i82557.c revision 1.29
1/*	$NetBSD: i82557.c,v 1.29 2000/05/24 07:49:13 soren Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the NetBSD
22 *	Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 *    contributors may be used to endorse or promote products derived
25 *    from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40/*
41 * Copyright (c) 1995, David Greenman
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 *    notice unmodified, this list of conditions, and the following
49 *    disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 *    notice, this list of conditions and the following disclaimer in the
52 *    documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 *	Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
67 */
68
69/*
70 * Device driver for the Intel i82557 fast Ethernet controller,
71 * and its successors, the i82558 and i82559.
72 */
73
74#include "opt_inet.h"
75#include "opt_ns.h"
76#include "bpfilter.h"
77#include "rnd.h"
78
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/callout.h>
82#include <sys/mbuf.h>
83#include <sys/malloc.h>
84#include <sys/kernel.h>
85#include <sys/socket.h>
86#include <sys/ioctl.h>
87#include <sys/errno.h>
88#include <sys/device.h>
89
90#include <machine/endian.h>
91
92#include <vm/vm.h>		/* for PAGE_SIZE */
93
94#if NRND > 0
95#include <sys/rnd.h>
96#endif
97
98#include <net/if.h>
99#include <net/if_dl.h>
100#include <net/if_media.h>
101#include <net/if_ether.h>
102
103#if NBPFILTER > 0
104#include <net/bpf.h>
105#endif
106
107#ifdef INET
108#include <netinet/in.h>
109#include <netinet/if_inarp.h>
110#endif
111
112#ifdef NS
113#include <netns/ns.h>
114#include <netns/ns_if.h>
115#endif
116
117#include <machine/bus.h>
118#include <machine/intr.h>
119
120#include <dev/mii/miivar.h>
121
122#include <dev/ic/i82557reg.h>
123#include <dev/ic/i82557var.h>
124
125/*
126 * NOTE!  On the Alpha, we have an alignment constraint.  The
127 * card DMAs the packet immediately following the RFA.  However,
128 * the first thing in the packet is a 14-byte Ethernet header.
129 * This means that the packet is misaligned.  To compensate,
130 * we actually offset the RFA 2 bytes into the cluster.  This
131 * alignes the packet after the Ethernet header at a 32-bit
132 * boundary.  HOWEVER!  This means that the RFA is misaligned!
133 */
134#define	RFA_ALIGNMENT_FUDGE	2
135
136/*
137 * Template for default configuration parameters.
138 * See struct fxp_cb_config for the bit definitions.
139 */
140u_int8_t fxp_cb_config_template[] = {
141	0x0, 0x0,		/* cb_status */
142	0x80, 0x2,		/* cb_command */
143	0xff, 0xff, 0xff, 0xff,	/* link_addr */
144	0x16,	/*  0 */
145	0x8,	/*  1 */
146	0x0,	/*  2 */
147	0x0,	/*  3 */
148	0x0,	/*  4 */
149	0x80,	/*  5 */
150	0xb2,	/*  6 */
151	0x3,	/*  7 */
152	0x1,	/*  8 */
153	0x0,	/*  9 */
154	0x26,	/* 10 */
155	0x0,	/* 11 */
156	0x60,	/* 12 */
157	0x0,	/* 13 */
158	0xf2,	/* 14 */
159	0x48,	/* 15 */
160	0x0,	/* 16 */
161	0x40,	/* 17 */
162	0xf3,	/* 18 */
163	0x0,	/* 19 */
164	0x3f,	/* 20 */
165	0x5	/* 21 */
166};
167
168void	fxp_mii_initmedia __P((struct fxp_softc *));
169int	fxp_mii_mediachange __P((struct ifnet *));
170void	fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
171
172void	fxp_80c24_initmedia __P((struct fxp_softc *));
173int	fxp_80c24_mediachange __P((struct ifnet *));
174void	fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
175
176inline void fxp_scb_wait __P((struct fxp_softc *));
177
178void	fxp_start __P((struct ifnet *));
179int	fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
180int	fxp_init __P((struct fxp_softc *));
181void	fxp_rxdrain __P((struct fxp_softc *));
182void	fxp_stop __P((struct fxp_softc *, int));
183void	fxp_watchdog __P((struct ifnet *));
184int	fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
185int	fxp_mdi_read __P((struct device *, int, int));
186void	fxp_statchg __P((struct device *));
187void	fxp_mdi_write __P((struct device *, int, int, int));
188void	fxp_autosize_eeprom __P((struct fxp_softc*));
189void	fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
190void	fxp_get_info __P((struct fxp_softc *, u_int8_t *));
191void	fxp_tick __P((void *));
192void	fxp_mc_setup __P((struct fxp_softc *));
193
194void	fxp_shutdown __P((void *));
195void	fxp_power __P((int, void *));
196
197int	fxp_copy_small = 0;
198
199struct fxp_phytype {
200	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
201	void	(*fp_init) __P((struct fxp_softc *));
202} fxp_phytype_table[] = {
203	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
204	{ -1,				fxp_mii_initmedia },
205};
206
207/*
208 * Set initial transmit threshold at 64 (512 bytes). This is
209 * increased by 64 (512 bytes) at a time, to maximum of 192
210 * (1536 bytes), if an underrun occurs.
211 */
212static int tx_threshold = 64;
213
214/*
215 * Wait for the previous command to be accepted (but not necessarily
216 * completed).
217 */
218inline void
219fxp_scb_wait(sc)
220	struct fxp_softc *sc;
221{
222	int i = 10000;
223
224	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
225		delay(2);
226	if (i == 0)
227		printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
228}
229
230/*
231 * Finish attaching an i82557 interface.  Called by bus-specific front-end.
232 */
233void
234fxp_attach(sc)
235	struct fxp_softc *sc;
236{
237	u_int8_t enaddr[6];
238	struct ifnet *ifp;
239	bus_dma_segment_t seg;
240	int rseg, i, error;
241	struct fxp_phytype *fp;
242
243	callout_init(&sc->sc_callout);
244
245	/*
246	 * Allocate the control data structures, and create and load the
247	 * DMA map for it.
248	 */
249	if ((error = bus_dmamem_alloc(sc->sc_dmat,
250	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
251	    0)) != 0) {
252		printf("%s: unable to allocate control data, error = %d\n",
253		    sc->sc_dev.dv_xname, error);
254		goto fail_0;
255	}
256
257	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
258	    sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
259	    BUS_DMA_COHERENT)) != 0) {
260		printf("%s: unable to map control data, error = %d\n",
261		    sc->sc_dev.dv_xname, error);
262		goto fail_1;
263	}
264	sc->sc_cdseg = seg;
265	sc->sc_cdnseg = rseg;
266
267	bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
268
269	if ((error = bus_dmamap_create(sc->sc_dmat,
270	    sizeof(struct fxp_control_data), 1,
271	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
272		printf("%s: unable to create control data DMA map, "
273		    "error = %d\n", sc->sc_dev.dv_xname, error);
274		goto fail_2;
275	}
276
277	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
278	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
279	    0)) != 0) {
280		printf("%s: can't load control data DMA map, error = %d\n",
281		    sc->sc_dev.dv_xname, error);
282		goto fail_3;
283	}
284
285	/*
286	 * Create the transmit buffer DMA maps.
