
1900		}
1901	}
1902
1903	sc->sc_enabled = 1;
1904	return (0);
1905}
1906
1907void
1908fxp_disable(sc)
1909	struct fxp_softc *sc;
1910{
1911
1912	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1913		(*sc->sc_disable)(sc);
1914		sc->sc_enabled = 0;
1915	}
1916}
1917
1918/*
1919 * fxp_activate:
1920 *
1921 *	Handle device activation/deactivation requests.
1922 */
1923int
1924fxp_activate(self, act)
1925	struct device *self;
1926	enum devact act;
1927{
1928	struct fxp_softc *sc = (void *) self;
1929	int s, error = 0;
1930
1931	s = splnet();
1932	switch (act) {
1933	case DVACT_ACTIVATE:
1934		error = EOPNOTSUPP;
1935		break;
1936
1937	case DVACT_DEACTIVATE:
1938		if (sc->sc_flags & FXPF_MII)
1939			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
1940			    MII_OFFSET_ANY);
1941		if_deactivate(&sc->sc_ethercom.ec_if);
1942		break;
1943	}
1944	splx(s);
1945
1946	return (error);
1947}
1948
1949/*
1950 * fxp_detach:
1951 *
1952 *	Detach an i82557 interface.
1953 */
1954int
1955fxp_detach(sc)
1956	struct fxp_softc *sc;
1957{
1958	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1959	int i;
1960
1961	/* Unhook our tick handler. */
1962	callout_stop(&sc->sc_callout);
1963
1964	if (sc->sc_flags & FXPF_MII) {
1965		/* Detach all PHYs */
1966		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1967	}
1968
1969	/* Delete all remaining media. */
1970	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1971
1972#if NRND > 0
1973	rnd_detach_source(&sc->rnd_source);
1974#endif
1975#if NBPFILTER > 0
1976	bpfdetach(ifp);
1977#endif
1978	ether_ifdetach(ifp);
1979	if_detach(ifp);
1980
1981	for (i = 0; i < FXP_NRFABUFS; i++) {
1982		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
1983		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
1984	}
1985
1986	for (i = 0; i < FXP_NTXCB; i++) {
1987		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1988		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1989	}
1990
1991	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
1992	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
1993	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1994	    sizeof(struct fxp_control_data));
1995	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
1996
1997	shutdownhook_disestablish(sc->sc_sdhook);
1998	powerhook_disestablish(sc->sc_powerhook);
1999
2000	return (0);
2001}
2002