287	 */
288	for (i = 0; i < FXP_NTXCB; i++) {
289		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
290		    FXP_NTXSEG, MCLBYTES, 0, 0,
291		    &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
292			printf("%s: unable to create tx DMA map %d, "
293			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
294			goto fail_4;
295		}
296	}
297
298	/*
299	 * Create the receive buffer DMA maps.
300	 */
301	for (i = 0; i < FXP_NRFABUFS; i++) {
302		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
303		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
304			printf("%s: unable to create rx DMA map %d, "
305			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
306			goto fail_5;
307		}
308	}
309
310	/* Initialize MAC address and media structures. */
311	fxp_get_info(sc, enaddr);
312
313	printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
314	    ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
315
316	ifp = &sc->sc_ethercom.ec_if;
317
318	/*
319	 * Get info about our media interface, and initialize it.  Note
320	 * the table terminates itself with a phy of -1, indicating
321	 * that we're using MII.
322	 */
323	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
324		if (fp->fp_phy == sc->phy_primary_device)
325			break;
326	(*fp->fp_init)(sc);
327
328	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
329	ifp->if_softc = sc;
330	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
331	ifp->if_ioctl = fxp_ioctl;
332	ifp->if_start = fxp_start;
333	ifp->if_watchdog = fxp_watchdog;
334
335	/*
336	 * Attach the interface.
337	 */
338	if_attach(ifp);
339	ether_ifattach(ifp, enaddr);
340#if NBPFILTER > 0
341	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
342	    sizeof(struct ether_header));
343#endif
344#if NRND > 0
345	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
346	    RND_TYPE_NET, 0);
347#endif
348
349	/*
350	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
351	 * doing do could allow DMA to corrupt kernel memory during the
352	 * reboot before the driver initializes.
353	 */
354	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
355	if (sc->sc_sdhook == NULL)
356		printf("%s: WARNING: unable to establish shutdown hook\n",
357		    sc->sc_dev.dv_xname);
358	/*
359  	 * Add suspend hook, for similar reasons..
360	 */
361	sc->sc_powerhook = powerhook_establish(fxp_power, sc);
362	if (sc->sc_powerhook == NULL)
363		printf("%s: WARNING: unable to establish power hook\n",
364		    sc->sc_dev.dv_xname);
365	return;
366
367	/*
368	 * Free any resources we've allocated during the failed attach
369	 * attempt.  Do this in reverse order and fall though.
370	 */
371 fail_5:
372	for (i = 0; i < FXP_NRFABUFS; i++) {
373		if (sc->sc_rxmaps[i] != NULL)
374			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
375	}
376 fail_4:
377	for (i = 0; i < FXP_NTXCB; i++) {
378		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
379			bus_dmamap_destroy(sc->sc_dmat,
380			    FXP_DSTX(sc, i)->txs_dmamap);
381	}
382	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
383 fail_3:
384	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
385 fail_2:
386	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
387	    sizeof(struct fxp_control_data));
388 fail_1:
389	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
390 fail_0:
391	return;
392}
393
394void
395fxp_mii_initmedia(sc)
396	struct fxp_softc *sc;
397{
398
399	sc->sc_flags |= FXPF_MII;
400
401	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
402	sc->sc_mii.mii_readreg = fxp_mdi_read;
403	sc->sc_mii.mii_writereg = fxp_mdi_write;
404	sc->sc_mii.mii_statchg = fxp_statchg;
405	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
406	    fxp_mii_mediastatus);
407	/*
408	 * The i82557 wedges if all of its PHYs are isolated!
409	 */
410	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
411	    MII_OFFSET_ANY, MIIF_NOISOLATE);
412	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
413		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
414		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
415	} else
416		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
417}
418
419void
420fxp_80c24_initmedia(sc)
421	struct fxp_softc *sc;
422{
423
424	/*
425	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
426	 * doesn't have a programming interface of any sort.  The
427	 * media is sensed automatically based on how the link partner
428	 * is configured.  This is, in essence, manual configuration.
429	 */
430	printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
431	    sc->sc_dev.dv_xname);
432	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
433	    fxp_80c24_mediastatus);
434	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
435	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
436}
437
438/*
439 * Device shutdown routine. Called at system shutdown after sync. The
440 * main purpose of this routine is to shut off receiver DMA so that
441 * kernel memory doesn't get clobbered during warmboot.
442 */
443void
444fxp_shutdown(arg)
445	void *arg;
446{
447	struct fxp_softc *sc = arg;
448
449	/*
450	 * Since the system's going to halt shortly, don't bother
451	 * freeing mbufs.
452	 */
453	fxp_stop(sc, 0);
454}
455/*
456 * Power handler routine. Called when the system is transitioning
457 * into/out of power save modes.  As with fxp_shutdown, the main
458 * purpose of this routine is to shut off receiver DMA so it doesn't
459 * clobber kernel memory at the wrong time.
460 */
461void
462fxp_power(why, arg)
463	int why;
464	void *arg;
465{
466	struct fxp_softc *sc = arg;
467	struct ifnet *ifp;
468	int s;
469
470	s = splnet();
471	if (why != PWR_RESUME)
472		fxp_stop(sc, 0);
473	else {
474		ifp = &sc->sc_ethercom.ec_if;
475		if (ifp->if_flags & IFF_UP)
476			fxp_init(sc);
477	}
478	splx(s);
479}
480
481/*
482 * Initialize the interface media.
483 */
484void
485fxp_get_info(sc, enaddr)
486	struct fxp_softc *sc;
487	u_int8_t *enaddr;
488{
489	u_int16_t data, myea[3];
490
491	/*
492	 * Reset to a stable state.
493	 */
494	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
495	DELAY(10);
496
497	sc->sc_eeprom_size = 0;
498	fxp_autosize_eeprom(sc);
499	if(sc->sc_eeprom_size == 0) {
500	    printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
501	    sc->sc_eeprom_size = 6; /* XXX panic here? */
502	}
503#ifdef DEBUG
504	printf("%s: detected %d word EEPROM\n",
505	       sc->sc_dev.dv_xname,
506	       1 << sc->sc_eeprom_size);
507#endif
508
509	/*
510	 * Get info about the primary PHY
511	 */
512	fxp_read_eeprom(sc, &data, 6, 1);
513	sc->phy_primary_addr = data & 0xff;
514	sc->phy_primary_device = (data >> 8) & 0x3f;
515	sc->phy_10Mbps_only = data >> 15;
516
517	/*
518	 * Read MAC address.
519	 */
520	fxp_read_eeprom(sc, myea, 0, 3);
521	bcopy(myea, enaddr, ETHER_ADDR_LEN);
522}
523
524/*
525 * Figure out EEPROM size.
526 *
527 * 559's can have either 64-word or 256-word EEPROMs, the 558
528 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
529 * talks about the existance of 16 to 256 word EEPROMs.
530 *
531 * The only known sizes are 64 and 256, where the 256 version is used
532 * by CardBus cards to store CIS information.
533 *
534 * The address is shifted in msb-to-lsb, and after the last
535 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
536 * after which follows the actual data. We try to detect this zero, by
537 * probing the data-out bit in the EEPROM control register just after
538 * having shifted in a bit. If the bit is zero, we assume we've
539 * shifted enough address bits. The data-out should be tri-state,
540 * before this, which should translate to a logical one.
541 *
542 * Other ways to do this would be to try to read a register with known
543 * contents with a varying number of address bits, but no such
544 * register seem to be available. The high bits of register 10 are 01
545 * on the 558 and 559, but apparently not on the 557.
546 *
547 * The Linux driver computes a checksum on the EEPROM data, but the
548 * value of this checksum is not very well documented.
549 */
550
551void
552fxp_autosize_eeprom(sc)
553	struct fxp_softc *sc;
554{
555	u_int16_t reg;
556	int x;
557
558	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
559	/*
560	 * Shift in read opcode.
561	 */
562	for (x = 3; x > 0; x--) {
563		if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
564			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
565		} else {
566			reg = FXP_EEPROM_EECS;
567		}
568		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
569		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
570			    reg | FXP_EEPROM_EESK);
571		DELAY(1);
572		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
573		DELAY(1);
574	}
575	/*
576	 * Shift in address, wait for the dummy zero following a correct
577	 * address shift.
578	 */
579	for (x = 1; x <=  8; x++) {
580		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
581		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
582		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
583		DELAY(1);
584		if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
585		    FXP_EEPROM_EEDO) == 0)
586			break;
587		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
588		DELAY(1);
589	}
590	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
591	DELAY(1);
592	if(x != 6 && x != 8) {
593#ifdef DEBUG
594		printf("%s: strange EEPROM size (%d)\n",
595		       sc->sc_dev.dv_xname, 1 << x);
596#endif
597	} else
598		sc->sc_eeprom_size = x;
599}
600
601/*
602 * Read from the serial EEPROM. Basically, you manually shift in
603 * the read opcode (one bit at a time) and then shift in the address,
604 * and then you shift out the data (all of this one bit at a time).
605 * The word size is 16 bits, so you have to provide the address for
606 * every 16 bits of data.
607 */
608void
609fxp_read_eeprom(sc, data, offset, words)
610	struct fxp_softc *sc;
611	u_int16_t *data;
612	int offset;
613	int words;
614{
615	u_int16_t reg;
616	int i, x;
617
618	for (i = 0; i < words; i++) {
619		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
620		/*
621		 * Shift in read opcode.
622		 */
623		for (x = 3; x > 0; x--) {
624			if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
625				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
626			} else {
627				reg = FXP_EEPROM_EECS;
628			}
629			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
630			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
631			    reg | FXP_EEPROM_EESK);
632			DELAY(1);
633			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
634			DELAY(1);
635		}
636		/*
637		 * Shift in address.
638		 */
639		for (x = sc->sc_eeprom_size; x > 0; x--) {
640			if ((i + offset) & (1 << (x - 1))) {
641			    reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
642			} else {
643			    reg = FXP_EEPROM_EECS;
644			}
645			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
646			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
647			    reg | FXP_EEPROM_EESK);
648			DELAY(1);
649			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
650			DELAY(1);
651		}
652		reg = FXP_EEPROM_EECS;
653		data[i] = 0;
654		/*
655		 * Shift out data.
656		 */
657		for (x = 16; x > 0; x--) {
658			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
659			    reg | FXP_EEPROM_EESK);
660			DELAY(1);
661			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
662			    FXP_EEPROM_EEDO)
663				data[i] |= (1 << (x - 1));
664			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
665			DELAY(1);
666		}
667		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
668		DELAY(1);
669	}
670}
671
672/*
673 * Start packet transmission on the interface.
674 */
675void
676fxp_start(ifp)
677	struct ifnet *ifp;
678{
679	struct fxp_softc *sc = ifp->if_softc;
680	struct mbuf *m0, *m;
681	struct fxp_cb_tx *txd;
682	struct fxp_txsoft *txs;
683	struct fxp_tbdlist *tbd;
684	bus_dmamap_t dmamap;
685	int error, lasttx, nexttx, opending, seg;
686
687	/*
688	 * If we want a re-init, bail out now.
689	 */
690	if (sc->sc_flags & FXPF_WANTINIT) {
691		ifp->if_flags |= IFF_OACTIVE;
692		return;
693	}
694
695	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
696		return;
697
698	/*
699	 * Remember the previous txpending and the current lasttx.
700	 */
701	opending = sc->sc_txpending;
702	lasttx = sc->sc_txlast;
703
704	/*
705	 * Loop through the send queue, setting up transmit descriptors
706	 * until we drain the queue, or use up all available transmit
707	 * descriptors.
708	 */
709	while (sc->sc_txpending < FXP_NTXCB) {
710		/*
711		 * Grab a packet off the queue.
712		 */
713		IF_DEQUEUE(&ifp->if_snd, m0);
714		if (m0 == NULL)
715			break;
716
717		/*
718		 * Get the next available transmit descriptor.
719		 */
720		nexttx = FXP_NEXTTX(sc->sc_txlast);
721		txd = FXP_CDTX(sc, nexttx);
722		tbd = FXP_CDTBD(sc, nexttx);
723		txs = FXP_DSTX(sc, nexttx);
724		dmamap = txs->txs_dmamap;
725
726		/*
727		 * Load the DMA map.  If this fails, the packet either
728		 * didn't fit in the allotted number of frags, or we were
729		 * short on resources.  In this case, we'll copy and try
730		 * again.
731		 */
732		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
733		    BUS_DMA_NOWAIT) != 0) {
734			MGETHDR(m, M_DONTWAIT, MT_DATA);
735			if (m == NULL) {
736				printf("%s: unable to allocate Tx mbuf\n",
737				    sc->sc_dev.dv_xname);
738				IF_PREPEND(&ifp->if_snd, m0);
739				break;
740			}
741			if (m0->m_pkthdr.len > MHLEN) {
742				MCLGET(m, M_DONTWAIT);
743				if ((m->m_flags & M_EXT) == 0) {
744					printf("%s: unable to allocate Tx "
745					    "cluster\n", sc->sc_dev.dv_xname);
746					m_freem(m);
747					IF_PREPEND(&ifp->if_snd, m0);
748					break;
749				}
750			}
751			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
752			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
753			m_freem(m0);
754			m0 = m;
755			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
756			    m0, BUS_DMA_NOWAIT);
757			if (error) {
758				printf("%s: unable to load Tx buffer, "
759				    "error = %d\n", sc->sc_dev.dv_xname, error);
760				IF_PREPEND(&ifp->if_snd, m0);
761				break;
762			}
763		}
764
765		/* Initialize the fraglist. */
766		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
767			tbd->tbd_d[seg].tb_addr =
768			    htole32(dmamap->dm_segs[seg].ds_addr);
769			tbd->tbd_d[seg].tb_size =
770			    htole32(dmamap->dm_segs[seg].ds_len);
771		}
772
773		FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
774
775		/* Sync the DMA map. */
776		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
777		    BUS_DMASYNC_PREWRITE);
778
779		/*
780		 * Store a pointer to the packet so we can free it later.
781		 */
782		txs->txs_mbuf = m0;
783
784		/*
785		 * Initialize the transmit descriptor.
786		 */
787		/* BIG_ENDIAN: no need to swap to store 0 */
788		txd->cb_status = 0;
789		txd->cb_command =
790		    htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
791		txd->tx_threshold = tx_threshold;
792		txd->tbd_number = dmamap->dm_nsegs;
793
794		FXP_CDTXSYNC(sc, nexttx,
795		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
796
797		/* Advance the tx pointer. */
798		sc->sc_txpending++;
799		sc->sc_txlast = nexttx;
800
801#if NBPFILTER > 0
802		/*
803		 * Pass packet to bpf if there is a listener.
804		 */
805		if (ifp->if_bpf)
806			bpf_mtap(ifp->if_bpf, m0);
807#endif
808	}
809
810	if (sc->sc_txpending == FXP_NTXCB) {
811		/* No more slots; notify upper layer. */
812		ifp->if_flags |= IFF_OACTIVE;
813	}
814
815	if (sc->sc_txpending != opending) {
816		/*
817		 * We enqueued packets.  If the transmitter was idle,
818		 * reset the txdirty pointer.
819		 */
820		if (opending == 0)
821			sc->sc_txdirty = FXP_NEXTTX(lasttx);
822
823		/*
824		 * Cause the chip to interrupt and suspend command
825		 * processing once the last packet we've enqueued
826		 * has been transmitted.
827		 */
828		FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
829		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
830		FXP_CDTXSYNC(sc, sc->sc_txlast,
831		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
832
833		/*
834		 * The entire packet chain is set up.  Clear the suspend bit
835		 * on the command prior to the first packet we set up.
836		 */
837		FXP_CDTXSYNC(sc, lasttx,
838		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
839		FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
840		FXP_CDTXSYNC(sc, lasttx,
841		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
842
843		/*
844		 * Issue a Resume command in case the chip was suspended.
845		 */
846		fxp_scb_wait(sc);
847		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
848
849		/* Set a watchdog timer in case the chip flakes out. */
850		ifp->if_timer = 5;
851	}
852}
853
854/*
855 * Process interface interrupts.
856 */
857int
858fxp_intr(arg)
859	void *arg;
860{
861	struct fxp_softc *sc = arg;
862	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
863	struct fxp_cb_tx *txd;
864	struct fxp_txsoft *txs;
865	struct mbuf *m, *m0;
866	bus_dmamap_t rxmap;
867	struct fxp_rfa *rfa;
868	struct ether_header *eh;
869	int i, claimed = 0;
870	u_int16_t len, rxstat, txstat;
871	u_int8_t statack;
872
873	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
874		return (0);
875	/*
876	 * If the interface isn't running, don't try to
877	 * service the interrupt.. just ack it and bail.
878	 */
879	if ((ifp->if_flags & IFF_RUNNING) == 0) {
880		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
881		if (statack) {
882			claimed = 1;
883			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
884		}
885		return (claimed);
886	}
887
888	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
889		claimed = 1;
890
891		/*
892		 * First ACK all the interrupts in this pass.
893		 */
894		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
895
896		/*
897		 * Process receiver interrupts. If a no-resource (RNR)
898		 * condition exists, get whatever packets we can and
899		 * re-start the receiver.
900		 */
901		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
902 rcvloop:
903			m = sc->sc_rxq.ifq_head;
904			rfa = FXP_MTORFA(m);
905			rxmap = M_GETCTX(m, bus_dmamap_t);
906
907			FXP_RFASYNC(sc, m,
908			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
909
910			rxstat = le16toh(rfa->rfa_status);
911
912			if ((rxstat & FXP_RFA_STATUS_C) == 0) {
913				/*
914				 * We have processed all of the
915				 * receive buffers.
916				 */
917				goto do_transmit;
918			}
919
920			IF_DEQUEUE(&sc->sc_rxq, m);
921
922			FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
923
924			len = le16toh(rfa->actual_size) &
925			    (m->m_ext.ext_size - 1);
926
927			if (len < sizeof(struct ether_header)) {
928				/*
929				 * Runt packet; drop it now.
930				 */
931				FXP_INIT_RFABUF(sc, m);
932				goto rcvloop;
933			}
934
935			/*
936			 * If the packet is small enough to fit in a
937			 * single header mbuf, allocate one and copy
938			 * the data into it.  This greatly reduces
939			 * memory consumption when we receive lots
940			 * of small packets.
941			 *
942			 * Otherwise, we add a new buffer to the receive
943			 * chain.  If this fails, we drop the packet and
944			 * recycle the old buffer.
945			 */
946			if (fxp_copy_small != 0 && len <= MHLEN) {
947				MGETHDR(m0, M_DONTWAIT, MT_DATA);
948				if (m == NULL)
949					goto dropit;
950				memcpy(mtod(m0, caddr_t),
951				    mtod(m, caddr_t), len);
952				FXP_INIT_RFABUF(sc, m);
953				m = m0;
954			} else {
955				if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
956 dropit:
957					ifp->if_ierrors++;
958					FXP_INIT_RFABUF(sc, m);
959					goto rcvloop;
960				}
961			}
962
963			m->m_pkthdr.rcvif = ifp;
964			m->m_pkthdr.len = m->m_len = len;
965			eh = mtod(m, struct ether_header *);
966
967#if NBPFILTER > 0
968			/*
969			 * Pass this up to any BPF listeners, but only
970			 * pass it up the stack it its for us.
971			 */
972			if (ifp->if_bpf) {
973				bpf_mtap(ifp->if_bpf, m);
974
975				if ((ifp->if_flags & IFF_PROMISC) != 0 &&
976				    (rxstat & FXP_RFA_STATUS_IAMATCH) != 0 &&
977				    (eh->ether_dhost[0] & 1) == 0) {
978					m_freem(m);
979					goto rcvloop;
980				}
981			}
982#endif /* NBPFILTER > 0 */
983
984			/* Pass it on. */
985			(*ifp->if_input)(ifp, m);
986			goto rcvloop;
987		}
988
989 do_transmit:
990		if (statack & FXP_SCB_STATACK_RNR) {
991			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
992			fxp_scb_wait(sc);
993			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
994			    rxmap->dm_segs[0].ds_addr +
995			    RFA_ALIGNMENT_FUDGE);
996			CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
997			    FXP_SCB_COMMAND_RU_START);
998		}
999
1000		/*
1001		 * Free any finished transmit mbuf chains.
1002		 */
1003		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1004			ifp->if_flags &= ~IFF_OACTIVE;
1005			for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1006			     i = FXP_NEXTTX(i), sc->sc_txpending--) {
1007				txd = FXP_CDTX(sc, i);
1008				txs = FXP_DSTX(sc, i);
1009
1010				FXP_CDTXSYNC(sc, i,
1011				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1012
1013				txstat = le16toh(txd->cb_status);
1014
1015				if ((txstat & FXP_CB_STATUS_C) == 0)
1016					break;
1017
1018				FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
1019
1020				bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1021				    0, txs->txs_dmamap->dm_mapsize,
1022				    BUS_DMASYNC_POSTWRITE);
1023				bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1024				m_freem(txs->txs_mbuf);
1025				txs->txs_mbuf = NULL;
1026			}
1027
1028			/* Update the dirty transmit buffer pointer. */
1029			sc->sc_txdirty = i;
1030
1031			/*
1032			 * Cancel the watchdog timer if there are no pending
1033			 * transmissions.
1034			 */
1035			if (sc->sc_txpending == 0) {
1036				ifp->if_timer = 0;
1037
1038				/*
1039				 * If we want a re-init, do that now.
1040				 */
1041				if (sc->sc_flags & FXPF_WANTINIT)
1042					(void) fxp_init(sc);
1043			}
1044
1045			/*
1046			 * Try to get more packets going.
1047			 */
1048			fxp_start(ifp);
1049		}
1050	}
1051
1052#if NRND > 0
1053	if (claimed)
1054		rnd_add_uint32(&sc->rnd_source, statack);
1055#endif
1056	return (claimed);
1057}
1058
1059/*
1060 * Update packet in/out/collision statistics. The i82557 doesn't
1061 * allow you to access these counters without doing a fairly
1062 * expensive DMA to get _all_ of the statistics it maintains, so
1063 * we do this operation here only once per second. The statistics
1064 * counters in the kernel are updated from the previous dump-stats
1065 * DMA and then a new dump-stats DMA is started. The on-chip
1066 * counters are zeroed when the DMA completes. If we can't start
1067 * the DMA immediately, we don't wait - we just prepare to read
1068 * them again next time.
1069 */
1070void
1071fxp_tick(arg)
1072	void *arg;
1073{
1074	struct fxp_softc *sc = arg;
1075	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1076	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1077	int s;
1078
1079	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1080		return;
1081
1082	s = splnet();
1083
1084	ifp->if_opackets += le32toh(sp->tx_good);
1085	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1086	if (sp->rx_good) {
1087		ifp->if_ipackets += le32toh(sp->rx_good);
1088		sc->sc_rxidle = 0;
1089	} else {
1090		sc->sc_rxidle++;
1091	}
1092	ifp->if_ierrors +=
1093	    le32toh(sp->rx_crc_errors) +
1094	    le32toh(sp->rx_alignment_errors) +
1095	    le32toh(sp->rx_rnr_errors) +
1096	    le32toh(sp->rx_overrun_errors);
1097	/*
1098	 * If any transmit underruns occured, bump up the transmit
1099	 * threshold by another 512 bytes (64 * 8).
1100	 */
1101	if (sp->tx_underruns) {
1102		ifp->if_oerrors += le32toh(sp->tx_underruns);
1103		if (tx_threshold < 192)
1104			tx_threshold += 64;
1105	}
1106
1107	/*
1108	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1109	 * then assume the receiver has locked up and attempt to clear
1110	 * the condition by reprogramming the multicast filter (actually,
1111	 * resetting the interface). This is a work-around for a bug in
1112	 * the 82557 where the receiver locks up if it gets certain types
1113	 * of garbage in the syncronization bits prior to the packet header.
1114	 * This bug is supposed to only occur in 10Mbps mode, but has been
1115	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1116	 * speed transition).
1117	 */
1118	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1119		(void) fxp_init(sc);
1120		splx(s);
1121		return;
1122	}
1123	/*
1124	 * If there is no pending command, start another stats
1125	 * dump. Otherwise punt for now.
1126	 */
1127	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1128		/*
1129		 * Start another stats dump.
1130		 */
1131		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1132		    FXP_SCB_COMMAND_CU_DUMPRESET);
1133	} else {
1134		/*
1135		 * A previous command is still waiting to be accepted.
1136		 * Just zero our copy of the stats and wait for the
1137		 * next timer event to update them.
1138		 */
1139		/* BIG_ENDIAN: no swap required to store 0 */
1140		sp->tx_good = 0;
1141		sp->tx_underruns = 0;
1142		sp->tx_total_collisions = 0;
1143
1144		sp->rx_good = 0;
1145		sp->rx_crc_errors = 0;
1146		sp->rx_alignment_errors = 0;
1147		sp->rx_rnr_errors = 0;
1148		sp->rx_overrun_errors = 0;
1149	}
1150
1151	if (sc->sc_flags & FXPF_MII) {
1152		/* Tick the MII clock. */
1153		mii_tick(&sc->sc_mii);
1154	}
1155
1156	splx(s);
1157
1158	/*
1159	 * Schedule another timeout one second from now.
1160	 */
1161	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1162}
1163
1164/*
1165 * Drain the receive queue.
1166 */
1167void
1168fxp_rxdrain(sc)
1169	struct fxp_softc *sc;
1170{
1171	bus_dmamap_t rxmap;
1172	struct mbuf *m;
1173
1174	for (;;) {
1175		IF_DEQUEUE(&sc->sc_rxq, m);
1176		if (m == NULL)
1177			break;
1178		rxmap = M_GETCTX(m, bus_dmamap_t);
1179		bus_dmamap_unload(sc->sc_dmat, rxmap);
1180		FXP_RXMAP_PUT(sc, rxmap);
1181		m_freem(m);
1182	}
1183}
1184
1185/*
1186 * Stop the interface. Cancels the statistics updater and resets
1187 * the interface.
1188 */
1189void
1190fxp_stop(sc, drain)
1191	struct fxp_softc *sc;
1192	int drain;
1193{
1194	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1195	struct fxp_txsoft *txs;
1196	int i;
1197
1198	/*
1199	 * Turn down interface (done early to avoid bad interactions
1200	 * between panics, shutdown hooks, and the watchdog timer)
1201	 */
1202	ifp->if_timer = 0;
1203	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1204
1205	/*
1206	 * Cancel stats updater.
1207	 */
1208	callout_stop(&sc->sc_callout);
1209	if (sc->sc_flags & FXPF_MII) {
1210		/* Down the MII. */
1211		mii_down(&sc->sc_mii);
1212	}
1213
1214	/*
1215	 * Issue software reset
1216	 */
1217	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1218	DELAY(10);
1219
1220	/*
1221	 * Release any xmit buffers.
1222	 */
1223	for (i = 0; i < FXP_NTXCB; i++) {
1224		txs = FXP_DSTX(sc, i);
1225		if (txs->txs_mbuf != NULL) {
1226			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1227			m_freem(txs->txs_mbuf);
1228			txs->txs_mbuf = NULL;
1229		}
1230	}
1231	sc->sc_txpending = 0;
1232
1233	if (drain) {
1234		/*
1235		 * Release the receive buffers.
1236		 */
1237		fxp_rxdrain(sc);
1238	}
1239
1240}
1241
1242/*
1243 * Watchdog/transmission transmit timeout handler. Called when a
1244 * transmission is started on the interface, but no interrupt is
1245 * received before the timeout. This usually indicates that the
1246 * card has wedged for some reason.
1247 */
1248void
1249fxp_watchdog(ifp)
1250	struct ifnet *ifp;
1251{
1252	struct fxp_softc *sc = ifp->if_softc;
1253
1254	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1255	ifp->if_oerrors++;
1256
1257	(void) fxp_init(sc);
1258}
1259
1260/*
1261 * Initialize the interface.  Must be called at splnet().
1262 */
1263int
1264fxp_init(sc)
1265	struct fxp_softc *sc;
1266{
1267	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1268	struct fxp_cb_config *cbp;
1269	struct fxp_cb_ias *cb_ias;
1270	struct fxp_cb_tx *txd;
1271	bus_dmamap_t rxmap;
1272	int i, prm, allm, error = 0;
1273
1274	/*
1275	 * Cancel any pending I/O
1276	 */
1277	fxp_stop(sc, 0);
1278
1279	/*
1280	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1281	 * flag, and this prevents the MII from detaching resulting in
1282	 * a panic. The flags field should perhaps be split in runtime
1283	 * flags and more static information. For now, just clear the
1284	 * only other flag set.
1285	 */
1286
1287	sc->sc_flags &= ~FXPF_WANTINIT;
1288
1289	/*
1290	 * Initialize base of CBL and RFA memory. Loading with zero
1291	 * sets it up for regular linear addressing.
1292	 */
1293	fxp_scb_wait(sc);
1294	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1295	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1296
1297	fxp_scb_wait(sc);
1298	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1299
1300	/*
1301	 * Initialize the multicast filter.  Do this now, since we might
1302	 * have to setup the config block differently.
1303	 */
1304	fxp_mc_setup(sc);
1305
1306	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1307	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1308
1309	/*
1310	 * Initialize base of dump-stats buffer.
1311	 */
1312	fxp_scb_wait(sc);
1313	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1314	    sc->sc_cddma + FXP_CDSTATSOFF);
1315	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1316
1317	cbp = &sc->sc_control_data->fcd_configcb;
1318	memset(cbp, 0, sizeof(struct fxp_cb_config));
1319
1320	/*
1321	 * This copy is kind of disgusting, but there are a bunch of must be
1322	 * zero and must be one bits in this structure and this is the easiest
1323	 * way to initialize them all to proper values.
1324	 */
1325	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1326
1327	/* BIG_ENDIAN: no need to swap to store 0 */
1328	cbp->cb_status =	0;
1329	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1330				    FXP_CB_COMMAND_EL);
1331	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1332	cbp->link_addr =	0xffffffff; /* (no) next command */
1333	cbp->byte_count =	22;	/* (22) bytes to config */
1334	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1335	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1336	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1337	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1338	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1339	cbp->dma_bce =		0;	/* (disable) dma max counters */
1340	cbp->late_scb =		0;	/* (don't) defer SCB update */
1341	cbp->tno_int =		0;	/* (disable) tx not okay interrupt */
1342	cbp->ci_int =		1;	/* interrupt on CU idle */
1343	cbp->save_bf =		prm;	/* save bad frames */
1344	cbp->disc_short_rx =	!prm;	/* discard short packets */
1345	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1346	cbp->mediatype =	!sc->phy_10Mbps_only; /* interface mode */
1347	cbp->nsai =		1;	/* (don't) disable source addr insert */
1348	cbp->preamble_length =	2;	/* (7 byte) preamble */
1349	cbp->loopback =		0;	/* (don't) loopback */
1350	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1351	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1352	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1353	cbp->promiscuous =	prm;	/* promiscuous mode */
1354	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1355	cbp->crscdt =		0;	/* (CRS only) */
1356	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1357	cbp->padding =		1;	/* (do) pad short tx packets */
1358	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1359	cbp->force_fdx =	0;	/* (don't) force full duplex */
1360	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1361	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1362	cbp->mc_all =		allm;	/* accept all multicasts */
1363
1364	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1365
1366	/*
1367	 * Start the config command/DMA.
1368	 */
1369	fxp_scb_wait(sc);
1370	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1371	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1372	/* ...and wait for it to complete. */
1373	i = 1000;
1374	do {
1375		FXP_CDCONFIGSYNC(sc,
1376		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1377		DELAY(1);
1378	} while ((htole16(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1379	if (i == 0) {
1380		printf("%s at line %d: dmasync timeout\n",
1381		    sc->sc_dev.dv_xname, __LINE__);
1382		return ETIMEDOUT;
1383	}
1384
1385	/*
1386	 * Initialize the station address.
1387	 */
1388	cb_ias = &sc->sc_control_data->fcd_iascb;
1389	/* BIG_ENDIAN: no need to swap to store 0 */
1390	cb_ias->cb_status = 0;
1391	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1392	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1393	cb_ias->link_addr = 0xffffffff;
1394	memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1395
1396	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1397
1398	/*
1399	 * Start the IAS (Individual Address Setup) command/DMA.
1400	 */
1401	fxp_scb_wait(sc);
1402	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1403	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1404	/* ...and wait for it to complete. */
1405	i = 1000;
1406	do {
1407		FXP_CDIASSYNC(sc,
1408		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1409		DELAY(1);
1410	} while ((htole16(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1411	if (i == 0) {
1412		printf("%s at line %d: dmasync timeout\n",
1413		    sc->sc_dev.dv_xname, __LINE__);
1414		return ETIMEDOUT;
1415	}
1416
1417	/*
1418	 * Initialize the transmit descriptor ring.  txlast is initialized
1419	 * to the end of the list so that it will wrap around to the first
1420	 * descriptor when the first packet is transmitted.
1421	 */
1422	for (i = 0; i < FXP_NTXCB; i++) {
1423		txd = FXP_CDTX(sc, i);
1424		memset(txd, 0, sizeof(struct fxp_cb_tx));
1425		txd->cb_command =
1426		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1427		txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
1428		txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1429		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1430	}
1431	sc->sc_txpending = 0;
1432	sc->sc_txdirty = 0;
1433	sc->sc_txlast = FXP_NTXCB - 1;
1434
1435	/*
1436	 * Initialize the receive buffer list.
1437	 */
1438	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1439	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1440		rxmap = FXP_RXMAP_GET(sc);
1441		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1442			printf("%s: unable to allocate or map rx "
1443			    "buffer %d, error = %d\n",
1444			    sc->sc_dev.dv_xname,
1445			    sc->sc_rxq.ifq_len, error);
1446			/*
1447			 * XXX Should attempt to run with fewer receive
1448			 * XXX buffers instead of just failing.
1449			 */
1450			FXP_RXMAP_PUT(sc, rxmap);
1451			fxp_rxdrain(sc);
1452			goto out;
1453		}
1454	}
1455	sc->sc_rxidle = 0;
1456
1457	/*
1458	 * Give the transmit ring to the chip.  We do this by pointing
1459	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1460	 * issuing a start command.  It will execute the NOP and then
1461	 * suspend, pointing at the first descriptor.
1462	 */
1463	fxp_scb_wait(sc);
1464	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1465	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1466
1467	/*
1468	 * Initialize receiver buffer area - RFA.
1469	 */
1470	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1471	fxp_scb_wait(sc);
1472	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1473	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1474	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1475
1476	if (sc->sc_flags & FXPF_MII) {
1477		/*
1478		 * Set current media.
1479		 */
1480		mii_mediachg(&sc->sc_mii);
1481	}
1482
1483	/*
1484	 * ...all done!
1485	 */
1486	ifp->if_flags |= IFF_RUNNING;
1487	ifp->if_flags &= ~IFF_OACTIVE;
1488
1489	/*
1490	 * Start the one second timer.
1491	 */
1492	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1493
1494	/*
1495	 * Attempt to start output on the interface.
1496	 */
1497	fxp_start(ifp);
1498
1499 out:
1500	if (error)
1501		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1502	return (error);
1503}
1504
1505/*
1506 * Change media according to request.
1507 */
1508int
1509fxp_mii_mediachange(ifp)
1510	struct ifnet *ifp;
1511{
1512	struct fxp_softc *sc = ifp->if_softc;
1513
1514	if (ifp->if_flags & IFF_UP)
1515		mii_mediachg(&sc->sc_mii);
1516	return (0);
1517}
1518
1519/*
1520 * Notify the world which media we're using.
1521 */
1522void
1523fxp_mii_mediastatus(ifp, ifmr)
1524	struct ifnet *ifp;
1525	struct ifmediareq *ifmr;
1526{
1527	struct fxp_softc *sc = ifp->if_softc;
1528
1529	if(sc->sc_enabled == 0) {
1530		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1531		ifmr->ifm_status = 0;
1532		return;
1533	}
1534
1535	mii_pollstat(&sc->sc_mii);
1536	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1537	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1538}
1539
1540int
1541fxp_80c24_mediachange(ifp)
1542	struct ifnet *ifp;
1543{
1544
1545	/* Nothing to do here. */
1546	return (0);
1547}
1548
1549void
1550fxp_80c24_mediastatus(ifp, ifmr)
1551	struct ifnet *ifp;
1552	struct ifmediareq *ifmr;
1553{
1554	struct fxp_softc *sc = ifp->if_softc;
1555
1556	/*
1557	 * Media is currently-selected media.  We cannot determine
1558	 * the link status.
1559	 */
1560	ifmr->ifm_status = 0;
1561	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1562}
1563
1564/*
1565 * Add a buffer to the end of the RFA buffer list.
1566 * Return 0 if successful, error code on failure.
1567 *
1568 * The RFA struct is stuck at the beginning of mbuf cluster and the
1569 * data pointer is fixed up to point just past it.
1570 */
1571int
1572fxp_add_rfabuf(sc, rxmap, unload)
1573	struct fxp_softc *sc;
1574	bus_dmamap_t rxmap;
1575	int unload;
1576{
1577	struct mbuf *m;
1578	int error;
1579
1580	MGETHDR(m, M_DONTWAIT, MT_DATA);
1581	if (m == NULL)
1582		return (ENOBUFS);
1583
1584	MCLGET(m, M_DONTWAIT);
1585	if ((m->m_flags & M_EXT) == 0) {
1586		m_freem(m);
1587		return (ENOBUFS);
1588	}
1589
1590	if (unload)
1591		bus_dmamap_unload(sc->sc_dmat, rxmap);
1592
1593	M_SETCTX(m, rxmap);
1594
1595	error = bus_dmamap_load(sc->sc_dmat, rxmap,
1596	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1597	if (error) {
1598		printf("%s: can't load rx DMA map %d, error = %d\n",
1599		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1600		panic("fxp_add_rfabuf");		/* XXX */
1601	}
1602
1603	FXP_INIT_RFABUF(sc, m);
1604
1605	return (0);
1606}
1607
1608volatile int
1609fxp_mdi_read(self, phy, reg)
1610	struct device *self;
1611	int phy;
1612	int reg;
1613{
1614	struct fxp_softc *sc = (struct fxp_softc *)self;
1615	int count = 10000;
1616	int value;
1617
1618	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1619	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1620
1621	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1622	    && count--)
1623		DELAY(10);
1624
1625	if (count <= 0)
1626		printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1627
1628	return (value & 0xffff);
1629}
1630
1631void
1632fxp_statchg(self)
1633	struct device *self;
1634{
1635
1636	/* Nothing to do. */
1637}
1638
1639void
1640fxp_mdi_write(self, phy, reg, value)
1641	struct device *self;
1642	int phy;
1643	int reg;
1644	int value;
1645{
1646	struct fxp_softc *sc = (struct fxp_softc *)self;
1647	int count = 10000;
1648
1649	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1650	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1651	    (value & 0xffff));
1652
1653	while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1654	    count--)
1655		DELAY(10);
1656
1657	if (count <= 0)
1658		printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1659}
1660
1661int
1662fxp_ioctl(ifp, command, data)
1663	struct ifnet *ifp;
1664	u_long command;
1665	caddr_t data;
1666{
1667	struct fxp_softc *sc = ifp->if_softc;
1668	struct ifreq *ifr = (struct ifreq *)data;
1669	struct ifaddr *ifa = (struct ifaddr *)data;
1670	int s, error = 0;
1671
1672	s = splnet();
1673
1674	switch (command) {
1675	case SIOCSIFADDR:
1676		if ((error = fxp_enable(sc)) != 0)
1677			break;
1678		ifp->if_flags |= IFF_UP;
1679
1680		switch (ifa->ifa_addr->sa_family) {
1681#ifdef INET
1682		case AF_INET:
1683			if ((error = fxp_init(sc)) != 0)
1684				break;
1685			arp_ifinit(ifp, ifa);
1686			break;
1687#endif /* INET */
1688#ifdef NS
1689		case AF_NS:
1690		    {
1691			 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1692
1693			 if (ns_nullhost(*ina))
1694				ina->x_host = *(union ns_host *)
1695				    LLADDR(ifp->if_sadl);
1696			 else
1697				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1698				    ifp->if_addrlen);
1699			 /* Set new address. */
1700			 error = fxp_init(sc);
1701			 break;
1702		    }
1703#endif /* NS */
1704		default:
1705			error = fxp_init(sc);
1706			break;
1707		}
1708		break;
1709
1710	case SIOCSIFMTU:
1711		if (ifr->ifr_mtu > ETHERMTU)
1712			error = EINVAL;
1713		else
1714			ifp->if_mtu = ifr->ifr_mtu;
1715		break;
1716
1717	case SIOCSIFFLAGS:
1718		if ((ifp->if_flags & IFF_UP) == 0 &&
1719		    (ifp->if_flags & IFF_RUNNING) != 0) {
1720			/*
1721			 * If interface is marked down and it is running, then
1722			 * stop it.
1723			 */
1724			fxp_stop(sc, 1);
1725			fxp_disable(sc);
1726		} else if ((ifp->if_flags & IFF_UP) != 0 &&
1727		    (ifp->if_flags & IFF_RUNNING) == 0) {
1728			/*
1729			 * If interface is marked up and it is stopped, then
1730			 * start it.
1731			 */
1732			if((error = fxp_enable(sc)) != 0)
1733				break;
1734			error = fxp_init(sc);
1735		} else if ((ifp->if_flags & IFF_UP) != 0) {
1736			/*
1737			 * Reset the interface to pick up change in any other
1738			 * flags that affect the hardware state.
1739			 */
1740			if((error = fxp_enable(sc)) != 0)
1741				break;
1742			error = fxp_init(sc);
1743		}
1744		break;
1745
1746	case SIOCADDMULTI:
1747	case SIOCDELMULTI:
1748		if(sc->sc_enabled == 0) {
1749			error = EIO;
1750			break;
1751		}
1752		error = (command == SIOCADDMULTI) ?
1753		    ether_addmulti(ifr, &sc->sc_ethercom) :
1754		    ether_delmulti(ifr, &sc->sc_ethercom);
1755
1756		if (error == ENETRESET) {
1757			/*
1758			 * Multicast list has changed; set the hardware
1759			 * filter accordingly.
1760			 */
1761			if (sc->sc_txpending) {
1762				sc->sc_flags |= FXPF_WANTINIT;
1763				error = 0;
1764			} else
1765				error = fxp_init(sc);
1766		}
1767		break;
1768
1769	case SIOCSIFMEDIA:
1770	case SIOCGIFMEDIA:
1771		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1772		break;
1773
1774	default:
1775		error = EINVAL;
1776		break;
1777	}
1778
1779	splx(s);
1780	return (error);
1781}
1782
1783/*
1784 * Program the multicast filter.
1785 *
1786 * This function must be called at splnet().
1787 */
1788void
1789fxp_mc_setup(sc)
1790	struct fxp_softc *sc;
1791{
1792	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1793	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1794	struct ethercom *ec = &sc->sc_ethercom;
1795	struct ether_multi *enm;
1796	struct ether_multistep step;
1797	int count, nmcasts;
1798
1799#ifdef DIAGNOSTIC
1800	if (sc->sc_txpending)
1801		panic("fxp_mc_setup: pending transmissions");
1802#endif
1803
1804	ifp->if_flags &= ~IFF_ALLMULTI;
1805
1806	/*
1807	 * Initialize multicast setup descriptor.
1808	 */
1809	nmcasts = 0;
1810	ETHER_FIRST_MULTI(step, ec, enm);
1811	while (enm != NULL) {
1812		/*
1813		 * Check for too many multicast addresses or if we're
1814		 * listening to a range.  Either way, we simply have
1815		 * to accept all multicasts.
1816		 */
1817		if (nmcasts >= MAXMCADDR ||
1818		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
1819		    ETHER_ADDR_LEN) != 0) {
1820			/*
1821			 * Callers of this function must do the
1822			 * right thing with this.  If we're called
1823			 * from outside fxp_init(), the caller must
1824			 * detect if the state if IFF_ALLMULTI changes.
1825			 * If it does, the caller must then call
1826			 * fxp_init(), since allmulti is handled by
1827			 * the config block.
1828			 */
1829			ifp->if_flags |= IFF_ALLMULTI;
1830			return;
1831		}
1832		memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1833		    ETHER_ADDR_LEN);
1834		nmcasts++;
1835		ETHER_NEXT_MULTI(step, enm);
1836	}
1837
1838	/* BIG_ENDIAN: no need to swap to store 0 */
1839	mcsp->cb_status = 0;
1840	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1841	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1842	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1843
1844	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1845
1846	/*
1847	 * Wait until the command unit is not active.  This should never
1848	 * happen since nothing is queued, but make sure anyway.
1849	 */
1850	count = 100;
1851	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1852	    FXP_SCB_CUS_ACTIVE && --count)
1853		DELAY(1);
1854	if (count == 0) {
1855		printf("%s at line %d: command queue timeout\n",
1856		    sc->sc_dev.dv_xname, __LINE__);
1857		return;
1858	}
1859
1860	/*
1861	 * Start the multicast setup command/DMA.
1862	 */
1863	fxp_scb_wait(sc);
1864	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1865	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1866
1867	/* ...and wait for it to complete. */
1868	count = 1000;
1869	do {
1870		FXP_CDMCSSYNC(sc,
1871		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1872		DELAY(1);
1873	} while ((htole16(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
1874	if (count == 0) {
1875		printf("%s at line %d: dmasync timeout\n",
1876		    sc->sc_dev.dv_xname, __LINE__);
1877		return;
1878	}
1879}
1880
1881int
1882fxp_enable(sc)
1883	struct fxp_softc *sc;
1884{
1885
1886	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1887		if ((*sc->sc_enable)(sc) != 0) {
1888			printf("%s: device enable failed\n",
1889			    sc->sc_dev.dv_xname);
1890			return (EIO);
1891		}
1892	}
1893
1894	sc->sc_enabled = 1;
1895	return (0);
1896}
1897
1898void
1899fxp_disable(sc)
1900	struct fxp_softc *sc;
1901{
1902
1903	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1904		(*sc->sc_disable)(sc);
1905		sc->sc_enabled = 0;
1906	}
1907}
1908
1909/*
1910 * fxp_activate:
1911 *
1912 *	Handle device activation/deactivation requests.
1913 */
1914int
1915fxp_activate(self, act)
1916	struct device *self;
1917	enum devact act;
1918{
1919	struct fxp_softc *sc = (void *) self;
1920	int s, error = 0;
1921
1922	s = splnet();
1923	switch (act) {
1924	case DVACT_ACTIVATE:
1925		error = EOPNOTSUPP;
1926		break;
1927
1928	case DVACT_DEACTIVATE:
1929		if (sc->sc_flags & FXPF_MII)
1930			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
1931			    MII_OFFSET_ANY);
1932		if_deactivate(&sc->sc_ethercom.ec_if);
1933		break;
1934	}
1935	splx(s);
1936
1937	return (error);
1938}
1939
1940/*
1941 * fxp_detach:
1942 *
1943 *	Detach an i82557 interface.
1944 */
1945int
1946fxp_detach(sc)
1947	struct fxp_softc *sc;
1948{
1949	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1950	int i;
1951
1952	/* Unhook our tick handler. */
1953	callout_stop(&sc->sc_callout);
1954
1955	if (sc->sc_flags & FXPF_MII) {
1956		/* Detach all PHYs */
1957		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1958	}
1959
1960	/* Delete all remaining media. */
1961	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1962
1963#if NRND > 0
1964	rnd_detach_source(&sc->rnd_source);
1965#endif
1966#if NBPFILTER > 0
1967	bpfdetach(ifp);
1968#endif
1969	ether_ifdetach(ifp);
1970	if_detach(ifp);
1971
1972	for (i = 0; i < FXP_NRFABUFS; i++) {
1973		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
1974		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
1975	}
1976
1977	for (i = 0; i < FXP_NTXCB; i++) {
1978		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1979		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1980	}
1981
1982	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
1983	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
1984	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1985	    sizeof(struct fxp_control_data));
1986	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
1987
1988	shutdownhook_disestablish(sc->sc_sdhook);
1989	powerhook_disestablish(sc->sc_powerhook);
1990
1991	return (0);
1992}
1993